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”But Nature flies from the Infinite;
for the Infinite is imperfect, and
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Abstract

Monitoring surface and vegetation conditions is crucial for analyzing the im-
pact of climate change on natural resources. Detecting vegetation stress using
remote-sensing data is essential for understanding these changes and taking
action against extreme events like land and forest dryness caused by summer
heatwaves in the Mediterranean region. Commonly used satellite indices for
this purpose include the Normalized Difference Vegetation Index (NDVI),
followed by the Leaf Area Index (LAI), Fraction of Absorbed Photosyntheti-
cally Active Radiation (FAPAR), Surface Soil Moisture (SSM), and physical
parameters such as near-surface air temperature (Ta), obtained from both
remote sensing data and on-site measurements.

However, it is a well-known fact that NDVI cannot distinguish between
barren soil and distressed vegetation and, while surface temperature and air
temperature have an influence on soil moisture, correlation among these three
quantities is not straightforward to evaluate.

This thesis aims at demonstrating the effectiveness of two newly-developed
thermodynamical indices, the Emissivity Conrast Index (ECI) and the Water
Deficit Index (WDI), in assessing vegetation stress and woodland degrada-
tion, specifically in southern Italy from 2014 to 2022. ECI is based on infrared
surface emissivity, closely related to land cover, while WDI directly mea-
sures surface water loss. These indices have been calculated using physical
parameters derived from observations acquired by the Infrared Atmospheric
Sounding Interferometer (IASI), then upscaled and remapped on a regular
grid using an Optimal Interpolation (OI) scheme. A comparison with other
traditional indices is presented, further validating the applied methodology.

Additionally, it is shown how the synergy between ECI and WDI can
be exploited to identify the criminal origin of a fire event, specifically the
Mount Vesuvius arsons of summer 2017, uncoupling the fire outbreak from
the heatwave that affected the Mediterranean area during that same period.

Finally, the Weather Reasearch and Forecasting (WRF) model is used
with two different sets of global forecasts as input -Global Forecast System
(GFS) and European Centre for Medium-RangeWeather Forecasts (ECMWF)-
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xi

to calculate WDI, surface and dew-point temperature (Ts and Td) maps for
July 2017 over southern Italy. The results are compared against the WDI
maps obtained from IASI retrievals, showing a high level of similarity, as
well as limited yet interesting differences, mainly related to the specific im-
plementations of the global Numerical Weather Prediction (NWP) models
from which the input forecasts were derived.



Chapter 1

Earth surface and atmosphere
monitoring for drought and
surface dryness

1.1 The problem

Climate change is undeniably affecting the environment, supported by sub-
stantial evidence (Trenberth et al. 2014; Cook, Mankin, and Anchukaitis
2018; Samaniego et al. 2018; Adler et al. 2022). One of the most promi-
nent indicators is the global rise in average temperatures, which has altered
Earth’s hydrological cycle (Christensen et al. 2021). This worldwide pat-
tern has led to the expansion of the tropical belt and a drier environment,
characterized by more frequent and severe water-related events like extreme
droughts, heatwaves, and temperature extremes (Samaniego et al. 2018; A. P.
Williams et al. 2020; Edenhofer 2015). In many countries, the widespread
issue of vegetation and soil water stress has intensified due to the effects of
climate change. Drought, once considered a natural disaster, is now increas-
ingly prevalent not only in semi-arid regions but also in the Mediterranean
area. This shift has led to heightened concern, particularly in areas abundant
with vegetation and forests. Prolonged drought periods in such regions ele-
vate the risk of forest fires whereas, in semi-arid zones, drought exacerbates
water stress.

Drought, a complex situation resulting from low precipitation and limited
water availability in soils, significantly impacts natural vegetation and accel-
erates desertification. Water stress caused by drought reduces growth and
increases mortality in forest ecosystems, transforming the landscape (A. P.
Williams et al. 2020; D’Orangeville et al. 2018; Cholet et al. 2022). For-

1



1.2. State of the art 2

est water stress occurs when trees face prolonged or severe water shortages
that surpass their coping mechanisms, leading to physiological and ecologi-
cal responses that ultimately affect forest health and productivity. These re-
sponses can be categorized into physiological and ecological symptoms (Lisar,
Motafakkerazad, and Hossain 2012; Imadi et al. 2016).

Physiological symptoms of forest water stress encompass changes in plant
water status, gas exchange, growth, and metabolism. Water deficit dis-
rupts essential plant activities, restricting their responses to environmental
changes. Researchers like Lisar, Motafakkerazad, and Hossain 2012 have
outlined the effects of water stress on plants, including alterations in pho-
tosynthesis, respiration, translocation, ion uptake, carbohydrates, nutrient
metabolism, and hormones. Insufficient water availability initially reduces
water potential in plant cells, leading to growth inhibition, reproductive fail-
ure, and wilting due to the accumulation of substances like abscisic acid
and osmolytes (Lisar, Motafakkerazad, and Hossain 2012; Imadi et al. 2016;
Hsiao 1973; Kramer 1963). Prolonged water stress can lead to forest mortal-
ity, ranging from individual trees to large forest stands collapsing.

Water deficit-induced vegetation stress is a prevalent issue in numerous
countries due to climate change, as evidenced in studies (Rita et al. 2020;
Anderegg et al. 2020). Drought, an extreme natural phenomenon common
in semi-arid areas and many Mediterranean regions, particularly those at
moderate latitudes, poses a significant threat. Prolonged periods without
rain heighten the risk of forest fires in lushly vegetated and wooded lands
(Mishra and Singh 2010). Moreover, the absence of rainfall in semi-arid zones
leads to water stress, as indicated in Feiziasl et al. 2022; Spinoni et al. 2019.
Consequently, addressing the scarcity of rainfall and overall water supply
necessitates specific measures to monitor and identify drought conditions.
These efforts are essential to mitigate the adverse impacts of drought on
human health, wildlife, and plant communities.

1.2 State of the art

To minimize the negative effects on human well-being, wildlife, and plant
ecosystems, it is crucial to implement measures that focus on monitoring
and promptly identifying water stress in vegetation and soil. This can be
accomplished by employing three specific approaches: field measurements,
meteorological data (e.g., Sutanto et al. 2019; J. S. Stoyanova and Georgiev
2013; Gouveia, Trigo, and DaCamara 2009), and remote sensing (e.g., Bento
et al. 2018; J. Stoyanova et al. 2019; Feldman et al. 2020; Vicente-Serrano,
Pons-Fernández, and J. Cuadrat-Prats 2004).
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Remote sensing methods are increasingly being employed to assess forest
water stress due to their advantages, particularly in terms of spatial coverage
compared to traditional ground-based approaches (Harris, Bryant, and Baird
2006; Joshi et al. 2021; N. Liu et al. 2020). These techniques, which include
satellite imagery, offer insights into water stress over vast areas, including
remote or inaccessible regions. This capability is invaluable for monitoring
forests on a regional or even global scale, given the crucial role of forests in
the global water cycle, energy, and carbon balances. Remote sensing methods
are non-intrusive and can gauge water stress without direct contact with the
forest (Govender et al. 2009).

Remote sensing in vegetation observation operates on the principle of
using sensors to measure various wavelengths of electromagnetic radiation
emitted or reflected by plants and their surrounding environment (Huete
2004; J. Wang et al. 2010). Healthy vegetation exhibits distinct patterns
of reflection and absorption of different wavelengths, which can be detected
by remote sensing instruments (Huete 2004; Gausman 1977). For instance,
healthy vegetation predominantly absorbs visible light but reflects a signifi-
cant amount of near-infrared (NIR) radiation. Consequently, in visible com-
posite images, healthy vegetation appears green, while in near-infrared im-
ages, it appears bright (see Fig. 1.1). Through the analysis of these reflected
or emitted electromagnetic radiation patterns, remote sensing instruments
can provide valuable data about vegetation properties such as leaf area in-
dex (LAI), chlorophyll content, water content, and biomass (Ceccato et al.
2001; N. C. Coops et al. 2003; Curran, Dungan, and Gholz 1990). This in-
formation is instrumental in monitoring vegetation health, identifying areas
of vegetation stress.

The typical spectral reflectance of vegetation demonstrates high reflectance
in the NIR region (around 700–1300 nm) and lower reflectance in the visible
region (around 400–700 nm) (Stone, Chisholm, and Coops 2001; Blackburn
1999; Rouse et al. 1974a). This phenomenon is attributed to chlorophyll ab-
sorption in the visible wavelengths and the strong reflectance caused by the
internal structures and water content of plant cells in the NIR region (Lich-
tenthaler 1987). Additionally, vegetation tends to exhibit low reflectance in
the shortwave infrared (SWIR) region (around 1300–2500 nm) due to water
and cellulose absorption in plant tissues (Harris, Bryant, and Baird 2006;
Faurtyot and Frédéric Baret 1997; Asner 1998). The spectral characteristics
of plants respond to different wavelength radiations (N. C. Coops et al. 2003;
Asner 1998; Nicholas Coops et al. 2002). Pigments, especially chlorophyll,
predominantly govern the spectral responses of leaves in visible wavelengths,
closely linked to photosynthetic capacity and overall primary productivity
(Gausman 1977; Curran, Dungan, Macler, et al. 1991). Additionally, the
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Figure 1.1: Reflectance spectra (1.1a) of three leaves from the same ivy (1.1b)
at different colors (and health states): green, yellow, and brown.
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leaf’s cell structure impacts spectral reflectance characteristics at NIR wave-
lengths, while leaf water content influences interactions with wavelengths in
the SWIR region.

Water stress occurs when plants suffer from water shortage, leading to
changes in their physiological and biochemical processes, ultimately reducing
vegetation health (Lisar, Motafakkerazad, and Hossain 2012). These alter-
ations can be detected through remote sensing techniques to monitor plant
health and identify water stress areas (J. Wang et al. 2010; L. O. Anderson et
al. 2010; Eitel et al. 2006; Fuchs 1990). One method for detecting water stress
involves measuring changes in the reflectance of visible and near-infrared light
(L. O. Anderson et al. 2010; Eitel et al. 2006). Generally, stressed plants ex-
hibit lower reflectance in the near-infrared region and higher reflectance in
the visible region (Gausman 1977). Another approach to detecting water
stress is by assessing changes in the thermal properties of plants using ther-
mal infrared sensors (N. Liu et al. 2020; Sepulcre-Cantó et al. 2006). As
plants experience water stress, they may have higher leaf temperatures due
to reduced transpiration for cooling and heat accumulation.

1.2.1 Vegetation Indices (VIs)

Several vegetation indices (VIs) have been created to track alterations in
vegetation and associated physiological processes. These indices utilize the
spectral reflectance features of plants obtained through diverse imaging meth-
ods, combining reflectance at specific spectral wavelengths. Many of these
indices have been extensively employed to identify water stress in vegetation,
particularly in forests (as documented in Vicente-Serrano, José M Cuadrat-
Prats, and Romo 2006; S. Chen et al. 2015; Guido Masiello, Cersosimo, et al.
2020). Le, Harper, and Dell 2023 classifies them according to the specific
spectral bands used for their calculation:

� typical VIs, based on the reflectance in the visible red range (600–700
nm) and a portion of the NIR range (700–900 nm);

� water VIs, using SWIR-band reflectance;

� pigment VIS, individuating the concentrations of leaf pigments, mainly
chlorophyll, by using green and red-edge reflectance;

� temperature VIs, with thermal infrared signals which provide informa-
tion concerning land surface and canopy temperature.

