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Abstract—The availability of accurate estimates of the delay
or time of arrival (TOA) of the incoming signals is of paramount
importance for the position estimation in passive radars with
multiple receivers. This correspondence aims at improvingesti-
mation of the delays by multiple detectors exploiting the cross-
correlation between the cross-correlation estimates (saycross-
cross-correlation) of the received signals. The resultingequation
system is formulated as a least squares (LS) minimization prob-
lem, whose solution is efficiently found computing the pseudo-
inverse of the model matrix. In fact, the cross-cross-correlation
implicitly performs a filtering operation on the considered signal,
approximating the generalized cross-correlator behavior, without
using statistical information about the signal spectra. The pro-
posed method is numerically validated in comparison with classic
counterparts and theoretical bounds.

Index Terms—Delay estimation, generalized cross-correlation,
time difference of arrivals (TDOA), cross-cross-correlation, pas-
sive locating systems, passive radar.

I. I NTRODUCTION

PASSIVE localization systems exploit the
radar/communication signals emitted by a target to

localize its position in the surrounding space. Hence, thanks
to the absence of a dedicated transmitter, they are able to
estimate the target’s position without being in turn intercepted
while maintaining a low implementation cost. [1]–[8]. In this
context, a classic approach is the hyperbolic positioning based
on the evaluation of the time difference of arrivals (TDOAs)
of the electromagnetic signal emitted by the target/source
to localize and recorded by a multitude of non co-located
passive receiving sensors. In this respect, several algorithms
and methodologies have been developed by the scientific
community trying to efficiently solve the localization problem
based on the TDOA measurements [9]–[13]. In particular,
the above methods start from the availability of accurate
estimates of the delay or time of arrival (TOA) associated with
the signals acquired by the receiving sensors. Remarkably,
this is the starting point also in underwater acoustics [14],
[15], indoor/outdoor positioning by acoustic sources [16],
and many other challenging applications. Additionally, other
recent developments about parameters estimations within
the frame of multi-receivers radar systems can be found in
[17]–[21].
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A classic way to obtain an estimate of the delay between
two replicas of a stationary signal received at two different
spatial locations consists in computing their cross-correlation.
The delay estimate is the time instant at which the maximum
value of the cross-correlation function arises. A possibleway
to improve the estimation accuracy of the time delay has
been developed in the seminal Knapp and Carter’s paper
[22]. It consists in applying a filter to the incoming signals
just before the derivation of the cross-correlation. By doing
so, the maximum value of such a filtered cross-correlation,
referred to as generalized cross-correlation (GCC), provides
the delay estimation between the two involved signals. The
performance of GCC has been widely studied and analyzed in
several works, e.g. [23]–[26]. However, it is strictly related to
the availability of a-priori information about both signaland
noise spectral statistics [22]. Therefore, its implementation is
difficult in those applications in which the spectral properties
of the incoming signals are not fully known or cannot be
effectively estimated.

To overcome this drawback, in this correspondence, we
devise a novel time delay estimator that, differently from the
GCC, does not need any a-priori knowledge about the spectral
contents of signal and noise processes. The method is based
on the computation of the cross-correlation between each
couple of cross-correlations performed on the received signals
(called cross-cross-correlations). By doing so, the unknown
time delays can be derived from the positions of the maximum
values of the cross-cross-correlations through the formalization
of a least squares (LS) problem whose solution is obtained
through the application of the pseudo-inverse. It would be
expected that the novel estimator performs better than the
conventional one in the presence of a correlated signal and
a relevant level of random noise for two basic reasons. Firstly,
the random errors of cross-correlation peak’s estimates (due
to the additive noise effect) could be reduced by the higher
number of equations employed in the pseudo-solution. In
addition, if well estimated, each cross-correlation is just a
shifted and scaled signal’s auto-correlation. As shown in this
correspondence, the second cross-correlation corresponds to a
signal filtering that acts like the optimum GCC filter for white
random noise at low signal-to-noise ratio (SNR) regimes.

Summarizing, the main contributions of the paper are:
• The design of a new time delay estimator based on the

computation of the cross-cross-correlation.
• The demonstration that the devised method acts an im-

plicit pre-filtering approximating that of the GCC, but
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without the need of a-priori information about the signal
and noise spectra.

• The analyses of the possible advantages of the designed
procedure through numerical simulations.

