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Abstract: In order to ensure the sustainability of production from agricultural lands, the degradation
processes surrounding the fertile land environment must be monitored. Human-induced risk and
status of soil degradation (SD) were assessed in the Northern-Eastern part of the Nile delta using
trend analyses for years 2013 to 2023. SD hotspot areas were identified using time-series analysis
of satellite-derived indices as a small fraction of the difference between the observed indices and
the geostatistical analyses projected from the soil data. The method operated on the assumption
that the negative trend of photosynthetic capacity of plants is an indicator of SD independently of
climate variability. Combinations of soil, water, and vegetation’s indices were integrated to achieve
the goals of the study. Thirteen soil profiles were dug in the hotspots areas. The soil was affected by
salinity and alkalinity risks ranging from slight to strong, while compaction and waterlogging ranged
from slight to moderate. According to the GIS-model results, 30% of the soils were subject to slight
degradation threats, 50% were subject to strong risks, and 20% were subject to moderate risks. The
primary human-caused sources of SD are excessive irrigation, poor conservation practices, improper
utilisation of heavy machines, and insufficient drainage. Electrical conductivity (EC), exchangeable
soil percentage (ESP), bulk density (BD), and water table depth were the main causes of SD in the
area. Generally, chemical degradation risks were low, while physical risks were very high in the area.
Trend analyses of remote sensing indices (RSI) proved to be effective and accurate tools to monitor
environmental dynamic changes. Principal components analyses were used to compare and prioritise
among the used RSI. RSI pixel-wise residual trend indicated SD areas were related to soil data. The
spatial and temporal trends of the indices in the region followed the patterns of drought, salinity,
soil moisture, and the difficulties in separating the impacts of drought and submerged on SD on
vegetation photosynthetic capacity. Therefore, future studies of land degradation and desertification
should proceed using indices as a factor predictor of SD analysis.

Keywords: soil compaction; Northern-Eastern Nile delta; GIS model; remote sensing indices;
principal component analysis

1. Introduction

One of the most important reliable collections of information in any environmental or
development program at the national or international level is the collected details of SD
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processes [1]. This is due to the negative effects that these processes have on ecosystem
stability, which ultimately leads to a decline in land services [2]. SD frequently threatens
the livelihoods of poor rural people in developing countries, particularly those in low-
and middle-income countries [3–8], where it constitutes a gradual deterioration in the
agricultural sector and causes a weakening of the ability of the soil to produce biomass
for humans and animals [9]. Thus, SD represents a clear and direct threat to food security.
In addition, its aggravation may eventually lead to the abandonment of the soil [10].
SD requires exorbitant costs, time, experience, and effort, because it is often the result
of extensive changes in soil properties. It is a complex phenomenon that results from
natural and/or human factors [11]. The failure to implement an efficient framework of
sustainable agriculture, as well as illiteracy, inexperience, and overuse of the land, all
contribute to the condition of soil degradation [12]. Soil degradation takes place when
the soil quality deteriorates both onsite and offsite, where the processes contribute to the
harmful effects of nature’s physical (compression, waterlogging, sealing, and crusting
of topsoil), chemical (salinisation, alkalisation, acidification, and nutrient degradation),
and/or biological (loss of organic matter, land cover, and biodiversity) elements. Natural
degradation risks are dimensions of existing and projected soil productivity deriving mostly
from natural variables such as terrain, soils, and climate, rather than human intervention.

