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A B S T R A C T

The Atmospheric Laser Doppler Instrument (ALADIN) onboard the Aeolus wind mission was the first High
Spectral Resolution Lidar operating in the Ultra Violet (UV) region deployed in space. This study explores and
documents the feasibility of deriving ocean optical properties using data from ALADIN. A three steps (i.e. data
screening, analytical estimation of the total in-water signal contribution, Look Up Table-based estimation of the
in-water attenuation) retrieval algorithm was developped combining data analysis and signal simulations from a
radiative transfer model. The algorithm has been implemented using the signal acquired by the Mie channel, and
tested for 1-year of Aeolus observations. This approach allowed estimating the first Aeolus derived Ocean Color
(OC) products in terms of the total in-water signal contribution and the in-water attenuation term in a spectral
region (355 nm) not covered, during Aeolous lifetime, by operational OC products. The validation process
involved comparing these products with both Biogeochemical-Argo (BGC-Argo) field measurements and satellite
OC dataset distributed by ESA Ocean Color Climate Change Initiative across a set of 7 selected oceanic regions
representing diverse open-ocean scenarios. These validation exercises attested the general accordance between
OC reference measurements and the proposed Aeolus OC parameters. Thus, this study was able to provide sta-
tistical evidence of the sensitivity of the retrieved Aeolus in-water lidar attenuation term to the CDOM variability
on a temporal/seasonal and spatial/regional basis. A preliminary estimation of the uncertainty associated to the
retrieved quality controlled Klid, was performed assuming the radiometric noise as unique source of uncertainty.
As a result, a median/average value of absolute relative percent difference of about 50/80% was obtained. Limits
of the developed technique, possible improvements, potential adaptation to planned/future space lidar missions
are discussed.

1. Introduction

Lidar techniques have demonstrated their high reliability as a valu-
able tool for studying the marine environment (Churnside, 2013).
During the last decade, several Ocean Color (OC) studies using space-
borne lidar measurements not only provided the initial space-based
proof of concept but also generated noteworthy scientific findings (e.
g., Behrenfeld et al., 2013, 2019; Dionisi et al., 2020; Lu et al., 2020,
2021, 2022, 2023; Vadakke-Chanat and Jamet, 2023; Watkins et al.,
2023; Yang et al., 2023; Zhang et al., 2022, 2023a, 2023b, 2024). These

results gave a glimpse of a “new lidar era in satellite oceanography”
(Hostetler et al., 2018).

The Atmospheric Laser Doppler Instrument (ALADIN, Stoffelen et al.,
2005), launched in 2018 onboard the Aeolus orbiting platform within
ESA’s Atmospheric Dynamics Mission (ADM) and decommissioned in
April 2023, had the objective to provide novel observations of global
wind profiles using its Doppler Wind Lidar at 355 nm. Notably, ALADIN
has been the only space-borne lidar operating in the UV since the LIdar
Technology Experiment (LITE) pioneering mission launched onboard
the Discovery Space Shuttle in 1994 (Winker et al., 1996). Although
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Aeolus’s mission primary objectives and subsequent instrument and
sampling characteristics are not ideal for monitoring sub-surface ocean
properties, its unprecedented type of measurements is expected to
contain relevant and original information about the optical properties of
the sensed water volume. Specifically, ALADIN presented unique op-
portunities to examine the information in the signal back-scattered and
attenuated by sub-surface components of the ocean at 355 nm.

At 355 nm, light is attenuated (i.e., absorbed) mostly by the Colored
Dissolved Organic Matter (CDOM). The light absorption coefficient of
CDOM is due to a mixture of molecules originating through phyto-
plankton digestion as operated by heterotrophic bacteria (Nelson et al.,
1998) or active release by phytoplankton itself (Organelli and Claustre,
2019). These molecules are ubiquitous in aquatic ecosystems and play
an important role in Earth’s climate (Kim et al., 2018).

Besides the contribution from accurate but very sparse in-situ
observation (cruises), current knowledge of the global distribution of
CDOM light absorption coefficients and of its temporal variability is
mainly based on a limited set of satellite products in the visible light
(Nelson and Siegel, 2013). Due to the design of the current/past gen-
eration of OC dedicated missions, information on CDOM light attenua-
tion from space at a wavelength shorter than 400 nm is achieved, in the
majority of the cases, assuming a dependency on Chl-a concentration (e.
g., Morel et al., 2007) or through empirical, semi-analytical and deep-
learning-based approaches starting from OC remote sensing reflec-
tance (Lee et al., 2013; Wang et al., 2021; and references therein).
Recently, Oelker et al. (2022) has also explored the information content
in the UV bands of TROPOspheric Monitoring Instrument (TROPOMI),
on board the Copernicus Sentinel-5 Precursor satellite, to obtain vertical
diffuse attenuation coefficient (Kd) products that can be used as a proxy
of CDOM in the UV.

Recognizing the importance of the information in the UV regions, the
coming generation of OC satellite missions (e.g., Li et al., 2022;
Plankton, Aerosol, Cloud, ocean Ecosystem mission, PACE, Werdell
et al., 2019) extends the range to wavelengths below 400 nm. In the
field, recent advances in understanding the spatio-temporal variability
of Kd in the UV, at the global scale, have been achieved thanks to
radiometric measurements acquired in-situ by autonomous robotic
Biogeochemical-Argo (BGC-Argo) profiling floats (Organelli et al.,
2017).

This study aims to investigate ALADIN Lidar capabilities to provide
information on seawater optical properties in the UV with particular
attention to CDOM measurements. To verify if and in which terms the
standard ocean lidar retrieval algorithms (Churnside, 2013; Jamet et al.,
2019) can be applied to the ALADIN instrumental and sampling char-
acteristics, signal simulations with a radiative transfer model (D’Ali-
monte et al., 2024) and data analysis were conducted. The former
activity was essential to simulate the radiative processes generating
Aeolus surface bin signal, the latter allowed for selecting an Aeolus
dataset suitable to be analysed. These tools enabled the design of an
inversion method for retrieving the first Aeolus-derived OC products in
terms of the total in-water signal contribution and attenuation term for
one year of Aeolus measurements in different ocean regions, repre-
senting the expected global variability of the ocean color parameters of
interest. To interpret and assess these products and to demonstrate their
sensitivity to ocean optical properties and CDOM measurements, both
in-situ measurements deployed by BGC-Argo and standard satellite OC-
derived product provided by the Ocean Color Climate Change Initiative
of ESA were used (ESA-OC-CCI; esa-oceancolour-cci.org).

The outline of this study is organized as follows: Section 2 gives a
brief description of the datasets analysed in the study; Section 3 de-
scribes the radiative transfer model (LiOC) used to support and develop
the retrieval algorithm; Section 4 explores the suitability of applying the
standard ocean lidar equation to the instrumental characteristics of
ALADIN and describes the developed inversion algorithm to retrieve a
first prototype of Aeolus-OC products; Section 5 shows the results of the
assessment of the obtained products and the analysis of the associated

uncertainty. Finally, Section 6 summarizes the approach developed, the
main results obtained, and their limitations, and discusses the applica-
bility of this approach to future space lidar missions.

2. Data

2.1. ALADIN

The Aeolus mission carries the ALADIN instrument, the first space-
borne High Spectral Resolution Lidar (HSRL) emitting pulses of about
60 mJ with a repetition frequency of 50.5 Hz at 355 nm. Designed with
the primary scientific goal of providing wind profiles using the Doppler
effect, this instrument points perpendicular to the satellite ground speed
vector with a slant angle 35◦ off nadir. Back-scattered laser radiation is
collected by a Cassegrain telescope of 1.5 m in diameter with a field-of-
view (FOV) of 20 μrad, and it is directed to Fizeau and dual Fabry-Perot
interferometers that allow retrieving separately back-scattering signals
from aerosols and molecules (Mie and Rayleigh channels, respectively).
Aeolus has a 06:00 and 18:00 local solar time (LST) Equator overpass in
a polar, sun-synchronous orbit at a mean altitude of 320 kmwith a 7-day
repeat cycle. The vertical resolution of ALADIN measurements varies
between 250m and 2 km from the ground up to 30 km, corresponding to
24 range bins used for atmospheric return measurements and 1 bin for
the background light contribution (Reitebuch et al., 2009). Each vertical
range bin is integrated to obtain two different horizontal resolutions of
approximately 3 and 90 km, referred to as ‘measurement’ and ‘obser-
vation’ levels, respectively.