This correspondence is organized as follows. SectionII for-
mulates the delay estimation problem, providing the theoryof
the classic cross-correlation based estimation procedure. Then,
the proposed method exploiting the cross-cross-correlations
is also derived. SectionIII demonstrates the validity of the
proposed method through numerical simulations also in com-
parison with classic counterparts. Finally, SectionIV con-
cludes the correspondence and provides suggestions for future
developments.

A. Notation

We use boldface for vectorsa (lower case) witha(i)
its i-th entry, and matricesA (upper case). The transpose
operator is denoted by the symbols(·)T , whereas(·)−1 is
the matrix inverse. Then,0 denotes the matrix with all zero
entries (its size is determined from the context).R, C andRN

are, respectively, the sets of real numbers, complex numbers
and N -dimensional vectors of real numbers. The letterj
represents the imaginary unit (i.e.j =

√
−1), and for any

real (resp. complex) numberx, |x| indicates its absolute value
(resp. modulus), whereas(·)∗ represents the conjugate of
its complex-valued argument. Finally,E [·] denotes statistical
expectation.

II. SYSTEM MODEL AND PROPOSED SOLUTION

A passive locating system composed byM sensors, whose
physical displacements in the area of interest are not known, is
herein considered. Figure1 depicts a schematic of a possible
displacement of the receiving sensors aimed at intercepting
the signals emitted by the radar in order to localize it properly
elaborating their respective TOAs at the central processing
unit. It is also worth pointing out that the receivers are
also assumed to not be co-located, otherwise the hyperbolic
localization is not yet possible [27].

target

sensor 0

sensor� − 1
sensor 1

sensor 2

Figure 1. Pictorial representation of the considered passive receiving radar
system.

More precisely, each receiving sensor acquires a delayed
copy of the signal transmitted by the source (or target) to

be localized. Then, the reference node elaborates all received
signals to provide an estimate of the target position starting
from the delay estimates. Therefore, indicating withs(t) the
random signal transmitted by the object to be identified, the
signal received at thei-th sensing node can be described by
means of the following equation [28]–[30]

ri(t) = αis(t− ti)e
j2πνit + wi(t),

i = 0, . . . ,M − 1,
(1)

whereαi ∈ C, i = 0 . . . ,M−1, is a complex unknown scaling
factor accounting for the channel propagation effects, as well
as the distance between the transmitter and thei-th sensing
node,νi, i = 0 . . . ,M − 1, is the Doppler frequency1 at the
i-th receiving node. Finally,wi(t), i = 0 . . . ,M − 1, is the
thermal noise contribution at each receiving sensor modeled as
a zero-mean complex Gaussian random variable with unknown
variance σ2

i , i.e. wi ∼ CN
(

0, σ2
i

)

, and assumed to be
uncorrelated with the signal. Additionallyti, i = 0 . . . ,M−1,
indicates the time delay or TDOA at each receiving node
to be estimated, evaluated with respect to the delay of the
first sensor, sayt0, assumed in the following, without loss
of generality, equal to0 s. Moreover, due to the random
displacement of sensors, there is no a-priori known functional
dependence between time instantsti.

Indicating with τ the delay variable2 representing the lag
between the two signals (i.e. their respective delay), the cross-
correlationR(τ) between two signals can be estimated, when
the ergodicity property is verified, as

Rij(τ) =
1

T

∫ T/2

−T/2

ri(t)r
∗

j (t− τ)dt, (2)

whereT is the observation time. Before proceeding further,
an important remark now occurs. Precisely, in this corre-
spondence, the delay estimation problem and its solution are
formalized by assuming a continuous-time processing chain.
Nevertheless, the theoretic cross-correlation expressedby the
integral in (2) can be numerically computed as sum of the
two sequences sampled with a fixed rate to reduce the overall
computational burden but set to ensure a negligible loss of
information [31], [32]. Additionally, an interpolation can be
applied on the final cross-correlations to reduce the estimation
error while searching for their peaks.

