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Abstract In recent years, studies on arbuscular mycor-

rhizal fungi (AMF) have been revealing that the below-

ground symbiosis can influence the performance of

aboveground herbivores and their natural enemies through

its effects on the host plant. In this study, we tested whether

the colonization of tomato plants by the arbuscular myc-

orrhizal fungus Rhizophagus irregularis (Syn. Glomus

intraradices Schenk and Smith) (Glomeromycota: Glom-

eraceae) affects the performance of the zoophytophagous

mirid bug Macrolophus pygmaeus Rambur (Hemiptera:

Miridae). Mycorrhizal colonization in tomato plants posi-

tively influenced the predator host-plant acceptance for

feeding and oviposition, as well as nymphal survival and

female weight. We hypothesize that AMF can modify

mirid bug foraging behavior and performance.

Keywords Arbuscular mycorrhizal fungi � Host selection �
Mirid bug � Performance � Solanum lycopersicum �
Zoophytophagy

Introduction

Arbuscular mycorrhizal fungi (AMF) are soil-borne fungi

establishing symbiosis with more than 80 % of terrestrial

plants including important crop species. This mutualistic

interaction is known to promote plant growth and helps

plants to cope with biotic and abiotic stress (Smith and

Read 2008). For this reason, AMF have been broadly used

in agriculture as plant growth-promoting fungi and as plant

protection agents against plant pathogens (Azcón-Aguilar

and Barea 1997). Besides improving plant nutrition and

competition, experimental evidence supports a major role

of plant defenses in plant protection mediated by AMF

(Nogales et al. 2009; Pozo et al. 2015). During mycorrhiza

establishment, modulation of plant defense responses

occurs and a mild, but effective activation of the plant

immune responses seems to occur, not only locally but also

systemically (Pozo et al. 2002). This activation leads to a

primed state of the plant that allows a more efficient acti-

vation of defense mechanisms in response to attack by

potential enemies (herbivore insects and/or phy-

topathogens) (Jung et al. 2012).

AMF are also recognized by their ability to mediate

below- and aboveground plant-arthropod interactions in

natural and agricultural ecosystems, influencing herbivores,

their natural enemies and pollinators in a positive or in a

negative way (Wolfe et al. 2005; Gehring and Bennett

2009). AMF effects on aboveground organisms vary with

the specific fungal isolate, the host plant cultivar, envi-

ronmental AMF growing conditions and insects feeding

habits (Goverde et al. 2000; Leitner et al. 2010; Estaún

et al. 2010). Concerning those feeding habits, certain pat-

terns have been reported: Leaf-chewing and leaf-mining

herbivores would be adversely affected by AMF colo-

nization of their host plants, whereas those that are phloem
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feeders and cell feeders (e.g., aphids and spider mites)

would be positively or not influenced by the symbiosis.

These contrasting effects are associated with a higher

nutrient availability and growth of the mycorrhizal plant

and/or based on the activation of the plant defense system

(Vannette and Hunter 2009). A better plant quality is

commonly related with the enhanced performance of

phloem feeders (Gange et al. 1999). By contrast, AMF

improvement in the plant nutrient uptake allows plants to

increase the production of diverse chemical defense

metabolites, thereby increasing plant resistance principally

to leaf chewer herbivores (Roger et al. 2013).

In relation to benefits, as a general pattern, the positive

roles of arthropods on plants are favored in mycorrhizal

plants. For example, AMF positively influence visitation

rates of pollinating insects (Wolfe et al. 2005). Similarly,

changes in the volatile profile of mycorrhizal plants under

attack by herbivores result in a higher attraction of para-

sitoids and predators that may help the plant to control the

pest (Hempel et al. 2009; Hoffmann et al. 2011a, b;

Schausberger et al. 2012; Babikova et al. 2013). Con-

cerning tomato, the only investigation reported on this

matter was published by Guerrieri et al. (2004), who

showed that Glomus mosseae Nicol and Gerd (Gerdemann

and Trappe) enhances the attractiveness of the aphid par-

asitoid wasp Aphidius ervi Haliday (Hymenoptera: Bra-

conidae) toward tomato plants colonized by this

mycorrhizal fungus.

