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Abstract: Time-lapse ground-penetrating radar (GPR) surveys, combined with automated infiltration
experiments, provide a non-invasive approach for investigating the distribution of infiltrated water
within the soil medium and creating three-dimensional images of the wetting bulb. This study
developed and validated an experimental protocol aimed at quantifying and visualizing water
distribution fluxes in layered soils under both unsaturated and saturated conditions. The 3D images
of the wetting bulb significantly enhanced the interpretation of infiltration data, enabling a detailed
analysis of water movement through the layered system. We used the infiltrometer data and the
Beerkan Estimation of Soil Transfer parameters (BEST) method to determine soil capacitive indicators
and evaluate the physical quality of the upper soil layer. The field survey involved conducting time-
lapse GPR surveys alongside infiltration experiments between GPR repetitions. These experiments
included both tension and ponding tests, designed to sequentially activate the soil matrix and the
full pore network. The results showed that the soil under study exhibited significant soil aeration
and macroporosity (represented by AC and pMAC), while indicators related to microporosity (such as
PAWC and RFC) were notably low. The RFC value of 0.55 m3 m−3 indicated the soil’s limited capacity
to retain water relative to its total pore volume. The PAWC value of 0.10 m3 m−3 indicated a scarcity of
micropores ranging from 0.2 to 30 µm in diameter, which typically hold water accessible to plant roots
within the total porosity. The saturated soil hydraulic conductivity, Ks, values ranged from 192.2 to
1031.0 mm h−1, with a mean of 424.4 mm h−1, which was 7.9 times higher than the corresponding
unsaturated hydraulic conductivity measured at a pressure head of h = −30 mm (K−30). The results
indicated that the upper soil layer supports root proliferation and effectively drains excess water to
the underlying limestone layer. However, this layer has limited capacity to store and supply water to
plant roots and acts as a restrictive barrier, promoting non-uniform downward water movement, as
revealed by the 3D GPR images. The observed difference in hydraulic conductivity between the two
layers suggests that surface ponding and overland flow are generated through a saturation excess
mechanism. Water percolating through the soil can accumulate above the limestone layer, creating a
shallow perched water table. During extreme rainfall events, this water table may rise, leading to the
complete saturation of the soil profile.
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1. Introduction

Soil is the basis of agriculture and its management has significant impacts on its
biochemical, ecological, and physical functions [1]. To evaluate these impacts, the notion of
soil quality was developed. Doran and Parkin [2] suggested assessing soil quality as “the
capacity of a soil to function within ecosystem boundaries to sustain biological productivity,
maintain environmental quality, and promote plant and animal health,” including human
health. Even if that notion has been criticized, it puts forward the complexity and multi-
functionality of soils [3]. Good soil quality is needed to keep agriculture sustainable and
resilient over time. Thus, the choice of parameters to study and the methods used for
soil quality assessment are important. This paper focuses specifically on the soil physical
quality (SPQ), which is linked to chemical, biological, and ecological aspects.

To evaluate SPQ, several physical indicators associated with soil water cycle functions—
such as air capacity, plant-available water capacity, relative field capacity, soil microporosity,
and saturated hydraulic conductivity—are well documented and frequently used in the
literature [3–5]. These parameters can be derived from soil water retention and hydraulic
conductivity curves, which accurately represent the characteristics of the soil under study.
These curves can be generated using the BEST method. This method involves conducting
a field infiltration test with a predetermined water volume and collecting soil samples to
determine bulk density, initial water content, and particle size distribution in the laboratory [6].

However, the pore network characterization shows greater significance in the SPQ
assessment than the study of parameters derived from disturbed aggregates [7]. The soil
structure, and, in particular, the soil macroporosity, can be determined in different ways,
most of which are time-consuming, partial, and destructive. Dyes and tracers are, for
example, injected into soils before excavation, to visualize the preferential flow paths [8]. To
improve the determination of the pore network, geophysical tools like Ground Penetrating
Radar (GPR) are valuable as they are faster, more precise, non-invasive, and sensitive to
water [9]. GPR is a system composed of two antennas, one emitting and the other receiving
pulses of electromagnetic waves. When the material or region reached by the wave in the
soil has a change in its dielectric properties compared to the surrounding environment, a
part of the wave is reflected and subsequently detected by the second antenna. A change in
the received signal appears. As the water has a strong difference in dielectric properties
compared with the (dry) soil, GPR has great potential for visualizing and monitoring water
in the soil. Indeed, [10] observed drainage and storage dynamics with GPR, before and
after rain events, while [11] used GPR to study hydrological dynamics at the hillslope scale.
Time-lapse GPR surveys are also conducted to image subsurface responses to irrigation [12].

Recently, the integration of an infiltration experiment with a GPR survey was con-
ducted to enhance the understanding of preferential flow in urban areas [13]. This former
study focused on the GPR part but shows that GPR and infiltrometers are possibly coupled.
Thus, both infiltrometers and GPR devices can be utilized to characterize intrinsic soil
parameters and the pore network, facilitating the assessment of SPQ.

However, this experiment does not allow for differentiating the flows from the ma-
trix and the macropores. To do so, different infiltrometer devices such as disc and ring
infiltrometers can be used [14], the first allowing a tension experiment that only activates
the matrix (smaller pores), and the second activating all the pores (macropores included)
with a pond experiment. With the first device, for example, Watson and Luxmoore [15]
determined the concentration of different sizes of pores at the soil surface. The second
device, the ring infiltrometer, is used in many ways in the literature, especially to determine
the basic infiltration parameters, e.g., [16–20].

In this study, we integrated GPR surveys with two automated infiltration experiments
at the Ottava experimental station (University of Sassari, Sassari, Italy) to evaluate SPQ,
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e.g., [13,21–23]. The objective was to enhance understanding of the soil pore network
and assess several key indicators: (i) air capacity (AC m3 m−3), (ii) plant-available water
capacity (PAWC m3 m−3), (iii) relative field capacity (RFC–), and (iv) soil macroporosity
(pMAC m3 m−3). The site was selected for its distinctive soil composition consisting of two
layers (sandy clay loam and limestone). The study aimed to assess the efficacy of GPR
and infiltrometers in determining SPQ indicators, delineating water movement across both
soil layers, and elucidating infiltration mechanisms. Distinctions were drawn between
experiments that selectively engaged the soil matrix (tension experiment) and those that
encompassed the entire pore network (single-ring experiment). Many previous studies
have compared tension and ponding infiltration measurements, e.g., [24,25], and more
recently, GPR has been used to enhance the interpretation of water dynamics during the
infiltration process, e.g., [13,21–23]. However, to our knowledge, this is the first time a
protocol integrating all these methodologies has been presented.

2. Materials and Methods
2.1. Experimental Site

At the Ottava experimental station (located at 40◦46′47′′ N, 8◦29′45′′ E), affiliated with
the University of Sassari (Sardinia, Italy), an experimental trial was initiated in October
2019. The trial involved intercropping Cynara cardunculus cv Bianco Avorio with various
cover crops, including Vicia villosa Roth, Camelina sativa (L.) Crantz, Eruca sativa L. and
spontaneous vegetation. For the present experiment, in May 2020, the field measurements
were carried out on a 20 m2 sampling plot where Cynara cardunculus was intercropped with
spontaneous vegetation.