The classic way to obtain an estimate of the delay difference
consists in evaluating the peak position of cross-correlation
magnitude (in the ideal noise-free case) derived by (2), that is

τ̂ = argmax
τ

{|Rij(τ)|} . (3)

Now, considering all couples of sensors(i, j), i, j =
0, . . . ,M−1, all the cross-correlation maxima can be properly

1The explicit dependence on Doppler frequency is no longer considered
in the following algebraic derivations. In fact, in practical applications, the
Doppler shift component is negligible for wideband radar sensors typically
used to detect short signals with unknown bandwidth (the analysis bandwidth
is more than some tens of MHz, even up to 1 GHz). Conversely, narrowband
radars may need a preliminary procedure for Doppler compensation.

2It is also worth to underline that, even ifτ depends on the considered
couple, the subscriptsij on τ are omitted to simplify the notation.
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used to estimate the relative signals’ delays acquired by the
M sensors, viz.τ = ti − tj . We can observe thatRij(τ) pro-
duces some redundant estimates due to its intrinsic symmetric
definition as well as reduces to the auto-correlation fori = j.
Therefore, (2) is evaluated only forj > i to eliminate all the
above-mentioned redundant information. By doing so, the total
number of admitted combinations ofM sensors is

Q =

(

M
2

)

=
1

2

(

M2 −M
)

. (4)

To simplify the notation, in the following, each cross-
correlation considered in (2) is numbered by a single subscript
q = 0, . . . , Q− 1, that is

Rq(τ) = Rij(τ), q = 0, . . . , Q− 1,

i, j = 0, . . . ,M − 1 (with j > i).
(5)

Then, it is possible to estimate theM − 1 delays in the
minimum mean square error (MMSE) sense by computing
the apex of each cross-correlation magnitude and writing the
corresponding equation as a linear combination ofM − 1
unknowns (i.e. the signal delays). More precisely, we can solve
the overdetermined system made by theQ equations consisting
of a linear combination of theM − 1 unknowns equal to the
index of the maximum of the cross-correlations considered in
(2), that is

ti − tj = τ̂ij , i, j = 0, . . . ,M − 1 (j > i), (6)

where

τ̂ij = argmax
τ

{|Rij(τ)|} . (7)

Resorting to a more compact matrix form, (6) can be
rewritten as

At = τ , (8)

with

t =







t1
...

tM−1






, τ =







τ̂01
...

τ̂(M−2)(M−1)







The model matrixA of sizeQ × (M − 1) can be built as
follows. Firstly, all possible cross-correlationsRij are listed
and sequentially re-numbered by the indexq with 1 ≤ q ≤ Q.
The two corresponding vectors of sizeQ, l1 andl2, containing
the values assumed by the indicesi and j associated with
the q-th cross-correlation, are introduced3. Then, the(q, k)-th
element ofA is

A(q, k) =







1 if k = l1(q),
−1 if k = l2(q),
0 otherwise

3As an example, for the case ofM = 3 sensors (i.e.,Q = 3), the cross-
correlations are{R01, R02, R12}, and consequently the indices arel1 =
[0, 0, 1]T and l2 = [1, 2, 2].

As a consequence, the solution to (8) is given by the pseudo-
inverse ofA, that is

t̂ =
(

ATA
)

−1

ATτ . (9)

It is also worth observing that, if the SNR at a number
F of sensors is not sufficient for a reliable cross-correlation
computation, a sensor failure procedure could be applied. It
would consist in identifying the sensors under failure and then
discarding all the equations associated with them. In such a
case the overall locating system would estimate the target
position from M − F > 2 sensors in place ofM with a
consequent performance degradation. However, this topic is
out for the focus of the proposed paper, and will be treated in
future works.

A. Proposed method

This section describes the proposed solution to improve
the delay estimate in the presence ofM > 2 receiving
sensors with unknown positions in the area of interest. In
particular, the idea behind the proposed method lies in the
fact that it may approximate the ideal GCC scheme with
no a-priori knowledge about the signal spectra. Moreover,
since the devised overdetermined system is capable to self
correct estimation errors, it is expected that it is capableof
improving the delay estimation with respect to the classic CC.
This will be better clarified in the following and proved in
the analyses section. Thus, let us first introduce the cross-
cross-correlation estimate, i.e. the cross-correlation between
two cross-correlations, that is

Cijlm(δ) =
1

2T

∫ T

−T

Rij(τ)R
∗

lm(τ − δ)dτ

=
1

2T

∫ T

−T

Rq(τ)R
∗

p(τ − δ)dτ,

q, p = 0, . . . , Q− 1 (with p > q).

(10)

Once again, the choicep > q is performed to avoid
redundant equations.