The most used index from the first category is the Normalized Difference
Vegetation Index (NDVI) (Rouse et al. 1974b), which is defined as follows:
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NDV I =
ρNIR − ρRED

ρNIR + ρRED

(1.1)

where ρNIR and ρRED are the reflectances in the near-infrared and red
bands, respectively.

The mid-infrared (MIR) region, spanning approximately 1300 to 2500
nm, displays a notable absorption feature related to water, which intensifies
with higher water content (Musick and Pelletier 1988; Hunt Jr and Rock
1989). Various water-vegetation indices have been developed by analyzing
reflectance data from the NIR, MIR, and shortwave infrared (SWIR) re-
gions of the electromagnetic spectrum. Among these indices, the Normalized
Difference Water Index (NDWI), devised by Gao 1996, is widely used for
assessing water content and detecting plant water stress. This index is calcu-
lated using sensitive NIR and SWIR wavelengths that capture the presence
of water within plant tissues. It is defined as:

NDWI =
ρNIR − ρSWIR

ρNIR + ρSWIR

(1.2)

NDWI has been widely used to estimate water content for various tree species
(Jackson et al. 2004), particularly in areas where water availability is limited
or where drought stress is prevalent (Eitel et al. 2006).

Similarly to NDWI, Surface Soil Moisture (SSM) refers to the amount
of water content present in the top layer of the soil, typically in the upper
few centimeters or decimeters, depending on the context. This moisture con-
tent is a crucial parameter in understanding the immediate availability of
water for plants, ecosystems, and various land surface processes (Daly and
Porporato 2005). SSM can be influenced by factors such as precipitation,
evaporation, transpiration, runoff, and soil characteristics. Monitoring and
analyzing surface soil moisture are important for agricultural practices, hy-
drology, weather forecasting, climate studies, and land management, as it
directly impacts vegetation health, water resource management, and overall
ecosystem dynamics.

The spectral properties of canopy temperature refer to how plants emit
thermal radiation across different parts of the electromagnetic spectrum, de-
pending on their temperature (Fuchs 1990). Several factors, such as solar
radiation, air temperature, humidity, and plant water use, affect the temper-
ature of a plant canopy. In the thermal infrared (TIR) region of the spectrum,
plants emit radiation within wavelengths ranging from 800 to 1400 nm, al-
lowing for the estimation of their temperature (Joshi et al. 2021; Amani et al.
2017; Zhang et al. 2019). Various spectral indices have been developed using
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TIR data to estimate canopy temperature and identify plant stress, such as
the Temperature Vegetation Dryness Index (TVDI, Sandholt, Rasmussen,
and Andersen 2002) and the enhanced TVDI (iTVDI, Rahimzadeh-Bajgiran,
Omasa, and Shimizu 2012. TVDI is a spectral index used to assess vegetation
water stress based on canopy temperature and vegetation cover. It is cal-
culated by taking the difference between surface temperature Ts (measured
by thermal sensors) and the ambient environment’s temperature close to the
surface Ta, and dividing it by the difference between surface temperature
and a reference temperature representing maximum transpiration under the
same atmospheric conditions (Sandholt, Rasmussen, and Andersen 2002). A
higher TVDI value indicates more severe water stress, while a lower value
indicates sufficient water supply.

In addition to these spectral indices, it is crucial to mention other key
parameters, mainly related to canopy structure: the Leaf Area Index (LAI),
the Fraction of Absorbed Photosinthetically Active Radiation (FAPAR) and
the Fractional Vegetation Cover (FVC). These indices can be estimated both
in situ and from satellite observations.

LAI represents the total leaf area per unit ground area (usually mea-
sured as m2/m2) and is a critical parameter for understanding the structure
and health of vegetation (Myneni et al. 1997). It quantifies the collective
leaf surface area per unit ground area, establishing a direct correlation with
the available light interception capacity of plants and the extent of green
vegetation interacting with solar radiation, influencing the remote sensing
signal. Additionally, it represents the size of the interface between the veg-
etation canopy and the atmosphere, impacting energy and mass exchanges.
This metric holds significance as it serves as a pivotal parameter for fore-
casting photosynthetic primary production, estimating evapotranspiration,
and functioning as a reference tool in crop growth studies. Consequently,
LAI assumes a crucial role in the realm of theoretical production ecology.
LAI serves as a crucial input for Numerical Weather Prediction (NWP), re-
gional and global climate modeling, weather forecasting, and global change
monitoring. Moreover, LAI holds relevance for various land-monitoring ap-
plications, including agriculture and forestry, environmental management,
land use planning, hydrology, monitoring and management of natural haz-
ards, and tracking vegetation-soil dynamics and drought conditions.

FAPAR measures the fraction of incoming solar radiation absorbed by
vegetation for photosynthesis. It provides insights into the vegetation’s ef-
ficiency in utilizing sunlight for biological processes and is derived from re-
mote sensing data (Widlowski et al. 2004). Specifically, it defines the pro-
portion of Photosynthetically Active Radiation (PAR) within the range of
400−700 nm that is absorbed by the green components of the canopy, reflect-
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ing the canopy’s capability to absorb energy. FAPAR is realted to canopy
structure, optical properties of leaves and soil, and prevailing irradiance con-
ditions. Acknowledged as a fundamental terrestrial state variable in the
realm of global change sciences, FAPAR plays a pivotal role in models as-
sessing vegetation primary productivity. It is particularly crucial in carbon
cycle models that integrate state-of-the-art land surface process schemes.
Additionally, FAPAR serves as an indicative measure of vegetation health
and is generally well correlated with LAI, especially for robust and healthy
vegetation canopies.

FVC quantifies the proportion of the ground covered by vegetation, con-
sidering both vertical and horizontal distribution. It is defined as the com-
plement to unity of the gap fraction at nadir direction, accounting for the
amount of vegetation distributed in a horizontal perspective. FVC plays a
key role in determining the contribution of soil and vegetation to emissiv-
ity and temperature, essential for comprehensive descriptions of land surface
processes and parameterization schemes employed in climate and weather
forecasting(Chu and Chu 2020). Moreover FVC is employed in a wide range
of applications, encompassing agriculture, forestry, environmental manage-
ment, land use planning, hydrology, monitoring and managing natural haz-
ards, assessing vegetation-soil dynamics, and evaluating conditions related
to drought and the extent of fire scars.

Lastly, it is worth mentioning evapotranspiration (ET) as another key pa-
rameter in monitoring water stress in vegetation. ET is the combined process
of water vapor transfer into the atmosphere through two main mechanisms:
evaporation from the Earth’s surface and transpiration from plants. This
process is a key component of the Earth’s water cycle and plays a crucial
role in the distribution and movement of water in ecosystems. Evaporation
refers to the process by which liquid water at the surface is transformed into
water vapor and released into the atmosphere. It occurs from open water
bodies, moist soil, and wet vegetation surfaces. Transpiration is the release
of water vapor from plant leaves into the atmosphere. Plants absorb water
through their roots, and this water is transported upward through the plant
to the leaves, where it is released as vapor through tiny pores called stomata.
Several factors influence the rate of ET, including solar radiation, tempera-
ture, wind speed, humidity, and the availability of water in the soil. These
factors collectively determine the energy available for the conversion of liquid
water into vapor. ET can be measured using various techniques, including
field-based methods such as lysimeters, eddy covariance systems, and Bowen
ratio systems. Remote sensing technologies, such as satellites and aerial im-
agery, are also employed to estimate ET over large spatial scales. ET is a
crucial component of the hydrological cycle. The water vapor released into
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the atmosphere eventually condenses to form clouds and, under the right
conditions, precipitates as rain or snow, completing the cycle. It also plays
a significant role in land surface-atmosphere interactions and influences lo-
cal climate, humidity levels, and temperature, representing a key variable in
climate models. It is also true that changes in land use, climate, and water
availability can impact ET patterns, influencing ecosystems, water resources,
and overall environmental health.

1.3 Limitations of current methodologies

While this index can provide valuable information about the state of veg-
etation, it has inherent limitations when distinguishing between senescent
vegetation and arid soil, especially when vegetation cover is sparse or the
soil surface is exposed (as discussed in Karnieli et al. 2010). In certain sit-
uations, senescent vegetation and arid soil may exhibit overlapping NDVI
values, making it challenging to differentiate between the two based solely
on NDVI (Galvão, Vitorello, and Pizarro 2000).

Furthermore, neither Ts and Ta are able to provide direct insights into soil
moisture content, which is a vital factor in assessing water stress. Evaluating
the correlation among these three variables is not straightforward (Berg et al.
2014; Jiang et al. 2022).

Similarly to NDVI, TVDI can be affected by non-vegetated surfaces, such
as bare soil or urban areas. The index may not effectively discriminate be-
tween stressed vegetation and other land cover types, leading to potential
misinterpretations. Moreover, TVDI assumes homogeneous atmospheric con-
ditions across the study area: variations in atmospheric properties can influ-
ence the thermal infrared signal, affecting the reliability of TVDI in regions
with diverse climates (Du et al. 2017; Guo et al. 2023).

The main challenge in the use of FAPAR, FVC and LAI is realted to
the performance of the different algorithms used to derive them, which can
vary based on the characteristics of the study area and the accuracy of the
algorithm itself. Sensitivity to specific land cover types and environmental
conditions may affect the estimation of said indices and, together with an
extensive use of modeling techniques, heavily leaning on parameterization,
could also produce a notable level of uncertainty in the representation of
actual surface conditions (Frederic Baret and Buis 2008).

It is worth emphasizing that researchers have extensively explored the
relationships between surface temperature and NDVI for evaluating drought
conditions. However, it is crucial to note that in specific scenarios, as high-
lighted in prior studies (as noted in Ru et al. 2020), these relationships have
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produced inconsistent results.
This underscores the complexity of understanding vegetation water stress

and the necessity for comprehensive and nuanced approaches that consider
multiple factors to accurately assess the health and moisture levels of vegeta-
tion, especially in forest ecosystems. Such complexities necessitate a holistic
evaluation that combines various data sources and indices, going beyond the
limitations of individual parameters, to gain a comprehensive understanding
of the intricate interplay between vegetation, surface temperatures, and soil
moisture content.

The next chapters of this thesis are devoted at exposing and validating
a new methodology proposal for drought and surface water stress. It relies
on the use of surface temperature and emissivity, as well as dew point tem-
perature (Td) close to the surface. These three physical quantities are more
closely related to surface type, coverage and soil moisture, proving to be ex-
tremely useful in detecting changes in surface water content and vegetation
health, as it will be extensively shown.



Chapter 2

New thermodynamical indices
and their retrieval scheme

This chapter is devoted to exposing the proposed methodology, presenting
the developed indices, the process of calculating them, and the data used.
Specifically, it will be focused on the methodology developed to compute ECI
and WDI maps from IASI observations.