Monitoring the SD process over a specified period requires the implementation of
geomatics applications for a better use of historical RS data. This helps detect SD and
recognise its different types. Practical measurement using RS techniques helps identify and
maintain indicators of soil health. RS has been used in SD studies for acquiring input data
for SD calculations, for an indirect assessment of SD using the analysis of vegetation cover,
and for a direct identification of SD features and SD stages [4,6–8,10,11]. Pixel values are
directly mapped to color map values in an index image. This equivalent value is used as
an index within the map to determine the color of each image pixel. It could be used as
direct and/or indirect measurement for soil/vegetation status and/or properties. Through
the study of multi- and/or hyperspectral picture bands, remote sensing indices (RSI) for
soil, water, and vegetation enable the capture of ecological data from satellites. Light
reflection varies depending on the type of plant, the soil, the water content, and other
elements. As a result, the spectral reflectance responses shown in satellite data can depict
how various electromagnetic waves interact with various features [13,14]. Additionally,
these indices are employed to raise the precision of categorisation algorithms. Indices
improve spectral information and make it easier to distinguish between different classes of
interest. All these elements contribute to an improvement in the mapping of land use and
land cover (LULC) [15]. Indices serve two purposes: they provide information about the
health and growth of plants, and they assist in classifying various types of land (mining,
forest, bare soil, pasture, water surfaces, industrial, etc.). Additionally, certain combinations
of vegetation indices boost some crops’ spectral traits while inhibiting others [16]. The
wide use of RS imagery for monitoring land and environmental changes was proofed
for soil sealing [17–19], human or natural factors that cause the loss of forests [20–22],
effects of global warming [23,24], a wildfire’s damage [25,26], and additional human-
made and natural dynamics. Particularly for SD investigations, which are frequently
thought of as being over a lengthy period of time, data acquisition costs and time of
coverage are the main limits of observation data such as SPOT [27,28] and Sentinel-2 [29,30].
Commercial satellites are expensive per scene compared to the income of developing
nations. Only since 2015 has fine resolution, freely accessible data been made available,
such as those from the Sentinel mission. Due to the fact that Landsat data (i.e., 4, 5, 7-
ETM, and 8-OLI) span approximately 50 years in a row, they are frequently employed in
much research across the globe [31]. Landsat data are used for monitoring urban growth
and surface temperature, a crucial parameter in environmental studies such as physical,
chemical, biological, geomorphological and geological dimensions, thanks to its medium
multispectral resolution and potent thermal infrared (TIR) sensors [32–36].
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The sustainable development of farmland depends on the reliable monitoring of LULC.
The LULC’s dynamics have impacts on SD. Accurate classification of urban land covers has
been hampered by the existence of bare soil in rural and periurban areas. This is partially
due to the similar spectral properties between urban features and bare soil [37]. Since
agricultural bare soil is seasonal and urban features are permanent, multitemporal data
provide a possible method to detect bare soil. The absence of the rainy season makes it very
simple to utilise multitemporal data in the arid region. Therefore, detecting bare soil is not
a difficult process. Many spectral indices generated from Landsat have been developed by
academics around the world to distinguish between soil, vegetation, and water [7]. A two-,
three-, or four-band combined index is typically used to create such indices from different
Landsat wavelengths, ranging from visible through near-infrared (NIR) and shortwave
infrared (SWIR) wavelengths.

Achieving resilience to land degradation requires the adoption of land management
practices sustainable for the ecosystem. The state of soil degradation is more complex in
Egypt, not only due to the interaction of the various factors causing land degradation, but
also due to the variation in environmental influences that help accelerate these processes,
in addition to the human factor. Since SD is one of the observable phenomena that restrict
the Nile delta’s current and potential productivity, it must be monitored, and its various
types counted, using all available techniques and tools. The evaluation of degradation is
the backbone in determining the appropriate preventive measures necessary to maintain
soil health and thus achieve the highest return through sustainable land use. Thus, the
current research attempts to assess the level of land degradation in a region of the Northern
Nile delta.

2. Materials and Methods
2.1. Study Area

Alluvial plain, lacustrine deposits, and coastal plain soils are covered in the study
region, which is located in the Northern-Eastern Nile delta (Figure 1) between the lon-
gitudes of 31◦05′00′′ to 31◦42′26′′ and latitudes of 31◦42′24′′ to 31◦34′06′′. According to
the climate data, the region experiences a hot, arid summer and a dry, short winter. The
average yearly temperature is 20 ◦C, with minimum and maximum values of 11 and 28 ◦C,
respectively. The largest amount of rainfall per year, which totals 55.0 mm, falls in January.
The potential evapotranspiration (PET) is 4 mm day−1. The soil temperature regime is
“thermic” while the soil moisture regime is “torric”, according to [38]. The soil samples are
randomly distributed in order to cover the study area, as shown in Figure 1.
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Figure 1. Geographical presentation of soil samples distribution along with the study area location.