The climate is typically Mediterranean, while the long-term (1981–2019) average
annual rainfall is around 510 mm. As per USDA guidelines, the upper soil horizon was
characterized as sandy clay loam (Table 1), with a thickness of 0.3 m. Beneath this layer,
there exists a limestone stratum serving as a restrictive layer (typic Xerochrepts).

Table 1. Coordinates and percentage of clay, silt, and sand content using USDA soil classification
systems for depth ranging from 0 to 0.2 m. It also includes soil textural classification, soil organic
carbon (OC) content, dry soil bulk density (ρb), initial volumetric soil water content (θ0), final
volumetric water content at the end of the TI test, θTI(h=−30) (corresponding to h = −30 mm), saturated
volumetric water content (θs), and soil porosity (ε) for the soils sampled at the Ottava site. Standard
deviations are provided in parentheses.

Variables

Coordinates 40◦46′46.82′′ N
8◦29′45.89′′ E

Clay [%] 24.8 (2.67)
Silt [%] 22.6 (4.92)

Sand [%] 52.6 (3.15)
Textural classification sandy clay loam

OC [g kg−1] 15.7 (0.92)
ρb [g cm−3] (0–0.1 m depth). 1.298 (0.09)

ρb [g cm−3] (0.1–0.2 m depth). 1.462 (0.07)
θ0 [m3 m−3] 0.072 (0.01)

θTI(h=−30) [m3 m−3] 0.348 (0.01)
θs [m3 m−3] 0.405 (0.02)

ε [m3 m−3] (0–0.1 m depth). 0.501 (0.03)
ε [m3 m−3] (0.1–0.2 m depth). 0.445 (0.03)

2.2. Time-Lapse Ground-Penetrating Radar Survey

The ground-penetrating radar (GPR) survey was employed to enhance the interpreta-
tion of infiltration data and to highlight distinct hydraulic responses between the surface
soil and the underlying limestone layer. The GPR survey utilized an IDS (Ingegneria Dei
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Sistemi S.p.A., Pisa, Italy) Ris Hi Mod v. 1.0 system equipped with a 900 MHz antenna
mounted on a GPR cart. A GPR grid (1 m × 1 m) was established using white/red signaling
tape, comprising twelve transects (six vertical and six horizontal) spaced 0.2 m apart.

The experimental protocol consisted of six stages (Figure 1): (i) collection of the initial
12 radargrams across the entire grid under dry soil conditions prior to infiltration tests;
(ii) conducting a tension infiltration test at the grid center, during which the grid was
removed to activate only the soil matrix; (iii) performing a second GPR scan of the grid
to observe differences compared to the initial scans, influenced by water infiltration into
the matrix flow region; (iv) implementing a single-ring infiltration test using a solution of
brilliant blue dye (E133) on the same surface as the tension test to infiltrate water through
the entire pore network; (v) conducting a final GPR scan of the grid to illustrate differences
from the initial survey scans due to water infiltration affecting both the matrix and larger
pores; and (vi) excavating the soil profile to directly observe wetted conditions. In total,
36 radargrams (3 grid scans × 12 transects) were collected using the time acquisition
mode, with the GPR cart, moving along each transect and marking positions every 0.2 m
at intersections.
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Figure 1. Flowchart outlining the process to generate a 3D image of the wetting bulb. The arrow
indicates the funneling flow path through the limestone layer.

2.3. Infiltration Experiments for Assessing Soil Physical Quality of Agricultural Soil

We integrated infiltration data with the Beerkan Estimation Soil Transfer (BEST)
method [6] to assess SPQ indicators. These indicators represent soil parameters that
quantify the extent or quality of soil physical characteristics [26]. In agricultural contexts,
these indicators gauge the soil’s capacity to retain and supply water and air, essential for
crop growth [27].

We conducted ten single-ring infiltration tests at randomly selected locations within a
5 × 4 m sampling plot, employing the automated single-ring infiltrometers described by
Concialdi et al. [28]. For each experiment, a stainless steel ring with a 15 cm inner diameter
was inserted 1 cm into the ground, followed by the application of varying volumes of water
(ranging from 270 to 280 mm), over an area of 176.7 cm2 [6]. For detailed procedures on
infiltrometer application, please consult Di Prima [18] and Di Prima et al. [29]. Additionally,
the software code for processing raw infiltrometer data is available at bestsoilhydro.net
(accessed on 8 October 2024), and the treatment protocol can be accessed online [30].

To estimate soil hydraulic parameters for the van Genuchten [31] water retention curve
θ(h), we utilized the BEST-steady algorithm developed by Bagarello et al. [32], incorporating
the Burdine [33] condition:

θ(h) = θs
[
1 + (α|h|)n]−m (1a)

m = 1 − 2
n

(1b)

where h (mm) is the water pressure head, α (mm−1) is the van Genuchten pressure scale
parameter, and θs (m3 m−3) is the saturated soil water content.

Upon completion of the infiltration tests, saturated soil samples were collected to
ascertain the gravimetric water content. These measurements were subsequently utilized
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to calculate the saturated volumetric water content θs from the bulk density. The shape
parameter n was derived from the particle size distribution (PSD) using the pedotrans-
fer functions provided in the BEST method. Soil sorptivity S (mm h−0.5) and saturated
hydraulic conductivity Ks (mm h−1) were estimated using the following equations [29]:

S =

√
is

A + C
bs

(2)

Ks =
C is

A bs + C
(3)

where is (mm h−1) and bs (mm) are, respectively, the slope and the intercept of the linear
portion of the cumulative infiltration versus time plot. These are used to determine the
constants A (mm−1) and C, which are defined as follows [34,35]:

A =
γ

r(θs − θ0)
(4a)

C =
1

2(1 − β)
ln
(

1
β

)
(4b)

where θ0 (m3 m−3) represents the initial volumetric water content of the soil, r (mm) denotes
the radius of the infiltration source, and γ and β are infiltration coefficients, typically set at
γ = 0.75 and β = 0.6 [35].

Finally, following the methodology of Lassabatere et al. [6], the structure-dependent
scale parameter (α) was derived from the textural parameter (n) and infiltrometer data (S
and Ks). For further details on the BEST procedure, refer to Angulo-Jaramillo et al. [36].

We also conducted three tension infiltration (TI) tests within the same sampling plot at
randomly selected locations. We applied a suction of 30 mm using a SW-080B infiltrometer
with a 0.24 m diameter porous plate. At the end of the experiments, we sampled the
wet soil to determine the gravimetric water content. Then, these measurements were
used to determine the final volumetric water content from the bulk density corresponding
to h = −30 mm, θTI(h=−30) (m3 m−3). According to Angulo-Jaramillo et al. [37], the soil
hydraulic conductivity at the imposed suction, K−30 (mm h−1), was calculated as follows:

K−30 =
3

2 − β

C2 −
γC2

1

r
(
θTI(h=−30) − θ0

)
 (5)

where c1 (mm h−0.5) and c2 (mm h−1) are infiltration coefficients [35], which were deter-
mined to fit the two-term infiltration model by Philip [38] to the experimental data. The
fitting procedure was carried out using the method referred to as cumulative infiltration CI,
e.g., [39].