2.1 Proposed methodology

To address the limitations highlighted in Section 1.3, a comprehensive and
unified methodology is implemented, ensuring both spatial and temporal
consistency in our analyses. This approach involves the concurrent obser-
vation and computation of surface characteristics and thermodynamic air
parameters to define two new indices, ECI and WDI, whose formulation
caters specifically to regional-scale analysis. Proficient use of satellite data
is then necessary to ensure precise spatial coverage and consistent tempo-
ral sampling. For this purpose, the IASI hyper-spectral satellite (Hilton et
al. 2012), operating on the European Meteorological Platforms (MetOp) de-
ployed by the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT), proves to be invaluable. Through effective utiliza-
tion of IASI observations, we can extract surface temperature and dew point
temperature simultaneously, overcoming challenges associated with coordi-
nating data across time and space. However, it is vital to note that satellite
data are accessible at irregular grid points, introducing complexities in the
analysis of spatial patterns. Overcoming these challenges, our methodol-
ogy aims to enhance our understanding of water stress dynamics, providing
valuable insights into regional water management strategies.

11



2.2. The IASI instrument 12

Leveraging the air parameters from IASI, we can compute the dew point
temperature, a direct indicator of surface evapotranspiration processes. More-
over, the emissivity data acquired from IASI are employed to calculate the
emissivity contrasts in various thermal bands. Thus, the reason why ECI and
WDI are referred to as thermodynamical indices is evident: they account for
the condition of both land and atmosphere and are directly estimated using
thermodynamical quantities. This provides them with a more direct phyisical
meaning and interpretation in the context of Earth surface and atmosphere
monitoring.

In this framework, the goals of this thesis encompass two main aspects:
first, defining and computing the indices derived from direct satellite sound-
ings; second, formulating a method to interpolate the sparse satellite re-
trievals onto a consistent grid. This interpolation technique is essential for
refining our comprehension of spatial patterns and facilitating a more thor-
ough analysis of water deficits within the region.

The procedure can be schematized as follows:

1. IASI radiances are first fed to a level 2 (L2) prototype, whose accuracy
has been extensively assessed in previous studies (Liuzzi et al. 2016;
Guido Masiello, Carmine Serio, Venafra, Giuliano Liuzzi, et al. 2018).
This scheme is able to simultaneously retrieve Ts, Td and the surface
emissivity spectrum, needed to calculate the indices of interest. It will
be presented in Sec. 2.3;

2. a level 3 (L3) module (whose most up-to-date version can be found in
De Feis, Guido Masiello, and Cersosimo 2020) is then used to remap
and downscale the L2 data on a regular grid, as explained in Sec. 2.5.

As a clarification, in the context of this thesis L2 represents the sparse,
physical parameters retrieved from IASI soundings (the latter considered
as Level 1, L1, data), while L3 indicates those same quantities after being
regularly gridded and upscaled.

To gain a deeper understanding of the significance of incorporating the
IASI instrument in defining these indices, Section 2.2 provides context about
its mission, technical features, and unique qualities that motivated its appli-
cation in this thesis.

2.2 The IASI instrument

IASI, developed by the Centre national d’études spatiales (CNES) in France,
is deployed on the Metop platforms as part of EUMETSAT’s European Polar
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System (EPS). Initially designed for meteorological purposes, IASI’s primary
aim is to provide vital information regarding temperature and water vapor
profiles. Its spectral coverage ranges from 645 to 2760 cm−1, with a sampling
interval of 0.25 cm−1, yielding a total of 8461 channels or spectral observations
in every spectrum.

IASI operates as a cross-track scanner with 30 adjacent Fields of Regard
(FOR) per scan, covering an angular range of ±48.33 ◦ on either side of the
nadir. The FOR viewing geometry includes a 2× 2 matrix of Instantaneous
Fields of Views (IFOVs). Each individual IFOV has a diameter of 0.8394 ◦,
providing a ground resolution of 12 km per nadir at a satellite altitude of
819 km. The 2 × 2 IFOV matrix is centered on the viewing direction. At
nadir, a FOR of 4 IASI IFOVs (or pixels) covers a square ground area of
approximately 50×50 km2. These corresponding FORs, within the 30 views,
are ±1.67 ◦ on each side from the nadir direction. Further comprehensive
details regarding IASI and its mission objectives can be found in Hilton et
al. 2012.

2.3 From radiances to physical quantities: the

ϕ-IASI code

The retrieval prototype, ϕ-IASI (Guido Masiello, Carmine Serio, Carissimo,
et al. 2009; Masiello et al. 2012), employs an optimal estimation (OE) tech-
nique, combined with a fully analytical, monochromatic radiative transfer
model (Rodgers 2000) to determine the thermodynamic state and chemi-
cal composition of the atmosphere. This method involves mathematically
inverting the entire IASI spectrum, enabling the simultaneous retrieval of
a state vector encompassing surface emissivity (ε) and surface temperature
(Ts), as well as temperature (T ), water vapor (Q), ozone (O), HDO, and
OCS profiles. Additionally, it calculates the column amounts of CO2, N2O,
CO, CH4, SO2, HNO3, NH3, and CF4. Validation studies for retrieving tem-
perature, surface temperature and ozone can be found in Liuzzi et al. 2016;
Umberto Amato et al. 2002; Annamaria Carissimo, De Feis, and Carmine
Serio 2005; Guido Masiello, Carmine Serio, Deleporte, et al. 2013, and for
emissivity in Guido Masiello, Carmine Serio, Venafra, Giuliano Liuzzi, et al.
2018; Guido Masiello, Carmine Serio, Venafra, DeFeis, et al. 2014. Nonethe-
less, the pertinent parameters for the current analysis include ε, Ts, and the
atmospheric profiles for T and Q.

The ϕ-IASI code is comprised of two main modules:

� σ-IASI, a forward module yielding spectral radiances and analytical
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(a)

(b)

Figure 2.1: The IASI instrument (2.1a) and its FOV specifics (2.1b).

Jacobians concerning surface temperature, emissivity, and any atmo-
spheric parameter, including the volume mixing ratio of the gases men-
tioned above;

� δ-IASI, an inversion scheme implementing an iterative algorithm for
the optimal estimation of the thermodynamic state of the atmosphere
and its composition;

The radiative transfer model employed is a fast model that utilizes a pre-
computed look-up table for optical depth calculations (Liuzzi et al. 2016;
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Figure 2.2: Example of IASI orbit (from July 2021)

Umberto Amato et al. 2002). This look-up table is generated from Line-
by-Line Radiative Transfer Model (LBLRTM, Shephard et al. 2009; Al-
varado et al. 2013, utilizing the line compilation aer 3.2 (accessible at http:
//rtweb.aer.com/line_param_frame.html). The forward module calcu-
lates radiance by discretizing the radiative transfer equation on a fixed grid
consisting of NL = 60 pressure layers, covering the atmosphere from 1050 to
0.005 hPa.

The forward model provides spectral radiances and analytical Jacobians
related to surface temperature, emissivity, and various atmospheric param-
eters, as described in previous studies (Guido Masiello, Carmine Serio, Ve-
nafra, Giuliano Liuzzi, et al. 2018; Guido Masiello, Carmine Serio, Venafra,
DeFeis, et al. 2014; Guido Masiello and Carmine Serio 2013). These pa-
rameters include the volume mixing ratio of gases mentioned earlier. In its
recent iteration (Liuzzi et al. 2016), σ-IASI also incorporates solar spectral
radiation, which significantly contributes to the spectral range from 2000
to 2240 cm−1. This interval contains crucial information for retrieving OCS
(Carmine Serio, Guido Masiello, Mastro, et al. 2020; Camy-Peyret et al.
2017).

The inversion scheme, δ-IASI, employs an iterative algorithm for the op-
timal estimation of the atmosphere’s thermodynamic state and composition.
It conducts the mathematical inversion of the entire IASI radiance spectrum,
consisting of 8461 channels, to simultaneously retrieve the atmospheric state
vector mentioned above and here completely listed:

V = (ε, Ts, T,Q,O,HDO,CO2, N2O,CO,CH4, SO2, HNO3, NH3, OCS,CF4)

The inversion scheme processes IASI soundings acquired under clear sky con-

http://rtweb.aer.com/line_param_frame.html
http://rtweb.aer.com/line_param_frame.html
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Figure 2.3: Location of the 60 pressure layers used by σ-IASI over Earth’s
atmosphere, together with a temperature profile sample retrieved by δ-IASI.
Notice how they are more densely packed in both the lower troposphere and
the stratosphere.
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Figure 2.4: Upper panel: comparison between an actual IASI radiance spec-
trum (blue) and the same spectrum reconstructed by σ-IASI (violet). Bot-
tom panel: difference between the two spectra (blue), together with IASI
radiometric noise (red).

ditions. Clear sky soundings are identified using a standalone cloud detection
scheme (Amato et al. 2014).

To improve efficiency, dimensionality reduction techniques are imple-
mented in both the data space and the parameter space. Random Projection
is used for data reduction, as detailed in Liuzzi et al. 2016; Camy-Peyret et
al. 2017; Serio et al. 2019; Carmine Serio, Guido Masiello, and Giuliano Li-
uzzi 2016, while Principal Component transform is employed for parameter
reduction, as shown in Carmine Serio, Guido Masiello, Mastro, et al. 2020;
Guido Masiello, Carmine Serio, and Antonelli 2012; Carmine Serio, Guido
Masiello, and Venafra 2019. These techniques optimize the retrieval process,
enabling a more precise and efficient analysis of the atmospheric state and
surface properties.
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2.4 The indices: Emissivity Contrast Index

(ECI) and Water Deficit Index (WDI)

2.4.1 Emissivity Contrast Index (ECI)

The notion of emissivity contrast was initially introduced by French, Schmugge,
and Kustas 2000 to distinguish between senescent vegetation and bare soil.
Starting from that, the Emissivity Contrast Index (ECI) has been defined
as:

ECI = 1− δε, (2.1)

where

δε = max(ChannelEmissivity)−min(ChannelEmissivity) (2.2)

represents the emissivity contrast French, Schmugge, and Kustas 2000,
calculated as the disparity between the maximum and minimum emissivity
values among the five spectral bands listed in Tab. 2.1.

In the context of this thesis work, ECI is calculated from the IASI re-
trieval of the emissivity spectrum, which shares the same spectral range,
coverage, and sampling as the IASI spectrum. To simplify the emissivity
spectrum’s complexity, a suitable averaging process was applied, resulting in
the derivation of five mean emissivities (see Tab. 2.1).

Table 2.1: IASI-retrieved emissivity bands used to compute ECI, together
with the specific land cover type they are most sensitive to. The colors of
the rows are meant to mirror the respective colored squares in Fig. 2.5.