The polyphagous predator Macrolophus pygmaeus

Rambur (Hemiptera: Miridae) is one of the most effective

biocontrol agents for the protection of greenhouse and field

tomato crops in Europe (Alomar et al. 2002; Castañé et al.

2004; Perdikis et al. 2008; Arnó et al. 2009). As other

predatory mirids, M. pygmaeus has zoophytophagous

habits and is strongly linked to the host plant both for

feeding and oviposition. Plants provide water, that is nee-

ded to sustain its physiological status and for prey con-

sumption, but also plants contribute with nutrients to

support predator development and reproduction, especially

in periods of prey scarcity or even in the total absence of

prey (Gillespie and McGregor 2000; Ingegno et al. 2011;

Maselou et al. 2014). When feeding, mirids pierce prey or

plant tissue with their stylets and macerate it with digestive

enzymes that they inject from their salivary glands (Cohen

1995). This type of feeding habit may injure plant tissues

that under certain circumstances related with the scarcity of

prey can produce crop damage (Castañé et al. 2011). The

feeding lesions produced resemble those of cell feeders as

spider mites or thrips. Mirid bugs also need plants for

oviposition since they lay their eggs inside the plant tis-

sues, mainly in the veins or in the stems (Wheeler 2001).

Hence, plant physiological traits can affect M. pygmaeus

performance and behavior. This phytophagous behavior of

the predator can also influence plant resistance against

some pests, as shown by Pappas et al. (2015) on tomato

with spider mites. In a previous study, Battaglia et al.

(2013) have shown that the root-associated biocontrol

fungus Trichoderma longibrachiatum strain MK1 on

tomatoes produced quantitative differences in the release of

specific volatile organic compounds, a better aphid

(Macrosiphum euphorbiae) population growth indices, a

higher attractiveness toward the aphid parasitoid A. ervi

and the polyphagous predator M. pygmaeus, and a quicker

development of the aphid predator. In the present study, we

wanted to test whether the AMF Rhizophagus irregularis

(Syn. Glomus intraradices Schenk and Smith) could also

have an impact in the performance of the polyphagous

predator M. pygmaeus. R. irregularis has been used as

inoculant in many host plants, including tomato and a wide

range of other horticultural and woody crops (Smith and

Read 2008) although the application of mycorrhizal inoc-

ula to commercial tomato production is still rather limited.

Our hypothesis was that early inoculation of tomato plants

with R. irregularis would cause a positive effect in predator

performance since its feeding habits resemble those of cell

feeders. To test this hypothesis, we evaluated whether

mycorrhizal colonization of tomato plants had an effect on

adult plant preferences for feeding and oviposition, on

predator immature development and in the first generation

female progeny.

Materials and methods

Plant material, mycorrhizal inoculum and insect

colonies

The AMF used in the experiments was an isolate of R.

irregularis registered as BEG 72 in the European Bank for

the Glomeromycota. It was obtained from a Citrus nursery

in the Northeastern Spanish coastline (Camprubi and Cal-

vet 1996) and has proved to be effective at promoting plant

growth and tolerance against biotic and abiotic stress in

many agricultural crops (Calvet et al. 2001; Estaún et al.

2003; Camprubi et al. 2008). The mycorrhizal inoculum

was produced in pot cultures using leek (Allium porrum L.)

as a host plant, calcined clay (Terragreen�) as growing

substrate and included root fragments, spores (at least 1000

spores in 10 ml) and hyphae of R. irregularis.

Tomato seeds (Solanum lycopersicum L. variety San

Marzano Nano) were germinated and grown in a mixture of

commercial potting soil and perlite (Stender� Propagating

substrate A 240) for 3 weeks under greenhouse conditions

(15 ± 2 �C, 14 h daylight, 70–77 % r.h). Tomato seed-

lings were transplanted into plastic pots (10 cm deep-

12 cm diameter) containing an autoclaved sand, quartz
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silicate and peat mixture (3:2:1 v/v). At transplant, half of

the pots (N = 85 of 170 in total) received 10 ml of R.

irregularis inoculum. The inoculum was placed below the

roots in the planting hole. Inoculated and non-inoculated

plants were maintained in a heated glasshouse (15–25 �C,
14 h daylight, 70–77 % r.h). Plants were watered two times

a week and were fertilized every 8 days with 50 ml of

Hoagland nutrient solution without P (Hoagland and Arnon

1950). All plants were 18 weeks old when used in the

bioassays, and growth parameters were measured: Shoot

dry weight was achieved by ten plants per treatment

(inoculated and non-inoculated with R. irregularis) and

total shoot length by twenty plants per treatment.