The Aeolus dataset can be accessed and downloaded through various
options on ESA’s Aeolus portal (https://earth.esa.int/eogateway/m
issions/aeolus/data, last access: 26/06/2024). One year of L1B Aeolus
product (baseline 11) was used for this study. In particular, the L1B
‘measurement’ resolution dataset from June 2020 to May 2021 was
extracted for seven oceanic Region of Interests (RoIs): North and South
Atlantic subtropical gyres (NASTG and SASTG, respectively), North
Atlantic subpolar gyre (NASPG), South Eastern Mediterranean Sea
(SEMED), NorthWesternMediterranean Sea (NWMED), Southern Ocean
– Indian Sector (SOIND), Black Sea (BLSEA). These regions have been
selected to represent the expected global variability of the OC parame-
ters of interest (e.g., Kd, and CDOM absorption) and meet diverse
meteorological conditions (e.g., cloudiness) that could impact Aeolus’s
data availability and retrievals.

2.2. Biogeochemical-Argo dataset

Biogeochemical-Argo (BGC-Argo) floats are autonomous robotic
platforms that acquire profiles, up to every 10 days, of several optical,
biogeochemical and physical variables from 0 to 2000 m depth. In
particular, BGC-Argo floats are equipped with miniaturized Seabirds
OCR-504 radiometers that sample, around solar noon, 0–250 m profiles
of downwelling irradiance at three wavelengths (380, 412, and 490 nm)
and Photosynthetically Available Radiation (PAR) integrated between
400 and 700 nm. These profiles are freely distributed by Coriolis Global
Data Assembly Centre (ftp://ftp.ifremer.fr/ifremer/argo/dac/coriolis/,
last access: 26/06/2024; Argo float data and metadata from Global Data
Assembly Centre (Argo GDAC), 2023).

Acquired radiometric profiles were quality-controlled following
(Jutard et al., 2021). Then, automatic quality-control protocol specif-
ically developed to identify clouds and wave focusing/defocusing, and
to disregard profiles acquired under unfavourable sky and sea conditions
was applied (Organelli et al., 2016). Then, Kd coefficients within the first
optical depth (Zpd) were calculated as reported by (Organelli et al.,
2017). In Table 1, we report the main characteristics of Kd(380) co-
efficients computed for the seven ROIs used for the validation datasets
depicted in Fig. 1.
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2.3. ESA-OC-CCI dataset

The ESA-OC-CCI dataset consists of daily satellite data with 4 km of
spatial resolution and cover a period spanning from 1998 to 2023 (ESA-
OC-CCIv6; esa-oceancolour-cci.org). Products are freely distributed at a
global scale as a multi-sensor result derived from different merging
techniques (https://climate.esa.int/en/projects/ocean-colour/key-do
cuments/, last access: 29/06/2024). The ESA-OC-CCI products are
described in Sathyendranath et al. (2019).

Different variables contained in this dataset are used in different
phases of this study:

- as ancillary data, Chlorophyll concentration (Chl-a) and associated
uncertainty is used as input, in addition to Pwn in the LUT to estimate
Klid (Section 4.2);

- as reference for the product validation, the absorption of the Colored
Detrital Matter (acdm) is used for the validation of the results (Section
5.2).

The uncertainty associated to each single pixel Chl-a observation is
given as a root-mean-square difference (RMSD) and Bias of Log10Chl
from which a standard deviation can also be computed (https://docs.
pml.space/share/s/fzNSPb4aQaSDvO7xBNOCIw, access: 29/06/2024).
RMSD and Bias are estimated on the basis of results from match-up in-
situ data and optical water class estimation based on OC-CCI remote-
sensing reflectance spectra (Rrs) for each pixel (doi:https://doi.
org/10.1016/j.rse.2017.03.036).

The absorption of the Colored Detrital Matter (acdm), used for the
validation (see Section 5.2), results from the application of the Quasi-

Analytical Algorithm (QAA v6) model (Lee et al., 2002) that derives
the absorption and back-scattering coefficients by analytically inverting
the spectral remote-sensing reflectance (Rrs(λ)). Component absorption
coefficients (contributions by detritus/CDOM and phytoplankton pig-
ments) are further algebraically decomposed from the total absorption
spectrum. acdm provided by ESA-OC-CCI is available at 6 bands: 412,
443, 490, 510, 560, and 665 nm.

3. LiOC model

The Lidar Radiative Transfer Simulation code for Ocean Color ap-
plications (LiOC) is used in this study to analyze the dynamics of the
signal retrieved by ALADIN ADM-Aeolus from the ocean and verify the
possibility of deriving OC data products (see D’Alimonte et al., 2024 for
details). In summary, LiOC simulates the ALADIN ADM-Aeolus mea-
surements in terms of the back-scattered signal PT = Ps + Pw + Pb, from
the lidar sensed water volume where:

- Ps: is originated by reflection processes in the presence of wind-
driven sea-surface waves,

- Pw: results from the absorption and multiple scattering events in a
water volume,

- Pb: is due to reflection at the of the sea bottom.

Since the absolute value of ALADIN ADM-Aeolus measurements de-
pends on the instantaneous laser emission power, the ratio of the above
quantities and the sea surface incident signal P (i.e., Pxn = Px/P, where
x = T,s,w,b) is then used for comparison between simulation results and
actual measurements.

Table 1
Main characteristics of the Kd(380) dataset within the First Optical Depth (Zpd) for the 7 ROIs.

ROI Latitudinal range
(upper-lower limit)
(◦)

Longitudinal range
(western-eastern limit)
(◦)

Period # of Q/C Kd(380) within
the first optical depth

Average Kd(380) ±
standard deviation
(m− 1)

Min/Max
Kd(380)
(m− 1)

Average Zpd ±
standard deviation
(m)

NASTG 26 N–16 N 55 W–30 W 2012–2018 381 0.04 ± 0.009 0.02/0.08 23 ± 3
SASTG 14S–22S 33 W–19 W 2012–2022 434 0.03 ± 0.007 0.02/0.06 28 ± 3
NASPG 66 N–53 N 61 W–15 W 2013–2021 2529 0.15 ± 0.057 0.05/0.55 11 ± 5
SEMED 38 N–30 N 22E-35E 2013–2022 1048 0.06 ± 0.020 0.02/0.13 20 ± 3
NWMED 44 N–39 N 0-9E 2012–2021 1299 0.10 ± 0.039 0.02/0.29 13 ± 4
SOIND 40S–60S 40E-110E 2014–2022 3043 0.08 ± 0.027 0.03/0.29 16 ± 4
BLSEA 47 N–41 N 27E-42E 2013–2022 524 0.31 ± 0.065 0.13/0.67 8 ± 2
TOTAL 9258

Fig. 1. Region of Interests used for the validation datasets and the position of the BGC-Argo measurements.
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The in-water LiOC simulation component relies on Monte Carlo ray
tracing (Fig. 2) to determine profiles of the back-scattered signal as a
function of depth and scattering order. This capability has allowed
verifying that, in the ALADIN ADM-Aeolus measurement case, the in-
water lidar attenuation coefficient Klid approaches the beam attenua-
tion coefficient c in oligotrophic waters, while it converges to Kd in
turbid waters (D’Alimonte et al., 2024). The resulting Klid variability
poses a limit to deriving the back-scattered signal directly from the lidar
equation, implying the need for radiative transfer simulations tailored to
the ALADIN ADM-Aeolus measurement geometry. LiOC simulation re-
sults also allowed the identification of the “expected” conditions where
the lidar signal can be informative of optically active seawater constit-
uents. The bottom contribution of the ground bin signal can be neglected
when zb ≥ 100 m even for Chl-a concentrations typical of oligotrophic
regions (≈ 0.01 mg m− 3). Furthermore, given the geometry of the
ALADIN observation (nadir angle of 35◦), the sea surface contribution is
assumed as negligible for wind speeds <8 ms− 1. This assumption is not
applicable to other lidar measurements with smaller off-nadir angle.