IASI Band Sensitivity

800-830 cm−1 Vegetation (green or senescent)

900-1000 cm−1 Green vegetation

1000-1100 cm−1 Vegetation (green or senescent)

1100-1200 cm−1 Reststrahlen band of Quartz (bare soil and desert sand)

2000-2200 cm−1 High green/dry vegetation contrast

These specific channels (4.8, 8.6, 9.7, 10.8 and 12.1µm) were selected
due to their high sensitivity to bare, green, and senescent vegetation (see
both Tab. 2.1 and Fig. 2.5). The first one exhibits a high contrast between
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Figure 2.5: Emissivity spectral signatures of sand (red), dry grass (yel-
low) and green grass from the MODIS UCSB Emissivity Library (at https:
//icess.eri.ucsb.edu/modis/EMIS/html/em.html), plotted over the TIR
bands used to compute ECI from the IASI emissivity spectrum (colored
squares): notice the presence of the 4.8µm channel, a peculiarity of the
IASI instrument.

green and dry vegetation, which is essential in densely vegetated areas such
as forests, which may present water stress while still preserving much of their
canopy. The second channel shows a higher sensitivity to barren surfaces due
to the pronounced quartz Reststrahlen effect. This characteristic makes it
particularly valuable for identifying areas with desert sand or bare soil. The
other three bands are primarily influenced by senescent or green vegetation
cover and serve as auxiliary information providers about the presence of
vegetation in general. Moreover, utilizing channels in the long-wave spectral
range exclusively offers an advantage, as they are less affected by background
aerosol contamination(Guido Masiello, Cersosimo, et al. 2020; Moparthy,
Carrer, and Ceamanos 2019).

Due to their definitions, both ECI and NDVI carry consistent meanings:
higher values indicate greener conditions, whereas lower values suggest brown
or less vegetated areas. In theory, ECI falls within the range of [0, 1], al-
though natural land features are anticipated to exhibit values around [0.5,

https://icess.eri.ucsb.edu/modis/EMIS/html/em.html
https://icess.eri.ucsb.edu/modis/EMIS/html/em.html
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0.7]. Water, on the other hand, typically has a contrast of about 0.01 with
an ECI of approximately 0.99. Green vegetation tends to have a very high
emissivity due to its structured nature and water content, resulting in an ECI
ranging between 0.98 and 1. Senescent or dry vegetation, with its variable
emissivity depending on factors such as cover type and dryness, is expected
to yield an ECI between 0.94 and 0.98. Desert sand and arid soil, on the
other hand, are likely to have an ECI ranging from 0.5 to 0.8.

As an illustration of the comparison between ECI and NDVI, Fig. 2.6
displays ECI maps calculated for August 2017 over Southern Italy, alongside
the corresponding monthly maps for MODIS NDVI. The substantial reduc-
tion in vegetation cover, caused by the impactful heatwave of summer 2017
over the Mediterranean area, is clearly evident in both maps and will be
thoroughly analyzed in chapter 3.

Figure 2.6: ECI and MODIS NDVI maps for August 2017 over Southern
Italy.

2.4.2 Water Deficit Index (WDI)

The IASI-based water deficit index has been defined as:

WDI = Ts − Td. (2.3)

Using δ-IASI, the temperature (T ) and specific humidity (Q) profiles can
be retrieved, but only the values corresponding to the lowest atmospheric
layer (1005 − 1013 hPa), denoted as T1 (in K) and Q1 (in Kg) are used to
calculate the dew point temperature close to the surface. The pressure at
this specific layer was labeled as P1 (in hPa). The surface temperature (Ts)
was also obtained as an output of the L2 inverse scheme. To calculate the
dew point temperature (Td), the actual water vapor pressure (Pw) and the
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saturation water vapor pressure (Pws) must both be determined. The actual
water vapor pressure (Pw) can be computed from Q1 using the following
formula:

Pw =
Rw

Rair

P1Q110
−3, (2.4)

where Rw = 461.5 JK−1Kg−1 and Rair = 286.9 JK−1Kg−1 denotes the specific
gas constants of water vapor and air. Huang 2018 suggests to calculate Pws

as:

Pws =
exp(a1 − a2

t1+a3
)

(t1 + a4)a5
, (2.5)

with t1 = T1 − 273.15 (to express temperature in ◦C) and a1 = 34.494,
a2 = 4924.99, a3 = 237.1, a4 = 105 and a5 = 1.57 are fit parameters.
Eq. (2.5) is applicable when t1 > 0 (vapor pressure of water). Using both
Eq. (2.4) and (2.5), relative humidity (rh) can be computed as:

rh =
Pw

Pws

. (2.6)

Lastly, Magnus formula (Sonntag 1990) is used to calculate td (i. e. Td in
◦C):

td =
cγ(T, rh)

b− γ(T, rh)
(2.7)

where

γ(t1, rh) = ln(rh) +
bt1

c+ t1
(2.8)

and b = 17.62 (dimensionless), c = 243.12 ◦C.
WDI can be calculated using temperatures in either K or ◦C. However,

the computation of the dew point temperature, as shown in Eq. (2.7), must be
carried out in ◦C before converting it to K. WDI can thus be more generally
defined as follows:

WDI = Ts − Td = ts − td. (2.9)

according to the unit of measure to be used.
This parameter is valuable in understanding water stress or deficit during

prolonged periods of drought or heatwaves when considering a vegetated or
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cropped surface. This is because vegetation releases water into the atmo-
sphere through transpiration, which involves the conversion of liquid water
in plant tissues into vapor, subsequently released into the atmosphere (Allen
et al. 1998). This is why in summer, particularly during dry conditions, high
WDI values are expected due to a significant temperature difference between
the surface and the adjacent dew point temperature. Conversely, lower values
can be anticipated in winter.

Transpiration, akin to direct evaporation, is shaped by factors like solar
radiation, wind, and the vapor pressure gradient at the surface-atmosphere
junction. Hence, in the development of a satellite-based index to measure wa-
ter deficit, careful consideration of elements such as solar radiation, air tem-
perature, humidity, and wind speed is paramount for precise evaluation and
assessment. In the case of WDI, as Eq. (2.3) suggests, Ts takes into account
the energy supplied by the sun, which leads to a swift rise in the land surface
temperature. At the same time, Td represents the contribution of both air
temperature and humidity. Introducing the influence of wind presents chal-
lenges. Nevertheless, during droughts and heat waves, the spatial gradient
and wind intensity decrease. Meteorological conditions conducive to summer
heatwaves are characterized by air subsidence and low-pressure gradients.

Emphasizing the co-occurrence of evaporation and transpiration is cru-
cial, as distinguishing between these processes is challenging. Hence, the term
”evapotranspiration” (see Fig. 2.7) is used to encompass the water exchange
between vegetation and the air. Besides soil moisture availability, evapo-
ration from cultivated land relies on solar radiation impact. As the crop
grows, solar energy reaching the surface diminishes due to foliage or canopy
shading, casting shadows below. Consequently, soil evaporation predomi-
nantly occurs when the crop is small or leaves are undeveloped. However,
transpiration takes over as the primary process once the crop and leaves are
well-developed, fully covering the soil.

As was done with ECI, different situations of water stress can be high-
lighted by different values of WDI. Three main ranges can be distinguished:

� WDI ≫ 0 - hot and dry meteorological conditions (e.g. during heat
waves) encouraging evapotranspiration;

� WDI ≥ 0 - war and humid atmospheric conditions, with air close to
saturation, thus greatly limiting the evapotranspiration rate;

� WDI < 0 - water vapor condenses into liquid water at the surface
(Ts < Td).
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Figure 2.7: Infographic example of the evapotranspiration process.

2.5 From sparse data to high-resolution maps:

an Optimal Interpolation strategy

The two-dimensional interpolation method used to generate L3 data was
initially introduced by Carmine Serio, Guido Masiello, Pasquariello, et al.
2022. This method integrates optimal and objective Gaussian interpolation
techniques, leveraging the complete retrieval covariance matrix obtained from
the δ-IASI inverse module. This approach ensures precise estimation of each
mapped quantity (Carmine Serio, Guido Masiello, Pasquariello, et al. 2022).

This L3 scheme employs a suitable method to transform L2 data obtained
from a sparsely populated and non-uniform grid into L3 products on a stan-
dardized grid. To comprehend the significance of this process, Figure 2.8
illustrates a collection of IASI pixels for a L2 wdi retrieval, alongside the
outcome of the L3 interpolation scheme. In other words, the initial L2 data
(approximately 12 km for each pixel) has been mapped onto a regular grid
with a resolution of 0.05◦ through the L3 interpolation scheme

As thoroughly described in Carmine Serio, Guido Masiello, Pasquariello,
et al. 2022, when considering x̂i as the L2 products at a specific 2-D position
denoted by the latitude-longitude pair (θi, φi), the interpolated value x̄ can be
computed utilizing the following equation, as outlined in the same reference
(Carmine Serio, Guido Masiello, Pasquariello, et al. 2022):

x̄ =

(
N∑
1=1

pi
σ2
i

)−1 N∑
1=1

pi
σ2
i

x̂i (2.10)
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Figure 2.8: L2 IASI WDI for June 2022 (on the left) and the corresponding
L3 product (on the right).

where σ2
i is the variance of the retrieval and N is the number of retrieved

values. The interpolation process is deemed optimal as it integrates weights
determined by σ2

i . Although it is feasible to expand the scheme to encompass
all N data points, it is often more pragmatic to restrict the impact of L2
data on a particular location by employing a characteristic length scale. To
accomplish this, Carmine Serio, Guido Masiello, Pasquariello, et al. 2022
introduces a Gaussian weight pi:

pi = exp

(
−1

2

d2(x̄, x̂i)

d2th

)
(2.11)

where d(x̄, x̂i) denotes the Euclidean distance between x̄, x̂i, while dth repre-
sents a suitable length scale.

By incorporating Gaussian weights, the interpolation scheme becomes
objective, and the spatial sampling of the L3 products is determined by the
length scale dth. In practical applications, Carmine Serio, Guido Masiello,
Pasquariello, et al. 2022 suggests fixing dth based on the density of the L2
data: “especially when accumulating L2 data over an extended period (e.g.,
one month), dth = 0.1◦ can be employed, approximately corresponding to the
IASI IFOV diameter at a nadir of 12 km”.

It is important to note that IASI soundings can be considered uncorre-
lated in both time and space. Consequently, the application of the variance
propagation rule enables the calculation of the variance for the interpolated
value:
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var(x̄) =

(
N∑
1=1

pi
σ2
i

)−1 N∑
1=1

pi
σ2
i

(2.12)

The results presented in Fig. 2.9 showcase maps of ECI and WDI span-
ning one month, alongside their respective data densities. These maps were
generated using a sampling resolution of 0.05◦ × 0.05◦. While this approach
sacrifices temporal resolution, it enhances spatial sampling and precision in
the resulting product.

Figure 2.9: Maps of ECI and WDI for June 2022 (upper panel) and the
relative IASI L2 data density for the same month (lower panel).



Chapter 3

Validation: Southern Italy over
the last decade

In this chapter, the theoretical basis presented in Chapter 2 is applied and
validated over a specific geographic area: Southern Italy. It is demonstrated
how both ECI and WDI are able to highlight major water stress in woodlands
over the Apennine chain due to several summer heat waves, which heavily
impacted the Mediterranean basin during the period 2014-2022. Moreover,
correlation with other remote-sensed indices is investigated: the analysis is
conducted both on a wider (the target area) and on a local scale, considering
two specific forested areas in the Basilicata region suffering from long-lasting
water stress, thus of particular interest in the context of this thesis research
work.

