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Abstract
Recombinant human growth hormone (r-hGH) is used as a therapeutic agent for disorders of growth including growth
hormone deficiency (GHD) and Turner syndrome (TS). Treatment is costly and current methods to model response are
inexact. GHD (n= 71) and TS patients (n= 43) were recruited to study response to r-hGH over 5 years. Analysis was
performed using 1219 genetic markers and baseline (pre-treatment) blood transcriptome. Random forest was used to
determine predictive value of transcriptomic data associated with growth response. No genetic marker passed the stringency
criteria for prediction. However, we identified an identical set of genes in both GHD and TS whose expression could be used
to classify therapeutic response to r-hGH with a high accuracy (AUC > 0.9). Combining transcriptomic markers with clinical
phenotype was shown to significantly reduce predictive error. This work could be translated into a single genomic test linked
to a prediction algorithm to improve clinical management. Trial registration numbers: NCT00256126 and NCT00699855.

Introduction

Recombinant human growth hormone (r-hGH) is used as a
therapeutic agent for a range of disorders of growth
impairment including growth hormone deficiency (GHD)
and Turner syndrome (TS). Treatment is costly between
£6000 and £24000 per centimetre (cm) gained in final
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height [1]. Therapy is not always successful in patients and
there are currently no genomic markers for predicting
positive or negative responses. Prediction models up to four
years of therapy have been defined using clinical mea-
surements [2] but have been difficult to implement in
practise. Whilst an understanding of the pharmacogenetic
background has been established [3, 4], such approaches are
of limited predictive value due to the influence of covariates
related to the child’s developmental stage, disease severity
and geographical location [5, 6]. The pre-treatment blood
transcriptome has been previously shown to relate to first
year response to r-hGH therapy [7]; however, little is known
about the predictive value of this association and its rela-
tionship to longer term response to therapy. The tran-
scriptome represents a level of ‘omic’ data that reflects
genetic information, developmental stage in relation to age
[8] along with the impact of the local environment [6] and,
therefore, has potential to classify response to r-hGH.

Response to r-hGH in the first year of therapy is con-
sidered to be a primary marker of growth response. Pre-
diction of first year growth has been shown to be dependent
on GHD severity, age, distance to target height, body
weight, dose of r-hGH, birth weight and, as defined by
regression models, can account for 61% in GHD [9] and
46% in TS [10, 11] of the variation within the data. Clinical
markers such as distance to target height are surrogate
genetic variables and this implies that an effective level of
genomic prediction is hypothesised to be possible if
developmental [8, 12] and environmental covariates [13] of
growth response can be taken into account.

Transcriptomic data have been used extensively in can-
cer tissues both to sub-type the tumour [14–16] and to
predict response to therapies [17, 18]. In contrast, in this
study, we have used peripheral blood gene expression
profiling as the source for gene expression profiles, and
show that these patterns can be used to predict response to r-
hGH in each year of treatment up to 5 years in two different
growth disorders that account for ~60% of GH prescriptions
in the USA, Europe and the UK [19, 20].

Methods

Patients

The PREDICT Long-term Follow-up study (multicentre,
open-label, prospective, phase IV) and the pharmacoge-
netics of the first year of r-hGH treatment have been
described extensively previously [7, 21]. Briefly, pre-
pubertal children with GHD and TS were enroled. A
diagnosis of GHD was reached following two pharmaco-
logical stimulation tests with a peak GH concentration of
<10 µg/L. Prior to enrolment in the study, none of the

children had received GH therapy. Children with GHD due
to central nervous system tumours or radiotherapy were
excluded but children born small for gestational age were
not (15% of the cohort [22]). The majority of GHD patients
had isolated GHD but five were treated with both thyroxine
and hydrocortisone replacement, three with just thyroxine
and one with just hydrocortisone [22]. The diagnosis of TS
was based on karyotype.

This PREDICT study was conducted in compliance with
ethical principles based on the Declaration of Helsinki, the
International Conference on Harmonization Tripartite
Guideline for Good Clinical Practice and all applicable
regulatory requirements. The PREDICT (NCT00256126)
and PREDICT Long-term Follow-up (NCT00699855) stu-
dies were approved by the Scotland Medical Research and
Ethics Committee (reference 05/MRE10/61) and the North
West Research Ethics Committee (reference 08/H1010/77),
respectively. Informed consent was obtained from parents
for all study participants.

Genetic analysis

A total of 1219 genetic markers were used in the analysis,
1217 Illumina-genotyped single-nucleotide polymorphisms
(SNPs) corresponding to a candidate list of 103 genes and 2
TaqMan-genotyped SNPs in the IGFBP3 promoter. All
genes selected are known to be involved in growth reg-
ulation and GH action as previously described [5, 7].