In addition to the previous infiltration measurements, one test of each type (TI and
Beerkan) was conducted at the center of the GPR survey grid (Figure 1). While the tension
tests were aimed at activating the soil matrix alone, the Beerkan tests were aimed at acti-
vating the whole pore network. These two tests were designed to explain the following:
(i) the amplitude variations between repeated GPR radargrams from the initial and second
surveys, attributed to water infiltration within the matrix flow region (tension test), and
(ii) the amplitude variations between the initial and third surveys, resulting from water
movement throughout the entire pore network, including macropores formed by biotic
activity (grass roots and earthworms) (single-ring test). The tension test utilized tap water,
whereas the Beerkan test involved infiltrating a solution containing 1 g L−1 of brilliant blue
dye (E133). Employing these two fluids in tandem enabled us to distinguish differences be-
tween water and dye distribution patterns during the soil excavation conducted following
the third GPR survey (Figure 1).
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Six undisturbed soil cores were extracted from the sampling plot at depths of 0–0.3 m.
Three samples were collected at 0–1 m and three others at 0.1–0.2 m. These samples were
utilized to ascertain the dry soil bulk density, ρb (g cm−3), and soil porosity, ε (m3 m−3). Ad-
ditionally, five disturbed soil samples were collected from depths of 0 to 0.2 m to determine
the particle size distribution (PSD). This was achieved using conventional methodologies,
involving a H2O2 pretreatment to remove organic matter and clay deflocculation with
sodium metaphosphate and mechanical agitation [40]. Specifically, the fine fractions were
quantified via the hydrometer method, while the coarse fractions were determined through
mechanical dry sieving. According to USDA standards, three particle size fractions were
identified: clay (0–2 µm), silt (2–50 µm), and sand (50–2000 µm).

The site was characterized by averaged values of ρd, θ0, θTI(h = −30), θs, ε, n, m, K−30, Ks
and α. The hypothesis of normality of the non-transformed and log-transformed parameter
distributions was checked by the Kolmogorov–Smirnov test. Parameter means were
determined based on the statistical distribution of the data, employing arithmetic means
for normally distributed data and geometric means for log-normally distributed data. To
quantify the associated variability, the coefficient of variation (CV) was calculated for
arithmetic means, while the geometric coefficient of variation (GCV) was calculated for
geometric means [41].

We employed the BEST averaged parameters to derive several key parameters from
the soil water retention curve (Equation (1)): the permanent wilting point soil water
content (θPWP m3 m−3) at h = −150 m, the field capacity soil water content (θFC, m3 m−3)
at h = −1 m, and the saturated volumetric water content of the soil matrix (θm, m3 m−3)
at h = −0.1 m. These parameters, in conjunction with θs, were utilized to estimate the
following capacitive SPQ indicators: air capacity (AC, m3 m−3), plant-available water
capacity (PAWC, m3 m−3), relative field capacity (RFC, –), and soil macroporosity (pMAC,
m3 m−3) (Table 2). The indicators considered in this study, along with the associated
optimal ranges or critical limits, were selected based on the study by Reynolds et al. [42].

Table 2. Estimated values of the selected soil physical quality (SPQ) indicators along with their
corresponding optimal ranges or critical thresholds for the sampled soils at the Ottava site.

Soil Physical Quality Indicator Description Ranges or Critical Limits Evaluation Class

Soil organic carbon content, OC [g
kg−1] Strong indirect effects

on soil physical quality

30 ≤ OC ≤ 50 optimal

23 ≤ OC < 30 and 50 < OC ≤ 60 intermediate
OC < 23 and OC > 60 poor

Structure stability index, SSI [%] =
1.724 OC%/(silt% + clay%) × 100 SSI > 9 stable structure

7 < SSI ≤ 9 low risk of structural degradation
5 < SSI ≤ 7 high risk of degradation

SSI ≤ 5 structurally degraded soil

Air capacity, AC [m3 m−3] = θs −
θFC Root zone aeration

≥0.14 good

0.10 ≤ AC < 0.14 intermediate
<0.10 poor

where θFC [m3 m−3] is the field capacity (gravity drained) soil water content, corresponding to h = −1 m.

Plant-available water capacity,
PAWC [m3 m−3] = θFC − θPWP Soil’s ability to store

and provide water
available to plant roots

≥0.20 ideal

0.15 ≤ PAWC < 0.20 good
0.10 ≤ PAWC < 0.15 limited

<0.10 poor
where θPWP [m3 m−3] is the permanent wilting point soil water content, corresponding to h = −150 m.

Relative field capacity, RFC [−] =
θFC/θs

Soil’s ability to store
water and air relative
to the soil’s total pore
volume

0.6 ≤ RFC ≤ 0.7 optimal

<0.6 limited (water limited soil)
>0.7 limited (aeration limited soil)
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Table 2. Cont.

Soil Physical Quality Indicator Description Ranges or Critical Limits Evaluation Class

Macroporosity, pMAC [m3 m−3] =
θs − θm

Soil’s ability to quickly
drain excess water
and facilitate root
proliferation

≥0.07 optimal

0.04 ≤ pMAC < 0.07 intermediate
<0.04 poor

where θm [m3 m−3] is the saturated volumetric water content of the soil matrix, corresponding to h = −0.1 m.

2.4. GPR Data Processing and Solid Modeling

A Ground-Penetrating Radar (GPR) output typically comprises a radargram, which
consists of time-series reflections that provide cross-sectional profiles of subsurface depth
over time [43]. The collected radargrams were processed using Reflexw software version
4.0 (Sandmeier Scientific Software, Karlsruhe, Germany). The processing protocol included
the following: (i) trace interpolation to ensure equidistant spacing between markers at
survey line intersections, with an increment of 0.2 m, (ii) static time shift adjustment to
synchronize the arrival of direct ground waves to 0 ns, (iii) bandpass filtering within the
temporal domain, (iv) application of an exponential gain function to counteract GPR signal
attenuation with depth; as per Truss et al. [10], the same gain curve, established from
pre-wetting data, was uniformly applied across all time-lapse data, (v) implementation
of a background removal filter to mitigate horizontal noise, and (vi) compression in both
temporal and spatial dimensions to minimize computational time required for subsequent
processing steps, such as 3D interpolation.

Amplitude values, G, from all radargrams within the grid were aggregated to form
a comprehensive XYZG dataset, where X, Y, and Z denote spatial coordinates (easting,
northing, and elevation). Elevation, Z, was derived from wave travel time recorded during
GPR acquisition, with an assumed wave velocity of 0.11 m ns−1, as determined from the
detection of subsurface objects at known depths. Consequently, both pre- and post-wetting
XYZG datasets were obtained. Subsequently, additional datasets were created based on
the absolute differences between pre- and post-wetting G values. The movement of water
within the unsaturated zone induced variations in the dielectric contrast between layers,
thereby altering the reflection coefficient [10]. These alterations were manifested as changes
in amplitude. Therefore, the differenced datasets were constructed to emphasize amplitude
fluctuations between repeated GPR radargrams acquired along the same survey lines before
and after the infiltration test, e.g., [23,44]. It was hypothesized that the absolute difference
between pre- and post-wetting amplitude values was inversely correlated with the soil
water pressure head [45]. Consequently, the most significant reflection differences were
anticipated at the location of the saturated soil bulb extending outward from the infiltration
surface, with decreasing reflection differences in the partially saturated zone surrounding
the wetting bulb. In this zone, the water pressure head diminishes as the wetting front
advances due to soil capillarity from the saturated bulb [37].