The considered marine conditions include Inherent Optical Proper-
ties (IOPs) driven by Chl-a and independent absorption sources of
varying relevance (e.g. CDOM). In contrast, the simplified assumption
that suspended particles not covarying with Chl-a do not have a signif-
icant impact on the variability of the lidar back-scattered signal is
adopted as a specific case study. This marine bio-optical regime has been
considered in a set of LiOC simulation runs to create a Look-Up-
Table (LUT) for retrieving Klid from Chl − a and Pn.

Finally, to verify the capability of LiOC in reproducing the marine
lidar signal (Pwn ), LiOC simulation results are statistically compared
against the equivalent quantity retrieved from ALADIN ADM-Aeolus
measurements (see Section 4). To this end, Fig. 3 shows three curves
representing the relationship between the simulated Pwn , and the Chl-a
concentration. CDOM contribution is also included, assuming a spectral
slope as in Pitarch (2017). The green curve is the one obtained with the
Monte Carlo simulations, and the other two curves are the two extreme
analytical solutions used for the validation discussed in D’Alimonte
et al., 2024.

The shaded boxes show the variability derived from observations.
Each symbol refers to the selected ROIs representing different regimes
regarding marine bio-optical properties (see Fig. 1). Chl-a concentration
statistics are derived from the BGC-Argo dataset (symbols in Fig. 3) that
has been used for statistical comparison with the Aeolus-derived CDOM
estimates. The statistics relative to the LiOC simulated signal (Pwn ) are
obtained from processed L1B Aeolus observations (i.e., one-year data
records) following the procedure described in Section 4. Results of Fig. 3

support an overall agreement between Aeolus-derived and LiOC esti-
mated Pwn for the different bio-optical regimes selected to represent the
global variability.

4. Aeolus-OC algorithm

Due to the ALADIN characteristics (i.e., emission of circular polar-
ized light at 355 nm and reception of the elastic and Doppler shifted
back-scattered signals through a fringe-imaging and a double-edge
channels), HSRL and Elastic Back-scattering Lidar (EBL, Churnside,
2013; Jamet et al., 2019) retrieval techniques, could be theoretically
applied to the Aeolus ocean sub-surface signal.

The HSRL approach is already applied to Aeolus measurements to
retrieve atmospheric aerosols back-scatter and extinction coefficient
profiles in the Aeolus L2A spin-off products (Flament et al., 2021). To
use this approach, it is necessary to calibrate the six instrumental co-
efficients, Kray, Kmie, C1, C2, C3 and C4, which appear in the two range-
resolved lidar equations for the Rayleigh and Mie signals (Eqs. 6.5 and
6.6 in Flamant, et al., 2021, respectively). These coefficients, provided in
L2A and L2B Aeolus dataset, are calibrated according to Dabas (2017),
considering the spectral transmissions of the Fizeau and dual Fabry-
Perot spectrometers and the atmosphere as the medium in which the
scattering processes take place.

To apply the HSRL approach to OC studies, the values of the afore-
mentioned instrumental coefficients must be computed considering the
scattering process occurring in the water (e.g., Brillouin scattering). This
estimation goes beyond the scope of this work as, similarly to the aerosol
application (Dabas, 2017), it should involve not only the theoretical
computation of these values but also the analysis of the acquired Aeolus
signal during the Instrument Response Calibration mode of Aeolus.

Furthermore, the Aeolus Rayleigh signal is affected by a dependency
on the M1 (primary) mirror temperatures that cause a Rayleigh wind
bias (Weiler et al., 2021). Currently, the Level-1B product does not
include a correction for this bias, which is corrected at Level-2B. Finally,
the Rayleigh ground bin signal is characterized by a low Signal-to-Noise
Ratio (SNR).

Conversely, the Mie channel sensitivity to M1 mirror temperature
gradients appears to be around a factor ten less than the Rayleigh

Fig. 2. Representation of Monte Carlo ray-tracing approach implemented in
LiOC to model the fraction of the Aeolus laser beam back-scattered by the sea
and collected at the receiver. Dots labelled as B, C and D represent scattering
events. The CC’ lines represent the contribution to back-scattered signal that
can be measured by ALADIN ADM-Aeolus.

Fig. 3. Normalized marine water contribution to the lidar signal Pwn as a
function of Chl-a concentration. Green line: MC simulations. Red and blue lines:
analytical limiting cases. Each symbol shows the parameters’ variability range
for a given ROI. Chl-a is derived from BGC-Argo measurements (https://bioge
ochemical-argo.org/), Pwn is estimated from Aeolous L1B data. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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channel (Rennie and Isaksen, 2020). Additionally, the computed anal-
ysis of the Aeolus signal highlights that the Mie signal has a higher SNR
compared to the Rayleigh signal.

For the above considerations, the study is based only on the Mie
channel dataset, not exploiting the HSRL capability.

The designed EBL approach to derive in-water optical properties
using Mie channel measurements is based on an inversion scheme that
consists of three consecutive phases:

1) Screening procedure: aimed to identify the filtering criteria to be
applied to the Aeolus data for the OC inversion algorithm.

2) Estimation of the in-water ground bin signal contribution: aimed to
remove contributions to the measured signal from variables other
than the in-water ones;

3) Retrieval of the optical properties of the in-water ground bin: aimed
to determine the in-water optical properties of interest.

These steps are described in the following sub-sections. Fig. 4 re-
sumes the flowchart of the implemented Aeolus-OC algorithm based on
the developed approach.

4.1. Screening procedure

To select suitable Aeolus measurements to be inverted into the OC
algorithm, an analysis of the 5 lowermost Aeolus profile acquisition bins
(i.e., bins 21–25, see.

Fig. 5) was performed to identify the atmosphere-ocean interface bin
(hereinafter referred to as ‘ground bin’) and develop a filtering pro-
cedure to remove cloud/aerosol contamination.

In the large majority of the cases (≈98%), bin 23 is the ground-bin.
Fig. 6 shows the histogram of the lower height of #23 bin with the
negative values indicating the depth below the sea surface. For the sea
surface topography, it has been used the ACE2 (Altitude Corrected
Elevation 2) as a global DEM (Digital ElevationModel). This information
is included in the Aeolus L1B data.

The developed quality control and data screening procedure aims to
remove low-quality observations and those for which the contribution to
the signal from geophysical factors (clouds/aerosol, bathymetry, and
surface reflectance) other than marine optical properties compromise
the assumptions adopted in the inversion algorithm. This procedure
takes advantage of: LiOC simulation results, the statistical analyses

based on procedures on the SNR, and the useful signals (Reitebuch et al.,
2018) of the Mie channel for bins 21, 22 and 23. The screening is applied
according to the following criteria:

1) Dummy values. Unphysical negative values deriving from an over-
estimation of the background are flagged.

2) Bathymetry. In order to avoid the potential contribution from the sea
bottom surface, observations corresponding to shallow waters (bot-
tom depth < 100 m) are flagged. The bathymetry mask is obtained
from GEBCO gridded bathymetry data (https://www.gebco.net/).

Fig. 4. Flow-chart of the Aeolus-OC algorithm developed in this study.

Fig. 5. Schematic view of the five lowermost Aeolus profile acquisition bins
(21–25). Please note that, for simplicity, the figure represents a nadir
profiling scheme.

D. Dionisi et al. Remote Sensing of Environment 313 (2024) 114341 

5 

https://www.gebco.net/


The original resolution of 15 arc-second geographic latitude and
longitude grid is interpolated on the Aeolus data L1B resolution.

3) In-water bin 23 (shallow or deep-water bin). Data with ground bin
lower edge altitude outside of the range − 70 m to − 500 m are
flagged. This is imposed to ensure that the ground bin contains both
the atmosphere and the ocean.