A Kruskal–Wallis rank sum test was applied on the fol-
lowing three genetic models (a) genotypic (AA, AB, BB); (b)
dominant (AA/AB+BB) and (c) recessive (AA+AB/BB).
For non-pseudoautosomal X chromosome markers, GHD
boys and TS girls were analysed as having only two homo-
zygote categories (AA/BB). Adjustment for multiple testing
was performed using Bonferroni correction with two different
parameters as the number of independent tests, the number of
linkage disequilibrium (LD) blocks in the gene in which the
SNP is contained and the total number of LD blocks present
in all genes (768 in GHD and 563 in TS). Filtering criterion
for prediction was defined as a false discovery rate (FDR)
modified p value < 0.05 unmodified for LD blocks.

Transcriptome analysis

Transcriptomic profiling was carried out on whole blood
RNA as described previously [7] using Affymetrix Gene-
Chip Human Genome U133 plus 2.0 Arrays. For back-
ground correction, the Robust Multichip Average was
applied with quantile normalisation and a mean probe set
summarisation using Qlucore Omics Explorer 2.3 ([QOE]
Qlucore, Lund, Sweden). The data set generated was subject
to quality control to investigate the presence of outliers and
further confounding effects.
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Baseline gene expression associations with height velo-
city in each year of growth response were determined using
rank regression with microarray batch, age, body mass
index (BMI) at baseline as covariates (eliminated factor
function in QOE) for both GHD and TS patients along with
gender and peak GH test response (average of two provo-
cative tests) for the GHD patients. Over the study, a number
of children either entered puberty spontaneously or received
exogenous sex steroids for pubertal induction. We therefore
introduced a further normalisation for Tanner stage to the
analysis to account for the proportion of children entering
puberty in each year of the study.

Generation of network models

Network analysis allows the identification and prioritisa-
tion of key functional elements within interactome mod-
els. To derive an interactome model differentially
expressed genes were used as ‘seeds’ and all known
protein:protein interactions between the seeds and their
inferred immediate neighbours were calculated to gen-
erate a biological network using the output of the Biogrid
model of the human Interactome (3.3.122) [23]. Network
generation and processing were performed using Cytos-
cape 2.8.3 [24].

Analysis of gene network models

Clustering and ‘community structure’ of modules within
biological networks arise from variation in connectivity
within the network and are known to be associated with
function [25, 26]. To rank these functional components
within interactome models, we used the ModuLand plugin
for Cytoscape 2.8.3 to determine overlapping modules and
to identify hierarchical structure using the centrality prop-
erty thus enabling the identification of key network ele-
ments [27]. The central core unit of each network module
(metanode) was defined as the ten most central genes. A list
of the unique genes in each metanode was generated and
used as a model of the functional core of the associated
network for further comparison. Network topology was
analysed using the CytoHubba plugin for Cytoscape [28].
The String database was used to assess the integrity and
connectivity of gene modules [29].

Analysis of epigenomic data

Previously published methylation profiles of six GHD
patients were used to assess the relationship of changes in
DNA methylation in relation to response to r-hGH [30]. The
data from GSE57107 were re-analysed in Qlucore Omics
Explorer 3.3 and a median-based gene level summary of
methylation was determined (n= 20,618). The relationship

between gene level DNA methylation and response to
r-hGH was determined using rank regression.

Classification of growth response

All analysis was performed using the statistical software R
3.3.2 [31]. The relationship of baseline gene expression to
potential predictive value (classification of low and high
quartiles of response) was performed using Discriminant
Analysis of Principal Components (DAPC) [32], Partial
Least Squares Discriminant Analysis (PLS-DA) (mixOmics
6.1.1R package [33]) and random forest (RF) with 1000
trees [34]. Class size imbalance was corrected for using

Table 1 Patient characteristics. (A) Growth response endpoints used
over the duration of the study and (B) baseline auxology for patients
with growth hormone deficiency (GHD) and Turner Syndrome treated
with recombinant human growth hormone (r-hGH).

