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Abstract: This study proposes a method for determining the optimal period for crop yield prediction
using Sentinel-2 Vegetation Index (VI) measurements. The method operates at the single-field scale to
minimize the influence of external factors, such as soil type, topography, microclimate variations, and
agricultural practices, which can significantly affect yield predictions. By analyzing historical VI data,
the method identifies the best time window for yield prediction for specific crops and fields. It allows
adjustments for different space–time intervals, crop types, cloud probability thresholds, and variable
time composites. As a practical example, this method is applied to a wheat field in the Po River
Valley, Italy, using NDVI data to illustrate how the approach can be implemented. Although applied
in this specific context, the method is exportable and can be adapted to various agricultural settings.
A key feature of the approach is its ability to classify variable-length periods, leveraging historical
Sentinel-2 VI compositions to identify the optimal window for yield prediction. If applied in regions
with frequent cloud cover, the method can also identify the most effective cloud probability threshold
for improving prediction accuracy. This approach provides a tool for enhancing yield forecasting
over fragmented agricultural landscapes.

Keywords: remote sensing agriculture; crop monitoring techniques; field-level forecasting; pheno-
logical analysis; high-resolution vegetation data; S2 imagery applications; ideal timing acquisition;
NDVI; clear pixel procedure; agricultural productivity

1. Introduction

The history of agricultural yield prediction is very long [1], and the research area is
very wide [2]. The various methods can be divided into two main categories: physical
models (also known as process-based or mechanistic) and data-driven (statistical and
machine learning) models [3,4]. Process-based models use physical laws that simulate the
growth of crops and can be used to predict yield under a variety of conditions. Data-driven
models use statistical methods to learn from historical data [3]. Additionally, some models,
such as deterministic and stochastic models, can fall into either category [1]. Deterministic
models provide a single, specific output for a given set of inputs, assuming no randomness
in the process, and are often based on precise relationships derived from physical laws [5].
Stochastic models, on the other hand, incorporate randomness or uncertainty, providing
a range of possible outcomes based on probabilistic inputs, which can better reflect the
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inherent variability in agricultural systems, such as weather or biological processes [6].
Data-driven models (especially the statistical ones) are the most used [7] since they can be
developed more easily and, if well-articulated, can guarantee reliable results.

In recent years, remote sensing has become essential for providing timely, high-quality
information on crop growth [8], while machine learning (ML) techniques have gained
prominence in this field [9,10]. Convolutional Neural Networks (CNNs) have been particu-
larly effective in extracting features from satellite imagery time-series [11], often combined
with Long Short-Term Memory (LSTM) networks to capture spatial and temporal growth
patterns [12]. Among the most used methods for yield prediction are those based on deci-
sion trees [2]. Ensemble methods, which combine multiple models, either process-based or
data-driven, have also demonstrated good performance [13–17].

1.1. Challenges and Limitations in Yield Prediction Models

The primary difficulties encountered by statistical and ML models arise from the
complex interplay of factors influencing crop yield. These factors can be broadly categorized
into three main groups: (1) genetic factors, which include crop variety, seed quality, and
plant resistance traits; (2) environmental factors, such as temperature, precipitation, and
biotic stressors (e.g., pests and diseases); and (3) management practices, including planting
date, irrigation, fertilization, pest control strategies, and soil health management (e.g.,
nutrient management, organic matter content). Each of these categories plays a crucial
role in determining yield outcomes, and their interactions add further complexity to the
prediction models [18]. The use of remote sensing in data-driven models introduces
additional variables, such as the choice of satellite sensors and the spatial, temporal, and
spectral resolution. Other factors include the vegetation indices used and the quality and
timing of measurements. Due to this wide range of variables involved, yield forecasting
models, while effective in specific regions, often underperform when applied to different
areas [19]. Moreover, many of the crop yield models are designed for application at the
national or regional level [2,7,20], as coarse-scale yield data are more readily available,
while field-scale ground-truth estimates are much harder to obtain.