4) Wind. Surface roughness, mostly associated with sea surface wind,
increases the sea surface reflectance contribution in the ground bin.
Based on the analysis done with the LiOC simulation tool (see Section
3), only data with wind intensity lower than 8 m/s are considered to
ensure a negligible signal contribution due to the surface reflectance
and a constant sea surface transmittance. Ancillary data provided by
Aeolus AUX_MET files contained in the L1B dataset is used for wind
speed at the surface. In this condition, the effects of white caps and
foam may be neglected.

5) LowMie channel SNR on bins 21, 22 and 23 (ground bin). To remove
the noisy signal, SNR should be higher than a low bound value
(SNRlow) fixed to 5.

6) High Mie channel SNR on bins 21, 22 and 23 (ground bin). To
exclude the bins affected by cloud and high aerosol load contami-
nation, a high bound value (SNRhigh) is determined based on the SNR
density distribution estimated for each selected ROI dataset. Pre-
cisely, the SNRhigh corresponds to the right bound of the full-width
half maximum (FWHM) of the region specific SNR distribution (see
Fig. 7).

7) Useful Mie channel signal on bins 21, 22 and 23 (ground bin). To
further remove cloud and aerosol contamination, a high bound signal
value (SIGhigh) is also used. The same procedure developed for the

SNRhigh is applied to determine SIGhigh by calculating the FWHM of
the signal density distribution.

This screening procedure allows the removal of the majority of the
cloud/aerosol contaminated bins, but it also causes a significant
reduction in the number of valid profiles: only about 1% of the original
data sample meets the filtering criteria. The effect of the different
screening steps on the dataset regarding the number of Aeolus profiles is
resumed in Table 2, where the procedure is applied to the Aeolus L1B
dataset considered in this study.

4.2. In-water optical properties retrieval

The background-subtracted ground bin signal for the Aeolus Mie
channel (SMie

23 ), generated by the interaction of the emitted laser radia-
tion with two media (atmosphere and ocean) and their interface, can be
expressed by the following equation:

SMie
23 = E0ACinstrT2A tot

•

(
Batm

(
H+ r1grd

)2 +
Bsurf

(
H+ r2grd

)2 +
μT2s Bwat

(
n
(
H+ r2grd

)
+ r3grd

)2

)

. (1)

where:

- E0: transmitted pulse energy;
- A: receiver area;
- Cinstr: constant depending on the factors affecting the instrumental
signal transmission;

- n: seawater real refractive index;
- H: range at the top of the ground bin;
- r1grd, r2grd, r3grd: distance between the top of the bin and the half path
of the atmospheric portion of the ground bin, the surface and the half
path of the water sub-surface portion of the ground bin, respectively;

- TA: transmission through the atmosphere;
- μ: cos(θa)/cos(θw), where θaand θw are the Aeolus slant angles off
nadir in-air and in-water, respectively. This term accounts for the
Straubel’s invariant equation (please refer to section 13.1.2 in
Mobley et al., 2021).

- TS: transmission through the sea surface, down (↓) and up (↑),
respectively.

- Batm, Bsurf, and Bwat: the volume scattering coefficients at a scattering
angle of π radians for the back-scattering components from the at-
mosphere, the surface, and the water sub-surface, respectively. This
latter term, which includes both extinction and back-scattering of all
components, can be expressed as:

Bwat =

∫ r

r2grd
βwat(π, rʹ) • exp

[

− 2
∫ ŕ

r2grd
Klid(rʹ́ )drʹ́

]

dŕ ; (2)

where:

- βwat(π,r) is the in-water volume scattering coefficient at a scattering
angle of π radians, which is the sum of the back-scatter from water
molecules and suspended particles (βwatM and βwatP, respectively),

Fig. 6. Histogram of the lower height for the 23 bin computed for the
June–July-Aug 2020 Aeolus L1B dataset.

Fig. 7. Density distribution analysis of both the SNR and the signal of bin 21,
22 and 23 to flag high values. The right bound of the full-width half maximum
(FWHM) of the density distribution estimated for each selected test area is used
as a high bound value.

Table 2
List of the screening steps applied sequentially to the Aeolus L1B dataset,
baseline B11, resolution measurement level. The number of profiles refers to the
sum of Aeolus profiles selected after each step for the 7 ROIs from June 2020 to
May 2021.

Filtering steps Number of profiles

Starting data (10 km horizontal resolution) 2,800,000 (100%)
1) Dummy values 1,210,000 (43%)
2–4) Bathymetry, Shallow or deep-water ground bin and wind 350,000 (12%)
5) Low SNR values 250,000 (9%)
6–7) High SNR and Signal values 38,000 (~1%)
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- Klid is the already defined in-water lidar attenuation coefficient.

Eq. (1) is the starting point for the Aeolus ocean lidar algorithm.
Neglecting the Bsurf contribution (see Section 3), considering
that n

(
H+ r2grd

)
≫r3grd and assuming r2grd ≈ r1grd:

SMie
23 =

E0ACinstr
(
H+ r1grd

)2 • T
2
Atot •

(

Batm +
μT2s Bwat

n2

)

(3)

To account for the instrument characteristics and the contribution
due to the atmosphere in the signal acquired by bin 23, the information
in bins 21 and 22 is also considered. Thus, the background subtracted
and range corrected signal for Aeolus bins 21, 22, and 23 (S*21,S*22 and
S*23) can be described by the following equations:

S*23 = MMieT2AT
2
21T

2
22

(

B23+
μT2s T223Bwat

n2

)

(4)

S*22 = MMieT2AT
2
21B22 (5)

S*21 = MMieT2AB21 (6)

where:

- TA_tot = TAT21T22
- B21, B22 and B23 = Batm are the atmospheric back-scattering contri-
butions for bins 21, 22 and 23, respectively. Each term consists of
two distinct (aerosols and molecular) contributions: Bx = Bxa+ Bxm

- TA is the atmospheric transmission above bin 21
- T21, T22 and T23 are transmission terms for bins 21, 22 and 23,
respectively. These terms consist of two distinct (aerosols and mo-
lecular) contributions: Tx = Txa Txm

- TS is the sea surface transmittance
- n is the effective refractive index of water; i.e., the refractive index
value that describes the integral effect on the water column sensed by
the bin

- MMie accounts for all terms in the complete signal equation due to the
instrument

The following assumptions have been additionally adopted to reduce
the number of unknowns:

- for the ground bin, the sea surface back-scattering and the ocean
bottom contribution are negligible (please see Section 3).

- each bin is characterized by an effective back-scatter Bx and trans-
mission Tx terms where the back-scattered signal is attenuated only
by the bins above the bin generating the back-scattering. This is not
valid for the ground bin, where the transmission term is applied only
to the in-water contribution but not, for consistency with the other
bins, to the atmospheric back-scattering of the bin itself.

- the sea surface transmittance TS is assumed to be the same upward
and downward and has a fixed value of 0.98 (Churnside, 2013).

- the refractive index is kept constant with a value equal to 1.356.
- back-scattering from marine particulate is assumed to be negligible
with respect to that of pure sea-water (βwatM > > βwatP).

All steps to extract Bwat by combining Eqs. 4–6 are described in
Appendix A, and only the final form of Bwat is given here:

In summary, Eq. (7) shows that it is possible to calculate analytically
the term Bwat , which includes all in-water contributions to the signal
(back-scattering and attenuation from all components), using the range-
corrected signals of bins 21,22,23 (S*21, S*22 and S*23) and the corre-
sponding geometry (z21,z22 and z23). To estimate the molecular scat-
tering of bin 21 (B21m) and the total molecular transmittance (T2BLm =

T221mT222mT223m, respectively) the profile of atmospheric density ρmj is
computed starting from the pressure and temperature profiles provided
by Aeolus AUX_MET files following Bodhaine et al., 1999. The atmo-
sphere is assumed to be a pure scatterer (i.e., σmext = σmsca). This implies
neglecting atmospheric gases absorption that, for the wavelength of
interest is mostly due to O3 and NO2. The hypothesis is that, in open sea,
the concentration of tropospheric O3 and NO2, mostly due to anthro-
pogenic activity is negligible. To estimate the aerosols transmittance
term, the aerosol scale height has been fixed to zs = 1.5 km (Qiu et al.,
2005; Tsai et al., 2011). A sensitivity study (not shown) performed
varying zs between 1 and 2.5 km attested shows that the variation of this
parameter has no significant impact on both the central value and the
variability of the distribution of Bwat for all selected ROIs. All values with
a percent relative error (ΔBwat / Bwat, see Section 5.3) larger than 100%
are not processed in the successive processing steps.