(A)

Condition Height
velocity
at year of
treatment

Mean
(±standard
deviation)

Median
(min, max)

N

GHD HV1 8.9(±2.1) 8.7 (4.7, 14.3) 71

HV2 7.4 (±1.6) 7.1 (3.4, 12.2) 65

HV3 6.6 (±2.0) 6.5 (2.0, 11.4) 65

HV4 6.1 (±2.3) 6.2 (0.9, 11.6) 60

HV5 5.1 (±2.3) 5.2 (0.0, 10.8) 53

TS HV1 7.6 (±1.4) 7.2 (5.3, 11.7) 43

HV2 6.0 (±1.1) 6.1 (3.3, 8.0) 31

HV3 5.3 (±1.5) 5.0 (1.9, 8.2) 40

HV4 4.7 (±1.8) 4.8 (1.1, 8.1) 41

HV5 3.7 (±1.6) 3.9 (1.0, 7.4) 33

(B)

Clinical characteristics GHD (N= 70) TS (N = 43)

Male 45 (64.3)a 0 (0.0)a

Female 25 (35.7)a 43 (100)a

Age at baseline (years) 9.3 (6.0, 11.2) 9.9 (7.2, 11.8)

Baseline height SDS −2.1 (−2.5, −1.7) −2.5 (−3.2, −1.9)

Baseline BMI SDS −0.2 (−0.9, 0.3) 0.4 (−0.3, 1.2)

MPH SDS –0.7 (−1.5, 0.0) −0.1 (−0.9, 0.6)

GH peak response (μg/L) 3.9 (2.3, 5.6) –

(A) Height velocity (HV) at each year of therapy (cm/year).

min minimum value, max maximum value, N sample size (data were
not available on all children at each year after the first year).

(B) Data are n (%) or median (Quartile 1, Quartile 3).

BMI body mass index, GH growth hormone, GHD growth hormone
deficiency, TS Turner syndrome, MPH mid-parental height, SDS
standard deviation score.
aAll were Tanner Stage 1 at baseline.
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Synthetic Minority Oversampling Technique (SMOTE)
[35]. Feature selection from RF data was performed using
the BORUTA algorithm [36]. The area under the curve of
the receiver operating characteristic (AUC) was used to
present the probability of a randomly selected sample being
classified correctly.

In RFs, about one third of the cases are left out of each
iteration and can be used as a test set to perform cross-
validation and to get an estimate of the test set error, the out
of bag (oob) error estimate. The oob error estimate is
recognised as being unbiased [34].

We used RF to investigate whether blood tran-
scriptomic data from GHD and TS patients provided
additional value for prediction of response to r-hGH based
on baseline patient auxology (age, weight SDS, birth-
weight SDS and distance to target height SDS in both TS
and GHD with the addition of peak GH value for GH

provocation test in GHD). These analyses were performed
by defining the predictive value of baseline clinical phe-
notype alone and these data were then compared to
baseline clinical phenotype in addition to blood tran-
scriptomic markers.

Statistics

Analyses were performed to determine genetic associations
with response to r-hGH using the Kruskal–Wallis rank-sum
test with Bonferroni corrections for FDR. This study was
powered to detect an effect size of >6 cm/year as previously
described [7].

Transcriptomic data were subjected to dimensional
scaling using Principal Components Analysis and Iso-map
multidimensional scaling [37] and used to demonstrate
data homogeneity (Qlucore Omics Explorer 3.3) along
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Fig. 1 The association of whole blood gene expression at baseline
with response to recombinant human growth hormone (r-hGH)
over all 5 years of therapy in patients with growth hormone
deficiency (GHD) and Turner syndrome (TS). Comparison of
patient response to r-hGH using Discriminant Analysis of Principal
Components (DAPC). Low quartile (green, LoQ) and high quartile
(red, HiQ) of growth response over 5 years of therapy (cms grown)

compared to the remaining patients (orange) in GHD (N= 50) and TS
(N= 22). Unsupervised transcriptomic data with no normalisation for
phenotype are shown, GHD= 8875 and TS= 8455 gene probesets.
DAPC generates a discriminant function, a synthetic variable that
optimises the variation between the groups whilst minimising the
variation within a group. The frequency of the discriminant function of
DAPC is plotted (colour figure online).
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with outliers using cross-validation. Unsupervised analysis
of transcriptome data was performed using a projection
score to select optimal variable subsets by variance filter-
ing [38].

Transcriptomic associations with response to r-hGH were
performed using rank regression (p < 0.01) and modified for
the listed covariates. This was done by fitting a linear model
with the factors to be eliminated as predictors, and retaining
only the residuals (i.e. subtracting the part explained by the
predictors). When a nominal factor was used as covariate
(such as gender), this is equivalent to mean-centring each
variable over each subgroup defined by the factor. To use
covariates to adjust analysis with the downstream statistical
test to relate gene expression and response to r-hGH a
General Linear Model was set up, where the null hypothesis
is that the data can be modelled by the covariates, and the
alternative hypothesis is that the data can be modelled by
covariates and the response to r-hGH.

The significance of gene set overlaps derived from the
network analysis was determined using the hypergeometric
test. Analyses were performed in the stated software or
using R [31].