However, the recent scientific literature highlights that these models, while effective on
a broader scale, often underperform when applied at the field scale [21–23]. This is because,
when transitioning from coarse to fine scales, new challenges emerge. First, parameters
validated on a coarse scale are often not adaptable to finer scales [24]. Most importantly,
among the numerous factors influencing crop yield, some are specific to individual fields.
Elements such as soil type, topography, microclimate variations, and agricultural practices
significantly affect yield predictions [25,26], especially in regions with a highly fragmented
agricultural landscape, such as Italy [27,28]. Depending on these factors, the forecasting
performance of the field-scale models can vary significantly.

1.2. Performance of Field-Scale Models and Role of Sentinel-2

In 2023, Leukel et al. [29] conducted a systematic review of field-scale yield predictions,
analyzing 23 models from various studies. Model performance, indicated by R² values,
ranged from 0.23 to 0.92 and was influenced by factors such as crop type, location, lead time
to harvest, the type of tool (e.g., satellite or UAV), the VI used, and the method applied. The
highest-performing models were those utilizing UAVs or high spatio-temporal resolution
satellites on demand [30–34]. Among models using free satellite data, the best was Sharifi’s
Gaussian process regression model (integrating Sentinel-2 and Landsat data) [35], which
was based on 5 years of field-scale yield data from Iran, which achieved R² values between
0.69 and 0.84 depending on temporal training settings and agricultural field differences.
The review’s findings indicated that high resolution and the development of site-specific
models can significantly improve field-scale yield forecasts.

To this aim, the Sentinel-2 (S2) satellite constellation offers significant advantages [36,37],
providing free-of-charge imagery with improved features [38]. This accessibility benefits
users working with low-income crops (like wheat) [39,40]. Previously, Landsat was the
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only free option for field scale modeling in Europe, offering two scenes per month at a 30 m
resolution. Since June 2017, S2 has provided six images per month with a 5-day revisit time
and 10 m resolution [41,42], allowing for more detailed VI assessments and reducing the
impact of persistent cloud cover [41]. Although S2 has enhanced yield estimation compared
to Landsat [43], its long-term data availability remains limited, and crop rotation further
restricts consistent data collection [44]. Combining S2 with Landsat can improve data avail-
ability but may introduce inhomogeneity and uncertainty, especially in the near-infrared
band [45]. Nevertheless, S2 has been successfully used in yield estimation across various
crops in several studies [36,46–49].

1.3. Importance of Timing in Satellite-Based Yield Forecasting

In EO data-driven models, the model’s greatest flexibility lies in selecting optimal
images based on the time-series of its training data. The timing of satellite measurements
is one of the few variables where the model can make adjustments, making it a critical
factor for yield forecasting. Leukel et al.’s review [29] also focused on the timing of satellite
measurements across various field-scale models, specifically referring to the “prediction
horizon”, which is the time between the forecast and harvest. The prediction horizons
proposed by the studies varied significantly, even for the same crop (wheat or corn) and
geographical region (e.g., USA, China, Australia), ranging from weeks to months before
harvest. Some studies included in the review, such as Fieuzal et al.’s (2020) [50], found no
major differences in predictive accuracy across different crop stages, suggesting limited
benefits from using images acquired after mid-season. Despite this, research often focuses
on forecasting near harvest time, which is a trend also pointed out in the review by
Schauberger et al. (2020) [7]. Li et al. (2021) [51] found that for winter wheat in China, the
most predictive phase was between emergence and tillering, while for rice, it was between
tillering and booting. Overall, these reviews and case studies suggest that identifying
the optimal period for yield prediction depends on factors like crop type, methods, and
site-specific conditions.

In ML models, the added value of identifying the most representative period for yield
forecasting lies in the ability to deliver predictions earlier. This can provide a significant
advantage in terms of timely decision-making and resource allocation. In statistical models
and those integrated with process-based inputs, an additional benefit arises: the ability to
select the most representative satellite images based on the identified period. This improves
the accuracy of the models by ensuring that the data used are closely aligned with the
critical phases of crop development.

1.4. Aim of the Study

The aim of this contribution is to propose an exportable method to determine the
best time period/phenological phase for field-scale yield forecasting by S2. The method
can be applied to any VI and crop type. In this case, we employed the NDVI [52–54],
which is the most frequent index used for this purpose [55]. A wheat field in the Po
River Valley (Northern Italy) is used as an example to show how the approach works.
Fifteen variable-sized Max Value Composite (MVC) [56] periods, ranging from January
to May, were composed and ranked according to their ability to explain the final yield.
As a preliminary step, since the study area was located in a particularly humid region,
an NDVI-based clear pixel procedure (NDVI-CPP) was also developed. This procedure
leverages the difference in NDVI between cloud cover and vegetation to optimize cloud
detection in Sentinel-2 images by fine-tuning the cloud probability (CP) mask threshold.