Figure 2 includes the extracted features of LULC using digital image processing and
decision tree classification for the Landsat 2023 imagery. As a final step, accuracy assessment
was conducted using field observations and ground truth data gathered from the field
survey. Detection tree categorisation was used to categorise the LULC. The objective of
image classification is to automatically categorise all the pixels in a multispectral picture
into one or more classes or themes. Different features’ spectral reflectance properties exhibit
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various combinations of digital numbers (commonly known as spectral signatures). A new
output image is produced with a specified number of categories or clusters based on these
spectral signatures. The data from these groups can then be used to create thematic maps.
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Figure 2. LULC map of the study area.

Using confusion matrices, accuracy assessment for classification was done in order to
show how the reference data are related to the final land cover map. It provided details
about oversight mistakes, producer accuracy, commission errors, and user accuracy. The
matrix was constructed using 100 examples for each land use category. The following
equation was used to determine the overall accuracy percentage:

Overall accuracy =
Total number o f corrected samples

Total number o f samples
× 100

The obtained overall accuracy is around 94%. The agriculture area, bare land, built-up
areas, and water bodies occupy 49, 5, 29, and 17% of the total investigated area, with
accuracy assessments of 95, 3, 92, and 97%, respectively. Soil sealing is a major LULC
dynamic change in the region.

2.2. Field Work and Laboratory Analysis

To illustrate the various geomorphic units, thirteen soil profiles were dug (Figure 3).
The profiles were excavated to a depth of 150 cm, or the depth of the ground water table [39].
This was in addition to collecting 29 surface samples from the areas affected by SD. Both
chemical and physical analyses followed the procedures of [40,41].
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Figure 3. Geomorphology of the area; it was performed using the overlapping of DEM, Landsat-8,
and Geology of Conco [42].

2.3. Assessment of Land Degradation

The evaluation of SD was carried out in accordance with FAO/UNEP and UN-
ESCO [43] and its revision FAO/ISRIC [44]. Using these identifications of remote sensing
indices, the risks and types of human-induced land degradation were evaluated. Based on
a comparison of the data received from remote sensing indices and the data extracted from
soil studies, SD was described.

2.4. GIS Modelling Land Degradation

The following procedures were carried out during the GIS modelling process using
ArcGIS: (1) converting the EC, ESP, BD, and water table depth characteristics into raster
layers; (2) changing the variables’ classification to the standard scale; (3) providing each
variable with a weight; (4) merging and overlaying variables with remote sensing indices;
(5) controlling the output value for each cell using conditional tools; and (6) identifying the
hotspot areas of SD from the raster dataset.

2.5. Multispectral Satellite Imagery

Landsat-8 was used for the trend analyses of each index applied from 2013 to 2023.
The main spectral bands that are relevant to the application of the used indices are Blue,
Green, Red, Near-Infrared (NIR), Shortwave Infrared (SWIR) 1, and Shortwave Infrared
(SWIR) 2, having spectral resolutions of 0.43–0.45, 0.53–0.59, 0.64–0.67, 0.85–0.88, 1.57–1.65,
and 2.11–2.29 µm, respectively, and spatial resolutions of 30 m, as well as Thermal Infrared
(TIRS) 1 (spectral resolution of 10.6–11.19 µm) and Thermal Infrared (TIRS) 2 (spectral
resolution of 11.50–12.51 µm), having spatial resolutions of 100 m.

Different vegetation indexes (Table 1) are often affected by cloud cover and the shad-
ows of clouds. Different vegetation indexes calculated over pixels containing clouds or
shadows will show anomalous values. A quality assessment band accompanied by each
date indicates which pixels might be affected by surface conditions (cloud and shadow).
Processing steps included the removal of clouds and shadow effects using time series
smoothing and quality images.
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Table 1. Remote Sensing Indices (RSI).

Remote Sensing Index Calculations in Landsat-8

Normalized Difference Vegetation Index (NDVI) NDVI = (Band 5 − Band 4)/(Band 5 + Band 4).

Vegetation Condition Index (VCI) VCI = 100 × (NDVI − NDVI min)/(NDVI max − NDVI min)

Normalized Difference Built-up Index (NDBI) NDBI = (Band 6 − Band 5)/(Band 6 + Band 5)

Enhanced Vegetation Index (EVI) EVI = 2.5 × [(Band 5 – Band 4)/(Band 5 + 6 × Band 4 − 7.5 × Band 2 + 1)].