The RockWorks 17 software [46] was employed in conjunction with the inverse-
distance anisotropic modeling technique to execute a 3D interpolation of the differenced
GPR datasets. This anisotropic search methodology enhances the interpolation accuracy of
voxel (volumetric picture element) values located between clusters of data points and has
been effectively utilized in numerous geophysical studies, e.g., [47–49]. The interpolation
algorithm assigned values to voxel based on a weighted average of adjacent data points
within each 90-degree sector around the node. The weighting of each data point’s ampli-
tude value was inversely proportional to the square of its distance from the voxel node
(inverse-distance squared).

3. Results and Discussion
3.1. Detection of Wetting Zones through GPR Data

The GPR-based delineation of the wetting bulb at the Ottava site is presented. The
3D renderings (Figure 2a,e) distinctly outlined the dimensions and configurations of the
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wetting bulb generated during both the tension and Beerkan infiltration tests conducted
on the identical surface area. Initially, the infiltration bulbs were identified through a
comprehensive 360-degree examination of the 3D renderings. Subsequently, horizontal
and vertical cross-sections were extracted from the 3D models to pinpoint regions with
significant reflection differences, indicative of wetted soil patches beneath the primary
wetting front (Figure 2: TI test in subpanels b–d and Beerkan test in subpanels f–h).
These cross-sections were then compared with the direct observations of the infiltration
bulb, exposed by sectioning the soil along a vertical plane at the conclusion of the third
GPR survey (Figure 1). The congruence between the observed shapes provided a robust
indication of the accuracy of the 3D interpolation procedure in mapping the wetted patterns.
This finding corroborated the experimental results of a prior study by Di Prima et al. [13].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 
Figure 2. Three-dimensional representations of the wetting zones obtained from ground-
penetrating radar surveys conducted before and after wetting, during (a) tension and (e) ponding 
infiltrometer experiments at the Ottava site. Panels (b,f) illustrate horizontal cross-sections taken 
from the 3D models at a depth of −0.1m from the soil surface. Panels (c,g) present vertical cross-
sections oriented north–south with a view to the east, while panels (d,h) show vertical cross-sections 
oriented west–east within a view to the north. The red arrows highlight the detected flow channeling 
through the limestone layer (see Figure 1 for reference). 

In this scenario, the wetted region exhibited an extended and uneven form (Figure 
2g,h), aligning with the interface of the limestone layer (red arrows in Figure 1 Step 6, 
Figure 2e,g). Both the 3D diagram and the patterns from dye staining indicated that water 
infiltrated through this impermeable layer via a funneling mechanism. Specifically, the 
limestone layer, characterized by low hydraulic conductivity, acted as a capillary barrier 
that directed flow into a relatively confined path, a common phenomenon known as 
funneled flow [46]. Consequently, flow channeling was observed at the layer interfaces, 
specifically at a depth of 0.3 m. 

3.2. Water Infiltration and Application of the BEST Algorithm 
Evidence of the flow dynamics described above, and observed from the 3D diagrams, 

was also found when analyzing infiltration data. Indeed, all Beerkan infiltration curves 
showed a sudden decrease in infiltration rate when the wetting front encountered the 
limestone layer. Lassabatere et al. [51] suggest that water infiltration data should be 
considered indicative of the hydraulic characteristics of the most impermeable layer. 

Figure 2. Three-dimensional representations of the wetting zones obtained from ground-penetrating
radar surveys conducted before and after wetting, during (a) tension and (e) ponding infiltrometer
experiments at the Ottava site. Panels (b,f) illustrate horizontal cross-sections taken from the 3D
models at a depth of −0.1m from the soil surface. Panels (c,g) present vertical cross-sections oriented
north–south with a view to the east, while panels (d,h) show vertical cross-sections oriented west–
east within a view to the north. The red arrows highlight the detected flow channeling through the
limestone layer (see Figure 1 for reference).

During the tension infiltration (TI) test, an applied suction of 30 mm (equivalent to a
water pressure head of −30 mm) restricted water flow to the soil matrix, thereby excluding
pores with radii > 0.5 mm from the infiltration process [45]. The comparison of radargrams
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from the initial and subsequent GPR surveys enabled us to discern amplitude variations
attributable to water movement within the matrix flow region. As anticipated for capillary-
driven infiltration, the resulting wetting bulb exhibited a regular, quasi-hemispherical
configuration with a uniform water distribution (Figure 2a,b), primarily extending through
the upper soil horizon to an approximate depth of 0.3 m (Figure 2c,d).

The differentiation between the repeated radargrams of the first and third GPR surveys
allowed us to highlight the amplitude fluctuations as a result of the water infiltrating
throughout the entire pore system More specifically, in this case, the wetting bulb is the
result of the water infiltrated during both the TI and Beerkan tests, which were carried
out on the same infiltration surface. During the ponding test, given that the smaller pores
were already filled, the water movement occurred mainly into the larger pores (>0.5 mm),
determining a smaller wetting pattern in comparison to that generated during the TI test,
which highlighted the occurrence of a mainly vertical gravity-driven movement through
the topsoil [50], as shown from the dye pattern in Figure 1 (Step 6: Soil excavation). In the
subsequent phase, as the advancing wetting front reached the underlying limestone stratum
at a depth of 0.3 m, the infiltration rates observed at the soil surface diminished owing to
the reduced hydraulic conductivity of the stratum. The three-dimensional representation
facilitated the identification of flow channeling through the limestone layer (Figure 2g),
corroborated by observations in Figure 1.

In this scenario, the wetted region exhibited an extended and uneven form (Figure 2g,h),
aligning with the interface of the limestone layer (red arrows in Figure 1 Step 6, Figure 2e,g).
Both the 3D diagram and the patterns from dye staining indicated that water infiltrated
through this impermeable layer via a funneling mechanism. Specifically, the limestone
layer, characterized by low hydraulic conductivity, acted as a capillary barrier that directed
flow into a relatively confined path, a common phenomenon known as funneled flow [46].
Consequently, flow channeling was observed at the layer interfaces, specifically at a depth
of 0.3 m.

3.2. Water Infiltration and Application of the BEST Algorithm

Evidence of the flow dynamics described above, and observed from the 3D diagrams,
was also found when analyzing infiltration data. Indeed, all Beerkan infiltration curves
showed a sudden decrease in infiltration rate when the wetting front encountered the
limestone layer. Lassabatere et al. [51] suggest that water infiltration data should be consid-
ered indicative of the hydraulic characteristics of the most impermeable layer. Therefore,
characterizing the hydraulic properties of the topsoil required us to discriminate the infil-
tration process into two different stages: a first stage when water infiltrated only into the
surface layer, and a subsequent phase when the wetting front reached the interface between
layers. The decline in infiltration rate was not readily discernible from visual examination
of the cumulative infiltration curve (Figure 3a) but became apparent upon applying the
cumulative linearization method CL, [52] (Figure 3b). More specifically, all the linearized
curves showed a convex shape, which is expected in the case of layered soils with an
underlying less permeable layer [25]. Conversely, for ideal situations, namely for uniformly
unsaturated, rigid, and homogeneous soils, linearized infiltration data are expected to show
an increasing trend that is characterized by a practically unique slope [37].