Once estimated the overall water volume contribution (Bwat), the
next step is to retrieve Klid of Eq. (2). Having a single piece of infor-
mation, the contribution from pure sea water and chlorophyll is esti-
mated through ancillary information (see Section 2.3). This is practically
implemented applying the 3-D LUT described in Section 3.

Specifically, the input values used for the LUT are:

- Chl-a concentration derived by daily ESA-0C-CCIv6 multisensor
products (see Section 2.3);

- Pwn parameter: the radiant power ratio due to the water column,
where Pwn = Bwat • ΔΩr and ΔΩr is the in-water solid angle of the
receiver estimated using the information associated to each
measurement.

A 2-D linear interpolation is then combined with the LUT to produce
interpolated values Klid = LUT

(
Chla, Pwn

)
.

The estimation of Klid using the LUT necessitates that the input
variables Chl-a and Pwn meet the following temporal (±24 h) and spatial
(<±20 km) matching criteria.

5. Results

The validation of the estimated Aeolus-OC variables (Bwat and Klid) is
described and discussed here. Table 3 reports seasonally, for each ROI,
the number of Bwat and Klid values that passed the Q/C and data
screening procedure developed, respectively. Seasonal differences are
expected primarily due to cloud cover seasonal cycle and aerosol vari-
ability. The number of valid Klid estimation is further reduced with
respect to Bwat because of the availability of Chlorophyll-a concentration
derived by passive satellite remote sensors and used as ancillary data.
Due to the relatively small dimensions of the datasets, in particular for
Klid values, the seasonal analyses were not performed as not statistically
significant.

Two reference datasets are used for two different validation
approaches:

Bwat ≈

(
S*23 − S*22

)

S*21
B21mn2

T2s T2BLm
1

T2BLa
≈

(
S*23 − S*22

)

S*21
B21mn2

T2s T2BLm
e
+

((

− ln

(
B21m
B22m

1
T221m

S*22
S*21

)
e
z21
zs

Δz21

)(
e
− z21
zs Δz21 + e

− z22
zs Δz22 + e

− z23
zs Δz23

))

. (7)
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- statistical validation using BGC-Argo dataset of the diffuse attenua-
tion coefficient, Kd at 380 nm (Section 2.2);

- match-up validation using acdm at 412 nm from ESA-OC-CCI dataset
(Section 2.3).

5.1. Statistical validation

Creating a classic coincident and collocated dataset between Aeolus
and BGC-Argo floats results in a limited amount of valid match-ups
(Loew et al., 2017). Thus, in order to exploit the information provided
by BGC-Argo, a statistical approach is applied to compare in-situ and
Aeolus-derived statistical properties at a regional level. The statistics are
derived from temporally extended (~10 years) BGC-Argo measurements
(see Table 1) and from spatially extended Aeolus retrieved variables
(Table 3) within each ROI.

A qualitative comparison is performed, without any homogenization
of the used datasets, between the cumulative histograms of Aeolus-OC
products Bwat and Klid at 355 nm and Kd at 380 nm obtained by BGC-
Argo measurements. These curves are depicted in Fig. 8, where
different colors are used for each ROI.

The results confirm the expected regional pattern between the
compared variables: an inverse relationship characterizes Kd and Bwat
and a direct one for Kd andKlid. The rationale to perform this comparison
also for an intermediate variable, such as Bwat, is because of the further
reduction (50%) of the Aeolus database when retrieving Klid due to the
availability of Chl-a ancillary data within the fixed matching criteria
(see Section 4.2).

5.2. Match-up validation

An additional exercise to validate Klid has been performed using the
acdm product at 412 nm released by ESA-OC-CCI. This approach allows
for generating a statistically significant match-up dataset. On the other
hand, acdm, besides the fact that is derived from an assumed relationship
with chlorophyll, also needs to be homogenized in terms of variable
definition and spectral dependence.

Specifically, acdm is the sum of CDOM and Non-Algal Particles (NAP)
absorption contributions (aCDOM and aNAP, respectively), but in the UV
and in the open ocean and for various trophic conditions, the acdm can be
assumed to be dominated by aCDOM (Bricaud et al., 2010; Morel et al.,
2007; Siegel andMichaels, 1996; Smyth, 2011). In parallel, the retrieved
Klid can be decomposed to compute the Δa budget that does not depend
on the absorption of pure seawater and of the pigmented and not-
pigmented particulate matter (awat moland ap, respectively):

Δa(355) = Klid(355) − awat mol(355) − ap(355),

where awat mol(355)=0.00097 for pure seawater with T = 16 ◦C and
S = 35.5 PSU (Röttgers et al., 2016). According to Mobley et al. (2021),
apcan be estimated as ap = 0.052 • Chl − a0.635.

The term Δa(355) can also be written as:

Δa(355) = aCDOM(355)+ aNAP(355). (8)

Eq. (8) shows that the Δa parameter retrieved by Aeolus is, theo-
retically, comparable with acdm derived at λ = 412 nm by satellite
standard ocean color passive measurements. Furthermore, this approach
scheme avoids the necessity to use specific functional relationships be-
tween aCDOM and Chl − a concentration. To take into account the
different wavelengths between Δa and acdm products (i.e. 355 vs. 412
nm), assuming that aNAP can be neglected, several spectral models can
be adopted (e.g., Pitarch, 2017; Mobley et al., 2021; Terzić et al., 2021).
It is important to recall that current spectral models are based on specific
experimental studies that may lack representativeness due to the un-
availability of global ocean color measurements at these wavelengths (i.
e., UV). In our case, the model suggested by Pitarch (2017) is used:

aCDOM(355) = acdm(412) • exp[ − 0.014(355 − 412) ]. (9)

Then, to compare Aeolus and ESA-OC-CCI measurements, the
following match-up criteria were adopted:

- Temporal matching: to increase the number of match-ups, the
temporal difference between Aeolus and ESA-OC-CCI is ±24 h (i.e., if
there is no match-up for the day of the Aeolus measurements, the match-
up is searched in the previous or the next day).

- Spatial matching: a square of 5 × 5 pixels of ESA-OC-CCI acdm
product, corresponding to about 20 × 20 km, is selected around the
Aeolus lat-lon measurement.

- Number of valid pixels (i.e. pixels that are not flagged for the
presence of disturbing effects that compromise OC measurements such
as aerosols, clouds, sunlight, etc.…): to achieve the best possible number
of match-ups, the number of valid pixels is kept very low. If there are at
least 16% of valid pixels, acdm is calculated as the mean value of these
pixels.

Fig. 9 shows the scatter plot between the median values calculated
for the different 7 ROIs for the acdm product released by ESA-OC-CCI at
412 nm and scaled at 355 nm and the Δa at 355 nm retrieved by Aeolus
measurements. As already mentioned, one year of the Aeolus dataset has
been considered for this comparison, and only Aeolus data with the
relative uncertainty ΔBw/Bw ≤ 1 (see Section 5.3) is considered. Hori-
zontal (vertical) lines refer to the interquartile range of ESA-OC-CCI
(Aeolus) datasets. The choice of relying on the median and the percen-
tile values is taken to reduce the effect of the high noise affecting single
match-ups. A quite good agreement between the two compared vari-
ables emerges from Fig. 9: the oligotrophic regions in the Atlantic Ocean
(SASTG and NASTG), which have a statistically significant number of
match-up pairs, exhibit similar values of Δa and acdm as well as SOIND
and NWMED regions, for which a lower number of match-up, but still
significant, was found.