In addition, to increase the number of available equations,
the flipped cross-cross-correlation estimate (that can be also
seen as the convolution between the two cross-correlations)
can be also considered, namely

Fijlm(δ) =
1

2T

∫ T

−T

Rij(τ)Rlm(δ − τ)dτ

=
1

2T

∫ T

−T

Rq(τ)Rp(δ − τ)dτ,

q, p = 0, . . . , Q− 1 (with p > q),

(11)

where the second cross-correlation is time-reversed with re-
spect to (10).

Now, representing all the combinations of(q, p) as row and
column indices of aQ×Q square matrix, the combinations so
thatp > q in (10)-(11) are located under the main diagonal of
the matrix. Then, the total number of admitted combinations
of all (both direct and flipped) cross-cross-correlations is
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L = 2

(

Q
2

)

=
1

4
M4 − 1

2
M3 − 1

4
M2 +

1

2
M. (12)

As observed before, in the noise-free case the apex of the
magnitude of the cross-cross-correlation,|Cijlm(δ)|, should
be at the indexti − tj − tl + tm, while that of |Fijlm(δ)| =
|Cijml(δ)| should be at the indexti− tj + tl− tm. Hence, we
are now able to estimate theM−1 delays in the MMSE sense
solving the overdetermined system made by theL equations,
consisting of the linear combination of theM − 1 unknowns
equal to the index of the maximum of the standard and flipped
cross-cross-correlations considered in (10) and (11), that is

ti − tj − tl + tm = δ̄ijlm,

i, j, l,m = 0, . . . ,M − 1 (j > i andm > l),
(13)

and

ti − tj + tl − tm = δ̆ijlm,

i, j, l,m = 0, . . . ,M − 1 (j > i andm > l),
(14)

where

δ̄ijlm = argmax
δ

{|Cijlm(δ)|} , (15)

and

δ̆ijlm = argmax
δ

{|Fijlm(δ)|} . (16)

Again, resorting to a compact matrix form, (13)-(14) can be
rewritten as

Bt = δ, (17)

with

t =







t1
...

tM−1






, δ =





















δ̄0102
...

δ̄(M−3)(M−1)(M−2)(M−1)

δ̆0102
...

δ̆(M−3)(M−1)(M−2)(M−1)





















The model matrixB of size L × (M − 1) can be con-
structed as herein described. Firstly, all possible cross-cross-
correlationsCijlm are listed and sequentially re-numbered by
the index r with 1 ≤ r ≤ L/2. The four corresponding
vectors of sizeL/2, l1, l2, l3, andl4 containing respectively
the values assumed by the indicesi, j, l, m associated with
the r-th cross-cross-correlation, are hence introduced. Then,
starting fromB = 0, the (r, k)-th element ofB is obtained
adding1 if k = l1(r), −1 if k = l2(r), −1 if k = l3(r), 1
if k = l4(r). The same four vectors of indices are used for
the flipped cross-cross-correlationsFijlm = Cijml to fill the
elementsL/2 + 1 ≤ r ≤ L of B, after switching the rule by
adding1 if k = l1(r), −1 if k = l2(r), 1 if k = l3(r), −1
if k = l4(r). As a consequence,B results in a matrix made

of several null elements and some non-zero elements equal to
±1 and±2.

Therefore, the solution to (17) is obtained through the
pseudo-inverse ofB, that is

t̂ =
(

BTB
)

−1

BTδ. (18)

It is important to note thatB depends only on the number
of sensorsM , therefore it can be computed and a-priori stored.
Indeed, its pseudo-inverse can be computed off-line, with the
matrix BTB of size (M − 1) × (M − 1) that can be easily
inverted due to its reduced dimension that is the same as
ATA in the classic cross-correlation. Moreover, indicating
with D the number of available data, each equation for the
complete correlation has a cost approximately equal toC1 =
3(2D) log2(2D) if computed through FFT. Each complete
cross-cross-correlation has a cost ofC2 = 3(4D) log2(4D).
BeingQ andL the number of equations in the two cases, the
costs areQC1 for the conventional andQC1 + LC2 for the
new method, respectively. However, this latter can be severely
reduced if it is computed from the cross-correlations windowed
around their maxima. Hence, the new method approaches the
cost of the conventional one if the cross-cross-correlations are
computed after windowing with a neglecting additional cost.
These considerations allow to frame the proposed method as
a fast algorithm, very useful in practical applications.

