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Abstract: Accurately evaluating drought and its effects on the natural environment is difficult in
regions with limited climate monitoring stations, particularly in the hyper-arid region of the Sultanate
of Oman. Rising global temperatures and increasing incidences of insufficient precipitation have
turned drought into a major natural disaster worldwide. In Oman, drought constitutes a major threat
to food security. In this study, drought indices (DIs), such as temperature condition index (TCI),
vegetation condition index (VCI), and vegetation health index (VHI), which integrate data on drought
streamflow, were applied using moderate resolution imaging spectroradiometer (MODIS) data and
the Google Earth Engine (GEE) platform to monitor agricultural drought and assess the drought risks
using the drought hazard index (DHI) during the period of 2001–2023. This approach allowed us to
explore the spatial and temporal complexities of drought patterns in the Najd region. As a result,
the detailed analysis of the TCI values exhibited temporal variations over the study period, with
notable minimum values observed in specific years (2001, 2005, 2009, 2010, 2014, 2015, 2016, 2017,
2019, 2020, and 2021), and there was a discernible trend of increasing temperatures from 2014 to 2023
compared to earlier years. According to the VCI index, several years, including 2001, 2003, 2006, 2008,
2009, 2013, 2015, 2016, 2017, 2018, 2020, 2021, 2022, and 2023, were characterized by mild drought
conditions. Except for 2005 and 2007, all studied years were classified as moderate drought years
based on the VHI index. The Pearson correlation coefficient analysis (PCA) was utilized to observe
the correlation between DIs, and a high positive correlation between VHI and VCI (0.829, p < 0.01)
was found. Based on DHI index spatial analysis, the northern regions of the study area faced the
most severe drought hazards, with severity gradually diminishing towards the south and east, and
approximately 44% of the total area fell under moderate drought risk, while the remaining 56% was
classified as facing very severe drought risk. This study emphasizes the importance of continued
monitoring, proactive measures, and effective adaptation strategies to address the heightened risk of
drought and its impacts on local ecosystems and communities.

Keywords: GEE; drought assessment; drought indices; drought hazard; MODIS

1. Introduction

Monitoring and evaluating the severity, frequency, duration, and spread of agricul-
tural droughts is difficult due to their complex nature, particularly in hyper-arid regions
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where there is a lack of data. Drought is a frequent natural disaster in arid and semi-arid
lands, causing a range of environmental and socio-economic consequences [1]. Drought is a
significant hydrometeorological phenomenon with far-reaching impacts on social and eco-
nomic stability, second only to floods. Thus, effective mitigation and adaptation strategies
are crucial for managing the risks associated with drought and reducing its detrimental
effects [2]. Drought can be classified into different types based on the sectors affected, such
as meteorological, hydrological, agricultural, and socio-economic droughts. Meteorological
drought refers to a prolonged duration of below-average precipitation, meaning there is a
significant precipitation deficit compared to the region’s typical average precipitation; this
type of drought is often the precursor to other forms of drought, as the lack of rainfall can
lead to reduced water availability, impacting water bodies, agriculture, and socio-economic
conditions [3]. Agricultural drought is distinguished by insufficient soil moisture levels,
which fall below the threshold required for crop yield and vegetation health, impacting
agricultural productivity and food supply [4]. Previous studies have primarily examined
drought duration, severity, and frequency without specifically exploring the timing of
droughts, including their onset and end, as well as the transitional phases, which are
crucial for agricultural productivity [5,6]. A study of drought in Sichuan Province, China
(1961–2016) [7] revealed a drying trend in the east and a wetting trend in the northwest,
with extreme drought events becoming more frequent. The 3-month standardized precipi-
tation index (SPI3) was identified as a strong short-term predictor of soil moisture drought,
and the significant correlations with the Southern Oscillation Index (SOI) suggest that
large-scale atmospheric patterns influence local drought conditions. Over the past decades,
advances in remote sensing technology have greatly enhanced the ability to obtain global in-
formation on agricultural drought; these improvements have been driven by developments
in satellite technology, data processing algorithms, and the integration of multiple sensor
types [8]. Various methods have been devised to monitor and statistically characterize
droughts; these include the creation of standardized and unstandardized drought indices
utilized across meteorology, hydrology, and agricultural drought. Conventional methods
for evaluating and monitoring drought rely on in-situ precipitation data, which often suffer
from inaccuracies and limitations in both temporal and spatial coverage [9]. Droughts in
Oman significantly affect the socio-economic environment and the human natural system,
necessitating coordinated efforts in water management, agricultural practices, and policy
implementation to mitigate their impacts. Oman, with its hyper-arid regions, such as the
Najd area, faces severe challenges due to water scarcity, which affects agricultural produc-
tivity and food supply. Traditional methods of drought monitoring, which rely heavily on
in-situ precipitation data, often suffer from inaccuracies and limitations in both temporal
and spatial coverage; this is especially problematic in arid regions where weather stations
may be sparse, and precipitation events can be highly localized and infrequent [10].