Study approval

The PREDICT (NCT00256126) and PREDICT Long-term
Follow-up (NCT00699855) studies were approved by the
Scotland Medical Research and Ethics Committee (refer-
ence 05/MRE10/61) and the North West Research Ethics
Committee (reference 08/H1010/77), respectively. Informed
consent was obtained from parents for all study participants.

Results

Growth response of patients over 5 years of r-hGH
treatment

The auxology of the PREDICT study has been previously
described at baseline and after 1 year [7] and after 3 years
[5] of therapy with r-hGH. Height velocities as a measure of
response to r-hGH at each year in GHD and TS are shown
in Table 1A. As expected, first year growth response is the
largest with a decline in subsequent years to a maintenance
growth rate [39].

8455 gene probe setsTS (N=22)
B)

Low Quar�le (.) v Rest (.) High Quar�le (.) v Rest (.)

8875 gene probe setsGHD (N=50)A)
Low Quar�le (.) v Rest (.) High Quar�le (.) v Rest (.)

Fig. 2 Whole blood gene
expression is associated with
response to recombinant
human growth hormone (r-
hGH) over 5 years of therapy
in patients with growth
hormone deficiency (GHD)
and Turner syndrome (TS).
Partial least squares discriminant
analysis (PLS-DA) of
unsupervised transcriptome
using three components. The
low and high quartiles of growth
response are shown for response
to r-hGH (cm) over 5 years in A
GHD and B TS. Star plot shows
sample distance from the
centroid, the arithmetic mean
position of all the points in
each group.
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Genetic associations were not robust enough to be
used to predict changes in growth rate over the 5
years of the study

The association between SNP carriage and growth response
was assessed for 1096 and 792 growth-related candidate
genes, in GHD and TS, respectively, which passed the fil-
tering criterion. Whilst 113 SNPs were associated with
growth response endpoints with an FDR p value < 0.05
modified by the number of blocks of LD, none of these were
deemed to pass the stringency criteria required for pre-
dictive value (Table S1A–E).

Unsupervised and supervised analysis demonstrates
that GHD and TS blood transcriptome at baseline
can be used to classify response to r-hGH therapy
over 5 years of treatment

We first demonstrated that a fundamental relationship
existed between the baseline blood transcriptome and
response to r-hGH over the 5 years of the study (GHD n=
50, TS n= 22) using DAPC on the unsupervised baseline
transcriptome (GHD= 8875, TS= 8455 gene probe sets).
These analyses showed clear segregation of the low
response and the high response quartiles of response to r-
hGH thus demonstrating the utility of blood transcriptome
to differentiate response groups (Fig. 1). PLS-DA of the
unsupervised baseline transcriptome demonstrated similar
findings (Fig. 2).

GHD and TS blood transcriptome at baseline can be
used to classify response to r-hGH therapy year-on-
year over 5 years of treatment

Baseline gene expression associated with height velocity at
each year of the 5 years after the start of treatment with r-
hGH was defined using rank regression (p < 0.01)
(Table S2) with a range of covariates—microarray batch,
age, BMI at baseline for both GHD and TS patients along
with gender and peak GH test response in GHD. Tanner
stage was added as a further covariate to account for the
pubertal status of the patients (Fig. S1). There was no dif-
ference in auxology at baseline between each group of
patients at each year of the study (Tables 1B and S2). First
classification of low and high responding quartile groups of
patients was assessed by PLS-DA using unmodified class
sizes (Table S3A, B): clear separation of the quartiles was
observed (example of first year GHD response, Fig. 3). We
also examined classification of growth response using RF
with oversampling by SMOTE to correct for uneven class
size (GHD, Table S3A and TS, Table S3B). These data
show clear classification of good and poor responders: at
each year of the study all PLS-DA AUCs were between 73
and 98% and all RF AUCs were between 78 and 98% in
both conditions.

Interactome network models of response to r-hGH

There was a limited overlap between GHD and TS whole
blood transcriptomic markers related to growth response at
each year of the study (Table S2). We therefore generated
interactome network models including inferred interactions
to assess whether GHD and TS growth response-associated
gene expression was related by affecting the function of
similar network modules, albeit in different ways.