2. Materials and Methods
2.1. Study Area, Data Collection and Preprocessing

The following analysis was carried out in the Google Earth Engine environment using
Sentinel-2 satellite data, in particular the collection “Harmonized Sentinel-2 MultiSpectral
Instrument, Level-1C” (S2) and the “Sentinel-2 Cloud Probability” (CP) collection. The
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term “Harmonized” indicates that the satellite scenes prior to the “04.00 update”, which
occurred on 25 January 2022, have been aligned with subsequent ones to ensure radiometric
measurements’ homogeneity. The field object of this study is located in the municipality of
Conselice (RA), in Emilia-Romagna (Italy). The field has an extension of 11.144 hectares
(about 1114 Sentinel-2 pixels). The centroid coordinates of the field are Lon.: 11.788; Lat.:
44.536, and it is located in a flat area in the Po River valley at an altitude of 5 m above sea
level. The field is represented in Figure 1.
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Figure 1. Investigated field (red polygon).

The crop type examined was soft winter wheat planted in the field during the
2017/2018, 2019/2020, and 2021/2022 seasons. The sowing dates were 31 October 2017; 4
November 2019; and 2 November 2021. The field was rain-fed. In all growing seasons, the
same treatments aimed at controlling weeds were applied: one before sowing and another
in April. The absence of weeds and the condition of the crops were monitored through
routine field inspections in November, January, and April. The annual field-level yields, as
recorded by the farm during the post-harvest weighing process, are reported in Table 1.

Table 1. Annual wheat yields of the investigated field (q = metric quintal; ha = hectare).

Year Yield (q/ha)

2018 57
2020 79
2022 65

Through a Google Earth Engine (GEE) script, the collection of satellite images was first
pre-processed to filter the spatial, temporal, and spectral intervals of interest and eliminate
images of inadequate quality and duplicates (sometimes present within the collections).
Spatially, the field under investigation falls within the Military Grid Reference System
(MGRS) tile 32TQQ. Temporally, a filter was applied to include the scenes falling in the
November/June period of the 2017/2018, 2019/2020, and 2021/2022 seasons. Furthermore,
a filter was applied to include the bands necessary for calculating the NDVI index (B4
and B8). Finally, by exploiting the collection image properties “GENERAL_QUALITY”
and “GEOMETRIC_QUALITY”, the tiles that did not pass the Sentinel-2 On-Line Quality
Control (OLQC) [42] were eliminated.

2.2. Cloud Detection and Atmospheric Conditions

The issue of cloud identification in satellite observations has been tackled using
various cloud masking techniques for optical sensors over the years (e.g., [57–62]), with
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recent improvements driven by ML advancements [62–65]. However, all cloud masks
have technical limitations, leading to omission and commission errors [66]. Additionally,
optical band imagery (used for vegetation monitoring) can be contaminated not only by
the presence of tropospheric clouds but also by the presence of cirrus clouds and mist.
Mist, in particular, can alter the vegetation indices due to its variable impact on red and
NIR bands based on vapor characteristics (droplet size and density) [67]. Then, the ideal
cloud mask depends on the use case (the bands you want to mask and the content of the
ground cells you want to observe). Thinking from this perspective, in 2017, the s2cloudless
algorithm was developed [68]. Since 2020, this has been integrated into the Google Earth
Engine (GEE) as Sentinel-2: Cloud Probability [69,70], allowing users to set a threshold
to convert the cloud probability into a mask. The authors recommend applying a CP
threshold of 0.4 (40%) [66], but customization is suggested for optimal results based on the
intended application.