For the SEMED region, the median value of Δa is higher than the one
retrieved for NWMED. This result could be explained by the fact that, for
both regions, >50% of the values refer to the June–July-August (JJA)
period (see Table 3) where, on one side, oligotrophic conditions char-
acterized similarly both seas but, on the other, the presence of not
flagged aerosol dust in the Aeolus bin 23 near the surface could differ-
ently affect the retrieved value of Δa in these two regions. A disagree-
ment between Δa and acdm values characterizes the BLSEA region. This
result could be due to the different trophic regimes of this region, as

Table 3
Number of valid Aeolus-derived Bwat and Klid estimations.

Region\Season DJF MAM JJA SON ALL

Bwat Klid Bwat Klid Bwat Klid Bwat Klid Bwat Klid

NASTG 544 193 441 146 291 127 487 252 1763 718
SASTG 350 212 263 130 241 140 113 79 967 561
NWMED 10 8 6 4 52 44 27 17 95 73
SEMED 51 34 55 40 170 144 89 64 365 282
NASPG 4 0 19 0 26 3 23 1 72 4
BLSEA 4 1 6 4 32 22 14 10 56 37
SOIND 43 24 27 9 58 3 27 19 155 55
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Fig. 8. Cumulative frequency distribution of: a) Kd at 380 nm for all BGC-Argo subsets (upper panel); b) Aeolus derived Bwater at 355 nm (middle panel); c) Aeolus
derived Klid at 355 nm (lower panel). Different colors are used for each ROI.
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highlighted by BGC-Argo statistical analyses (not shown), but the low
number of valid match-ups prevents any further analysis. Finally, the
results on the NASPG region are not statistically significant due to the
low number of match-ups.

In summary, for the ROIs with a significant number of match-ups (i.e.
SASTG, NASTG, SEMED, NWMED and SOIND), the agreement found
between Δa and acdm, although depending on several assumptions,
demonstrates that the developed Aeolus-OC algorithm can estimate, at a
global scale, a geophysical variable that gives information about the
ocean’s optical state. These ROIs, excluding SOIND, exhibit low values
in terms of Δa and acdm that are characteristics of oligotrophic condi-
tions. On the contrary, the ROIs with high values of Δa and acdm (i.e.
BLSEA, NASPG) are characterized by a small number of match-ups
which undermines the robustness of the results of this validation.
Furthermore, Fig. 9 also highlights that, for the above mentioned ROIs
with a statistically significant number of match-ups, the interquartile
ranges of Δa may be one order of magnitudes higher than those
computed for acdm. This attests that, at regional scale, the high vari-
ability affecting single match-ups does not allow to deduce any relevant
relationships between Δa and acdm.

5.3. Analysis of uncertainties

The identified sources of uncertainty to be considered in the overall
uncertainty budget originate from the structure of the retrieval
algorithm:

1) Screening procedure: the flagging process introduces uncertainties
due to the developed methodology and the adopted thresholds;

2) Bwat estimation: this phase is based on analytical retrieval that makes
use of assumptions (e.g., on the aerosol optical properties);

3) Klid estimation: this final phase introduces sources of uncertainties
associated to the generation of the LUT, the LUT inputs, and the
adopted interpolation scheme.

Providing a complete, quantitative and detailed uncertainty budget

requires not only the characterization of each single input source but
also the development of methodologies to quantify uncertainties asso-
ciated to the non-analytical steps of the retrieval (e.g., threshold based
flagging). In addition, estimating the uncertainties introduced by the
adopted assumptions may be complex. As an example, to investigate the
impact on Bwat due to the assumption (Section 4.2) of a constant aerosol
scale height (zs) value in the lowermost 3 atmospheric bins (21, 22 and
23), a sensitivity study was performed varying zs between 1 and 2.5 km
(Qiu et al., 2005). The variation of this parameter resulted to have
relatively low impact (<10%) on the distribution properties (median
and interquartile range) of the retrieved Bwat values for all selected ROIs.
However, this exercise does not really evaluate the uncertainty due to
the assumption but only the sensitivity to the value used in the assumed
scenario.

For the above reasons, in this study, we focus on the expected pri-
mary source of uncertainty associated to the Aeolus measurement: the
radiometric noise. Neglecting its impact in the screening phase of the
algorithm, radiometric noise’s uncertainty contribution in the second
step of the retrieval is estimated by applying the error propagation
formula to the analytical solution used for the retrieval of Bwat (see
Appendix B for further details) to each single retrieved value.

Fig. 10 shows the scatter plots, for each ROI, of the estimated relative
uncertainty (i.e. (ΔBwat/Bwat)x100) as a function of the retrieved Bwat
parameter. This figure shows that, approximately below Bwat = 0.005
(sr− 1), the relative radiometric error is equal to or higher than 50%. It
also emerges that based on the combination of SNR constraints (SNRlow
< SNR< SNRhigh) and the fact that the current retrieval uses data from 3
bins (see Sections 4.1 and 4.2, respectively), it is reasonable to expect a
minimum relative error in the order of 30%.

In principle, the total uncertainty introduced by the last step of the
inversion algorithm (see Section 4.2) should account for contributions
due to:

- the accuracy of the radiative transfer model;
- the uncertainty associated to the values of the variables (Chl-a and
Pwn ) used as input of the LUT;

- the uncertainty due to the interpolation to obtain the final Klid value.

We focus again on the expected largest sources of uncertainty that, in
this processing step, are the LUT input values (Chl-a and Pwn ) assuming as
negligible the other sources. A sensitivity analysis was performed by
perturbing statistically the LUT input values on the basis of their asso-
ciated uncertainties. A median value of the absolute percent difference
of Klid from unperturbed and uperturbed inputs, is of the order of 50%.
However, the average value is larger (80%) because of the skewed dis-
tribution of the results.

It should be noted that, as expected, because of the relatively low
absorption form Chl-a at 355 nm, the uncertainty on the retrieved Klid is
mostly driven by the quality of Pwn . This implies that to improve the
accuracy of the estimated Klid requires a reduction of radiometric noise.
This can be partially obtained by adopting a different cloud screening
algorithm that does not remove all observations with relatively high
SNR, as well as, trying to implement a processing that integrate spatially
the single measurement signals.

Having considered, in the above described uncertainty estimation
process, only the radiometric noise, this result is clearly an underesti-
mation of the genuine uncertainty.

6. Conclusions

The ALADIN lidar instrument onboard the Aeolus satellite has been
the first HSRL UV Doppler lidar deployed in space. Although designed to
provide atmospheric wind profiles for the improvement of numerical
weather forecasting (Rennie et al., 2021), the unprecedented types of
measurements from this mission are expected to contain crucial and

Fig. 9. Scatter plot between the median values of acdm product released by ESA-
OC-CCI and the Δa parameter retrieved by Aeolus calculated for the 7 ROIs from
June 2020 to May 2021. Horizontal (vertical) lines refer to the interquartile
range of ESA-OC-CCI (Aeolus) datasets.
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unique information regarding the potential application to retrieve op-
tical properties of the observed ocean volume.

The objective of this study is to evaluate the feasibility of deriving
ocean optical properties using Aeolus measurements.

This has been accomplished by performing two parallel and inter-
acting research activities. On one hand, the quantitative interpretation
of Aladin observations, as well as the sensitivity of the collected signal to
different variables, required a numerical model to simulate the signal for
different geophysical scenarios. On the other hand, the statistical ana-
lyses of Aladin observations permitted to develop criteria to screen out
the data that could not be used in the current retrieval algorithm.

The Aeolus data analysis and the results of LiOC simulations allowed
the design of a filtering data procedure that removes most of the low-
quality and cloud/aerosol-contaminated Aeolus bins filtering out
about 99% of the dataset.

After filtering out undesired observations, a two-step procedure,
designed using only the signal acquired by the Aeolus Mie channel, is
applied to estimate two parameters:

- Bwat : the in-water contributions to the signal retrieved through the
EBL approach. This parameter is obtained by solving analytically a
system of signal equations for bins 21, 22 and 23 of the Aeolus Mie
channel coupled with assumptions on the molecular and aerosol
properties of the Marine Atmospheric Boundary Layer and on the
sea-surface contribution.