To determine the mycorrhizal status of tomato seedlings

inoculated with R. irregularis, root samples of 10 plants

taken at random were examined. Roots were washed with

water to remove the substrate and cleared in 10 % KOH

before staining with trypan blue dye, following the

methodological procedure of Koske and Gemma (1989).

To establish the percentage of mycorrhizal colonization on

tomato plants, the gridline intersect method described by

Giovannetti and Mosse (1980) was used. The percentage of

positive observations for mycorrhizal colonization (pres-

ence of arbuscules, vesicles and hyphae) was noted and

quantified as the percentage of mycorrhizal colonization on

each tomato plant sample. Root samples of 10 non-inocu-

lated plants were also taken, cleared and stained to check

their mycorrhizal-free status.

All insect colonies were maintained under environ-

mental controlled conditions (25 ± 1 �C, 16L: 8D h and

70–10 % r.h.). Bemisia tabaci (Gennadius) (Hemiptera:

Aleurodidae) biotype B was reared on seedlings of cab-

bage. This biotype was initially collected from Murcia

(Spain) in 1992. M. pygmaeus was reared as described in

Agustı́ and Gabarra (2009a, b), that is, on tobacco plants

with eggs of Ephestia kuehniella Zeller (Lepidoptera:

Pyralidae), a common factitious prey used in the rearing of

many insect predators. This colony was established, and it

is yearly renewed with individuals collected from com-

mercial tomato crops in the coastal area of Barcelona

(Spain).

Experimental design

To test whether mycorrhizal inoculation affects M. pyg-

maeus performance, three different experiments were

conducted:

Experiment 1

A host selection experiment was designed under controlled

conditions (25 ± 1 �C, 16L: 8D h, 70–10 % r.h.). Four

detached tomato leaves were simultaneously offered to M.

pygmaeus adults: Two leaves were taken from mycorrhizal

tomato plants colonized by R. irregularis (M) and the other

two from non-mycorrhizal plants (NM). Each leaf was

placed in a corner of a rectangular acrylic glass box (44 cm

width 9 67 cm length) with the two leaves from mycor-

rhizal tomato plants placed between the non-colonized

control ones. Each leaf was kept in a vertical position with

the petiole inserted in a plastic container filled with water

and a nutrient solution (50 ml), to prevent leaf desiccation.

Ephestia kuehniella eggs, the standard rearing prey, were

offered glued to a 1 9 1 cm of post-it paper that was

attached to the lower leaf surface. Eight mated M. pyg-

maeus (4 females and 4 males) 7–10 days old were

released in the center of the box, and the number of adults

on each leaf was counted after 3 days. Leaves were then

isolated in ventilated clear plastic cages (21 cm

height 9 12 cm width), and the number of young nymphs

emerged were counted 11 days later. Thirteen cage repli-

cates were surveyed along the experiment.

Experiment 2

Immature survival and the weight of emerged adults were

evaluated in a second experiment set in a glasshouse

(23–28 �C, 14 h daylight, 68–70 % r.h). The six upper

leaves from 18-week-old M and NM tomato plants were

covered with a muslin net bag (1 mm diameter of the hole

in the mesh). Twenty-one instar nymphs of M. pygmaeus

collected from our stock colony with a mouth aspirator

were introduced in each bag, and 3 weeks later adult

emergence was monitored every 2 days, until all nymphs

molted to adults. All emerged adults were sexed, individ-

ually introduced in a gelatin capsule and weighed in a

precision scale (readability 0.001 g). One week before

introducing predatory nymphs in the bags, B. tabaci adults

(&180) were initially introduced to serve as prey for the

predators, and more adults (&50 s) were periodically

supplied until predatory nymphs reached the adult stage.