To manage cloud cover, we propose an alternative solution practiced by several
authors (e.g., [71–73]), which is the Maximum Value Composite (MVC) procedure [74]. In
a predetermined time period (e.g., 1 month), MVC selects for each pixel the greatest VI
value. Considering that vegetation indexes (like NDVI) assume values around zero in the
presence of clouds, such a process is expected to automatically filter out cloud recurrences
in the time interval for which the computation is applied. However, in humid regions, such
as the Po River Valley, this approach is also not risk-free, as the agricultural field, or part of
it, may be cloudy and/or foggy during the entire predetermined time interval. To address
this issue, we implemented a specific cloud detection method, the NDVI-based clear pixel
procedure (NDVI-CPP), in this study.

2.3. NDVI-Based Clear Pixel Procedure (NDVI-CPP)

Once the S2 collection was properly preprocessed, a cloud probability (CP) function
was created with the CP threshold as the variable of the cloud mask. The CP threshold
was made to vary from 1 to 100. Within the CP function, firstly, the cloud mask using the
CP collection was applied to the entire S2 collection. Then, the function for calculating
the NDVI was programmed and mapped on the entire S2 collection. At this point, a new
collection of NDVI scenes with a 5-day revisit frequency and 10 meters’ spatial resolution
was obtained. Figure 2 shows an example of an NDVI index map created in false colors
(red, yellow, and green).
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Figure 2. Example of NDVI map made in the Google Earth Engine environment (scene of 29
March 2020).

Thus, a series of MVC scenes on a monthly basis was composed. Following this, for
each monthly MVC (mMVC), the spatial average of the entire field (FmMVC) was calculated.
The aim of the FmMVC computation was to use it as an optimization criterion for the cloud
probability threshold setting. When using the Sentinel-2 Cloud Mask, setting a CP threshold
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that is too high leads to a cloud omission error (cloudy pixels not masked), and setting a
CP threshold that is too low leads to a cloud commission error (clear pixels masked).

The application of the monthly MVC procedure protects from cloud commission errors
(no pixels are masked), but cloud omission errors are still possible (in the case of persistent
adverse weather conditions for the entire monthly sequence). However, knowing that
the NDVI index takes values close to 0 in the presence of clouds and higher values in
the presence of vegetation, we assume that, for each monthly MVC collection (or NDVI
collection), as CP threshold increases, starting from 0 (all pixels masked), the FmMVC
(or F-NDVI, i.e., the field NDVI spatial mean) increases until a maximum is reached,
which represents the CP value for which all clear pixels are shown. A possible subsequent
decrease in FmMVC (F-NDVI) indicates the presence of (unmasked) pixels compromised by
atmospheric conditions. Then, the best balance between omission and commission errors
(optimal CP threshold) can be found by setting the value corresponding to the maximum
FmMVC as the CP threshold (see Figure 3).
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Figure 3. The theoretical FmMVC variation as the CP threshold varies and the optimal setting of the
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To illustrate this point with an example, consider a cloudy monthly dataset under
investigation and examine how the Maximum Value Composite (MVC) changes as the
cloud probability (CP) threshold is adjusted. For this analysis, the month of March 2018 is
selected, and for simplicity, the CP threshold is varied in increments of 10 (see Table 2).

Table 2. FmMVC variation according to the CP threshold variation in March 2018.

FmMVC as CP Threshold Varies

CP threshold (%) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FmMVC
2018-03

No Data (entire
field masked) 0.2965 0.3262 0.3441 0.4064 0.4725 0.4700 0.4515 0.4275 0.3368

In the proposed example, the optimal CP threshold value is 60%. Lower values reveal
the masking of clear pixels within the MVC, while higher values correspond to the inclusion
of pixels compromised by atmospheric conditions. Thus, to extend the procedure to all the
periods under investigation and determine a valid CP threshold for the entire three-season
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MVC collection, we calculated the temporal mean FmMVC value by averaging the already
calculated FmMVC values temporally over the three seasons under investigation. The
months from January to May were considered months for which we were certain that there
was sufficient plant cover. We call this synthetic value the t-mean FmMVC (temporal-mean
FmMVC).

Then, we set the optimal CP threshold by taking the value for which the t-mean
FmMVC was the maximum as the CP threshold varied from 1 to 100. Finally, the optimal
CP threshold was applied to the S2 cloud mask collection, and the corresponding S2 image
collection was composed. The implemented procedure is schematized in Figure 4.
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The NDVI-CPP is designed to operate in particularly humid areas that typically
experience fog or persistent cloud cover. Where these conditions are absent, the use of
the iterative NDVI-CPP becomes unnecessary. In such cases, the user can select a cloud
probability (CP) threshold at their discretion and proceed to the subsequent phase of
determining the optimal period for yield prediction.