Thus, we characterized all the linearized Beerkan plots (I
√

t vs.
√

t) by an initial
ascending linear segment, followed, after a knee point, by a more or less distinct reduction
in slope. Subsequently, we computed the slope and intercept values for both the early and
later phases of the infiltration processes.

As shown in Figure 3b, for the case of a single Beerkan test, we also calculated the
abscissa (

√
t) of the intersection point of the two straight lines. This threshold split the

infiltration data into two subsets representative of the two stages occurring when water
moved across the layering profile: a first stage (first linear portion) when water infiltrated
into the upper layer, and a second stage (second liner part) when water started to infiltrate
into the underlying limestone layer. The infiltration data corresponding to the first stage
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were subsequently used for assessing the soil physical quality of the upper soil layer
(Figure 3c).
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The BEST-steady algorithm was employed to derive parameters n, m, α and Ks from
textural and infiltrometer data (Table 3). Statistical analysis using the Kolmogorov–Smirnov
test indicated that Ks data followed a log-normal distribution. Consequently, the geometric
mean and the geometric coefficient of variation were computed for Ks [41]. Conversely, all
other parameters exhibited normal distributions and were synthesized using the average
value and its corresponding variability. Ks values ranged from 192.2 to 1031.0 mm h−1,
with a mean of 424.4 mm h−1. Additionally, estimates of Ks were compared with field
measurements of unsaturated hydraulic conductivity, K−30, obtained at a pressure head
of h = −30 mm (K−30). Table 3 summarizes the K−30 values measured for the Ottava site.
As expected, the hydraulic conductivity increased dramatically in the proximity of the
saturation, i.e., for h = 0. The K−30 values ranged between 33.3 and 70.1 mm h−1. The
Ks values estimated by BEST consistently exceeded the measured K−30 values, indicating
that physically realistic estimates of Ks were obtained across all scenarios, as Ks > K−30.
Specifically, for the topsoil, BEST provided a mean Ks value that was 7.9 times higher than
the corresponding K−30, equivalent to an order of magnitude difference. Such substantial
differences between saturated and near-saturated hydraulic conductivity are frequently
observed under field conditions, e.g., [53]. These results imply that macropore flow is likely
prominent in the topsoil, facilitating rapid drainage of excess water towards the underlying
limestone layer. Furthermore, the observed funneling infiltration mechanism through the
restrictive limestone layer (Figure 2) and the contrast in hydraulic conductivity between
the two layers (Figure 3) imply that ponding on the surface and the generation of overland
flow primarily result from a saturation-excess mechanism [54].

Table 3. Sample size (N), minimum (min), maximum (max), mean, and coefficient of variation (CV,
%) of the BEST and TI estimations.

Variable N Min Max Mean CV

n [−] 5 2.116 2.139 2.127 0.5
m [−] 5 0.055 0.065 0.060 7.6

K−30 [mm h−1] 3 33.3 70.1 53.8 34.9
†Ks [mm h−1] 9 192.2 1031.0 424.4 63.8
α [mm−1] 9 0.060 0.244 0.117 54.6

† According to the Kolmogorov-Smirnov test, Ks data were log-normally distributed; thus, the geometric mean
and the associated geometric coefficient of variation were calculated for this variable [41]. The arithmetic mean
and the associated coefficient of variation were calculated for all other variables.
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3.3. Soil Physical Quality Assessment

Two of the six SPQ indicators (OC and SSI) were directly measured, while the remain-
ing four (capacitive indicators) were derived using the BEST procedure.

The investigated soil had a poor content of organic matter, with a mean OC value of
15.7 g kg−1. Also, the low value of the structural stability index (SSI = 5.7%) indicates a
high risk of soil degradation. These results suggested that the soil was prone to mechanical
breakdown of aggregates and the occurrence of sealing phenomena, for instance during
intense rainfall events [55]. This hypothesis was corroborated by the observation, during
the winter season and in the proximity of the sampled plot, of depositional seal layers.
These thin and dense surface layers resulted from the transport of particles physically
dispersed by the impacts of raindrops [56]. The particles were carried in suspension by
runoff, which may be generated by the above-described mechanism, and finally deposited
in correspondence with surface depressions [57].

Figure 4 shows the BEST-deduced water retention curve and the estimated values of
the selected capacitive soil physical quality indicators. While the θTI(h=−30) and θs values
were measured from wet soil samples collected, respectively, after the tension and Beerkan
infiltration tests, the other parameters (θPWP, θFC, and θm) were determined from the water
retention curve using the mean values of the BEST-deduced shape (n and m) and scale (α)
parameters. Almost identical values of the soil water content at the permanent wilting
point (θPWP = 0.12 m3 m−3) and field capacity (θFC = 0.22 m3 m−3) were reported by Giunta
et al. [58] for the soil at the Ottava experimental station, thus increasing our confidence in
the BEST-deduced parameters. The findings revealed that the soil under study exhibited
significant soil aeration and macroporosity (represented by AC and pMAC), while indicators
related to microporosity (such as PAWC and RFC) were notably low. A low RFC indicates
the soil’s limited capacity to retain water compared to its total pore volume. RFC values
below 0.6 may lead to decreased microbial activity due to inadequate soil moisture (water-
limited conditions) [27]. A diminished PAWC indicates a scarcity of micropores ranging
from 0.2 to 30 µm in diameter, which typically hold water accessible to plant roots within
the total porosity [4]. Soils with 0.10 ≤ PAWC < 0.15 m3 m−3 are frequently categorized as
drought-prone [27]. These observations imply that the uppermost soil strata support root
growth and efficiently drain surplus water into the underlying limestone layer, yet exhibit
restricted capacity to retain and supply water to plant roots.
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Figure 4. θPWP [m3 m−3] is the permanent wilting point soil water content, corresponding to
h = −150 m. θFC [m3 m−3] is the field capacity (gravity drained) soil water content, corresponding to
h = −1 m. θm [m3 m−3] is the saturated volumetric water content of the soil matrix, corresponding to
h = −0.1 m. θTI [m3 m−3] is the final volumetric water content at the end of the TI test (corresponding
to h = −0.03 m), θs [m3 m−3] is the saturated volumetric water content. AC [m3 m−3] is the air
capacity. PAWC [m3 m−3] is the plant-available water capacity. RFC [−] is the relative field capacity.
pMAC [m3 m−3] is the soil macroporosity. † Water content values determined from wet soil samples
collected after the tension (θTI) and Beerkan (θs) infiltration tests.
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4. Conclusions

In summary, the findings of this study underscore the complex interactions between water
dynamics and soil properties in layered systems, leading to the following key conclusions:

• Enhanced Understanding of Water Movement: The 3D images of the wetting bulb
significantly improved our understanding of water movement within layered soil,
providing valuable insights into the dynamics of water distribution. The images
revealed the occurrence of funneling phenomena through the restrictive underlying
layer, which acts as a capillary barrier, inhibiting the expansion of the wetting front.

• Hydraulic Conductivity Differences: The observed differences in hydraulic conduc-
tivity between the two layers suggest that surface ponding and overland flow are
generated through a saturation-excess mechanism. Percolating water can accumulate
above the restrictive limestone layer, forming a shallow perched water table that may
rise during extreme rainfall events, potentially leading to the complete saturation of
the soil profile.