Ten replicates per treatment (M and NM plants) were used.

Experiment 3

The fertility of females developed on M and NM tomato

plants was assessed under controlled conditions

(25 ± 1 �C, 16L: 8D h, 70–10 % r.h.). Females and males

emerged from experiment 2 were kept together on two

tomato plants (one for insects developed in each of the

treatments: M and NM) for 7 days to allow them to mate

and to mature their eggs. Bemisia tabaci adults and eggs of

E. kuehniella were supplied as prey. Afterward, pairs of a

female and a male were isolated during 4 days in plastic

cages (21 cm height 9 12 cm width) containing a

detached leaf of NM tomato plants. As previously, leaves
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had the petiole inserted in a plastic container (50 ml) filled

with water in order to avoid desiccation. Eggs of E.

kuehniella were supplied as food. After 11 days passed for

egg maturation, the number of newly emerged nymphs was

recorded on the leaves. Fifteen cage replicates per treat-

ment were used.

Statistical analyses

To analyze data of host plant selection by adults, a mixed-

model ANOVA was performed with sex and plant treat-

ment (NM and M plants) as fixed effects and leaf offered to

the predator nested within sex and plant treatment, after

checking for normality of the data. The female progeny, or

the number of nymphs emerged on the leaves after eggs

hatched, was instead analyzed by nested-ANOVA with

plant treatment (NM and M plants) as main factor and leaf

nested within plant treatment.

Student’s t tests were performed to determine differ-

ences on predator immature survival, adult weight and

female progeny between predators developed as immatures

on NM and M tomato plants and differences in plant

growth parameters (shoot dry weight and total shoot

length) between NM and M plants.

All statistical analyses were performed using R. 3.2.3

software for windows (R Development Core Team 2015)

library ‘‘base’’.

Results

Experiment 1

Eighteen weeks after inoculating tomato San Marzano

Nano plants, there were no significant differences in plant

growth between M and NM plants (Shoot length:

t38 = -0.437, P = 0.665; shoot dry weight: t18 = 1.289,

P = 0.2161) despite the root colonization achieved by R.

irregularis in inoculated plants (32.37 ± 4.05 %). Shoot

length data (in cm) and shoot dry weight data (in g)

obtained were 95.53 ± 21.22 and 5.61 ± 1.32 for M plants

and 93.25 ± 9.68 and 4.96 ± 0.86 for NM plants.

Figure 1 shows the mean number (±SE) of recaptured

M. pygmaeus adults (males and females) on two leaves

from NM and two leaves from M tomato plants in the host

plant selection experiment. Females and males showed a

statistically significant preference for leaves of the M

plants in comparison with the NM ones (F1,96 = 5.35,

P\ 0.05, Fig. 1). No significant differences were detected

between sexes (F1,96 = 0.911, P = 0.76) nor between

leaves nested within plant treatment and sex

(F4,96 = 1.487, P = 0.212). Additionally, significant dif-

ferences were assessed in the number of M. pygmaeus

emerged nymphs on leaves from NM and M plants

(F1,48 = 4.74, P\ 0.05). The mean number of newborn

nymphs of M. pygmaeus was higher on leaves of mycor-

rhizal tomato plants (Fig. 2).

Experiment 2

When the survival of immatures was analyzed, the numbers

of both females and males emerged from M plants were

higher than those in NM ones (t38 = -4.2516, P\ 0.001)

(Fig. 3). A similar proportion of females developed in both

treatments (0.5 for Control and 0.49 for AMF treatments).

A significant increase in the weight of females reared on M

tomato plants was observed in comparison with the control

Fig. 1 Number (mean ± SE) of M. pygmaeus adults (males and

females) recaptured on detached leaves from non-mycorrhizal (NM)

and mycorrhizal (M) tomato plants inoculated with R. irregularis

72 h after their release in the cage. Two leaves per treatment were

offered in each cage, n = 13. Significant differences (asterisk) were

detected between plant treatments but not between sexes (P\ 0.05)

Fig. 2 Number (mean ± SE) of M. pygmaeus newly born nymphs

from detached leaves of non-mycorrhizal (NM) and mycorrhizal

(M) tomato plants inoculated with Rhizophagus irregularis, 11 days

after the end of the host-plant selection assay (n = 26). Significant

differences (asterisk) were detected between plant treatments

(P\ 0.05)
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ones (Table 1), while no significant differences were found

in the weight between males reared on NM and M plants

(Table 1).