3.1 Description of the target area

The study area depicted in Fig. 3.1 covers a portion of southern Italy. No-
tably, the Apennines exhibit forested regions, while the eastern part of the
region is predominantly characterized by agricultural landscapes, as evi-
dent from the 2018 CORINE Land Cover data (available at https://land.
copernicus.eu/pan-european/corine-land-cover) included in the figure.
In the study area’s climate is Mediterranean, characterized by dry and warm
summers that have become particularly noticeable during the last decade.
The dots on the map indicate the two stressed woodlands examined in this
study: San Paolo Albanese (40.02° N, 16.34° E, elevation range: 950–1050
m.a.s.l.) and Gorgoglione (40.40° N, 16.14° E, elevation range: 800–850
m.a.s.l.). These areas are currently facing tree mortality due to prolonged
drought conditions (Rita et al. 2020; Ripullone et al. 2020; Colangelo et al.

26
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2018).

Figure 3.1: The designated study area is outlined by the red square, and it
includes the two analyzed locations (marked with yellow pins at the top and
red circles at the bottom). The 2018 CORINE Land Cover map emphasizes
the presence of forests in the region.

In the San Paolo Albanese site, the vegetation consists of a dense for-
est primarily composed of Quercus frainetto Ten. with a stand density of
348 trees/ha. Studies on the most affected stands have revealed that more
than half of the mature specimens exhibited signs of death, while around 15%
have recently perished (Ripullone et al. 2020). Conversely, the Gorgoglione
woodland represents a significantly mixed forest, boasting an average density
of approximately 600 stems/ha. The prevalent species in this area are Quer-
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cus cerris L. (71%), succeeded by Quercus pubescens L. (25%), and other
deciduous tree species (4%), albeit at a lower density (Colangelo et al. 2018).

The two primary tree species under study, namely Quercus cerris L.
and Quercus pubescens L., have exhibited symptoms of decline induced by
drought since the early 2000s. These symptoms include shoot dieback, sum-
mer leaf loss, withering, growth decline, and high mortality rates. According
to local reports in the study area, approximately 450 hectares of oak trees
were affected by annual mortality. The incidence of the decline syndrome
led to an increase in mortality rates from 5% to 10% between 2002 and 2004
(Ripullone et al. 2020).

3.2 Products used for validation

As for the non-IASI data used for the correlation analysis, Tab. 3.1 provides
a detailed list. Overall, two groups of products were considered: LAI, FA-
PAR, FVC and ET from SEVIRI and SSM from Copernicus Sentinel-1. The
SEVIRI products are provided by EUMETSAT Satellite Application Facil-
ity on Land Surface Analysis (LSA SAF), while the SSM data are part of
Copernicus Global Land Service (CGLS) products collection.

Table 3.1: Products used for the correlation analysis.

Product Sensor/Platform Spatial Res. Temporal Res.

MTLAI [LSA-424] SEVIRI/MSG 3km 10-daily
MTFAPAR [LSA-452] SEVIRI/MSG 3km 10-daily
MTFVC [LSA-422] SEVIRI/MSG 3km 10-daily
DMET [LSA-312] SEVIRI/MSG 3km daily

SSM C-SAR/Sentinel-1 1 km daily

3.3 Results

Monthly maps of ECI and WDI for 2017 and 2022 are presented in Figs. 3.2-
3.3 and 3.4- 3.5, respectively. It is reasonable to expect a low WDI value and
an ECI close to 1 for the Apennine chain, renowned for its lush broad-leaved
deciduous forests, especially when vegetation is adequately water-sustained,
a condition prevalent during the flourishing periods of spring and summer.
However, a discernible drop in ECI becomes evident in the woodland areas
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from June to September, while WDI shows a consistent increase during the
same period. Specifically, in forested regions, WDI was above approximately
10°C, while ECI reached its minimum values, around 0.95.

This outcome is unsurprising given that the Mediterranean region expe-
rienced severe heatwaves in both years. The significant drought in May 2022
is apparent, although its overall impact on the subsequent months appears
to be less severe compared to 2017 and 2021. In general, both WDI and ECI
indicate an escalation in water deficiency due to these heatwaves, leading the
vegetation to transition into its senescent phase earlier than usual. Figs. 3.7
and 3.6 depict the indices for the summer months of 2017, 2020, 2021, and
2022, reaffirming a cyclical pattern of intense water stress. Summer 2020
stands out as being relatively less hot and dry than the other three years,
with June 2020 being milder. In contrast, June 2022 exhibits a combination
of higher WDI and lower ECI values, making it the hottest and driest June
of the four years.

Figure 3.2: Maps of ECI for 2017.
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Figure 3.3: Maps of WDI for 2017.

Figure 3.4: Maps of ECI for 2022.
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Figure 3.5: Maps of WDI for 2022.

Figure 3.6: Maps of WDI for June, July and August 2017, 2020, 2021 and
2022.
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Figure 3.7: Maps of ECI for June, July and August 2017, 2020, 2021 and
2022.
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3.4 Comparison with other indices

A comparison of ECI, WDI, and MODIS NDVI (1 km) on both broader
(Fig. 3.8) and local (Figs. 3.9-3.10) scales reveals that NDVI fails to effec-
tively highlight the devastating impact of the 2017 heatwave. Throughout
the heatwave period, NDVI maintains a relatively stable level, indicating lim-
ited sensitivity to the severity of the heatwave. While it accurately outlines
woodland areas along the Apennine mountain range, it lacks the capability
to capture changes in surface water stress. In contrast, both ECI and WDI
demonstrate changes that correspond to the expected pattern of increasing
water scarcity, making them more reliable indicators in this context.

Figure 3.8: Maps of ECI, WDI and NDVI for June, July and August 2017.

To better understand how responsive ECI and WDI are to this phe-
nomenon, a comprehensive study was carried out comparing these two indices
with another group of indicators (SSM, LAI, FAPAR, FVC and ET) over the
period from 2014 to 2022.

Fig. 3.11 presents monthly maps of ECI, WDI, and SSM for the summer
months of 2017. While ECI and SSM appear to decrease over time, WDI
shows the opposite trend. This (anti)correlation indicates that an increase
in WDI corresponds to a rapid loss of water from the surface into the atmo-
sphere, leading to a decrease in ECI and soil moisture. This suggests reduced
water absorption by vegetation.

Examining this pattern at a local scale for the entire period of interest,
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Figure 3.9: Temporal series of NDVI versus WDI and ECI for San Paolo
Albanese.

Figure 3.10: Temporal series of NDVI versus WDI and ECI for Gorgoglione.

Figs. 3.12- 3.13 allows for a better understanding of the previously observed
trend, which is explicitly confirmed in Fig. 3.14. It is noteworthy that SSM



3.4. Comparison with other indices 35

Figure 3.11: Maps of ECI, WDI and SSM for June, July and August 2017.

and ECI in both Gorgoglione and San Paolo Albanese exhibit their high-
est correlation value with a one-month lag (indicated as τ = 1, following the
methodology used in Carmine Serio, Guido Masiello, Pasquariello, et al. 2022,
where linear correlation is calculated considering SSM(t) and ECI(t + τ)).
A similar, albeit in terms of anticorrelation and only in San Paolo, relation-
ship exists between SSM and WDI. This demonstrates that the decline in
vegetation is linked to atmospheric conditions, subsequently leading to soil
moisture loss.

Fig. 3.15 displays maps of ECI, WDI, and LAI for the summer of 2017,
while the trends of these indices from 2014 to 2022 are illustrated in Figs. 3.16-
3.17: when WDI increases (and ECI decreases), LAI diminishes, aligning
with the expected scenario of heightened vegetation stress. During periods
of intense heatwaves, trees often shed their leaves as a protective measure
against excessive evapotranspiration. This adaptive mechanism is similar to
how trees utilize it during seasons such as winter, when there is insufficient
light to sustain photosynthesis (Le, Harper, and Dell 2023). Consistent with
the decreasing trend of ECI and WDI, LAI experiences a decline from June
to July. A reduction in LAI during summer, when there is ample light avail-
able for photosynthesis, is not typical in normal circumstances (Le, Harper,
and Dell 2023).

Fig. 3.18 displays maps showing ECI, WDI, and FAPAR for the months
of June, July, and August in 2017. In Figs. 3.19- 3.20, the monthly series
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Figure 3.12: Temporal series of SSM versus WDI and ECI for San Paolo
Albanese.

Figure 3.13: Temporal series of SSM versus WDI and ECI for Gorgoglione.
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Figure 3.14: Correlation between SSM, ECI and WDI for Gorgoglione (upper
panel) and San Paolo Albanese (lower panel).
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Figure 3.15: Maps of ECI, WDI and LAI for June, July and August 2017.

Figure 3.16: Temporal series of LAI versus WDI and ECI for San Paolo
Albanese.
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Figure 3.17: Temporal series of LAI versus WDI and ECI for Gorgoglione.

of these indices for Gorgoglione and San Paolo spanning from 2014 to 2022
are illustrated. Similar to the findings related to LAI, the same pattern
emerges, but with even greater clarity: an increase in WDI and a decrease
in ECI correspond to a significant reduction in FAPAR, indicating a decline
in the radiation absorbed by vegetation. This reduction is a consequence of
vegetation stress caused by water loss, which hampers the leaves’ ability to
absorb enough radiation for photosynthesis (Le, Harper, and Dell 2023).

Fig. 3.21 shows maps of ECI, WDI, and FVC for the months of June, July,
and August in 2017. In Figs. 3.22- 3.23, the monthly series for Gorgoglione
and San Paolo from 2014 to 2022 are displayed. The same kind of behaviour
as LAI and FAPAR can once again be observed for FVC.

Fig. 3.24 presents a comparison between ECI, WDI, and ET for the sum-
mer of 2017. Correlation trends for San Paolo Albanese and Gorgoglione
over the period 2014-2022 can be seen in Figs. 3.25- 3.26. Both WDI and ET
exhibit a similar pattern, peaking during the summer months and declining
in winter, as shown in Fig. 3.27. A high WDI value indicates an elevated
rate of evapotranspiration, indicating increased water loss from trees into
the atmosphere. The decreasing levels of soil moisture suggest a decline in
water absorption by vegetation from the surface. The elevated values ob-
served during summer cannot be solely attributed to warmer weather; they
also reflect a reduction in water vapor exchange between the surface and the
atmosphere. In contrast, ECI exhibits peaks during winter months and lower
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Figure 3.18: Maps of ECI, WDI and FAPAR for June, July and August 2017.

Figure 3.19: Temporal series of FAPAR versus WDI and ECI for San Paolo
Albanese.
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Figure 3.20: Temporal series of FAPAR versus WDI and ECI for Gorgoglione.

Figure 3.21: Maps of ECI, WDI and FVC for June, July and August 2017.
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Figure 3.22: Temporal series of FVC versus WDI and ECI for San Paolo
Albanese.
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Figure 3.23: Temporal series of FVC versus WDI and ECI for Gorgoglione.
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Figure 3.24: Maps of ECI, WDI and ET for June, July and August 2017.

values during summer, displaying an opposite pattern compared to ET. The
higher ECI values in winter can be explained by taking into account snow
precipitation (Torresani et al. 2022), whereas in summer, it is influenced by
the loss of soil moisture, as demonstrated earlier.



3.4. Comparison with other indices 45

Figure 3.25: Temporal series of ET versus WDI and ECI for San Paolo
Albanese

Figure 3.26: Temporal series of ET versus WDI and ECI for Gorgoglione.
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Figure 3.27: Correlation between ET, ECI and WDI for Gorgoglione (upper
panel) and San Paolo Albanese (lower panel).