2.4. Optimal Yield Forecast Period Determination

The “clear pixel S2 image collection” was then used as an input for the determination
of the optimal NDVI reference period for the yield forecast. To find the MVC temporal
combination that best correlated with the field yield, firstly, the corresponding NDVI
collection and clear pixel monthly MVC mosaic collection were generated. Then, for each
clear pixel mMVC mosaic from January to May (2018, 2020, and 2022), we calculated
the spatial mean, obtaining the relative FmMVC values. After that, we calculated the 3
mean FmMVC values1 (1 per year) in each of the 15 variable-sized periods (for a total of
45 FmMVC values), as shown in Figure 5.
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Figure 5. Start–end months of the 15 variable-sized periods to test for the determination of the
optimal reference period for yield forecast.

Then, to obtain a synthetic value capable of measuring the performance of each time
interval, we cyclically calculated and classified the 15 Pearson correlation coefficients (R)
between the three seasonal yields and the three mean FmMVC values for each variable-
sized period. The steps of the method are shown in Figure 6.

Finally, in order to obtain indicative time references for the crop phenological phases,
we downloaded the daily temperature data from the meteorological station of Conselice
(Ravenna, Italy) [75] starting from the season 2008/2009. After the download, the data
were averaged by month in order to compare the three seasons under investigation with
the monthly average of the 10 previous seasons.
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Figure 6. Diagram of the method implemented for determining the optimal yield forecast period.

3. Results
3.1. Optimal Cloud Probability Threshold

The output of the NDVI-CPP was the optimal CP threshold value to use in the
“Sentinel-2: Cloud Probability” mask (representing the best balance between omission
and commission errors), i.e., the CP threshold value for which the t-mean FmMVC value
was the maximum. As shown in the graphs in Figure 7, after the execution of the procedure,
the optimal threshold was found to be equal to 0.66 (66%).
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Then, by applying the 66% CP threshold value to the investigated S2 time-series, were
computed all the clear pixel mMVC mosaics. Note that the t-mean FmMVC values reported
on the y-axis in Figure 7 are not a reliable reference for evaluating the effectiveness of the
CP threshold level, as they represent data averaged over three years, which include mostly
clear-sky images that tend to flatten the values. The effectiveness of the CP threshold can
only be assessed in cloudy scenes. As an example, in Figure 8, we show the difference in
applying three different CP thresholds in March 2018 (which was a particularly cloudy
month). The scenes displayed are the monthly RGB composites generated using the B4
(red), B3 (green), and B2 (blue) band values of the same pixels employed for the mMVC
mosaics (i.e., the greenest ones).
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Figure 8. March 2018 RGB composites, over the field under investigation, at 3 different CP threshold
percentages: 100% (on the left), 66% (in the center), and 40% (on the right). The scenes are generated
using the R = B4, G = B3, and B = B2 band values of the same pixels employed for the MVC (i.e., the
pixel having the maximum NDVI).

The 100% CP represents the case in which only clouds identified for sure are masked;
the 66% CP is the cloud probability optimized for the purpose as previously discussed;
and CP 40% is the threshold value recommended by the s2cloudless authors for general
applications [68]. The unmasked clouds on the left of the figure are present in all six scenes
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of the month, so the MVC was unable to mask them. Instead, from the figure on the right, it
can be seen that lowering the threshold to 40% meant that non-cloudy pixels were masked
as a result. When the optimal threshold of 66% is applied, the FmMVC value is 0.4757,
while the thresholds of 100% and 40% correspond to FmMVC values of 0.3369 and 0.3441,
respectively. These values would have also significantly distorted the mean FmMVC–yield
correlations, which are shown in Figure 9 in the next section, leading to a decrease in the
correlations ranging from 1% to 5% across all variable-size periods that include the month
of March. In particular, the FmMVC–yield correlation for the month of March alone would
have dropped from 95.2% to 90.1% (with a CP threshold of 100%) to 90.3% (with a CP
threshold of 40%).
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3.2. Optimal NDVI Reference Period

Figure 9 shows the Pearson correlation coefficients between the mean FmMVC and
yield for each of the 15 variable-sized periods investigated. The MVC of the period is
calculated using the 66% CP threshold. The correlation coefficients are sorted in descending
order by value.