Beyond the procedure described above, an additional ver-
sion of the proposed algorithm is also considered. It exploits
all the linear equations of both the systems defined in (8) and
(17)

Ct = ξ, (19)

where

C =

[

A

B

]

and ξ =

[

τ

δ

]

,

whose solution is obtained with the pseudo-inverse ofC, that
is

t̂ =
(

CTC
)

−1

CT ξ. (20)

Algorithm 1 summarizes the steps involved in the procedure
for the proposed methods.

A final remark now occurs. Since the devised approach
is based on the LS solution, it tends to find the best result
accounting for all the involved measurements, without consid-
ering for the presence of possible outliers. In such a situation,
possibly wrong delays could be detected in order to apply
a sensor failure procedure, discarding completely erroneous
measurements from the available data by deleting the corre-
sponding equations from the (overdetermined) linear system
set. This situation will be investigated in future developments.

III. PERFORMANCE ASSESSMENT

In this section the performance of the proposed methodol-
ogy for estimating the TOA of signals received atM passive
locating sensors is assessed. To do this, the considered figure
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Algorithm 1 Procedure for the proposed methods
Input: Received signals at each sensorri, i = 0, . . . ,M − 1;
Output: Estimated time delays for each sensort̂i.

1) Model Matrix Definition
• Compute the model matricesA andB of sizeQ×

(M − 1) andL× (M − 1), respectively;

• Build-up the model matrixC =
[

AT ,BT
]T

;

2) Measurements Acquisition
• Perform the measurements of the peaks’ positions

of the cross-correlations through (8) and store them
in the vectorτ ;

• Perform the measurements of the peaks’ positions of
the cross-cross-correlations and its flipped version
through (16) and (17) and store them in the vector
δ;

• Construct the measurements vectorξ =
[

τ T , δT
]T

.

3) Solutions Computation
• Compute the solution with the pseudo-inverse ofB

through (19) if the first method is chosen.
• Compute the solution with the pseudo-inverse ofC

through (21) if the second method is chosen.

of merit is the root mean square error (RMSE) of the estimated
TOAs, which is theoretically given by

RMSE=

√

E

[

∣

∣t̂− t
∣

∣

2
]

. (21)

Since a closed-form expression for the RMSE in (21) is
not available, it has been extensively studied by performing
Monte Carlo simulations made of103 independent trials. In
our tests, the transmitted signals(t) is assumed to be a
zero-mean stationary complex Gaussian random process with
unit variance and having a Gaussian-shaped auto-correlation
function given by [25]

ρs(τ) = exp
(

−τ2/σ2
a

)

,

where σ2
a is the variance of the auto-correlation function.

The incoming signal is also corrupted by white circularly
symmetric complex Gaussian noise sharing the same variance
σ2
i = σ2 for all theM sensors. Setting the number of available

data toD = 103 (that is a reasonable value in the context of
fast detection of unknown signals), an observation period of
T = 103 s is used for the numerical tests, having assumed a
unitary sampling frequency4. It is also worth to highlight here
that, during the cross- and cross-cross-correlations evaluation
from discrete signals, they are nearly ideally interpolated to
emulate a continuous domain for delays, by a zero padding by
a factor 1000 in the Discrete Fourier Transform (DFT) domain.
The study cases considered herein compriseM sensors, and
theM−1 time of arrivals have been picked-up at each Monte
Carlo run as a realization of a uniform random variable within

4For sake of simplicity of processing routines and without loss of generality,
we have normalized all the involved quantity (i.e., observation time, sampling
frequency, ...) to a unitary sampling period.

the interval[0, 1] s, namelyti = U [0, 1], i = 1, . . . ,M − 1.
The trials have been parametrically run to investigate the per-
formance versus the numberM of sensors, the autocorrelation
width σa, and the SNR level1/σ2.

The analyses reported in this section are conducted com-
paring the proposed technique of (18) based on the use of the
cross-cross-correlation of the received signals (dubbed CCC
for short) with the classic method of (9) that exploits the cross-
correlation only (referred to as CC), the classical GCC [22],
and the GCC with phase transform (GCC-PHAT) [13], [33].
In addition, the algorithm of (20) that utilizes both the systems
of equations given by the two methods above (called CCC2)
is also considered.