• Soil Physical Quality Indicators: By integrating infiltration data with the BEST method,
we determined key soil physical quality indicators in the upper soil layer. The esti-
mated parameters indicated high levels of aeration and macroporosity (AC and pMAC),
alongside low values for microporosity indicators (PAWC and RFC). The RFC value
of 0.55 m3 m−3 indicated the soil’s limited capacity to retain water relative to its total
pore volume. The PAWC value of 0.10 m3 m−3 indicated a scarcity of micropores
ranging from 0.2 to 30 µm in diameter, which typically hold water accessible to plant
roots within the total porosity.

• Implications for Root Proliferation: These findings suggest that the upper soil layer
facilitates root proliferation and efficiently drains excess water toward the underlying
restrictive layer. However, it has a limited capacity to store and supply water to
plant roots.

• Concluding Remarks and Considerations: The use of cover crops or at least inter-alley
spontaneous vegetation, recently adopted in the experimental plot, is expected to
mitigate, at least in part, these problems over the next years [59]. During periods of
intense precipitation, cover crops play a crucial role in mitigating soil erosion and
runoff by shielding the soil surface. Simultaneously, they contribute to minimizing
nutrient losses by absorbing residual nutrients left in the soil [60]. This dual function
underscores their importance in sustainable agricultural practices aimed at enhancing
soil health and reducing environmental impacts during extreme weather events. In
addition, the presence of cover crop residues may increase the soil organic matter,
which also plays a role in producing macrostructures, thereby improving the surface
soil structure [42]. Important benefits may also include improved moisture retention
because of the mulch provided by cover crop residues [61]. Further studies will be
necessary to assess the mitigation role that inter-alley cropping will play during the
next agricultural cycles with regard to soil physical quality and the attenuation of the
sealing phenomenon.

Author Contributions: S.D.P.: Conceptualization, Methodology, Investigation, Formal analysis,
Validation, Visualization, Writing—original draft, Writing—Review and Editing, Funding acquisition.
G.F.: Writing—original draft, Writing—Review and Editing. M.B.: Writing—Review and Editing.
L.R.R.: Investigation, Data Curation, Writing—Review and Editing. V.G.: Investigation, Writing—
Review and Editing. F.G.: Writing—Review and Editing, Funding acquisition. A.C.: Writing—Review
and Editing. L.L.: Writing—Review and Editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was, in part, supported through the project PRIN 2022 PNRR—Methodological
proposal for the Individuation of protection forests through LEgislation, geohazard assessment
Tools and Ontology (MILETO; project code: P2022587PM), funded by the European Union—Next
Generation EU.



Appl. Sci. 2024, 14, 9268 13 of 15

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental Impact of Different Agricultural Management Practices: Conventional vs.

Organic Agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [CrossRef]
2. Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; John Wiley &

Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 1–21. ISBN 978-0-89118-930-5.
3. Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder,

P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [CrossRef]
4. Iovino, M.; Castellini, M.; Bagarello, V.; Giordano, G. Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a

Sicilian Area. Land Degrad. Develop. 2016, 27, 200–210. [CrossRef]
5. Reynolds, D.; Drury, C.; Tan, C.; Yang, X. Temporal Effects of Food Waste Compost on Soil Physical Quality and Productivity. Can.

J. Soil Sci. 2015, 95, 150511122047004. [CrossRef]
6. Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer

Parameters through Infiltration Experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521. [CrossRef]
7. Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.-J. Soil Structure as an Indicator of Soil Functions: A Review. Geoderma 2018, 314,

122–137. [CrossRef]
8. Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying Preferential Flow in Soils: A Review of Different Techniques. J. Hydrol. 2009, 378,

179–204. [CrossRef]
9. Klenk, P.; Jaumann, S.; Roth, K. Monitoring Infiltration Processes with High-Resolution Surface-Based Ground-Penetrating Radar.

Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 12215–12246. [CrossRef]
10. Truss, S.; Grasmueck, M.; Vega, S.; Viggiano, D.A. Imaging Rainfall Drainage within the Miami Oolitic Limestone Using

High-Resolution Time-Lapse Ground-Penetrating Radar. Water Resour. Res. 2007, 43. [CrossRef]
11. Guo, L.; Chen, J.; Lin, H. Subsurface Lateral Preferential Flow Network Revealed by Time-Lapse Ground-Penetrating Radar in a

Hillslope. Water Resour. Res. 2014, 50, 9127–9147. [CrossRef]
12. Jackisch, C.; Angermann, L.; Allroggen, N.; Sprenger, M.; Blume, T.; Tronicke, J.; Zehe, E. Form and Function in Hillslope

Hydrology: In Situ Imaging and Characterization of Flow-Relevant Structures. Hydrol. Earth Syst. Sci. 2017, 21, 3749–3775.
[CrossRef]

13. Di Prima, S.; Winiarski, T.; Angulo-Jaramillo, R.; Stewart, R.D.; Castellini, M.; Abou Najm, M.R.; Ventrella, D.; Pirastru, M.;
Giadrossich, F.; Capello, G.; et al. Detecting Infiltrated Water and Preferential Flow Pathways through Time-Lapse Ground-
Penetrating Radar Surveys. Sci. Total Environ. 2020, 726, 138511. [CrossRef] [PubMed]

14. Angulo-Jaramillo, R.; Vandervaere, J.-P.; Roulier, S.; Thony, J.-L.; Gaudet, J.-P.; Vauclin, M. Field Measurement of Soil Surface
Hydraulic Properties by Disc and Ring Infiltrometers. A Review and Recent Developments. Soil Tillage Res. 2000, 55, 1–29.
[CrossRef]

15. Watson, K.W.; Luxmoore, R.J. Estimating Macroporosity in a Forest Watershed by Use of a Tension Infiltrometer. Soil Sci. Soc. Am.
J. 1986, 50, 578–582. [CrossRef]

16. Bagarello, V.; Castellini, M.; Di Prima, S.; Iovino, M. Soil Hydraulic Properties Determined by Infiltration Experiments and
Different Heights of Water Pouring. Geoderma 2014, 213, 492–501. [CrossRef]

17. Burgy, R.H.; Luthin, J.N. A Test of the Single- and Double-Ring Types of Infiltrometers. Eos Trans. Am. Geophys. Union 1956, 37,
189–192. [CrossRef]

18. Di Prima, S. Automated Single Ring Infiltrometer with a Low-Cost Microcontroller Circuit. Comput. Electron. Agric. 2015, 118,
390–395. [CrossRef]

19. Lassabatere, L.; Di Prima, S.; Angulo-Jaramillo, R.; Keesstra, S.; Salesa, D. Beerkan Multi-Runs for Characterizing Water Infiltration
and Spatial Variability of Soil Hydraulic Properties across Scales. Hydrol. Sci. J. 2019, 64, 165–178. [CrossRef]

20. Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D. Rapid Measurement of Field-Saturated Hydraulic Conductivity for Areal
Characterization. Vadose Zone J. 2009, 8, 142–149. [CrossRef]

21. Di Prima, S.; Fernandes, G.; Marras, E.; Giadrossich, F.; Stewart, R.D.; Abou Najm, M.R.; Winiarski, T.; Mourier, B.; Angulo-
Jaramillo, R.; Comegna, A.; et al. Evaluating Subsurface Flow Connectivity in a Pine-Covered Hillslope with Stemflow Infiltration
and Ground-Penetrating Radar Surveys. J. Hydrol. 2023, 620, 129527. [CrossRef]