Remote sensing (RS) is a transformative technology that provides extensive data for
environmental monitoring [11], including agricultural drought assessment in arid regions
such as Oman, and addresses the critical challenge of data scarcity by offering continuous,
comprehensive, and high-resolution data across both spatial and temporal resolution [7,12].
However, advancements in RS and earth observation technologies, such as MODIS imagery
toward the end of the 20th century, have revolutionized agricultural drought monitoring
methods [13].

Drought assessment relies on a variety of indices to derive different aspects of drought
conditions, while indices such as VCI, TCI, and VHI are valuable tools, each focuses on
specific aspects of drought, thereby addressing distinct types of droughts, such as agricul-
tural, meteorological, or hydrological drought. VCI, TCI, and VHI are primarily vegetation
indices and are integral to a multifaceted drought monitoring approach. By combining
these indices with others that focus on precipitation (meteorological) and streamflow (hy-
drological), a more comprehensive understanding of drought can be achieved [14]. A
global shift from a crisis management approach to a risk management approach in drought
management has been strongly advocated. A key component of effective drought man-
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agement is reliable drought risk assessment, as it elucidates the relationship between the
hazard and society [15]. He et al. (2011) [16] conducted an analysis of agricultural drought
hazard focusing on three primary crops (wheat, corn, and rice) using the standardized
precipitation index (SPI); their results revealed that the eastern regions of China exhibited a
higher hazard area compared to the western part in terms of agricultural drought risk.

The advent of cloud-based geospatial data monitoring platforms such as GEE has
revolutionized the field of hydrometeorological applications. GEE leverages the power of
cloud computing to access, process, and analyze vast amounts of satellite-based datasets,
providing valuable insights into environmental conditions and changes, and GEE has
greatly improved drought time series analysis capabilities, depending on large volumes of
freely available satellite images and powerful image processing capabilities [17]. Assessing
disaster risk due to drought involves a detailed analysis of hazard-forming factors, such as
unusually low precipitation, drought intensity, occurrence probability, and duration. By
integrating these factors into a comprehensive risk assessment framework using MODIS
satellite images and the GEE platform, researchers and policymakers can better understand
and mitigate the impacts of drought. Effective drought hazard assessments are crucial
for safeguarding water resources, agricultural productivity, and overall socio-economic
stability in affected regions [18].