The best correlated month is February, with a correlation index close to unity. However,
we also generally notice a better correlation during the first 3 months of the year compared
to the April–May period. The correlation coefficients are, in fact, always greater than
95% when the period includes only the months from January to March and decreases
sharply below 80% when the period includes only the months of April and May. The high
correlation coefficients for FmMVC–yield also highlight the validity of the NDVI-CPP in
optimizing cloud detection.

Focusing on the winter wheat phenological phases, after sowing, the first phase
encompasses germination, emergence, and tillering. This is the slowest and longest phase,
depending on the weather conditions; it may either complete or be interrupted before
the winter dormancy. Most of the processes that contribute to grain yield are completed
during this phase [76–78]. Stem elongation (or extension), a period of rapid plant growth,
typically occurs in mid-March, but its timing and intensity are highly dependent on the
air temperature [79]. In Italy, winter wheat generally reaches maturity in early June, with
harvesting usually completed by late June or early July.

Growth stages are closely linked to weather conditions, mainly air temperature. Some
indicative temperature thresholds for soft wheat phases are as follows: the minimum
germination temperature is 1 ◦C, with a maximum of 37 ◦C and an optimal range of
20–25 ◦C. For stem elongation, the thermal threshold is 5–10 ◦C, with an optimal range
of 15–22 ◦C, while the ideal flowering temperature is 18–24 ◦C [80]. Figure 10 shows the
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monthly average temperatures recorded at the Conselice weather station, comparing the
three seasons under investigation with the average of the previous 10 seasons.

The average monthly temperatures for the three seasons under investigation were
generally higher than the standard values, particularly in February 2020 and 2022, when
temperatures exceeded 10 ◦C. Germination likely began shortly after sowing, supported by
the November temperatures (averaging around 10 ◦C in all seasons). Tillering progressed
slowly in the colder months, with possible dormancy setting in December and lasting until
February. The increase in temperatures anticipated the occurrence of stem elongation in at
least two of the three seasons investigated in February rather than in March. Flowering
would have occurred in April across all seasons, with temperatures around 17–19 ◦C, which
are slightly below the optimal range but still sufficient. By June, maturity was reached in
all three seasons, supported by temperatures well above 24 ◦C.
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Figure 10. Plot of the three seasons under investigation and the average of the 10 previous seasons
(starting from 2008/2009) with the monthly mean temperature of the meteorological station of
Conselice (Ravenna, Italy).

Therefore, in terms of phenological phases, it seems that the following is true:

(a) The best yield–NDVI correlation can be associated with the stem elongation phase;
(b) The timing of this phase cannot be predicted based solely on long-term analysis (e.g.,

10 years or more). Instead, field-scale analyses over shorter time periods are required
to account for any more rapid interannual variations in air temperature.

To further delve into the whole dynamic, we plot (in Figure 11) the FmMVC by season
and how it performed after the entire input collection was cloud-masked with a 66%
CP threshold.
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While the NDVI-based index for the 2017/2018 season exhibits a consistently linear
growth pattern, the 2019/2020 season shows this linear trend only until March, and the
2021/2022 season maintains it until April. This behavior can be partially linked to the
well-known NDVI saturation effect [81], which seems to occur around values of 0.75/0.8
depending on the field’s vegetation cover. Conversely, the slight decrease observed in the
index from April to May 2022 suggests that part of the non-linear behavior is also due to
the natural decline in vegetation vigor during that period.

In Figure 12, we show the MVC maps corresponding to the best-correlated month (i.e.,
February) for each year under investigation. Under the hypothesis that the MVC value for
this month serves as a proxy for the expected yield, these maps provide spatial information
on areas likely to be more productive, as well as on the ones that may require additional
management practices.
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The maps are also consistent with the field yields recorded in the 2018 (57 q/ha), 2020
(79 q/ha), and 2022 (65 q/ha) seasons.