22. Fan, B.; Liu, X.; Zhu, Q.; Qin, G.; Li, J.; Lin, H.; Guo, L. Exploring the Interplay between Infiltration Dynamics and Critical Zone
Structures with Multiscale Geophysical Imaging: A Review. Geoderma 2020, 374, 114431. [CrossRef]

23. Guo, L.; Lin, H.; Fan, B.; Nyquist, J.; Toran, L.; Mount, G.J. Preferential Flow through Shallow Fractured Bedrock and a 3D
Fill-and-Spill Model of Hillslope Subsurface Hydrology. J. Hydrol. 2019, 576, 430–442. [CrossRef]

24. Lassabatere, L.; Di Prima, S.; Bouarafa, S.; Iovino, M.; Bagarello, V.; Angulo-Jaramillo, R. BEST-2K Method for Characterizing
Dual-Permeability Unsaturated Soils with Ponded and Tension Infiltrometers. Vadose Zone J. 2019, 18, 1–20. [CrossRef]

https://doi.org/10.1080/07352689.2011.554355
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1002/ldr.2263
https://doi.org/10.4141/cjss-2014-114
https://doi.org/10.2136/sssaj2005.0026
https://doi.org/10.1016/j.geoderma.2017.11.009
https://doi.org/10.1016/j.jhydrol.2009.08.013
https://doi.org/10.5194/hessd-12-12215-2015
https://doi.org/10.1029/2005WR004395
https://doi.org/10.1002/2013WR014603
https://doi.org/10.5194/hess-21-3749-2017
https://doi.org/10.1016/j.scitotenv.2020.138511
https://www.ncbi.nlm.nih.gov/pubmed/32320879
https://doi.org/10.1016/S0167-1987(00)00098-2
https://doi.org/10.2136/sssaj1986.03615995005000030007x
https://doi.org/10.1016/j.geoderma.2013.08.032
https://doi.org/10.1029/TR037i002p00189
https://doi.org/10.1016/j.compag.2015.09.022
https://doi.org/10.1080/02626667.2018.1560448
https://doi.org/10.2136/vzj2007.0159
https://doi.org/10.1016/j.jhydrol.2023.129527
https://doi.org/10.1016/j.geoderma.2020.114431
https://doi.org/10.1016/j.jhydrol.2019.06.070
https://doi.org/10.2136/vzj2018.06.0124


Appl. Sci. 2024, 14, 9268 14 of 15

25. Di Prima, S.; Castellini, M.; Majdi, R.; Abou Najm, M.R.; Stewart, R.D.; Angulo-Jaramillo, R.; Winiarski, T.; Lassabatere, L.
Experimental Assessment of a New Comprehensive Model for Single Ring Infiltration Data. J. Hydrol. 2019, 573, 937–951.
[CrossRef]

26. Topp, G.C.; Reynolds, W.D.; Cook, F.J.; Kirby, J.M.; Carter, M.R. Physical Attributes of Soil Quality. Soil Quality for Crop
Production and Ecosystem Health. In Development in Soil Science; Gregorich, E.G., Carter, M.R., Eds.; Elsevier: New York, NY,
USA, 1997; Volume 25, pp. 21–58.

27. Reynolds, W.; Drury, C.; Yang, X.; Fox, C.; Tan, C.; Zhang, T. Land Management Effects on the Near-Surface Physical Quality of a
Clay Loam Soil. Soil Tillage Res. 2007, 96, 316–330. [CrossRef]

28. Concialdi, P.; Di Prima, S.; Bhanderi, H.M.; Stewart, R.D.; Abou Najm, M.R.; Lal Gaur, M.; Angulo-Jaramillo, R.; Lassabatere, L.
An Open-Source Instrumentation Package for Intensive Soil Hydraulic Characterization. J. Hydrol. 2020, 582, 124492. [CrossRef]

29. Di Prima, S.; Lassabatere, L.; Bagarello, V.; Iovino, M.; Angulo-Jaramillo, R. Testing a New Automated Single Ring Infiltrometer
for Beerkan Infiltration Experiments. Geoderma 2016, 262, 20–34. [CrossRef]

30. Automatic Treatment of Raw Data from Automatized Infiltrometer. 2023. Available online: https://youtu.be/nXXxNS3gmCA?
si=q6zwfXtiiJb3EXTg (accessed on 8 October 2024).

31. van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am.
J. 1980, 44, 892–898. [CrossRef]

32. Bagarello, V.; Di Prima, S.; Iovino, M. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Sci.
Soc. Am. J. 2014, 78, 724. [CrossRef]

33. Burdine, N.T. Relative Permeability Calculation from Pore Size Distribution Data. Petr. Trans.Am. Inst. Min. Metall. Eng. 1953, 198,
71–77. [CrossRef]

34. Di Prima, S.; Stewart, R.D.; Castellini, M.; Bagarello, V.; Abou Najm, M.R.; Pirastru, M.; Giadrossich, F.; Iovino, M.; Angulo-
Jaramillo, R.; Lassabatere, L. Estimating the Macroscopic Capillary Length from Beerkan Infiltration Experiments and Its Impact
on Saturated Soil Hydraulic Conductivity Predictions. J. Hydrol. 2020, 589, 125159. [CrossRef]

35. Haverkamp, R.; Ross, P.J.; Smettem, K.R.J.; Parlange, J.Y. Three-Dimensional Analysis of Infiltration from the Disc Infiltrometer: 2.
Physically Based Infiltration Equation. Water Resour. Res. 1994, 30, 2931–2935. [CrossRef]

36. Angulo-Jaramillo, R.; Bagarello, V.; Di Prima, S.; Gosset, A.; Iovino, M.; Lassabatere, L. Beerkan Estimation of Soil Transfer
Parameters (BEST) across Soils and Scales. J. Hydrol. 2019, 576, 239–261. [CrossRef]

37. Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatère, L. Infiltration Measurements for Soil Hydraulic Characterization; Springer
International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-31786-1.

38. Philip, J.R. Stability Analysis of Infiltration. Soil Sci. Soc. Am. J. 1975, 39, 1042–1049. [CrossRef]
39. Zhang, R. Determination of Soil Sorptivity and Hydraulic Conductivity from the Disk Infiltrometer. Soil Sci. Soc. Am. J. 1997, 61,

1024. [CrossRef]
40. Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In SSSA Book Series; Klute, A., Ed.; Methods of Soil Analysis, Part 1: Physical and

Mineralogical Methods; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA,
1986; pp. 383–411. ISBN 978-0-89118-864-3.

41. Kirkwood, T.B. Geometric Means and Measures of Dispersion; JSTOR: New York, NY, USA, 1979; ISBN 0006-341X.
42. Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of Indicators and Pore Volume-Function Characteristics to

Quantify Soil Physical Quality. Geoderma 2009, 152, 252–263. [CrossRef]
43. Al-Nuaimy, W.; Huang, Y.; Shihab, S.; Eriksen, A. Automatic Target Detection in GPR Data. In Proceedings of the Ninth

International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 12 April 2002; Proc. SPIE 4758. Available
online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4758/1/Automatic-target-detection-in-GPR-data/
10.1117/12.462232.short (accessed on 8 October 2024).