- Klid: the in-water lidar attenuation term. This retrieval relies on 3D
LiOC-derived LUTs that use as input the estimated Bwat and the Chl-a
concentrations from ancillary satellite measurements as input values.

It is important to highlight that Bwat and Klid represent the first OC-
related products derived by a space-borne lidar mission in a spectral
region (355 nm) not covered by operational OC products.

The validation of these products consisted in comparing 1-year of
Aeolos quality controlled dataset, over a set of oceanic regions repre-
senting different global scenarios, against:

1) BGC-Argo measurements. The statistical comparison between the
Aeolus-OC derived values Bwat and Klid at 355 nm with BGC-Argo
values of Kd at 380 nm demonstrates the sensitivity of the Aeolus
measurements to marine optical properties. These findings attest a
general accordance between OC reference measurements and the
proposed Aeolus-OC products.

2) ESA-OC-CCI dataset. The match-up comparison in terms of median
values at a global scale between the Δa parameter retrieved by
Aeolus and acdm derived by satellite standard ocean color passive
measurements shows that CDOM measurements can be derived by
Aeolus measurements. However, the reduced number of valid Aeolus
OC products for BLSEA and NASPG ROIs limits the robustness of the
validation results only to oligotrophic water regions. Furthermore,
the high variability affecting single match-ups undermines the pos-
sibility of conducting this comparison on a regional scale.

Both validation exercises confirmed the sensitivity of the measure-
ment to the estimated variables as well as an overall agreement. As
mentioned, major issues arise in using the Aeolus signal in ocean regions
characterized by complex water regimes because, in such highly
absorbing regimes the backscattered signal is weak, and hence the
sensitivity to radiometric noise becomes relevant. The classical match-
up suffers from a low number of valid points due mainly to the lack of
AEOLUS data meeting the OC quality requirements. To increase this
number, in the future, a possible strategy is enlarging the size of Aeolus
dataset extending the considered temporal series over well character-
ized ROIs. This implies the use of homogenous and quality checked
measurements.

Fig. 10. Bwat relative uncertainty (%) due to signal noise as a function of Bwat for different ROIs.
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The main limitation of the proposed products derives from the fact
that the primary objective of the Aeolus mission is to acquire profiles of
Earth’s wind. Consequently, system design, acquisition characteristics,
and data processing are optimized for this application. This configura-
tion implies that the instrument’s potential to sense marine optical
properties cannot be thoroughly investigated Furthermore, the infor-
mation content residing in the HSRL capabilities has not been exploited
due to the lack of characterization of the instrument for the marine
environment. Moreover, the Aeolus vertical sampling protocol does not
allow to exploit the lidar profiling capabilities in the ocean.

Another constraint of the proposed products is the assumptions made
to account for the contribution of atmospheric aerosols in the ground-
bin signal. These assumptions (e.g., simplified vertical distribution)
are adopted because of a lack of information regarding aerosol proper-
ties in the Aeolus ground bin. In fact, retrieved extinction coefficients
through the standard correct algorithm (SCA) developed for the Aeolus
aerosol product (L2A, Flament et al., 2021) are characterized by a sig-
nificant bias below 2 km (Ehlers et al., 2022). Furthermore, this product
is available at coarse horizontal scales of 87km, whereas, in this study,
Aeolus measurement resolution dataset is considered (3km horizontal
resolution). Moreover, the characterization of the ground bin in terms of
aerosol properties is not the primary objective of this project.

Having demonstrated the sensitivity to the marine optical properties
and the capabilities to recognize different regimes, the uncertainties
associated to the prototype products are estimated. The primary source
of uncertainty is the radiometric noise, and on this basis, the uncertainty
associated with the prototype product is estimated accounting only for
this contribution. This estimation does not include the uncertainty
introduced by the flagging process and by the assumptions made to
derive Bwat . In this context, the potential integration of ancillary infor-
mation on the optical properties of aerosols and, in particular, their
height dependence, could reduce the impact of the aerosol uncertainty.
Other significant sources of uncertainty derive from geophysical dis-
turbances, such as the presence of clouds along the sensed path, as well
as the contribution of aerosols, in terms of back-scattering/extinction, to
the measured signal. Additional uncertainties, such as assumptions
related to the analytical model, including the impact of surface wind and
the uncertainties inherent in the entire forward modeling process and its
outputs, have a secondary-level influence.

7. Perspectives

In summary, this study has shown how the recently decommissioned
ALADIN ADM-Aeolus mission offered an opportunity to investigate
space-borne lidar potentials for oceanic applications. This mission was
specifically designed for wind profile retrieval in the atmosphere, which
imposes spatial resolution limits for marine applications. Despite the
relatively short lifetime of the ALADIN ADM-Aeolus mission, the limited
spatial sampling, the coarse vertical resolution, and some issues about
the homogeneities of observations during the mission operations, this
study was able to provide statistical evidence of the sensitivity to the
CDOM variability on a temporal/seasonal and spatial/regional basis.

In the future, some specific retrievals could be employed to integrate
into the OC Aeolus developed algorithm the ancillary information on the
optical properties of aerosols. One potential approach is using the recent
version of the Profile Processor algorithm (AEL-PRO) developed for
Aeolus (Donovan et al., 2021). This product could be applied to estimate
the aerosol total transmittance term T2BLa (see Eq. 7), overcoming the
assumptions adopted to describe the vertical distribution of the aerosols
in the lowermost 3 atmospheric bins (see Section 4.2 and Appendix A).
Similarly, this approach should also provide an expected improvement
in cloud detection.

Some of the ALADIN ADM-Aeolus limits could be partially overcome
by Aeolus-2, which is expected to rely on a laser source with an average
power three to four times higher than the onboard Aeolus, with a

consequent increase (up to twofold) in measurement precision. Note-
worthy is that the capability to meet operational requirements can
benefit from the lidar optimization by trading between precision and
horizontal resolution (i.e., the possibility to increase the SNR based on a
partial degradation of the horizontal resolution or, conversely, to in-
crease the spatial resolution based on a degradation of the precision).

The tools developed for this study may be adapted to planned/future
space lidar missions. In this context, the characteristics of ATLID lidar
onboard of EarthCARE mission (Illingworth et al., 2015), launched in
May 2024, could improve both cloud detection and optical character-
ization of atmospheric and oceanic particles in the proposed retrieval.
Specifically, the ATLID polarization capability will improve the detec-
tion of the detection of atmospheric aerosol and clouds and the char-
acterization of oceanic particles by integrating the OC algorithm used
for CALIOP data (Behrenfeld et al., 2013; Lu et al., 2021) in the proposed
retrieval. Furthermore, the higher vertical resolution of ATLID mea-
surements allow better discriminating the different signal contributions
(i.e. atmosphere, sea-surface, in water) acquired in the ground bin (see
Section 4.2). In addition, the information derived by the other in-
struments onboard, will improve the characterization of the observed
scene in terms of the presence of cloud and aerosol. Finally, the limi-
tations identified in the current study in terms of vertical resolutions and
estimation of the ocean optical properties estimation in the UV range
could be overcome by the future Cloud Aerosol Lidar for Global Ob-
servations of the Ocean–Land–Atmosphere (CALIGOLA) mission (Beh-
renfeld et al., 2023; Di Girolamo et al., 2024). This mission is being
conceived for interdisciplinary purposes, aiming at remote sensing tasks
in both the atmosphere and the ocean. In particular, the planned ocean
capabilities will allow for the independent retrieval of ocean attenuation
and backscattering profiles at 355 and 532 nm and the integrated-
column chlorophyll fluorescent signal at 680 nm. This design will
enable significant advances for the ocean science community.
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Appendix A (Bwat retreval)

Starting from Eq. (4-6) described in Section 4.2, the objective is to extract the water contribution term Bwat from the ground bin measurement S*23.
To reach this objective, it is necessary to estimate both the term MMie accounting for instrument characteristics as well as the atmospheric
contributions.