Chapter 4

Validation: the case study of
Mount Vesuvius arsons

This chapter demonstrates how the synergy between ECI and WDI can be
exploited to identify the criminal origin of a fire event that occurred on Mount
Vesuvius in the summer of 2017, thus uncoupling the fire outbreak from the
heatwave that affected the Mediterranean area during that same period.

4.1 Description of the case study

In the last 20 years, with the Mediterranean basin suffering high tempera-
tures and drought, especially during summer, wildfires have become an un-
fortunately common phenomenon. Italy, mainly its southern, widely forested
part, has seen the amount of summer fire outbreaks rising almost exponen-
tially, as can be seen in Fig. 4.1, reporting statistics from EFFIS database
(San-Miguel-Ayanz et al. 2003). Hot and dry conditions help fires spread
faster, burn longer and rage more intensely, sapping moisture from vegetation
and turning it into dry fuel that helps fires spread (WMO 2023). However,
another dangerous, yet anthropogenic phenomenon often disguises itself un-
derneath the wildfire emergency: arson. It is actually estimated that more
than 90% of forestland fire in European Mediterranean countries is caused by
human action (Velez 2009; Lovreglio et al. 2010; Canepa and Drogo 2021).

The selected case study is related to a specific set of arsons that occurred
on Mount Vesuvius in July 2017. The first, separate blazes started to break
out on different points over Mount Vesuvius’s slope on June 23rd and rapidly
spread until they merged into a massive fire front of two kilometers (see
Fig. 4.2) on July 11th (De Luca 2017). The fire was finally dominated and
extinguished on July 16th (VesuvioLive 2018). The huge plume of smoke

47
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that generated led some to believe that the Vesuvius was erupting again (it
is the only active volcano in mainland Europe). The last time it erupted was
back in 1944, but is most famous for the 79 AD eruption that destroyed the
ancient Roman city of Pompeii. The smoke from these fires posed the biggest
threat and forced several evacuations during that week (De Luca 2017). The
wooded slopes of Vesuvius form part of the Vesuvius National Park, which
was set up in 1995 to protect the volcano and its surroundings. Much of
the woodland was destroyed in what was referred to as an environmental
catastrophe: a total amount of 1984 hectares, corresponding to one-third of
the entire national park (VesuvioLive 2018). Only two of the culprits were
identified and arrested four years later (Di Fiore 2021).

The CORINE Land Cover (Buttner 2014) for 2018 (available at https:
//land.copernicus.eu/en/products/corine-land-cover) highlights the
dramatic outcomes of this event (Fig.4.3): the black spot on Mount Vesu-
vius, classified as burnt area by the CORINE algorithm, appears wider when
compared to the same location on the 2012 map.

Figure 4.1: Histogram from EFFIS database (San-Miguel-Ayanz et al.
2003) showing the number of fires and the amount of burnt areas in
Italy from 2006 to 2023 (https://effis.jrc.ec.europa.eu/apps/effis.
statistics/estimates).

https://land.copernicus.eu/en/products/corine-land-cover
https://land.copernicus.eu/en/products/corine-land-cover
https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates
https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates
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Figure 4.2: Two pictures of the Vesuvius fire take on July 11th, testifying
the event’s extreme severity.
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Figure 4.3: CORINE Land Cover (Buttner 2014) maps for 2012 (upper panel)
and 2018 (lower panel) over the Gulf of Naples. The violet box encompasses
the Mount Vesuvius area. Notice how the portion of the burnt area (in black
according to the classification legend) over that same location, as highlighted
by the 2018 map, appears wider than in the 2012 version.



4.2. Fire investigation results 51

4.2 Fire investigation results

To better visualize the entity of the selected fire outbreak, ESA’s Sentinel-2
RGB images in different color bands (true and false colors) were produced.

The Sentinel-2 mission operates using a pair of identical satellites: Sentinel-
2A and Sentinel-2B. These satellites are equipped with high-resolution mul-
tispectral cameras that capture imagery in 13 different wavelength bands,
providing valuable insights into land and vegetation.

In Fig. 4.4, various sensor bands are utilized to emphasize the distinct
fires occurring around Mount Vesuvius and the resulting smoke spreading
across the nearby area:

� Fig. 4.4a uses the typical red, green and blue bands, corresponding to
Sentinel-2 channels B4 (665 nm), B3 (560 nm) and B2 (490 nm);

� Fig. 4.4b uses channels B8, B4 and B3, with B8 (842 nm) being in the
NIR band. It emphasizes the presence of green vegetation, since it is
highly reflective in that spectral interval;

� Fig. 4.4c uses channels B12, B8 and B4, with B12 (2190 nm) included
in the SWIR spectral range. This specific band is highly sensitive to
fire and burnt soil, while showing lower reflectance values for healthy
vegetation.

All three figures display the fire outbreak during its peak of action. In
particular, Figs. 4.4b-4.4c are able to pinpoint the severity of the damage
(the black area) while the Vesuvius was still burning, whith Fig. 4.4c even
highlighting the entity of the fire front.

Another ensemble of colored Sentinel-2 images for three different days of
June, July and August 2017 is shown in Fig. 4.5. The three rows represent the
situation before, during and after the outbreak respectively: a quick visual
comparison among them highlights the intesity of the damage inflicted by
the outbreak.

A better way to pinpoint the burnt surface over the target area is estimat-
ing its NDVI. In the presence of arid soil, it will show extremely low, positive
values. Pre and post-fire NDVI images are shown in Fig. 4.6. Low values
are colored in brown, while greenish areas indicate the presence of green
vegetation. However, NDVI is not enough to actually identify fire damage.

A more useful index for detecting burnt areas is the Normalized Burn
Ratio (NBR, Escuin, Navarro, and Fernández 2008). It is defined as follows:

NBR =
ρNIR − ρSWIR

ρNIR + ρSWIR

(4.1)
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This index takes advantage of the properties of the two bands to characterize
the presence of burnt soil: high values of NBR are associated with a higher
probability of observing a fire-ravaged spot. Pre and post-fire NBR images
are shown in Fig. 4.7a and 4.7b. Another index used in the case of wildfires
is the ∆NBR (Miller and Thode 2007). It is calculated to assess fire severity:

∆NBR = NBRPRE −NBRPOST (4.2)

where NBRPRE and NBRPOST represent the NBR value before and after
the event respectively. The higher the value, the higher the entity of the
damage.

While both NBR and ∆NBR can give insights on the entity and severity
of the fire oubreak, they cannot help in identifying the causes behind the
phenomenon. In this context, the WDI-ECI synergy could possibly offer
interesting information.

Looking at the monthly maps of ECI in Fig. 4.8, it can be observed
that the index shows a decreasing trend over the study area (the four black
circles) from June to August. The inner areas exhibit even lower ECI values,
indicating vegetation distress. Vegetation and the surface have experienced
significant long-term stress, with the inner areas being more affected (due
to the heat wave) compared to the coastal areas. The decreasing values on
Mount Vesuvius are likely attributed to another phenomenon, most probably
the July fire. Figure 4.10 displayes the mean emissivity spectrum of the four
pixels for the months of June, July and August 2017. The spectral bands
used to calculate ECI are also indicated by the colored boxes on the plot.

Maps of WDI for the same period (Fig. 4.9) show that its value on Mount
Vesuvius is around 0 ◦C in June, increasing to 6 ◦C in August. The moisture
loss due to climatic factors does not appear to be predominant, as can in-
stead be observed over the internal part of the area. This further evidence
suggests that the July fire was not caused by the heat wave, but was actually
intentional, as the competent authorities were then able to prove.

In conclusion, a comparison with other indices and the synergy between
the ones developed for this thesis research work highlighted the distressed
state of the surface near Mount Vesuvius due to a fire outbreak, with ECI
and WDI specifically helping in identyfing the deliberate nature of the fire
throughout a remote sensing approach.
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(a)

(b) (c)

Figure 4.4: Sentinel-2B RGB images from July 12th 2017, at 9:50 a.m.:
Fig. 4.4a uses visible bands B4, B3, B2 to form a true-color picture, while
Figs. 4.4b and 4.4c are portrayed in false colors (bands B8, B4, B3 and B12,
B8, B4 respectively.)
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(a)

(b)

(c)

Figure 4.5: Sentinel-2b images for June 27th (Figs. 4.5a), July 22nd
(Figs. 4.5b) and August 26th (Figs. 4.5c) over Mount Vesuvius, highlight-
ing the pre and post-fire conditions of the area using different (true and
false) color bands.

Figure 4.6: Sentinel-2B pre (left) and post-fire (rigth) NDVI images over the
burnt area, obtained combining bands B8 (NIR) and B4 (red).
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(a) (b)

(c)

Figure 4.7: Sentinel-2B pre (Fig. 4.7a) ad post-fire (Fig. 4.7b) NBR images
obtained from bands B8 (NIR) and B12 (SWIR), together with their dNBR
difference (Fig. 4.7c).



4.2. Fire investigation results 56

40°30'N

40°40'N

40°50'N

41°N

L
a

ti
tu

d
e

14°E 14°15'E 14°30'E

Longitude

June 2017, ECI

Earthstar Geographics
 5 mi 

 10 km 

0.972

0.974

0.976

0.978

0.98

0.982

0.984

Selected pixels

Vesuvius

(a)

40°30'N

40°40'N

40°50'N

41°N

L
a

ti
tu

d
e

14°E 14°15'E 14°30'E

Longitude

July 2017, ECI

Earthstar Geographics
 5 mi 

 10 km 

0.972

0.974

0.976

0.978

0.98

0.982

0.984

Selected pixels

Vesuvius

(b)

40°30'N

40°40'N

40°50'N

41°N

L
a
ti
tu

d
e

14°E 14°15'E 14°30'E

Longitude

August 2017, ECI

Earthstar Geographics
 5 mi 

 10 km 

0.972

0.974

0.976

0.978

0.98

0.982

0.984

Selected pixels

Vesuvius

(c)

Figure 4.8: Maps of ECI for the Gulf of Naples during summer 2017.
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Figure 4.9: Maps of WDI for the Gulf of Naples during summer 2017.
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Figure 4.10: Mean emissivity spectrum of the four selected pixels for the
three months of June, July and August 2017, together with the indication of
the spectral bands used to estimate ECI (colored squares).



Chapter 5

Validation: estimating WDI
using the Weather Research
and Forecasting Model (WRF)

This chapter is devoted to leveraging the WRF model, a cutting-edge at-
mospheric modeling and simulation tool that plays a pivotal role in weather
research, climate studies, and operational weather forecasting, to obtain high-
resolution forecasts of WDI for the target area described in chapter 2. It is
shown how the level of detail given by the model enables a better under-
standing of the index, as well as the possibility to estimate surface water loss
with a higher level of detail.

5.1 Description of the WRF model

The WRF system stands as a cornerstone in modern atmospheric science,
revolutionizing the way meteorologists understand and predict weather pat-
terns. Developed collaboratively by research institutions and operational
forecasting centers worldwide, WRF integrates advanced numerical tech-
niques, high-resolution data assimilation, and sophisticated physics param-
eterizations to create a powerful tool for weather research and prediction.
It employs state-of-the-art numerical methods, such as finite difference and
spectral techniques, to discretize the atmospheric equations. These tech-
niques ensure accuracy and efficiency in simulating complex atmospheric
processes. Since WRF assimilates vast amounts of observational data, in-
cluding satellite imagery, radar data, and ground-based measurements, a
data assimilation module is provided to synchronize model simulations with
real-world observations, enhancing the model’s predictive accuracy.