Temperature Condition Index (TCI) TCI = (LST max − LST/LST max − LST min) × 100
Land Surface Temperature (LST)

Crop Water Stress Index (CWSI) CWSI = LST − LST min/LST max − LST min

Vegetation Health Index (VHI) VHI = a × VCI + (1 − a) × TCI, where a is a coefficient determining the
contributions of the two indices

Soil-Adjusted Vegetation Index (SAVI) (NIR − RED) × (1 + L)/(NIR + RED + L)
L (vegetation cover current factor).

Modified Soil Adjusted Vegetation Index (MSAVI) MSAVI = (2 × Band 5 + 1 − sqrt [(2 × Band 5 + 1)2 − 8 × (Band 5 − Band 4)]/2

Normalized Difference Moisture Index (NDMI) NDMI = (Band 5 − Band 6)/(Band 5 + Band 6).

• Firstly, 215 datasets covering 10 years of 16 days for different vegetation indexes and
quality images were staked.

• For each stacked image, it was possible to search and correct for missing and erroneous
data (−9999, 9999). Missing pixel data values were replaced using linear interpolation
of neighbouring dates in the time series of each pixel.

• The quality images were used to select dates affected by cloud and shadow for each
pixel, and these values were replaced with smoothed time series vectors, by means of
Savitzkye-Golay filters with window size 5 and second-order harmonic.

• It was possible to smooth the time series of each pixel by means of Savitzkye-Golay
filtering with window size 5 and second-order harmonic, in order to smooth spikes
and data outliers.

• Linear regression analysis was performed on the time series of each pixel to derive
regression slope values and generate a map of significant trends.

ESPA system bulk ordering was used to download Landsat-8 Collection 2 Surface
Reflectance-derived spectral indices in Table 1 from 13 April 2013 to 3 January 2023.

Figure 4 shows the work steps in this research, which began with collecting remote
sensing data, then calculating the various indicators and comparing the results with soil
analyses and field visits. This process ended with choosing the best combination of indica-
tors for trend analysis in the area.



Land 2023, 12, 855 7 of 19Land 2023, 12, x FOR PEER REVIEW 7 of 20 
 

 
Figure 4. Flowchart of the work steps. 

3. Results 
3.1. Soils of the Study Area 

The findings show that alluvial soils have very deep soil (>150 cm), while lacustrine 
soils have soil that is only moderately deep (50–100 cm). They range from being flat to 
having very slight slopes, with slopes between 0.10 and 1.91%. The soils are neutral, with 
a pH range of 7.01–8.11 and an EC range of 2.15–6.14 dS m−1, according to [45]. The range 
of 10.51 to 17.22 g kg−1 for soil organic matter concentration is considered low to moderate 
[46]. Due to the high levels of clay and organic matter in the soil, the cation exchange 
capacity (CEC) ranges from high to extremely high [46]. 

There are none to slight sodicity risks, as shown by the exchangeable sodium per-
centage (ESP), which ranges from 2.71 to 12.93 [47]. Gypsum and calcium carbonate both 
have wide ranges of contents, from 4.63 to 8.07 g kg−1 for gypsum and from 3.41 to 12.17 g 
kg−1 for calcium carbonate. The bulk density of soil varies between 1.11 and 1.47 Mg m−3. 
The primary soil subgroups, according to [38], are Typic Torrifluvents and Vertic Torri-
fluvents (Figure 5). 

Figure 4. Flowchart of the work steps.

3. Results
3.1. Soils of the Study Area

The findings show that alluvial soils have very deep soil (>150 cm), while lacustrine
soils have soil that is only moderately deep (50–100 cm). They range from being flat to
having very slight slopes, with slopes between 0.10 and 1.91%. The soils are neutral, with
a pH range of 7.01–8.11 and an EC range of 2.15–6.14 dS m−1, according to [45]. The
range of 10.51 to 17.22 g kg−1 for soil organic matter concentration is considered low to
moderate [46]. Due to the high levels of clay and organic matter in the soil, the cation
exchange capacity (CEC) ranges from high to extremely high [46].