Experiment 3

When examining fertility of females developed as imma-

tures on tomato plants, either M or NM plants, and offered

a NM tomato plant as an oviposition substrate together

with E. kuehniella eggs as prey, no statistically significant

differences were found in the mean number of newborn

nymphs (t28 = 0.2795, P = 0.7819).

Discussion

The isolate BEG 72 of R. irregularis had successfully

colonized tomato plants 18 weeks after inoculation, but

plants from both treatments (M and NM) showed no sig-

nificant differences yet in plant growth parameters when

leaves were extracted to be used in the experiments.

Despite the lack of plant growth stimulation due to the

symbiosis, both females and males ofM. pygmaeus showed

higher attractiveness to leaves from R. irregularis-colo-

nized tomato plants than from NM plants, proving that the

AMF R. irregularis influenced M. pygmaeus preferences in

tomato San Marzano Nano. This preferential choice was

made despite the supplemental high-quality prey (E.

kuehniella eggs) that was also offered in both treatments.

Regardless of plant growth responses, AM symbiosis

triggers changes in the quality composition of diverse host

plant species by altering the balance of C and N, the

phosphorous and zinc plant tissues concentration and the

content of different types of micronutrients (George et al.

1995; Smith and Smith 2011). Studies on the effect of

plant-prey-provided nutrients on insect biology indicate

that P and N are limiting factors for insect performance

because P and N are key elements for the growth of both

herbivores and their predators via amino acid requirements

(Awmack and Leather 2002; Denno and Fagan 2003).

Roger et al. (2013) showed that 8 weeks after inoculation,

AMF-mediated effects on herbivore performance can

already be detected.

Detached leaves from mycorrhizal plants were in addi-

tion preferred by reproductive females for egg oviposition.

This result was confirmed by the higher number of new-

born nymphs recorded on leaves from M tomato plants

compared to NM plants. It is important to highlight that R.

irregularis positive effect on the quality of the tomato plant

as a resource and/or oviposition substrate lasts even when

we offered to M. pygmaeus single leaves detached from R.

irregularis-colonized tomato plants artificially maintained

during 3 days after their cut. Our results with detached

leaves are in line with those of Hoffman et al.

(2009, 2011a, b). M. pygmaeus preferences toward leaves

of R. irregularis-colonized tomato plants would be medi-

ated by quantitative or/and qualitative changes in the blend

of volatile organic compounds (VOCs thereafter) released

by tomato plants associated with this AMF. Allocation of

plant resources to indirect plant defenses based on the

production of VOCs has already been demonstrated on

diverse plant species colonized by different AMF species

(Fontana et al. 2009; Leitner et al. 2010). For instance, it

has been shown that VOCs produced by AMF tomato

plants attract the aphid parasitoid Aphidius ervi, even in the

absence of aphids (Guerrieri et al. 2004), and VOCs

Fig. 3 Number (mean ± SE) of M. pygmaeus adults (females and

males) developed on non-mycorrhizal and mycorrhizal tomato plants

inoculated with R. irregularis after introducing 20 first instar nymphs

in muslin bags that enclosed the six upper leaves of the plants.

Bemisia tabaci adults were offered as prey. Significant differences

(asterisk) were detected between plant treatments but not between

sexes (P\ 0.001), n = 10

Table 1 Weight (mean number ± SE in grams) of M. pygmaeus females and males emerged on non-mycorrhizal (NM) and mycorrhizal

(M) tomato plants inoculated with Rhizophagus irregularis

M. pygmaeus Treatment Statistics

n NM n M df t P value

Female 26 0.696 ± 0.03 48 0.8 ± 0.02 72 -2.3807 0.01993*

Male 27 0.425 ± 0.02 50 0.402 ± 0.01 75 0.7915 0.4312

* P\ 0.05
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produced by AMF bean plants attract the predatory mite