Aksoy et al. (2019) [19] conducted a comprehensive analysis of drought conditions
in Turkey from February 2000 to January 2019 using MODIS satellite data within the GEE
platform, and in this study, drought, a frequently observed natural hazard resulting from
precipitation deficit and increased evapotranspiration due to high temperatures, poses
significant challenges to agricultural, water resource, and environmental management.
RS indices, such as VHI, normalized multiband drought index (NMDI), and normalized
difference drought index (NDDI), were utilized to assess the spatio-temporal distribution of
drought severity across the country. Khan and Gilani, (2021) [20] provide a comprehensive
analysis of drought conditions by utilizing a range of climatological and hydrological
indices to assess the accumulative effects of various variables over time. This study focused
on different types of droughts, agricultural, hydrological, and meteorological, by comput-
ing and analyzing specific indices, such as VCI, TCI, soil moisture condition index (SMCI),
and precipitation condition index (PCI). This study identified specific years when these
indices pointed to severe and extreme dryness conditions, providing a timeline of signifi-
cant drought events using a dashboard created in the GEE platform. Ejaz et al. (2023) [21]
demonstrate the efficacy of RS techniques in monitoring drought conditions in the hyper-
arid region of the Kingdom of Saudi Arabia (KSA), where climatic observations are limited
due to the sparsely distributed in-situ stations, and by leveraging multi-temporal satellite
data from Landsat 7 (ETM+) and Landsat 8 (OLI/TIRS), processed through the GEE plat-
form. The study computed DIs, including VCI, TCI, and VHI; these indices were compared
against the standardized precipitation evapotranspiration index (SPEI), a conventional
meteorological drought index, for the period from 2001 to 2020. Sazib et al. (2018) [22]
demonstrate the substantial value of integrating advanced web-based tools based on soil
moisture datasets into widely accessible platforms, such as GEE, thereby improving the
monitoring and management of agricultural drought conditions on a global scale and
developing user-friendly web-based tools to significantly enhance the ability to monitor
agricultural drought.

Using Remote Sensing (RS), Geographic Information System (GIS), and the Google
Earth Engine (GEE) platform, this study aims to characterize the spatiotemporal patterns of
agricultural drought conditions in the Najd region from 2001 to 2023 by employing drought
indices such as the vegetation condition index (VCI), temperature condition index (TCI),
and vegetation health index (VHI) with MODIS satellite datasets. The study compares
the reliability of these indices through principal component (PC) analysis. Additionally,
it assesses the drought hazard in the region to provide a comprehensive evaluation of
drought conditions and their impacts.
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This study provides a comprehensive multi-assessment of agricultural drought char-
acteristics in Oman and an effective method to monitor drought processes and mitigate
their effects in this region that suffers from water scarcity.

2. Materials and Methods
2.1. Description of the Investigated Area

The study area located at Dhofar Governorate, southern Oman, known as the Najd
region, covers approximately 88,000 km2. Its boundaries are defined by the international
border with Saudi Arabia to the north, Yemen to the west, the Al-Wusta area to the east, and
the Dhofar mountain chain to the south, which separates it from the coast of the Arabian
Sea, located 30 km offshore. The region spans from latitudes 17◦10′00′′N to 20◦00′00′′N and
longitudes 52◦00′00′′E to 56◦30′00′′E (Figure 1). The Najd region is not densely populated
due to its arid and semi-arid climate, with a small population that is primarily engaged
in traditional forms of agriculture and herding; this demographic aspect emphasizes the
importance of studying agricultural drought in the region, as the local population depends
heavily on the limited agricultural opportunities available. The Najd region is a significant
area with its own unique environmental and agricultural characteristics, and agriculture is
a key component of the local economy. Therefore, the agricultural drought in this region
can severely impact crop yields and livestock, leading to economic losses and affecting
food security. Studying agricultural drought in this region helps in creating better water
management practices to sustain agricultural productivity. The Najd region is characterized
by a flat landscape with major wadis (valleys), small hills, and sand dunes, especially
at the northern edge of the Ruba Al-Khali desert [23]. The elevation in the area varies
from around 1000 m above sea level (m.a.s.l.) on the crest of the Jabal chain to less than
94 m.a.s.l. on the flat land surface. The Najd desert is composed of a stony plain with
alluvial deposits concentrated in the main wadi channels and sand dunes [24]. The region
falls within arid to semi-arid zones and is classified as one of the most arid zones globally
due to high temperatures, evaporation rates, and low rainfall. Based on the Koppen–Geiger
climate classification scheme [25], monthly minimum and maximum temperatures range
from 11.9 ◦C to 42.1 ◦C. The highest temperatures are typically experienced from May
to July, while the lowest temperatures occur between December and February annually.
The average annual evaporation is 157.26 mm, with the maximum average evaporation
happening from April to June and the minimum from December to February. The average
relative humidity ranges from 4.1% to 92.6%, with an annual mean of 51.02%. The lowest
humidity levels are usually observed in March, April, May, and October, while the highest
occur in July and August. Rainfall in the Najd region is irregular and influenced by cyclone
events, with an average annual precipitation of 56.7 mm and 47.6 mm at the Marmul and
Thumrait stations collected in the period spanning 2001 to 2023 (Figure 1). The highest
rainfall is typically recorded in March, June, and May, while the lowest occurs in February,
April, and January. Most of the monsoon rainfall flows towards the Arabian Sea rather than
benefiting the Najd area, except within the Jabal chain. The rainfall in this region is often
light showers or drizzles and does not commonly result in significant runoff. The rainy
season from November to January contributed to 46% of annual precipitation, while the dry
season from June to August contributed only 16.3%. The thickness of the alluvial deposits
in the area is generally thin, ranging from 0–4 m, except in some main wadi deposits [26].