Fig. 3 Predictive value of whole blood gene expression associated
with response to recombinant human growth hormone (r-hGH) in
patients with growth hormone deficiency (GHD). Classification of
low quartile (LoQ) and high quartile (HiQ) of growth response (height
velocity, cm/year) over each of 5 years of therapy with r-hGH (Y1-Y5)
was performed in GHD patients and TS patients. Gene expression
associated with growth response was determined using rank regression
(p < 0.01) and Partial Least Squares Discriminant Analysis (PLS-DA)
with two components (X-variate 1 and 2) was used to visualise
response groups; PLS-DA is an analytical approach that determines the
similarity between individual patients whilst maximising the difference
between patient groups. Low quartile (green) and high quartile (red)
compared to the rest of the data (orange) are shown for first year
growth response to r-hGH in GHD (N= 71, 330 gene probesets with
rank regression p < 0.01). Similarity between samples is represented by
their proximity. The star plot shows sample distance from the centroid,
the arithmetic mean position of all the points in each group (colour
figure online).
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Interactome network models of gene expression asso-
ciated with height velocity at each year of the study were
generated. The hierarchy of overlapping modules of genes
was identified in each network using the network topology
parameter of ‘centrality’ (Table S4). Network centrality is a
measurement that is known to be related to gene function
within networks; the more central a gene is, the more cap-
able it is of influencing other genes within the network [40].

The gene level summary of SNP associations with
change in height and height velocity measurements with
FDR < 0.05 (Table S1C, D) were mapped onto the network
models (Table S4). Most of the genetic associations with
change in height and height velocity were also present
within the network models—15/25 SNPs in GHD and 9/12
in TS (Table S5), implying that these genes have a func-
tional role in network action.

Network models associated with height velocity in each
year in both GHD and TS demonstrated significant overlaps
(hypergeometric test, p < 0.01) (Fig. 4). These observations
imply that whilst associated gene expression may be dif-
ferent between GHD and TS, common network elements
are being affected in the two conditions.

The overlap between network models formed a discrete
interactome element shared between GHD and TS (Fig. 5).
When this network was partitioned into genes related to
each year of response to r-hGH (coloured Fig. 5A), it was
determined that the genes associated with year 3 formed a
less distinct cluster within the network (Fig. 5B). This
observation is in alignment with a partition between early

(years 1 and 2) and later (years 4 and 5) response to r-hGH
as would be expected clinically.

The facts that (i) genetic associations with growth
response map to the network models derived from tran-
scriptomic data and that (ii) the network connectivity of the
central modules changes over the duration of the study
imply that the network models are robust and account for
the effect of development on related phenotype (Table S5).

The identification of core sets of genes that can
classify response to r-hGH in both GHD and TS

The overlap between network models was used to select a
common set of genes at each year of therapy present in both
GHD and TS. Genes within this common list were selected
for growth response classification if they had previously
been identified as significantly associated with height
velocity by rank regression in either GHD or TS (p < 0.05)
(Fig. 5C and Table S2).

Classification of both high and low r-hGH response
quartiles against the remaining patients was shown using
PLS-DA (no oversampling) and RF (using SMOTE over-
sampling). All AUCs for classification were between 74 and
96% (Table S6).

Further confidence in the findings was provided by
assessing the predictive quality of the gene probe sets using
BORUTA to define the limits of the noise in the analysis
using a 100-fold permutation of the data (e.g. first year
growth response Fig. 6 and Table S7).
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Fig. 4 Overlap of the core interactome models of height velocity-
related gene expression in GHD and TS. Interactome models were
generated from the gene expression associated (p < 0.01) with the
height velocity at each year of the study. The functional hierarchy of
gene interaction modules within the interactome models was

determined using the Moduland algorithm, and the core of the inter-
actome model was defined as the unique sum of the top ten elements of
the modules as ranked by network centrality. The overlap of the core
of the interactome models between GHD and TS was then determined
and visualised as a Venn diagram.
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The core sets of genes with expression in whole
blood that can classify response to r-hGH in both

GHD and TS are associated with differential
genomic methylation

Changes in genomic methylation in response to short-term
treatment with r-hGH (4 days) have been demonstrated in
children with range of conditions that manifest short stature
[30]. Using the data provided by this previously published
study, we examined the epigenome at baseline (prior to r-
hGH treatment) in relation to growth response (measured by
knemometry) in GHD patients (n= 6) and found that using
a gene level summary of DNA methylation (20,618 genes)
497 had methylation associated with growth response to r-
hGH (rank regression, p < 0.01) (Fig. 7). The majority of
associated genes (425/497) were hypermethylated at lower
rates of growth response.

We took the core sets of genes previously identified as
classifiers of response to r-hGH in both GHD and TS and
mapped gene level methylation present in the six GHD
patients with knemometry measurements. The majority of
genes (57/71) were correlated with growth response (|r| >
0.3) these were evenly distributed between positive (n= 27/
71) and negative (n= 30/71) correlations (year 1 data
shown in Fig. 7B).