To estimate the atmospheric contribution in S*23, the difference between S*23 and S*22 is computed:

S*23 − S
*
22 = MMieT2AT

2
21

( μ
n2
BwatT2s T

2
22T

2
23+

(
B23T222 − B22

) )

Separating the molecular and the aerosols contribution in the extinction and back-scattering terms, Eq. (A.1) can be rewritten as:

S*23 − S
*
22 = MMieT2AaT

2
21aT

2
AmT

2
21m

( μ
n2
BwatT2s T

2
22aT

2
22mT

2
23aT

2
23m+

(
(B23a +B23m)T222aT

2
22m − (B22a+B22m)

) )

Assuming that the difference between atmospheric back-scattering contribution of bin 22 and 23 is negligible compared to the contribution of sea
water, namely:
μ
n2
BwatT2s T

2
22aT

2
22mT

2
23aT

2
23m≫(B23a +B23m)T222aT

2
22m − (B22a+B22m)

it is possible to obtain, from the difference S*23 − S*22, the contribution from the sea with the transmission of the surface and the whole atmosphere:

S*23 − S
*
22 ≈ MMieT2AaT

2
21aT

2
AmT

2
21m

μ
n2
BwatT2s T

2
22aT

2
23aT

2
22mT

2
23m

Eq. (A.3) can then be divided by S*21:
(
S*23 − S*22

)

S*21
≈

1
(B21a + B21m)

μ
n2
BwatT2s T

2
21aT

2
22aT

2
23aT

2
21mT

2
22mT

2
23m.

In this way, the terms regarding the instrument parameters MMie and the atmospheric transmission above bin 21 are removed. Eq. (A.4) can be
rewritten as:
(
S*23 − S

*
22
)

S*21

n2

μT2s T221mT222mT223m
≈

1
(B21a + B21m)

Bwat T221aT
2
22aT

2
23a

Let us define the total transmittance TBLx from surface to top of bin 21:

T2BLx = T221xT
2
22xT

2
23x.

where x = m or a, then:
(
S*23 − S*22

)

S*21
n2

μT2s T2BLm
≈

1
(B21a + B21m)

Bwat T2BLa.

Assuming that, at 355 nm, the back-scattering is dominated by molecular contribution: B21m≫B21a ,
(
S*23 − S*22

)

S*21
B21mn2

μT2s T2BLm
≈ Bwat T2BLa.

In Eq. (A.8) all terms on the left side are known or can be estimated. We still have 2 unknowns on the right side TBLa and Bwat .
The term of T2BLa can be retrieved by using the ratio of the range corrected signal of bin 21 and 22:

S*22
S*21

=
(B22a + B22m)
(B21a + B21m)

T221aT
2
21m,
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Assuming B21m≫B21a and B22m≫B22a (i.e. extending the assumption of dominant molecular back-scattering to the bin 21 and 22):

T221a =
B21m + B21a
B22m + B22a

1
T221m

S*22
S*21

≈
B21m
B22m

1
T221m

S*22
S*21

.

The following assumptions on aerosol properties are, then, made:

- homogeneity of the aerosol type in the marine boundary layer
- known vertical distribution, for example:

T2Xa = exp
(

− 2
(

ρ0σext e
− zX
zs ΔzX

cosθ

))

.

Applying Eq. (A.11) to bin 21:

ln
(
T221a

)
= − 2

(
ρ0σext e

− z21
zs Δz21

cosθ

)

It is noteworthy that, having neglected the aerosol back-scattering, there is no need to make any assumption on the aerosol type. The term 2ρ0σext
cosθ

can be retrieved combining Eq. (A.10) and Eq. (A.12):

2ρ0σext

cosθ
= −

ln
(
T221a

)

Δz21
e
z21
zs ≈ − ln

(
B21m
B22m

1
T221m

S*22
S*21

)
e
z21
zs

Δz21
,

The aerosol transmittance from surface to top of bin 21 is:

T2BLa = T221aT
2
22aT

2
23a = exp −

(
2ρ0σext

cosθ

(

e
− z21
zs Δz21+ e

− z22
zs Δz22+ e

− z23
zs Δz23

))

,

Then, combining Eq. (A.8), Eq. (A.13), and Eq. (A.14):

Bwat ≈

(
S*23 − S*22

)

S*21
B21mn2

μT2s T2BLm
1

T2BLa
≈

(
S*23 − S*22

)

S*21
B21mn2

μT2s T2BLm
e
+

(
2ρ0σext
cosθ

(
e
− z21
zs Δz21 + e

− z22
zs Δz22 + e

− z23
zs Δz23

))

,

In case of homogeneous vertical distribution in the MABL (zs = ∞):

(A.3) Bwat ≈
(S*23 − S

*
22)

S*21
B21mn2

μT2s T2BLm

(

B21m
B22m

1
T221m

S*22
S*21

)−
ΔzBL
Δz21

.

The analytical solution of Eq. (A.15) or Eq. (A.16) allows to retrieve the term Bwat. These above-mentioned equations are valid under the following
assumptions:

- The contributions to the measured signal in bin 23 from sea surface back-scattering and from sea bottom reflection are negligeable;
- Sea surface transmittance independent from the direction of propagation: i.e. downward and upward;
- The difference between atmospheric back-scattering contribution of bin 22 and 23 is negligible compared to the contribution of sea water in bin 23;
- Atmospheric back-scattering dominated by molecular contribution both for the optical thickness as well as for the shape of the phase function;
- homogeneity of the aerosol type in the MABL and known vertical distribution.

Practically, from Eq. (A.15) or Eq. (A.16) it is possible to estimate Bwat if, in addition to the range corrected signals at bin 21, 22 and 23 (S*21,S*22 and
S*23) and the corresponding geometry (Z21,Z22 and Z23) are known the following variables:

- the refractive index of sea water n.
- sea surface trasmittance T2s that depends from the sea surface roughness. Assuming that, for ALADIN geometry, the dependence of sea surface
roughness from surface (2 or 10 m) wind can be neglected, a constant value of 0.97 can be adopted (Churnside, 2013).

- Molecular scattering properties that can be easily estimated knowing the atmospheric density profile (i.e. p, T profile) in the range of interest
(~0,1500 m). The required information on the density profile can be obtained by ancillary data (e.g. model forecasts or reanalyses).

- Marine boundary layer aerosols properties: density at the surface (ρ0), extinction at laser emission wavelength (σext) and scale height or any in-
formation on the vertical distribution (zs). Aerosols information can be obtained from climatology, models or, if available, from Aeolus derived
aerosols product.

Appendix B

The dominant source of uncertainty is the radiometric noise. The uncertainty on the final productΔBwat is estimated quantitatively by applying the
error propagation formula to the analytical solution of Eq. assuming only the radiometric noise as the uncertainty source:

ΔBwat(355) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∂Bwat

dS*21

)2

•
(
ΔS*21

)2
+

(
∂Bwat

dS*22

)2

•
(
ΔS*22

)2
+

(
∂Bwat

dS*23

)2

•
(
ΔS*23

)2

√

, (B.1)
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where:

∂Bwat

dS*21
= C •

(k+ 1) •
(
S*22

(k+1)
− S*23 • S*22

k )

S*21
(k+2) ; (B.2)

∂Bwat

dS*22
= C •

k • S*23 • S*22
(k− 1)

− (k+ 1) • S*22
k

S*21
(k+2) ; (B.3)

∂Bwat

dS*23
= C •

S*22
k

S*21
(k+1); (B.4)

k =

(

−
e
z21
zs

Δz21

)(

e
− z21
zs Δz21 + e

− z22
zs Δz22+ e

− z23
zs Δz23

)

; (B.5)

C =

(
B21mn2

T2s T2BLm

)

•

(
B21m
B22m

1
T221m

)k

. (B.6)

The values for the uncertainty associated with the S*21, S*22 and S*23 are obtained from the SNR as distributed from L1B Aeolus data accounting for
range correction. For the meaning of the notation used in eqs. B.4-B.6, please refer to Section 4.2.
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