There are none to slight sodicity risks, as shown by the exchangeable sodium percent-
age (ESP), which ranges from 2.71 to 12.93 [47]. Gypsum and calcium carbonate both have
wide ranges of contents, from 4.63 to 8.07 g kg−1 for gypsum and from 3.41 to 12.17 g kg−1

for calcium carbonate. The bulk density of soil varies between 1.11 and 1.47 Mg m−3. The
primary soil subgroups, according to [38], are Typic Torrifluvents and Vertic Torrifluvents
(Figure 5).
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3.2. Human-Induced Soil Degradation

A slight compaction risk exists for soils from alluvial deposits, where soil bulk density
(BD) values in practically flat and gradually sloping terrain are 1.21 and 1.28 Mg m−3,
respectively. Nevertheless, the EC, ESP, and water table depth (WT) readings are all within
the acceptable range. Since the EC, ESP, and Bd values range from 5.47 to 7.56 dS m−1,from
10.22 to 12.78 and from 1.23 to 1.49 Mg m−3, the soils of lacustrine deposits are impacted
by moderate salinity, sodicity (alkalinity), and compaction risks. A strong salinity and
waterlogging risks have impacts on the soils of coastal deposits (Figure 6).

The results of the GIS model reveal three degradation classes; strong, moderate, and
slight exist in the studied area. The primary contributing variables to SD in the region are
primarily connected to agricultural activities, which are comparable across units. According
to [48], excessive irrigation caused by the use of traditional flood irrigation, the lack of
conservation measures such as leaching requirements, and the use of brackish water in
irrigation due to a lack of fresh water are the main causes of the chemical degradation
processes, salinity, and sodicity [49]. Crops are negatively impacted by salinity in a va-
riety of ways, such as decreased water availability due to osmotic effects, particular ion
toxicity, and/or nutritional problems. Contrarily, sodicity has a negative impact on the
physical properties of the soil, which results in reduced oxygen diffusion and increased soil
strength [50]. Soil compaction, one of the two primary types of physical degradation, is
primarily brought on by the incorrect use of heavy machinery during tillage and harvest.
Due to decreased air and water infiltration and difficulty in allowing roots to penetrate the
soil, it deteriorates soil structure [51,52]. Waterlogging is an abiotic stress that alters the
soil environment by reducing O2 and increasing CO2, NH3, and C2H4 levels [53]. These
modifications lessen root respiration, which hinders root growth and restricts nutrient
uptake and transfer to shoots, hence lowering the potential crop production [54]. The main
cause of waterlogging in the study area is inadequate drainage.
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3.3. Remote Sensing Results from Landsat-8

Several spectral indicators were produced from satellite data (2013–2023), such as the
Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Nor-
malized Difference Built-up Index (NDBI), Enhanced Vegetation Index (EVI), Temperature
Condition Index (TCI), Crop Water Stress Index (CWSI), Vegetation Health Index (VHI),
Soil-Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index (MSAVI),
and Normalized Difference Moisture Index (NDMI), which constitute good tools to monitor
region status change of land and vegetation cover, water bodies, soil moisture, and soils. It
is clear from the results in Figure 6 that there is significant overlap between all the features.
This overlap appears clearly between urban areas and bare lands. It represents a technical
obstacle in separating the degraded lands and calculating their areas, especially the saline
ones. Moreover, the overlap between waterlogged areas, water bodies, and urban areas is
an obstacle in separating waterlogged areas (Figures 7 and 8).

The residual RSI and its trajectory over time were examined to learn more about the
SD process. To find areas with notable negative or positive patterns of the residual RSI,
this trend was spatially analysed. In these regions, vegetation photosynthetic variations
brought on by variables other than moisture variability are visible. According to the
findings, regions that exhibit a negative trend are degraded, whereas locations that exhibit
a positive trend are either improved or are not degraded in any capacity.

A mix of degraded and nondegraded patches are frequently visible in the study
region, prompting concerns about the consistency of the findings. Figure 7 north, which
depicts degradation in the same region but less pronounced than in the east, shows areas
with substantial negative trends, or degraded areas, more clearly. A much more reliable
and consistent identification of areas that exhibit a pattern in land degradation is made
possible by the soil moisture and RSI. SD is not only limited to the coast, but also to wet
eastern regions.