59
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The system incorporates intricate physics parameterizations to simulate
sub-grid scale processes, such as cloud formation, precipitation, radiation,
and turbulence. These parameterizations capture the nuances of atmospheric
interactions, enabling a more detailed representation of weather phenomena.
WRF allows researchers to conduct simulations at various spatial and tem-
poral scales, ranging from regional to global domains and from short-term
weather events to long-term climate studies. High-resolution modeling is cru-
cial for capturing localized weather phenomena and understanding regional
climate variability.

The WRF model has proved to be extremely useful when applied in at-
mospheric science research. It serves as the backbone of operational weather
forecasting systems globally. Its ability to generate high-resolution forecasts
aids meteorologists in predicting severe weather events, such as hurricanes,
thunderstorms, and heatwaves, with improved accuracy and lead time. Re-
searchers also utilize WRF to investigate climate variability and change at
regional scales. By simulating historical climate patterns and projecting fu-
ture scenarios, scientists gain insights into the impacts of climate change on
specific regions, informing adaptation and mitigation strategies. WRF plays
a crucial role in air quality modeling by simulating atmospheric dispersion
of pollutants. Researchers use the system to assess the impact of emissions
from industries, transportation, and natural sources on air quality, facili-
tating policy decisions to mitigate pollution. The model enables scientists
to study extreme weather events, such as droughts, floods, and wildfires,
in unprecedented detail. By simulating the atmospheric conditions leading
to these events, researchers enhance our understanding of their causes and
dynamics, aiding in disaster preparedness and response efforts.

WRF represents a paradigm shift in atmospheric science research and
operational forecasting. Its sophisticated modeling techniques and diverse
applications make it an indispensable tool for understanding the complex-
ities of the Earth’s atmosphere. As meteorologists and climate scientists
continue to grapple with the challenges posed by a changing climate, WRF
remains at the forefront, enabling innovative research and enhancing our abil-
ity to predict and respond to weather-related phenomena with unprecedented
precision.

5.1.1 Physics Parameterizations

The accurate representation of atmospheric processes relies heavily on so-
phisticated physics parameterizations. These parameterizations encapsulate
complex physical phenomena that occur at scales smaller than the model grid,
allowing researchers to capture the intricacies of the Earth’s atmosphere:
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� Microphysics - Microphysics parameterizations in WRF deal with the
processes related to cloud and precipitation formation. This includes
the representation of cloud droplet formation, collision and coalescence,
and ice nucleation. WRF incorporates advanced microphysical schemes
that consider different hydrometeor types, such as rain, snow, ice, and
graupel. These schemes account for various processes like autoconver-
sion, accretion, and evaporation, ensuring a realistic simulation of cloud
and precipitation patterns.

� Radiation - WRF includes multiple radiation schemes to model the
transfer of solar and thermal radiation within the atmosphere. These
schemes calculate the interactions between radiation and atmospheric
constituents, clouds, and the Earth’s surface. WRF’s radiation pa-
rameterizations are vital for simulating diurnal temperature variations,
cloud radiative effects, and energy exchanges between the atmosphere
and the Earth’s surface.

� Boundary Layer Physics - Boundary layer parameterizations in WRF
simulate the processes occurring near the Earth’s surface, where the
effects of the underlying terrain significantly influence atmospheric be-
havior. These parameterizations account for turbulence, mixing, and
vertical fluxes of heat, moisture, and momentum. They are essential
for capturing phenomena like temperature inversions, atmospheric sta-
bility, and the development of low-level jets, which have significant
impacts on local weather patterns.

� Land Surface Processes - WRF’s land surface models simulate interac-
tions between the atmosphere, soil moisture, and heat fluxes. These
parameterizations consider the land surface characteristics such as veg-
etation cover, soil type, and land use. By incorporating these details,
WRF can simulate feedback mechanisms between the land surface and
the atmosphere, leading to realistic representations of phenomena like
land-atmosphere coupling, heatwaves, and regional climate variations.

� Convection - Convection parameterizations in WRF are crucial for sim-
ulating thunderstorms and other convective weather events. These
schemes model the vertical transport of heat, moisture, and momen-
tum due to updrafts and downdrafts within convective clouds. WRF
offers multiple convection schemes, allowing researchers to choose the
one best suited for specific weather conditions and spatial scales. This
flexibility ensures an accurate representation of convective processes in
a wide range of atmospheric situations.
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� Planetary Boundary Layer (PBL) schemes - WRF includes various PBL
parameterizations that characterize the turbulent layer of the atmo-
sphere near the Earth’s surface. These schemes account for the verti-
cal mixing of momentum, heat, and moisture within the PBL. Different
PBL schemes are suitable for different atmospheric stability conditions,
ensuring that the model captures the variations in boundary layer struc-
ture under diverse weather conditions.

� Gravity Wave Drag - Gravity waves, generated by processes such as
winds flowing over mountains or convective activity, play a significant
role in the atmosphere’s dynamics. WRF incorporates parameteriza-
tions for gravity wave drag, which represents the effects of these waves
on the larger-scale atmospheric flow. By including gravity wave drag
parameterizations, WRF can simulate the influence of these waves on
weather patterns and improve the accuracy of the model’s predictions,
especially at high altitudes.

� Cloud parameterizations - WRf includes sophisticated cloud parame-
terizations that model cloud microphysics, subgrid-scale cloud cover,
cloud radiative effects, and precipitation processes. These parameter-
izations allow WRF to accurately simulate various cloud types, their
interactions with radiation, and the formation of precipitation, enhanc-
ing the system’s ability to predict weather patterns and understand
cloud-related phenomena in the atmosphere.

Moreover, WRF supports multiple vertical coordinate systems, including
terrain-following, pressure, and hybrid sigma-pressure coordinates. Each of
these systems has its advantages, allowing researchers to choose the most
appropriate representation for the specific atmospheric conditions they aim
to simulate. Terrain-following coordinates are particularly useful for cap-
turing the effects of complex topography on weather patterns, ensuring a
more accurate portrayal of localized phenomena such as mountain-induced
precipitation.

5.2 Configuration used

Two WRF simulations have been run, using two different sets of global fore-
cast data:

� GFS 0.25 ◦ operational forecasts (https://rda.ucar.edu/datasets/
ds084.1/).

https://rda.ucar.edu/datasets/ds084.1/
https://rda.ucar.edu/datasets/ds084.1/
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� ECMWF operational analysis at 0.125 ◦ (https://www.ecmwf.int/
en/forecasts/dataset/operational-archive).

Figs. 5.1 and 5.2 illustrate the domain definitions and corresponding
height maps for both simulation runs. In the case of the GFS simulation,
a dual nested domain setup was employed. The outer domain (D01) spans
most of central and southern Italy with a resolution of 20 km, while the inner
domain (D02) covers only the southern part of the Italian peninsula at a
higher resolution of 4 km.
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Figure 5.1: WRF model nest configuration (GFS input). The inner domain
(D02) corresponds to the actual study area. The horizontal resolutions of
the model domains (D01 e D02) are 20 and 4 km respectively.

In contrast, the ECMWF run features a similar dual nested domain con-
figuration, but both domains are exclusively focused on southern Italy. D01
has a resolution of 6 km, while the inner domain, D02, is finely resolved
at 1 km. This adjustment in domain definition was imperative due to the
substantial discrepancy between the resolutions of the GFS and ECMWF
datasets, with the former being twice as coarse as the latter.

https://www.ecmwf.int/en/forecasts/dataset/operational-archive
https://www.ecmwf.int/en/forecasts/dataset/operational-archive
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Figure 5.2: WRF model nest configuration (ECMWF input). The inner do-
main (D02) corresponds to the actual study area. The horizontal resolutions
of the model domains (D01 e D02) are 6 and 1 km respectively.

The simulation period spans the entirety of July 2017, and hourly fore-
casts were stored for both runs, thus accounting for the diurnal variation
of WDI, both at a wider (Southern Italy) and local (the woodlands of San
Paolo Albanese and Gorgoglione) scale .

Figs. 5.3 and 5.4 showcase an exemplar representation of the vertical
layering for both simulation setups, employing the hybrid sigma-pressure
vertical coordinate system (Beck et al. 2020; Skamarock et al. 2019). This
system offers distinct advantages; it maintains a terrain-following coordinate
near the surface, enhancing accuracy in pressure gradient calculations by
relying on pressure levels at higher altitudes in the atmosphere (Beck et al.
2020). Notably, this approach prevents the propagation of terrain-induced
noise from initial levels to upper atmospheric sections (see Fig. 5.5): the
precision of the simulations is therefore enhanced, ensuring a more faithful
representation of atmospheric phenomena.



5.2. Configuration used 65

11.89 12.78 13.72 14.66  15.6 16.54 17.48 18.42

Longitude (deg)

0

20

40

60

80

100

120

140

160

180

200

H
e
ig

h
t 
(k

m
)

WRF hybrid terrain-following coordinates (GFS run)

Figure 5.3: WRF vertical hybrid terrain-following coordinate layers for the
GFS-initialized run.
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Figure 5.4: WRF vertical hybrid terrain-following coordinate layers for the
ECMWF-initialized run.
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The physics options used are summarized in Tab. 5.1. The way they
interact is represented by the schematic diagram in Fig. 5.6.

Table 5.1: Physics options selected for both WRF runs.

Physics Scheme Index

Microphysics Purdue Lin (S.-H. Chen and Sun 2002) 2

Shortwave Radiation RRTM (Mlawer et al. 1997) 1

Longwave Radiation Dudhia (Jimy Dudhia 1989) 1

Surface Layer Eta Similarity (Janić 2001) 2

Land Surface Model UNLS (Mukul Tewari et al. 2004) 2

Planetary Boundary Layer Mellor–Yamada–Janjic (Janjić 1994) 2

Cumulus parameterization Kain–Fritsch (Kain 2004) 1

Figure 5.5: A qualitative graphic example of the difference between the tra-
ditional sigma and hybrid sigma coordinate system used in WRF version 4
(from Skamarock et al. 2019).
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Figure 5.6: Interactions between the physics options in WRF (from Ska-
marock et al. 2019)
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5.3 Results

The variables used for the calculation of WDI were the surface skin temper-
ature (indicated simply as surface temperature in text from here on) and the
2-meter dew point temperature, estimated as already explained in Sec. 2.4.2.

Figs. 5.7 and 5.8 provide two examples of vertical-cross sections of pres-
sure for both simulations. Notably, the atmosphere’s layering appears signif-
icantly smoother when utilizing the ECMWF analysis as input, indicating a
more refined representation of atmospheric conditions.
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Figure 5.7: Vertical cross-section of pressure at a latitude of 45.05 ◦ for July
1st 2017 at midnight (GFS run).