Transcriptomic markers combined with phenotype
lead to better growth response prediction

It is known that the baseline phenotype of GHD and TS
patients can be used to predict response to r-hGH [2, 41–
43]. We can use clinical parameters alone to achieve good
classification of response to r-hGH in our current data sets

(GHD range: 0.86–0.94, TS range: 0.84–0.91) (Table 2).
However, we also found that including the blood tran-
scriptome markers increased predictive value at each year
(GHD range: 0.95–0.97, TS range: 0.92–0.95). These data
reveal an average increase of 7% (p= 0.0031) and 4% (p=
0.0365) (prediction of low quartile) along with 4% (p=
0.0179) and 4% (p= 0.0097) (prediction of high quartile) in
GHD and TS, respectively (Table 2).

Importantly, we also noted a significant decrease of error
rate in the prediction of growth response at each year when
blood transcriptome markers were combined with clinical
phenotype markers. Error rates decreased by an average of
5% (p= 0.0084) and 5% (p= 0.0400) (prediction of low
quartile) along with 5% (p= 0.0252) and 5% (p= 0.0067)
(prediction of high quartile) in GHD and TS, respectively
(Table 2). The reduction observed amounted to an average
halving of the error rate seen when predicting response to r-
hGH using clinical phenotype markers alone.

Discussion

This study aimed to identify for the first time the genomic
associations that classify response to r-hGH therapy from 1
year up to 5 years of treatment with r-hGH in children with
TS and GHD.

Our previous analysis has shown limited utility of
genetic associations derived from a candidate set of growth-
related genes in the prediction of response to r-hGh in GHD
and TS after 1 year of therapy [5, 7, 44]. Hence, genetic data
do not appear to be powerful enough on their own to be
used in prediction and clinical management. Recently a
genome-wide association study (GWAS) on r-hGH
response over the first year of treatment has been pub-
lished [45]. Inevitably this work uses small numbers and did
not find any evidence of genome-wide significance in pri-
mary analysis. After secondary analysis including replica-
tion there was no evidence of association with either
previously published first year response genes [7] or with
polygenic predicted height score; however, several loci
were identified as possibly significant. The transcriptomic
analysis presented in our manuscript covers the whole
genome and the associated network modelling links genes
with differential expression to the entire genomic back-
ground. In a rare disease, such as GHD, a major problem
with genetic investigation is that patient numbers will never
be sufficient for a fully powered analysis with GWAS as the
size of the set of genetic variants will be several orders of
magnitude higher than the number of the expressed genes.
Analysis of the transcriptome in this situation suffers from
issues in the interpretation of tissue-specific action but is
much more likely to achieve robust findings. In our study,
we have used the blood transcriptome as a marker of the

Fig. 5 Network structure of the common core network module
shared in patients with growth hormone deficiency (GHD) and
Turner syndrome (TS) related to response to recombinant human
growth hormone (r-hGH). A Similarities in the interactome models
of the response of GHD and TS to r-hGH were identified by overlap at
each year of therapy. Genes were selected that were significantly
related to growth response in either or both GHD and TS. The genes
related to each year of therapy were combined into a set of 58 uniquely
identified genes and this set was used to generate an interactome
module (reactome plugin for Cytoscape 3.6.0). Genes with a dark
border also have a genetic association with growth response in either
GHD or TS. Connecting lines represent known protein:protein inter-
actions, size of the node is proportional to the number of connections
made. B The clustering coefficient of the group of genes in the net-
work module associated with each year of therapy was determined and
presented as a histogram (average ± standard error of the mean). The
clustering coefficient measures the tendency of nodes to cluster toge-
ther within a network. C The correlation coefficient linking gene
expression with growth response at each year of therapy was mapped
to the network model, red= positive correlation, green= negative
correlation. Genes with a thick border also have a genetic association
with growth response in either GHD or TS (colour figure online).
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action of r-hGH and, therefore, present the basis of a future
test using routine clinical sampling.

The whole-blood transcriptomic profile of GHD and TS
patients has been shown to be associated with first year
growth response to r-hGH [7] and to correlate with the
interaction between GHRd3 and GHD severity [44]. We
therefore reasoned that there may be value in using tran-
scriptomic data to classify growth response, as it reflects

both a child’s genetic profile and the complex clinical
phenotypes arising from changes in physical development
during childhood, as well as variation in the severity of the
underlying condition. By normalising gene expression for
phenotype, including pubertal stage, we were able to show
that whole blood transcriptomic data, associated with height
velocity at each year of the study, could be used to classify
both the low and high quartiles of growth response, with
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TS LoQ TS HiQ 
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Fig. 6 Predictive value of an identical set of blood gene expression
markers identified by network analysis in the classification of
response to recombinant human growth hormone (r-hGH) in
patients with growth hormone deficiency (GHD) and Turner
syndrome (TS). First year growth response is used as an example.
Similarities in the interactome models of the response of GHD and TS
to r-hGH were identified by overlap at each year of therapy. Genes
were selected that were significantly related to growth response in
either or both GHD and TS, generating an identical set of gene pro-
besets used for prediction of both high and low response in both GHD
and TS. BORUTA, an all relevant feature selection wrapper random