2.2. The Data Used and Processing

MODIS sensor data, which is onboard the Terra and Aqua satellites operated by
NASA, was used in this study. Twenty-three MODIS land products were downloaded from
2001 to 2023, with a total of three tiles to analyze and monitor environmental conditions
in the study area (http://search.earthdata.nasa.gov/search, accessed on 16 March 2024).
MODIS products are essential for studying agricultural drought because they offer frequent,
different-resolution data on vegetation health and surface conditions; their wide spectral
range enables detailed analysis, while the historical data since 2001 helps track long-term

http://search.earthdata.nasa.gov/search
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drought patterns. MODIS’s accessibility and cost-effectiveness make it a valuable tool for
timely and effective drought monitoring and mitigation [27]. MODIS sensors stand out
in remote sensing for agricultural drought monitoring due to their frequent near-daily
global coverage (based on the instruments’ orbital cycle), which surpasses the temporal
resolution of both Landsat-8 and Sentinel-2, which provide coverage every 16 days and
5 days, respectively. While MODIS has a moderate spatial resolution (250 m to 1 km), less
detailed than Landsat-8 (30 m) and Sentinel-2 (10 m to 60 m), it compensates with a broader
spectral range of 36 bands, compared to Landsat-8’s 11 bands and Sentinel-2’s 13 bands.
Additionally, MODIS has been operational since 2001, offering a longer continuous dataset
for long-term trend analysis, whereas Sentinel-2 began in 2015, and Landsat-8 was launched
in 2013. MODIS images undergo several corrections to ensure data accuracy and reliability,
including radiometric correction to adjust sensor biases, geometric correction to align with
geographic coordinates, and atmospheric correction to remove interference from aerosols
and gases. Cloud masking is used to eliminate cloud-covered pixels, while the bidirectional
reflectance distribution function (BRDF) correction adjusts for variations in reflectance
due to sunlight and sensor angles. Regular calibration ensures long-term measurement
accuracy; these corrections make MODIS data precise and dependable for applications such
as agricultural drought monitoring [28]. In this study, MODIS/006/MOD11A2 daytime
land surface temperature (LST) product data with an 8-day time resolution and 1 km
spatial resolution were utilized for calculating the TCI. Additionally, NDVI data from
MODIS/061/MOD13A2 and MODIS/006/MYD13A2 products were used, which have
a time resolution of 16 days and a spatial resolution of 1 km. The NDVI data were pre-
processed and synthesized into monthly data using the maximum value method to calculate
the VCI index, and the time series analysis for that specific location was performed using
the GEE platform.
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Figure 1. Geographical location of the study area (The Najd region, Sultanate of Oman).

2.3. Drought Indices (DIs) Utilization

Remote sensing (RS) has significantly advanced the ability to monitor and evaluate
agricultural drought conditions and has recently emerged as a reliable and effective method
of collecting data over wide areas. Several DIs have been developed and utilized, each
with unique features and applications. Among these, the normalized difference vegetation
index (NDVI), TCI, VCI, and VHI indices are prominent. Below is a detailed discussion of
these indices, focusing on TCI, VCI, and VHI, which are particularly noted for their role in
describing vegetation conditions and classifying drought severity. DI values were classified
into 5 classes, extreme drought (<10), severe drought (10–20), moderate drought (20–30),
mild drought (30–40), and no drought (>40) [29], as shown in Table 1.
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Table 1. Drought index (DI) values and classes (after Du et al. (2013) [30]).