Moreover, the Cramér-Rao lower bound (CRLB), devised
within the context of passive time delay estimation when no
a-priori information on the unknowns is available, is used as
performance benchmark of the new estimators introduced in
this paper. Precisely, referring to the expression provided by
Schultheiss in [23], [24] for the case of multiple sensors, the
CRLB, derived in [34] for two sensors in the complex case,
modifies as:

CRLB =
π

T

{
∫

∞

0

Mω2|Gss(ω)|2/|Gnn(ω)|2
1 +MGss(ω)/Gnn(ω)

dω

}

−1

, (22)

whereGss(ω) and Gnn(ω) are the signal and noise power
spectral density also indicated as autospectra, respectively.

Let us note that the GCC is based on the ideal assumption
of a perfect a-priori knowledge of the signal and noise spectra
to derive the prefilter. Hence, the CRLB in (22) is not a fair
benchmark for the GCC estimator, although widely used in
the literature [23]–[26].

The analytic expression of the GCC prefilter to be applied
to the cross-correlation for the case at hand is [22], [26]

|H(ω)|2 =
Gss(ω)

2Gss(ω)Gnn(ω) + |Gnn(ω)|2
. (23)

Let us note that the expression in (23) tends to be pro-
portional to Gss(ω) (that is a scaled version of the true
signal cross-spectrum magnitude) for large white noise. There-
fore, before proceeding with the discussion of the simulation
results, it is somehow useful to observe that the second
cross-correlation utilized by the proposed algorithm implicitly
performs a filtering operation on the considered signal. More
precisely, its shape approximates that of the GCC pre-filter
[22]–[26] in the presence of white noise and low SNRs. This is
demonstrated by observing the filter responses of the proposed
method and that of the GCC. They are reported in Figure2
for some SNRs (viz., -3, 0, and 3 dB) and forσa = 2. Clearly,
the filter response of the proposed method matches better and
better with the optimum one as the SNR reduces.

In Figure 3 the RMSE is plotted versus the number of
sensors for the above illustrated simulating scenario setting
the auto-correlation width toσa = 2 and SNR= 0 dB.

The curves clearly show how a higher number of receiving
sensors permits to reduce the delay estimation error. This trend
is observed for both the new algorithms (CCC and CCC2) that
gain over their classic counterpart being closer to the CRLB.
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Figure 2. Normalized magnitude of filter responses for the GCC and the
proposed CCC forσa = 2. Subplots refer to a) SNR= −3 dB, b) SNR= 0
dB, c) SNR= 3 dB.

3 4 5 6 7 8
number of sensors

10-1

100

R
M

S
E

 (
s)

CC
CCC
CCC2
GCC
GCC-PHAT
CRLB

Figure 3. RMSE (s) of the delay estimate versus number of passive receiving
sensorsM .

This behaviour can be easily explained observing that as the
number of sensors increases, the number of available equations
in the LS problem grows.

Similarly, Figure4 shows the RMSE as a function of the
signal’s auto-correlation width for a given number of sensors
(M = 4) and for SNR= 0 dB.
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Figure 4. RMSE (s) of the delay estimate versus signal’s auto-correlation
standard deviationσa.

Interestingly, in this situation all estimators tend to expe-
rience almost a linear increment in the estimation error, but
with a lower slope for the proposed techniques with respect
to the classic one. Moreover, both the proposed version of the
algorithm ensure almost the same performance.

The next analysis, whose results are depicted in Figure
5, shows the behavior of the quoted estimation methods as
a function of SNR forM = 4 sensors andσa = 2. As
expected, the evidence is that all estimators tend to reduce
their errors getting closer and closer to the CLRBs as the
SNR increases. Moreover, as observed in the previous analysis,
the proposed algorithms share better performance than their
classic competitor. These results suggests that the proposed
approach can be successfully applied when a low number of
sensor is available especially in low SNR regimes.
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Figure 5. RMSE (s) of the delay estimate versus SNR.