forest-based algorithm, was used to confirm the importance of gene
expression probe-sets used for classification of response to r-hGH. The
BORUTA algorithm uses a 100-fold permutation to define the noise
present in the data; the noise is modelled as shadow variables and used
as a basis to assess confidence in the data. Green= confirmed gene
probeset, yellow= tentative gene probeset, red= rejected gene pro-
beset, blue= shadow variables (high, medium and low shadow vari-
ables are derived to define the noise within the dataset). Low quartile
(left column—LoQ) and high quartile (right column—HiQ) are shown
for first year growth response to r-hGH in GHD and TS. The same
group of gene probesets are used in each case (colour figure online).
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‘area under the curve’ up to 97%, providing the basis for a
predictive test.

Little overlap between GHD and TS was observed
between the gene expression data that was associated with
each year of growth response. We therefore investigated
whether GHD and TS were interacting with similar func-
tional units of genes using network models [46]. We gen-
erated network models of growth response (as determined
by height velocity) at each of the 5 years of treatment using
baseline gene expression. Functional modules of genes
within these models were ranked according to their network
centrality. The measure of network centrality is known to be
associated with mechanism [26, 47] and we used this
measure to define the functional hierarchy of the modules of
genes whose expression was linked to r-hGH response at
each year of therapy.

We demonstrated robustness of the network modules
identified by mapping the genetic associations identified in
this study to the network models. This process highlighted
genes previously identified as associated with growth
response after 1 year of therapy (GRB10, SOS1 and INPPL1

in GHD) [7] along with 1 month change in serum IGF-I
associated with r-hGH therapy (CDK4) [21]. It was also
noted that three genes were present (INPPL1 and SOS1 in
GHD and PTPN1 in TS) out of the four genes identified
within the PREDICT validation study as having replicated
an association with first year growth response when con-
trolled for co-variates [5].

A significant overlap between the core network gene
modules between GHD and TS was identified. We then
used gene expression changes associated with growth
response within these network elements to identify genes
common to both conditions and show that their expression
could be used to classify growth response.

The major strength of this study is to have identified
predictive markers and common genomic mechanisms
related to early and later growth in two different growth
disorders. Our findings are also supported by the demon-
stration of differential methylation in these shared
genes, associated with response to r-hGH in another
study [48]. Importantly, we have defined sets of gene
expression with predictive value in two conditions where
the number of genes [17–26] is smaller than the number of
patients in the group (33–70) (Tables S2 and S6); this
indicates that the findings are not a consequence of over-
fitting [49].

In this study we have compared the use of baseline
patient auxology to blood transcriptome in predicting
response to r-hGH. Linear models based on baseline patient
auxology can account for ~40–60% of the variance
observed [9, 10]. Using RF, we found no significant dif-
ference in the AUC of baseline auxology alone compared to
using blood transcriptome alone in either GHD or TS (all
~90%). It should be noted that this comparison was with the
transcriptome shared between GHD and TS and if the full
blood transcriptome is used then the average AUC is sig-
nificantly higher than that derived from baseline auxology
(average AUC ~90% compared to ~95%). We recognise
that further work would need to be done to refine a smaller
number of genes and therefore minimise the risk of over-
fitting when using the full blood transcriptome. However,
we did identify a significant boost to prediction between 4
and 7% when the transcriptomic signature shared between
GHD and TS was combined with the baseline patient
auxology. Importantly, the gain in prediction was combined
with an average halving of the error rate, a feature that
represents a major clinical advance in the prediction of
response to r-hGH.

We propose that the work presented in this manuscript
represents a step towards individualised prediction of
response to r-hGH. To proceed towards a clinical test, further
validation would be required using the effect sizes we have
defined and we would need to compare the group findings
established in our study with the absolute individual gene

-0.1 0.0 0.2 0.50 0.6 1.1 (mm)
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Fig. 7 Gene level summary of DNA methylation in GHD patients is
related to growth response as measured by Knemometry. Whole
epigenome measurements of six GHD patients with growth response
after 4 days of r-hGH therapy measured by knemometry were available
from previously published data (GSE57107). A gene level summary of
DNA methylation was conducted using median values in Qlucore
Omics Explorer (version 3.3) (n= 20,618). A Rank regression of
whole-genome DNA methylation against growth response after 4 days
of r-hGH as measured by knemometry (p < 0.01) found 497 genes with
differential methylation the majority of which showed increased
methylation at low rates of growth (negative correlation). B Whole-
genome methylation in the six GHD patients ordered by growth
response in the sets of genes identified as predicting response to r-hGH
in the first year of therapy in both GHD and TS.
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expression provided by RNAseq. It would also be possible to
link the transcriptomic findings to the complex genetic
background of response to r-hGH using the definition of
expressed quantitative trait loci potentially providing a route
to a genetic risk score refined by the transcriptomic response.