The reflectance characteristics of plants, water, and soil were represented by groups
of training pixels sets. Studies on bare soil are difficult due to the similarities in the
profiles of the two types of cover. The reflectance values of these two features change with
visible wavelength, although urban features reflect more energy in this band. Contrarily,
bare soil on Landsat-8 reflects more near infrared (0.85–0.88 m) and shortwave infrared
1 (SWIR1: 1.57–1.65 m) wavelengths. In contrast to urban features, bare earth tends to
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absorb shortwave infrared 2 (SWIR2: 2.11–2.29 m) energy. The combination of NDVI, EVI,
SAVI, MSAVI, and NDMI shows the best combination among all indices to recognise the
degraded soils in the area.
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Figure 6 shows that the primary factor limiting the productivity of an ecosystem is
the moisture regime. It is clear from RSI that there are two main explanatory frameworks
that are multifaceted for SD accelerations. On the one hand, the region is affected by
temperature patterns that accelerate soil salinisation processes, which is evident from the
general climate changes. On the other hand, waterlogging in the region can be attributed
to the overall changes in the land cover, as well as human intervention in the region and its
obvious impact on the land cover in the region. The overall effects of drought have led to
widespread soil salinity, particularly in the coastal region. while immersed in the eastern
parts led to roasting. However, climate and human actions are important controlling factors
that influence the acceleration of SD processes. Therefore, the results indicate that SD is
identified as one of the pressing environmental problems in the investigated region which
needs great attention to avoid desertification, as it occurs synonymously in all major global
drylands. The relationship between soil moisture and vegetation dynamics influences the
structure and function of arid and semiarid ecosystems since the development of dryland
vegetation is largely dependent on the availability of soil water resources, and irregular
patterns of vegetation distribution are usually associated with heterogeneous patterns of
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soil moisture in regions the roots. Thus, changes in climatic forcing and disturbance regime
can lead to a rapid deterioration of vegetation conditions.
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4. Discussion

Figures 9 and 10 show the ability of trend analysis to overcome the problem of clouds
in the coastal areas and track the condition of the accurate feature, i.e., whether it is negative
with an increase in the deterioration speed or positive with a decrease in the deterioration
rate or an improved use. It also shows the tracking of areas not affected by changes,
especially those resulting from land degradation processes in the region.
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The trend analyses help overcome the clouds obstacles of optical data monitoring objects.
Both soil moisture and drought have been taken into account when adjusting regions

with positive and negative patterns in vegetation productivity. When compared to soil
data, RSI trend concordance plainly demonstrates SD areas. When compared to regions
with significant negative trends based on soil moisture, areas with significant negative
trends based on vegetation indices at 95% significant level were also found to be relatively
negative. The RSI shows a positive tendency when compared to soil data when the
distribution of positive and negative trends is examined. Vegetation indexes and soil
moisture distribution both exhibit a largely positive tendency. On the other side, the salinity
indices overwhelmingly display a positive tendency. This suggests that drought and soil
moisture have a great impact on SD processes.

The majority of the energy from the visible to the infrared spectrum, particularly for
the SWIR1 and SWIR2 channels, is drawn to water. These SWIR wavelengths are absorbed
by vegetation, whereas NIR energy that reaches vegetated surfaces primarily returns to
the sensor aboard. Bare soil was distinguished from other land cover variables using the
differences between bare soil, urban, and vegetation in NIR, SWIR1, and SWIR2 bands.

Based on these observations, SD types were distinguished. The unique distinction
between soil and urban areas on SWIR1 and SWIR2 enhanced bare soil signals. The soil
moisture determined based on water absorption by shortwave infrared was recognized [54].
Subsequently, vegetation signals, bare soil areas are striking compared to urban areas
and water were all categorised by SD effective processes. Thus, the indices values were
redistributed with possession of both negative (active SD processes) and positive (good
quality soils) values. Generally, the trend analyses of RS indices facilitated determining
the classified SD types using overlay with soil analyses. The ability of the GIS model to
distinguish soil characteristics ranges was emphasised via SD extraction from RS indices.