44. Holden, J. Hydrological Connectivity of Soil Pipes Determined by Ground-Penetrating Radar Tracer Detection. Earth Surf. Process.
Landf. 2004, 29, 437–442. [CrossRef]

45. Birken, R.; Versteeg, R. Use of Four-Dimensional Ground Penetrating Radar and Advanced Visualization Methods to Determine
Subsurface Fluid Migration. J. Appl. Geophys. 2000, 43, 215–226. [CrossRef]

46. RockWare Inc. RockWorks17 User’s Manual. Available online: https://www.rockware.com/downloads/documentation/
rockworks/rockworks17.pdf (accessed on 8 August 2019).

47. Attwa, M.; El-Shinawi, A. An Integrative Approach for Preliminary Environmental Engineering Investigations amidst Reclaiming
Desert-Land: A Case Study at East Nile Delta, Egypt. Environ. Earth Sci. 2017, 76, 304. [CrossRef]

48. Lange-Athinodorou, E.; El-Raouf, A.A.; Ullmann, T.; Trappe, J.; Meister, J.; Baumhauer, R. The Sacred Canals of the Temple of
Bastet at Bubastis (Egypt): New Findings from Geomorphological Investigations and Electrical Resistivity Tomography (ERT). J.
Archaeol. Sci. Rep. 2019, 26, 101910. [CrossRef]

49. Longo, V.; Testone, V.; Oggiano, G.; Testa, A. Prospecting for Clay Minerals within Volcanic Successions: Application of Electrical
Resistivity Tomography to Characterise Bentonite Deposits in Northern Sardinia (Italy). J. Appl. Geophys. 2014, 111, 21–32.
[CrossRef]

50. Timlin, D.J.; Ahuja, L.R.; Ankeny, M.D. Comparison of Three Field Methods to Characterize Apparent Macropore Conductivity.
Soil Sci. Soc. Am. J. 1994, 58, 278–284. [CrossRef]

https://doi.org/10.1016/j.jhydrol.2019.03.077
https://doi.org/10.1016/j.still.2007.07.003
https://doi.org/10.1016/j.jhydrol.2019.124492
https://doi.org/10.1016/j.geoderma.2015.08.006
https://youtu.be/nXXxNS3gmCA?si=q6zwfXtiiJb3EXTg
https://youtu.be/nXXxNS3gmCA?si=q6zwfXtiiJb3EXTg
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj2013.06.0231
https://doi.org/10.2118/225-G
https://doi.org/10.1016/j.jhydrol.2020.125159
https://doi.org/10.1029/94WR01788
https://doi.org/10.1016/j.jhydrol.2019.06.007
https://doi.org/10.2136/sssaj1975.03615995003900060013x
https://doi.org/10.2136/sssaj1997.03615995006100040005x
https://doi.org/10.1016/j.geoderma.2009.06.009
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4758/1/Automatic-target-detection-in-GPR-data/10.1117/12.462232.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4758/1/Automatic-target-detection-in-GPR-data/10.1117/12.462232.short
https://doi.org/10.1002/esp.1039
https://doi.org/10.1016/S0926-9851(99)00060-9
https://www.rockware.com/downloads/documentation/rockworks/rockworks17.pdf
https://www.rockware.com/downloads/documentation/rockworks/rockworks17.pdf
https://doi.org/10.1007/s12665-017-6627-4
https://doi.org/10.1016/j.jasrep.2019.101910
https://doi.org/10.1016/j.jappgeo.2014.09.014
https://doi.org/10.2136/sssaj1994.03615995005800020003x


Appl. Sci. 2024, 14, 9268 15 of 15

51. Lassabatere, L.; Angulo-Jaramillo, R.; Goutaland, D.; Letellier, L.; Gaudet, J.P.; Winiarski, T.; Delolme, C. Effect of the Settlement
of Sediments on Water Infiltration in Two Urban Infiltration Basins. Geoderma 2010, 156, 316–325. [CrossRef]

52. Smiles, D.; Knight, J. A Note on the Use of the Philip Infiltration Equation. Soil Res. 1976, 14, 103–108. [CrossRef]
53. Buczko, U.; Benz, O.; Hangen, E.; Brunotte, J.; Huttl, R. Infiltration and Macroporosity of a Silt Loam Soil under Two Contrasting

Tillage Systems. Landbauforsch. Volkenrode 2003, 53, 181–190.
54. Stewart, R.D.; Bhaskar, A.S.; Parolari, A.J.; Herrmann, D.L.; Jian, J.; Schifman, L.A.; Shuster, W.D. An Analytical Approach to

Ascertain Saturation-excess versus Infiltration-excess Overland Flow in Urban and Reference Landscapes. Hydrol. Process. 2019,
33, 3349–3363. [CrossRef]

55. Assouline, S.; Mualem, Y. Runoff from Heterogeneous Small Bare Catchments during Soil Surface Sealing. Water Resour. Res.
2006, 42, W12405. [CrossRef]

56. Mualem, Y.; Assouline, S.; Rohdenburg, H. Rainfall Induced Soil Seal (B) Application of a New Model to Saturated Soils. CATENA
1990, 17, 205–218. [CrossRef]

57. Assouline, S. Rainfall-Induced Soil Surface Sealing: A Critical Review of Observations, Conceptual Models, and Solutions. Vadose
Zone J. 2004, 3, 570–591. [CrossRef]

58. Giunta, F.; Motzo, R.; Deidda, M. SPAD Readings and Associated Leaf Traits in Durum Wheat, Barley and Triticale Cultivars.
Euphytica 2002, 125, 197–205. [CrossRef]

59. Kaye, J.P.; Quemada, M. Using Cover Crops to Mitigate and Adapt to Climate Change. A Review. Agron. Sustain. Dev. 2017, 37, 4.
[CrossRef]

60. Lee, S.; McCann, L. Adoption of Cover Crops by U.S. Soybean Producers. J. Agric. Appl. Econ. 2019, 51, 527–544. [CrossRef]
61. Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw Mulch as a

Sustainable Solution to Decrease Runoff and Erosion in Glyphosate-Treated Clementine Plantations in Eastern Spain. An
Assessment Using Rainfall Simulation Experiments. CATENA 2019, 174, 95–103. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geoderma.2010.02.031
https://doi.org/10.1071/SR9760103
https://doi.org/10.1002/hyp.13562
https://doi.org/10.1029/2005WR004592
https://doi.org/10.1016/0341-8162(90)90009-3
https://doi.org/10.2136/vzj2004.0570
https://doi.org/10.1023/A:1015878719389
https://doi.org/10.1007/s13593-016-0410-x
https://doi.org/10.1017/aae.2019.20
https://doi.org/10.1016/j.catena.2018.11.007

	Introduction 
	Materials and Methods 
	Experimental Site 
	Time-Lapse Ground-Penetrating Radar Survey 
	Infiltration Experiments for Assessing Soil Physical Quality of Agricultural Soil 
	GPR Data Processing and Solid Modeling 

	Results and Discussion 
	Detection of Wetting Zones through GPR Data 
	Water Infiltration and Application of the BEST Algorithm 
	Soil Physical Quality Assessment 

	Conclusions 
	References