TCI/VCI/VHI Values Drought Class

0 to 10 Extreme drought
10 to 20 Severe drought
20 to 30 Moderate drought
30 to 40 Mild drought

More than 40 No drought

2.3.1. Temperature Condition Index (TCI)

TCI is designed to reflect thermal conditions affecting vegetation and takes into
consideration that during drought periods, there is a reduction in soil moisture, which
leads to an increase in land surface temperature (LST) stress compared to normal conditions.
TCI is calculated using Equation (1) [31]:

TCI = 100 ∗
(

(LSTmax − Ti)
(LSTmax − LSTmin)

)
(1)

where Ti is the current temperature, LSTmax is the maximum temperature over a given pe-
riod, and LSTmin is the minimum temperature. TCI values ranged from 0 to 100, with lower
values indicating higher stress due to elevated temperatures. TCI is particularly useful in
assessing drought impact, as temperature anomalies can significantly stress vegetation.

Kogan, (1997) [32] proposed a two-channel algorithm of MODIS satellite images with
separate terms for the atmospheric LST. In this study, this algorithm can be written as,
Equation (2):

LST = T0
i + a1

(
T0

i − T0
j

)
+ a2(1 − ε1) + a3∆ε1 + a4W(1 − ε1) + a5W∆ε1 + a0 (2)

where Ti
0 and Tj

0 are the brightness temperatures measured at the top of the lower-layer
atmosphere in MODIS satellite images tow-channel i and j; ε1 is the channel emissivity;
∆ε1 is the difference of emissivity; W is the total water vapor content; and ai (i = 0–5) is the
channels algorithm numerical coefficient.

2.3.2. Vegetation Condition Index (VCI)

VCI utilizes NDVI to assess the relative health of vegetation by comparing current
NDVI values to historical records [33]. VCI is calculated as the following Equation (3):

VCI =
(

NDVI − NDVImin
NDVImax − NDVImin

)
100 (3)

where NDVImin and NDVImax are the historical minimum and maximum of NDVI values,
respectively. Values of the VCI index ranged from 0 to 100, with higher values indicating
better vegetation conditions. VCI effectively normalizes NDVI, making it a robust indicator
for drought assessment by identifying deviations from normal vegetation conditions.

2.3.3. Vegetation Health Index (VHI)

VCI and TCI indices were combined to represent vegetation condition through the
VHI index through advanced data processing, including correlation testing of LST and
NDVI as influencing factors, and a strong LST-NDVI correlation was the VHI values basis
determining. The VHI index formula is shown as the following Equation (4) [34]:

VHI = α ∗ VCI + (1 − α)TCI (4)

The VHI formula is the combination of VCI and TCI that has a constant α of 0.5 and
VHI values ranging from 0 to 100, with lower values indicating poor vegetation health and
higher values signifying good health.
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2.4. Pearson Correlation Coefficient Analysis (PCA)

In the Najd region from 2001 to 2023, the study evaluated the linear relationships
between DIs at different time scales using the Pearson correlation analysis (PCA). The
Pearson correlation coefficient measures the strength and direction of the linear relationship
between two variables, x and y. A value of r = 1 denotes a perfect positive linear correla-
tion, meaning that as x increases, y increases proportionally in a perfectly linear manner.
Conversely, r = −1 indicates a perfect negative linear correlation, where y decreases propor-
tionally as x increases. A value of r = 0 signifies no linear correlation, implying that there is
no predictable linear relationship between x and y [35]. The sample correlation coefficient
between the two variables can be computed as follows, Equation (5):

rxy =
cov(x, y)√

var(x)
√

var(y)
(5)

where cov(x, y) is the sample covariance of x and y; var(x) is the sample variance of (x) and
var(y) is the sample variance of (y).

2.5. The Drought Hazard Index (DHI) Calculation

DHI is a composite index that integrates various indicators to provide a single measure
of drought risk and severity. While the exact equation for the DHI can vary depending
on the methodology and the specific indicators used, a general approach involves the
normalization and weighting of individual indicators [36]. The DHI index was calculated
using the following Equation (6).