Phytoseiulus persimilis (Schausberger et al. 2012). Our

results are also in line with those reported by Battaglia

et al. (2013) showing that tomato plants colonized by the

plant growth-promoting fungi T. longibrachiatum increases

the attractiveness of M. pygmaeus. Even if AMF and Tri-

choderma sp. have different mechanisms of colonization

and induction of biochemical, physiological and molecular

responses on the host plant (Strack et al. 2003; Smith and

Smith 2011; Hermosa et al. 2012), both of these plant

growth-promoting fungi produced changes in the blend of

VOCs (Battaglia et al. 2013; Fontana et al. 2009; Schaus-

berger et al. 2012) and increase plant nutrient uptake

(Harman et al. 2004; Smith and Smith 2011).

Our data concerning the effect of mycorrhizal inoculation

on the predator immature development showed that, com-

pared with NM tomato plants, those associated with R.

irregularis increased M. pygmaeus nymph survival and

female weight at emergence. These results might be directly

mediated by an enrichment of the nutritional quality of

tomato leaves and/or stems derived from the mycorrhizal

fungus capacity to mobilize and increase plant uptake of

water and micro- and macronutrients (George et al. 1995;

Smith and Smith 2011; Augé et al. 2015; Chitarra et al.

2016; He et al. 2016) and/or with changes in the plant

metabolite profile (Fiorilli et al. 2009; León-Morcillo et al.

2012; Song et al. 2013). Better performance (female’s

weight and fecundity) of sucking–piercing feeders has been

demonstrated when aphids were reared on plants colonized

by G. intraradices (Gange et al. 1999), and better perfor-

mance (net reproductive rate) of cell feeders has been

demonstrated when spider mites were reared plants colo-

nized by G. mosseae (Hoffmann et al. 2009).

In our experiments, improvement in nymphal survival

and female’s weight might also be related to an improve-

ment in the prey quality (B. tabaci). AMF ability to alter

the nutrient composition of the host plant can cascade up to

the next trophic level by changing the nutritional quality of

the prey. Hoffmann et al. (2011b) found that foraging and

oviposition behaviors of the predator mite Phytoseilus

persimilis (Phytoseiidae) are affected by its capacity to

recognize G. mosseae-enhanced quality of its prey-mite via

prey-related cues. Finally, the absence of differences in the

fertility of the heavier females reared on M tomato plants

in comparison with NM plants can be related with its

reproductive physiology. M. pygmaeus is a synovigenic

insect that develops its ovaries in the adult stage and fully

forms its eggs in relation with the availability of nutrients

(Castañé et al. 2007). Therefore, when we offered them the

same NM plant and the same prey during the period when

maturing their eggs, differences among females of the two

origins may disappear.

In conclusion, in the present study, we found that R.

irregularis symbiotic association with the S. lycopersicum

variety San Marzano Nano positively modulates the inter-

action of this plant species withM. pygmaeus, to the benefit

of the mirid bug. Fitness gains achieved by the predator are

an enhanced adult host-plant acceptance for feeding and

oviposition and a higher nymphal survival and female

weight. Further research could show more specifically

whether the nutritional quality of different prey present in

tomato crops is affected by R. irregularis. From a practical

point of view, the results of this study indicate that R.

irregularis root colonization on tomato plants could

potentially contribute to the successful establishment of the

predator in the crop by increasing its attractiveness toward

tomato plants. This is important at the beginning of the

tomato growing season, when mirid bugs are frequently

introduced and prey are scarce (Arnó et al. 2009). More-

over, better biological traits attained by M. pygmaeus on R.

irregularis-colonized tomato plants (e.g., higher produc-

tion of offspring and female weight) could facilitate the

maintenance of the predator population for longer time and

would indirectly modulate its effectiveness as biocontrol

agent.
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Pozo MJ, López-Raez JA, Azcón-Aguilar C, Garcı́a-Garrido JM

(2015) Phytohormones as integrators of environmental signals in

the regulation of mycorrhizal symbioses. New Phytol

205:1431–1436

R Core Team (2015) R: a language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna.

http://www.R-project.org/
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