This work has led to three novel findings relevant to
growth studies, and potentially to other therapeutic areas in
paediatrics. First, this study has demonstrated the utility of
whole blood transcriptome in the classification of growth
response in GHD and TS, derived from a baseline blood
sample, which is straightforward to obtain in any child.
This technique may be of particular use in conditions with
marked variability in response to r-hGH such as the short

child born small for gestational age. Second, network
analysis provides a novel approach that can be used to
identify genomic features that are likely to have high pre-
dictive value. Finally, a set of common genes in GHD
and TS identified by a network approach can be used to
classify growth response in both conditions, providing
the opportunity to develop a test to inform clinical
management.

Data availability

All transcriptomic data are available from Gene Expression
Omnibus (GEO)—GSE72439.

Table 2 Comparison of the
prediction of growth response
using clinical phenotype with
and without transcriptomic data.

Treatment Data GHD AUC GHD TS AUC TS

Year and
group

Type (95% CI) Error rate (95% CI) Error rate

(A) Low quartile of response to r-hGH

Y1 LoQ Clinical phenotype 0.86 (0.79–0.92) 0.13 0.89 (0.82–0.97) 0.1

Clinical phenotype+
transcriptome

0.96 (0.93–0.99) 0.03 0.92 (0.86–0.98) 0.08

Y2 LoQ Clinical phenotype 0.87 (0.81–0.93) 0.13 0.85 (0.75–0.95) 0.14

Clinical phenotype+
transcriptome

0.95 (0.91–0.99) 0.05 0.90 (0.81–0.98) 0.11

Y3 LoQ Clinical phenotype 0.89 (0.83–0.95) 0.11 0.85 (0.77–0.94) 0.13

Clinical phenotype+
transcriptome

0.95 (0.91–0.99) 0.05 0.95 (0.89–0.99) 0.06

Y4 LoQ Clinical phenotype 0.94 (0.89–0.98) 0.07 0.94 (0.88–0.99) 0.06

Clinical phenotype+
transcriptome

0.95 (0.91–0.99) 0.05 0.95 (0.90–1.00) 0.04

Y5 LoQ Clinical phenotype 0.90 (0.83–0.96) 0.1 0.84 (0.74–0.94) 0.16

Clinical phenotype+
transcriptome

0.97 (0.93–1.00) 0.03 0.90 (0.82–0.98) 0.09

(B) High quartile of response to r-hGH

Y1 HiQ Clinical phenotype 0.91 (0.86–0.96) 0.08 0.92 (0.85–0.98) 0.08

Clinical phenotype+
transcriptome

0.92 (0.87–0.97) 0.08 0.94 (0.88–0.99) 0.05

Y2 HiQ Clinical phenotype 0.89 (0.83–0.95) 0.11 0.85 (0.76–0.95) 0.14

Clinical phenotype+
transcriptome

0.93 (0.88–0.98) 0.07 0.91 (0.84–0.99) 0.09

Y3 HiQ Clinical phenotype 0.90 (0.84–0.95) 0.1 0.89 (0.81–0.96) 0.11

Clinical phenotype+
transcriptome

0.95 (0.90–0.99) 0.05 0.94 (0.88–0.99) 0.06

Y4 HiQ Clinical phenotype 0.91 (0.85–0.96) 0.1 0.92 (0.85–0.98) 0.09

Clinical phenotype+
transcriptome

0.94 (0.90–0.99) 0.06 0.94 (0.88–1.00) 0.06

Y5 HiQ Clinical phenotype 0.84 (0.76–0.91) 0.16 0.87 (0.78–0.96) 0.13

Clinical phenotype+
transcriptome

0.90 (0.84–0.97) 0.09 0.94 (0.87–1.00) 0.05

Error rate= out of the bag error rate of the random forest.

95% CI 95% confidence interval, AUC area under the curve of the receiver operating characteristic, LoQ low
quartile of growth response, HiQ high quartile of growth response, Y year of treatment, GHD growth
hormone deficiency, TS Turner syndrome.
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