DHI = (VHIw ∗ VHInorm) + (VCIw ∗ VCInorm) + (TCIw ∗ TCInorm) (6)

where w are weights assigned based on the importance of each DI, norm are near-normal
ratings assigned to DIs. DHI can have a value between a minimum of 10 and a maximum
of 40. Table 2 shows weights and ratings assigned to drought severity. Since different
drought severity levels have varying significance in assessing drought risk in the region,
it is necessary to determine the impact of each drought category. The DHI index was
categorized into four weights, where a weight of 1 was given for a normal drought, and a
weight of 4 was given for a very severe drought, as it causes the greatest hazard [37].

Table 2. Weight and rate assigned to drought category (after Sönmez et al. (2005) [38]).

Severity Weight Occurrence Probability (%) Rate

Near-normal drought 1

≥67.49 1

67.49–68.67 2

68.67–69.71 3

≤69.71 4

Moderate drought 2

≥8.14 1

8.14–8.21 2

8.21–8.27 3

≤8.27 4

Severe drought 3

≥3.36 1

3.36–3.99 2

3.99–4.47 3

≤4.47 4

Very severe drought 4

≥1.92 1

1.92–2.24 2

2.24–2.59 3

≤2.59 4
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2.6. Google Earth Engine (GEE) Tools

Google Earth Engine (GEE) is a powerful cloud-based platform for planetary-scale
environmental data analysis. Earth Engine features a multi-petabyte, analysis-ready data
catalog integrated with a high-performance, parallel computation service. This platform is
accessible via an Internet-based application programming interface (API) and includes a
web-based interactive development environment (IDE) for rapid prototyping and visual-
ization of results [39].

The drought assessment system was developed using functionalities of the GEE
platform to compare DI values and assess the severity of different drought types based on
monthly percentage values of drought conditions, duration, severity, and intensity.

To manage and process data values based on DI results through the GEE platform,
the data upload modality was established. This model converts the original DI data from
binary format to “Geo TIFF” format, which is required by GEE, and creates file metadata
for the resulting data. The metadata are essential for the analysis routines, allowing data
filtering based on user-specified spatio-temporal information.

For bulk data uploads, the GEE batch asset manager tool (available at GEE Asset Man-
ager GitHub) is utilized, automating the process and saving time (Figure 2). Alternatively,
the GEE asset manager can be used for data uploads, but it is less efficient for large datasets
as it only allows for single-image uploads at a time.
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2.7. The Study Methodology

Figure 3 presents the study methodology as follows: collecting meteorological data;
obtaining satellite data such as imagery from platforms (e.g., National Aeronautics and
Space Administration (NASA)); utilizing drought indices, such as VCI, TCI, and VHI, to
assess agricultural drought conditions over time; employing GEE, a cloud-based platform
for geospatial analysis to process and analyze the RS data and calculate the drought
indices over the study area; investigating the relationship between DIs to understand the
consistency and accuracy of the RS data in extracting drought conditions; and analyzing
the results of the DIs and other data to identify and characterize the spatial distribution
and severity of drought hazard in the Najd region.
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3. Results
3.1. Evaluation of Drought Indices

The drought indices, i.e., VCI, TCI, and VHI, are used to analyze the drought sever-
ity condition on both spatial and temporal scales from 2001 to 2023 in the Najd region,
Sultanate of Oman.

3.1.1. Temperature Condition Index (TCI)

The information in Figure 9a–w provided a detailed analysis of the TCI in the Najd
region over the period of 2001–2023 retrieved from MODIS satellites and the GEE platform.
The TCI values exhibit variations over time, with notable minimum values observed in
specific years (2001, 2005, 2009, 2010, 2014, 2015, 2016, 2017, 2019, 2020, and 2021). The TCI
index time series plot in the study area experienced frequent extreme to no-drought events
over the study period, and the TCI index mean values through different years ranged from
18.9 to 80.9 in the investigated area, indicating the varying severity of drought conditions
over time and reflecting the dynamic nature of temperature conditions in the Najd region,
as shown in Figure 4. However, the presence of occasional extreme values of the TCI index
highlights the influence of local climate changes, seasonal extremes, weather anomalies, low
vegetation cover, and temperature variations. This complexity underscores the dynamic
and multifaceted nature of environmental conditions in the Najd region.