Figure 5.8: Vertical cross-section of pressure at a latitude of 45.05 ◦ for July
1st 2017 at midnight (ECMWF run).
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By way of example, visual representations of 2-meter air temperature
overlaid with sea-level pressure are available for four distinct days at 12
PM, as depicted in Figs. 5.9 and 5.10. Notably, the WRF-ECMWF output
provides a more detailed depiction of pressure patterns, emphasizing the pre-
cision of this simulation. Interestingly, the 2-meter air temperature exhibits
a consistent trend across both simulations, highlighting the convergence of
results in this aspect.

Monthly maps of surface temperature, dew-point temperature at 2 me-
ters, and WDI are depicted in Figs. 5.11- 5.16. These visualizations re-
veal intriguing patterns. Surface temperatures exhibit higher values over the
Apulia region in both runs, with IASI data indicating temperatures approxi-
mately lower than 5 ◦C in the same area with respect to the simulations. The
behavior of dew-point temperature remains consistent across all three cases.

These observations are directly reflected in the resulting WDI maps. The
WDI values derived from the GFS-based simulation surpass 20 ◦C in a sig-
nificant portion of the area, contrasting with the ECMWF run, which aligns
more closely with the behavior observed in the IASI WDI output. However,
both runs manage to improve the resolution of the prediction and actually
correct the behaviour of the global forecast, spreading the increasing WDI
trend over the central part of southern Italy: this highlights the effects of the
intense heatwave of summer 2017, which interested the Mediterranean area
and Souther Italy in particular.

Figure 5.17 displays the variation of WRF-ECMWF WDI for four dif-
ferent days of July 2017 (7th, 14th, 21st and 28th): the index seems to be
decaying during the period over the Appenines, while showing higher values
over the Apulia region by the end of the month.

On an even finer temporal scale, Fig. 5.18 shows maps of WRF-ECMWF
WDI for the four different canonical hours (00:00, 06:00, 12:00, 18:00) for
July 14th 2017: the index, starting from lower values at 00:00, rises during
the day, reaching a peak value of over 25 ◦C at 12:00 on the internal part
of the region; subsequently, it decreases till reaching a minimum value of
approx. 5 ◦C at 18:00.

Zooming in on a single-pixel, local scale, Figure 5.19 presents intriguing
results. WRF-GFSWDI demonstrates a noticeable upward trend during July
2017 in both San Paolo Albanese and Gorgoglione, peaking at around 26 and
15 ◦C respectively at the end of the month. In contrast, WDI predicted by
WRF-ECMWF indicates a more moderate increase, oscillating around 12 ◦C
in Gorgoglione.

This disparity in WDI trends is directly linked to the surface and dew-
point temperature values predicted by the models. A closer examination of
Figs. 5.20-5.21 reveals a consistent pattern. Surface temperatures in both
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Figure 5.9: WRF-GFS 2-meter air temperature (K) and overlayed sea level
pressure for July 1st, 10th, 20th and 30th.

areas exhibit a trend mirroring that of WDI, with the anomalous minimum
peaks of 22 and 20 ◦C respectively on July 27th likely stemming from dis-
crepancies in the original global ECMWF analysis for that day. Dew-point
temperatures decrease throughout the entire month in both simulations and



5.3. Results 71

Figure 5.10: WRF-ECMWF surface temperature (K) and overlayed sea level
pressure for July 1st, 10th, 20th and 30th.

areas (once again the WRF-ECMWF run exibiting a minimum peak on July
27th, for the same reasons previously discussed).

Furthermore, it’s noteworthy that the dew-point temperature remains
nearly constant over Gorgoglione, emphasizing the stability of this param-
eter in the region. Additionally, the WRF-GFS run consistently predicts
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Figure 5.11: Maps of surface temperature for July 2017. Upper panel: IASI
L3 (left, 5 km resolution) and ECMWF operational analysis (right, 12.5 km
resolution). Lower panel: WRF-forecasted output (1.2 km resolution) using
ECMWF operational analysis data as boundary and initial conditions.

values lower than its WRF-ECMWF counterpart, indicating nuanced dif-
ferences in the models’ outputs. These intricate details shed light on the
complex interplay of atmospheric variables and the simulation models’ pre-
dictive capabilities.

Overall, the results of both simulations suggest a convergence in the trend
of WDI during July 2017, indicating an interesting level of agreement with
the IASI WDI estimation. This further validates the methodology used and
underscores the potential of WDI as a useful index for surface and atmo-
sphere monitoring, not only in the context of remote sensing alone but also
in expanding knowledge and insights in meteorology.
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Figure 5.12: Maps of surface temperature for July 2017. Upper panel: IASI
L3 (left, 5 km resolution) and GFS forecasts (right, 25 km resolution). Lower
panel: WRF-forecasted output (4 km resolution) using GFS forecast data as
boundary and initial conditions.
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Figure 5.13: Maps of 2-meter dew-point temperature for July 2017. Upper
panel: IASI L3 (left, 5 km resolution) and ECMWF operational analysis
(right, 12.5 km resolution). Lower panel: WRF-forecasted output (1.2 km
resolution) using ECMWF operational analysis data as boundary and initial
conditions.
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Figure 5.14: Maps of 2-meter dew-point temperature for July 2017. Upper
panel: IASI L3 (left, 5 km resolution) and GFS forecasts (right, 25 km reso-
lution). Lower panel: WRF-forecasted output (4 km resolution) using GFS
forecast data as boundary and initial conditions.
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Figure 5.15: Maps of WDI for July 2017. Upper panel: IASI L3 (left, 5 km
resolution) and ECMWF operational analysis (right, 12.5 km resolution).
Lower panel: WRF-forecasted output (1.2 km resolution) using ECMWF
operational analysis data as boundary and initial conditions.
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Figure 5.16: Maps of WDI for July 2017. Upper panel: IASI L3 (left, 5 km
resolution) and GFS forecasts (right, 25 km resolution). Lower panel: WRF-
forecasted output (4 km resolution) using GFS forecast data as boundary and
initial conditions.
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Figure 5.17: WRF-ECMWF WDI maps for July 7th, 14th (upper panel),
21st and 28th (lower panel) 2017.



5.3. Results 79

40°N

42°N

L
a

ti
tu

d
e

14°E 16°E 18°E

Longitude

WRF-ECMWF, WDI

2017-07-14_00:00:00

Earthstar Geographics
 50 mi 

 50 km 

0

5

10

15

20

25

40°N

42°N

L
a

ti
tu

d
e

14°E 16°E 18°E

Longitude

WRF-ECMWF, WDI

2017-07-14_06:00:00

Earthstar Geographics
 50 mi 

 50 km 

0

5

10

15

20

25

40°N

42°N

L
a

ti
tu

d
e

14°E 16°E 18°E

Longitude

WRF-ECMWF, WDI

2017-07-14_12:00:00

Earthstar Geographics
 50 mi 

 50 km 

0

5

10

15

20

25

40°N

42°N

L
a

ti
tu

d
e

14°E 16°E 18°E

Longitude

WRF-ECMWF, WDI

2017-07-14_18:00:00

Earthstar Geographics
 50 mi 

 50 km 

0

5

10

15

20

25

Figure 5.18: WRF-ECMWFWDI maps for July 14th 2017 at the four canon-
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July 2017, as calculated by both runs.
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Conclusions

Utilizing the simultaneous retrieval capabilities of the IASI instrument for
surface and thermodynamic parameters, WDI and ECI were developed to
assess severe drought conditions, especially within forests. A case study con-
ducted in Southern Italy, which experienced intense droughts and heatwaves
from the summer months of 2014-2022, aimed at evaluating the effectiveness
of ECI and WDI in measuring water deficit severity during heatwave events.
This assessment involved studying their correlations with other vegetation
and drought monitoring indices (SSM, LAI, FAPAR, FVC and ET).

Significantly, an inverse correlation was found between WDI and SSM,
while a direct correlation was observed with LAI, FAPAR, FVC and ET.
This pattern highlighted WDI’s ability to capture dynamic interactions at
the surface-atmosphere interface and directly measure water deficit induced
by intense heatwaves. In contrast, ECI showed correlations with SSM, LAI,
FAPAR and FVC but exhibited an anticorrelation with ET. This indicated
that ECI was more indicative of the depth of extreme conditions affecting
vegetation. It also proved to be a better indicator than LAI, FAPAR and
FVC of the senescent state of the Apennines woodlands during the 2017
and 2021 heatwaves, signaling reduced chlorophyll synthesis —an unexpected
phenomenon given the heightened sunlight exposure during summer. The
overall performance of both ECI and WDI proved to be useful and precise in
identifying water stress, even when the most commonly used indices showed
inaccuracy.

Moreover, it was demonstrated how the synergy between ECI and WDI
can be exploited to detect arsons in regions of high fire risk, especially if used
together with fire indices such as NBR and ∆NBR. Low values of ECI, when
coupled with a descending WDI trend and a high-severity NBR level, proved
to be an indicator of anthropic action over land: the fire outbreak was not
related to the extreme water stress due to the 2017 heatwave, but was, in
fact, an arson.

Finally, the use of the WRF model with two different global forecast in-
put datasets confirmed the validity of WDI in identifying drougth conditions,
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proving to be an effective and extremely useful physical parameter in the con-
text of numerical weather prediction. The possibilty to enlarge the temporal
and spatial resolution offered by the WRF model gave the opportuinity to
analyze WDI’s behaviour at a finer scale: observing its evolution during a
single month (July 2017), at an hourly scale, over a water-stressed area (both
at a domain and pixel level), confirmed its utility not only when cosidering
its annual trend, but also the specific values it provides for reduced temporal
windows and small (around 1 km2) areas.

Overall, it was demonstrated that the synergistic use of both indices and
their complementary behaviour in relating to both surface and atmospheric
condition are the key factors contributing to their value. Being able to si-
multaneously obtain such quantities from the same instrument, thus having
both spatial and temporal coherence, is extremely difficult, either for satellite
observations or in-situ measurements. In this context, IASI shines as a key
instrument.

Surely there are numerous future developments to consider. First of all,
it should be noted once again that ECI’s estimation from the spectral bands
used in this thesis is a uniqueness of the IASI instrument: there is, in fact, no
other satellite sensor at the moment with the ability to retrieve the emissiv-
ity spectrum for such a large TIR interval (4.8− 13µm) and with such high
spectral resolution (0.25 cm−1). However, a measurement campaing using a
drone with such specifics, and of course higher temporal and spatial resolu-
tion, could be of great interest in investigating ECI’s performance on a more
local scale (under 1 km2). The same could be done with WDI, as measured
from a local station. The main challenge would be identifying the right in-
strument to use and selecting the measurement stations over specific areas.
Identyfing different kind of surfaces and land categories (woodlands, crops,
arid soil, urban environement), while having the possibility to estimate both
ECI and WDI on a local scale, would be incredibly enriching in the context
of exploiting the ECI-WDI synergy.

Lastly, the launch of the Surface, Biology and Geology Observing Ter-
restrial Thermal Emission Radiometer (SBG OTTER, https://sbg.jpl.
nasa.gov), a sounder designed by the Jet Propulsion Laboratory (JPL) at
NASA to have 7 TIR bands with a spatial resolution of 60 m, could provide
high-quality data from which to gain new insights. Its interesting contribu-
tion could be used to further test these thermdynamical indices’ capabilities
and validate their effectiveness in the coming years.

https://sbg.jpl.nasa.gov
https://sbg.jpl.nasa.gov
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