4. Discussion

One limitation of this study is related to the limited dataset. On one hand, field-
scale yield data (especially in Europe, where such information is often controlled in the
framework of the EC aids in agriculture) is difficult to obtain from farmers. On the other
hand, the analysis was limited to only 3 years of agricultural harvests. Considering that
seven agricultural seasons have passed since the two twin Sentinel-2 satellites became fully
operational in the second half of 2017 [42], and given that crop rotation is a mandatory (and
necessary) practice in Italy [82], this limitation remains intrinsic to the use of Sentinel-2
data until the continuation of the mission increases the available dataset. Other limitations
of this study include the need to run the method multiple times when using different
indices or fields, treating them as separate variables. Additionally, the method does not
directly account for temperature data, which, in cases of significant annual variation, can
be important in determining the optimal period and should be addressed separately.

Although many scientific reviews have explored the identification of the most repre-
sentative forecasting period (e.g., [7,29], our literature research does not reveal any model
specifically designed to determine the optimal measurement period tailored to individual
fields. In machine learning models, this is understandable, as it can be addressed for each
model by adjusting input periods [50], which can help determine the most advantageous
time to deliver forecasts to the end user [7]. However, the agricultural sector is constantly
evolving, with frequent changes in field-level conditions (e.g., changes in practices, planting
dates, etc.). Consequently, homogeneous data are often insufficient to train ML models [83].
In such cases, forecasts may also rely on pre-existing statistical models [7,84,85], potentially
integrated with process-based models [36], and anchored by fixed parameters for key



Land 2024, 13, 1818 13 of 18

inputs, such as the optimal time interval for image acquisition based on the crop growth
phase [29].

5. Conclusions

In this study, we proposed a method to determine the optimal field-scale yield predic-
tion period by Sentinel-2 VI measurements. To illustrate its application, this method was
applied to a wheat field in the Po River Valley (Emilia Romagna, Italy) using the NDVI
index. The method was specifically developed to operate at the single-field level in order
to minimize the influence of external factors such as soil type, topography, microclimate
variations, and agricultural practices, which can significantly affect yield predictions. These
factors are particularly relevant in areas with highly fragmented agricultural landscapes,
such as Italy.

As a preliminary step, Sentinel-2’s 5-day temporal resolution was used to generate mo-
saics free from clouds or humidity. A self-developed “NDVI-based Clear Pixel Procedure”
(NDVI-CPP) was applied to optimize cloud detection by adjusting the cloud probability
(CP) threshold, which improved yield prediction accuracy compared to scenes without this
adjustment. For the case study, the optimal CP threshold was set at 66%. However, this
step can be omitted in areas with less persistent fog or cloud cover.

The core of the proposed method is its ability to classify variable-length periods using
historical VI compositions from Sentinel-2, identifying the optimal time window for yield
prediction for specific crops and fields. In the example provided, which focuses on a
wheat field in Northern Italy, 15 NDVI periods of varying lengths were composed on
a monthly basis, with February showing the strongest correlation with yield prediction.
Upon analyzing air temperature data, it was hypothesized that this stronger correlation
was due to stem elongation occurring earlier (in February rather than March) because of
unusually high temperatures. More generally, the satellite-detected vegetation cover during
the January–March period was more representative than that observed in April–May, even
though the latter is closer to the harvest.

Beyond the results obtained on this specific application, which are not directly trans-
ferable due to the variability between fields, the broader objective of this work is to present
an exportable method, particularly applicable in areas with highly fragmented landscapes
that often lack sufficient homogeneous data to test and validate ML models. The method
allows users to determine, for any specific application, the following:

1. The optimal cloud probability threshold;
2. The optimal period for yield prediction.

And the following can also be applied:

1. Different space–time intervals;
2. Other types of crops;
3. Other variable-threshold cloud mask collections;
4. A different MVC time (15 days, 3 weeks, 6 weeks and so on);
5. No (or any other) time-based composite technique (like MVC).

Once the optimal CP threshold (which requires NDVI and ground vegetation cover to
be applied) has been set, the optimal period for yield prediction can be determined (in the
same space–time interval):

6. For any Vegetation Index (VI).

The generalized process for “optimal yield forecast period determination using the
NDVI-CPP” is outlined in Figure 13.
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