Although a single index image together with other multispectral bands can be clas-
sified by supervised and unsupervised algorithms, thresholding is the simplest method
to identify a specific land cover type [55–60]. The integration of the remote sensing-based
indices performance was computed and then classified into SD types, soil salinity, waterlog-
ging, and compaction based on bare soil reflectance. The computed values were classified
to slightly, moderately, and strongly adjusted by comparing with soil properties on each
SD type.

The area shows a strong response of RSI in accordance with the findings of soil data,
indicating that SD is strongly dependent on drought and soil moisture. In negative or
positive trends of RSI [61], most do not analyse the spatial patterns of the slopes and
intercepts of the models. The current study shows that the information contained in
these spatial maps provides important information about spatial patterns of SD trends.
The spatial distribution of the areas identified as degraded by the soil moisture reveals
degraded areas more consistently than vegetation cover compared to soil data. These areas
fall under the very high to moderate land degradation vulnerability regions. In this context,
the results presented here suggest that land degradation is not only confined to extreme
climatic regions, but occurs in submerged soils under certain circumstances. This pattern
of land degradation can be attributed to fish farming and cropping intensity in these areas,
especially rice planting. The long-term mean temporal variation of RSI shows that SD in
the region is often triggered by climatic droughts, but this trend can reverse in coastal zones
as an effect of intensive evaporation due to high temperatures. This is because drought and
SD are inseparably coupled. However, the results indicate a possible oscillating pattern
of the studied years’ periodicity for the RSI trend. Such a pattern could be driven by the
autocorrelation in anthropogenic activity. This could be due to the effect of reclamation
processes and dramatic changes in land use and land cover in the area.

The correlation analysis of chosen sampling locations within the study area demon-
strates that there is a significant correlation between RSI and soil data. This finding is
significant because it suggests that studies that only consider soil information may underes-
timate SD rates in the study region. Data on soil moisture and drought levels offer a more
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reliable method of examining land deterioration, even though we were unable to include
socioeconomic drivers of SD in the study. This is due to the fact that anthropogenic factors
such as extensive irrigation and land use conversion typically affect land degradation and
vegetation changes. Human land use patterns are responsible for the variability in the RSI
trend, which inevitably has an impact on the long-term trend of RSI. This suggests that the
availability of soil moisture within the root zone may be responsible for the decrease in
ecosystem productivity.

5. Conclusions

SDs are classified as slight to strong, slight and moderate, and moderate risks for
salinity and alkalinity, compaction, and waterlogging, respectively. According to the GIS
model, around half of the region is subject to slight SD risks, while the other half is subject
to strong and moderate SD risks. Human practices in the agricultural sector in the region
are key factors in the activity of the SD processes. These practices are limited to excessive
irrigation, especially with wastewater, to compensate for the shortage in irrigation water
sources, the absence of conservation measures, and the improper use of heavy machinery
due to the small agricultural holdings and insufficient drainage, especially the soil profile
with heavy clay existing in most of the area as well as the absence of drainage networks
in waterlogged areas. SD processes indicate a low chemical risk and a very high physical
risk. This requires effective land management practices in order to achieve sustainable
agriculture. The revealed results are compatible with different soil properties detection
techniques using remote sensing data in the study area. These techniques have been studied
independently with images available from Landsat. This was done to understand soil
analyses and to assess the findings of different changes in the SD in the area. The human
factor is an important factor in accelerating and initiating the problem of SD. Human
activity is causing many changes in the landscape which will have an impact on the rate
of SD. There is a need to develop methods for assessing and monitoring SD to ensure
sustainable land use. A review of different SD assessment studies indicates that there is
a growing interest in using indicators of a different nature to assess soil condition. SD
indicators are measured to monitor changes in the soil. Indicators of soil degradation are
important for focusing conservation efforts on maintaining and improving soil conditions,
evaluating soil management practices and techniques, relating their properties to those
of other resources, gathering information necessary to identify trends in soil health, and
guiding land manager decisions.

We contend that, rather than just using soil data alone, the RSI time-series should also
be adjusted for vegetation cover, drought, and soil moisture in order to draw inferences
about dryland degradation. Drought conditions and soil moisture are combined expressions
of the local hydrological regime, taking into account precipitation, evapotranspiration, and
water table.
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