Summarizing the above results, it could be claimed that the
CCC has better performance than CC for a low SNR since
it performs a filtering operation on the received signal which
approximates the optimum pre-filter of the GCC, but without
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requiring a-priori information about the signal’s bandwidth.
Moreover, it has been observed that CCC and CCC2 allow to
reach better estimation because they add further equationswith
respect to CC. Similarly, adding further sensors also increases
the number of equations to both CC and CCC/CCC2 systems,
that enhance robustness with respect to estimation errors.As a
consequence, the performance of CC and CCC/CCC2 becomes
closer for higher number of sensors. It can be explained
observing that since the CCC and CCC2 start from a better
point (i.e. lower RMSE), they improve slower than the CC.

The next analysis is devoted to study of the impact of
multipath on the performance of the proposed method and
its robustness in this challenging situation. As a matter of
fact, both the proposed methods and their counterparts do not
account for more than one receiving path at each node in their
signal model. Therefore, the presence of multipath produces a
model mismatch that in turn will have a deleterious effect on
the performances of the estimators. To this aim, we evaluate
the RMSE versus SNR in the presence of two replicas of
the useful signal, i.e., the line of sight (LOS) signal and its
reflected version. In particular, the second path is modeled
as having one tenth of power with respect to the LOS and a
uniform random phase in[0, 2π]. Results are given in Figure
6, where the evidence is that all the considered estimators
experience a performance degradation due to the effect of the
second path. Nevertheless, the trend between different curves
observed in the LOS scenario is maintained also in this case.
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Figure 6. RMSE (s) of the delay estimate versus SNR in a multipath scenario.
Subplots refer to a) LOS and b) multipath.

Another useful analysis regards the evaluation of the per-
formance when a different signal is transmitted by the target.
This is required to emphasize the effectiveness of the proposed
method independently on shape and characteristics of the
transmitted waveform. Therefore, Figure7 reports the RMSE
versus SNR, when a chirp signal having a normalized band-
width equal to 0.4 is considered at the transmitting side. From
the curves it is observed that even if performance degrades
with respect to the case of random signals with Gaussian
autocorrelation, the trend of the curves is the same. Moreover,
the GCC shows a degradation performance such that now the
proposed methods overcome it.

Finally, to show the impact of different SNRs on the
estimation performance, a 2D localization scenario with4
receiving sensor nodes is considered. Specifically, as shown in
Figure8, 3 radars are located at the vertices of an equilateral
triangle with side equal to 500 m, and the reference sensor is
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Figure 7. RMSE (s) of the delay estimate versus SNR for a transmitted chirp.

located at the origin of the system.
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Figure 8. Geometric configuration of the sensor nodes.

Results are given in terms of RMSE maps in Figure9 for
CC, CCC, and GCC-PHAT. The values are computed setting
the SNR at the reference sensor equal to SNR0 = 0 dB and
evaluating it at the other sensors position by means of the
following re-scaling:

SNRi = SNR0
d20
d2i

, i = 0, . . . ,M − 1,

with di, i = 0, . . . ,M−1, the distance between target position
and thei-th sensor. A grid of 4 square km (with a resolution
of 25 m) centered at the reference sensor is considered and,
for each point, the overall delays RMSE is computed. The
radars positions are indicated with black dots in the maps.
The results highlight that the overall error in estimating the
involved delays is lower when the CCC algorithm is used,
coherently with the results observed in previous tests.
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Figure 9. RMSE (s) map of the delay estimate considering SNR0 = 0 dB.

IV. CONCLUSIONS

In this correspondence, a new algorithm capable of ac-
curately estimating the time delays from multiple passive
receiving sensors whose location is not a-priori known has
been designed. The proposed procedure is based on the
computation of the cross-correlation between each couple of
cross-correlations performed on the replicas of the transmitted
signal acquired at each sensing node. The resulting system
of equations has been formalized as a LS problem whose
solution can be found through a pseudo-inverse derived off-
line. The main advantages of the proposed method are its
fast computation and its effectiveness without any (a-priori
or estimated) knowledge about signal and noise statistical
spectra. Finally, numerical simulations have demonstrated the
efficiency and effectiveness of the proposed method, approach-
ing the performance of the generalized cross-correlator, also
in comparison with classic counterparts.

Possible future researches might concern the optimization
of the LS solution possibly accounting for the presence of
outliers. Additionally, the proposed method could be applied
to more sophisticated signal models, e.g. accounting for the
presence of multipath (for instance increasing the number of
unknowns in the system of equations), as well as to perform
tests on real-recorded radar data. Finally, the extension of the
devised model when a phased array (beamforming) at each
receiving node is available would be also of interest.
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