The TCI index trend shows an increase in temperature at the study area (based on LST
values), as shown in Figure 5, leading to more severe TCI values in the years 2014 to 2023
compared to the years 2001 to 2013. Given that the Najd region is hyper-arid with high
temperatures (above 45 ◦C) and low annual precipitation (less than 15 mm), the TCI plays
a significant role in the VHI index. Whereas the TCI index is more severe in the southeast
areas of the Najd area compared to the northwest areas in the years 2001, 2005, 2009, 2010,
2014, 2015, 2016, 2017, 2019, 2020, and 2021, indicating spatial variability in temperature
conditions within the region.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 4. TCI, time series plot of the Najd region derived using GEE and MODIS images. 

 

Figure 4. TCI, time series plot of the Najd region derived using GEE and MODIS images.



Remote Sens. 2024, 16, 2960 10 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 4. TCI, time series plot of the Najd region derived using GEE and MODIS images. 

 

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 5. LST variation trends during the 2001–2023 period at (a) Marmul and (b) Thumrait mete-
orological stations. 

3.1.2. Vegetation Condition Index (VCI) 
The study conducted in the Najd region from 2001 to 2023 analyzed the VCI index 

derived from NDVI data to assess the spatio-temporal distribution of drought conditions, 
as shown in Figures 6 and 9a–w. The spatial distribution maps revealed that several years, 
including 2001, 2003, 2006, 2008, 2009, 2013, 2015, 2016, 2017, 2018, 2020, 2021, 2022, and 
2023, were characterized by mild drought conditions. In contrast, years such as 2002, 2004, 
2005, 2007, 2010, 2011, 2012, 2014, and 2019 exhibited wetter conditions with relatively no 
drought.  

The time series analysis of VCI, conducted using GEE, showed that the mean VCI 
values ranged from 48.2 to 67 throughout the study period. 

 
Figure 6. VCI, time series plot of the Najd region derived using GEE and MODIS images. 

3.1.3. Vegetation Health Index (VHI) 
The analysis was conducted in the Najd region using MODIS satellite imagery, and 

the GEE platform focused on the VHI to assess drought conditions spatially and 

Figure 5. LST variation trends during the 2001–2023 period at (a) Marmul and (b) Thumrait
meteorological stations.

3.1.2. Vegetation Condition Index (VCI)

The study conducted in the Najd region from 2001 to 2023 analyzed the VCI index derived
from NDVI data to assess the spatio-temporal distribution of drought conditions, as shown
in Figures 6 and 9a–w. The spatial distribution maps revealed that several years, including
2001, 2003, 2006, 2008, 2009, 2013, 2015, 2016, 2017, 2018, 2020, 2021, 2022, and 2023, were
characterized by mild drought conditions. In contrast, years such as 2002, 2004, 2005, 2007,
2010, 2011, 2012, 2014, and 2019 exhibited wetter conditions with relatively no drought.
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The time series analysis of VCI, conducted using GEE, showed that the mean VCI
values ranged from 48.2 to 67 throughout the study period.

3.1.3. Vegetation Health Index (VHI)

The analysis was conducted in the Najd region using MODIS satellite imagery, and
the GEE platform focused on the VHI to assess drought conditions spatially and temporally.
The spatial distribution maps depicted in Figures 7 and 9a–w revealed that, with the
exception of 2005 and 2007, all studied years were classified as moderate drought years
across the study area. Additionally, the figures indicated that drought severity was more
pronounced in the downstream region compared to the upstream region of the investigated
area. The GEE-extracted VHI index time sequence chart displayed mean VHI values
ranging from 36.6 to 70.5 throughout the study period. The VHI time sequence chart
highlighted that the Najd region consistently experienced moderate to mild drought events
in all the studied years, and in the second decade, especially in 2020, there was a notable
increase in the severity and frequency of moderate drought events.

Figure 8 provides a summary of the maximum, minimum, and mean values of the
TCI, VCI, and VHI indices in the Najd region on an annual period from 2001 to 2023; this
figure highlights severe drought events for TCI mean values in the years 2001, 2005, 2009,
2010, 2014, 2015, 2016, 2017, 2019, 2020, and 2021. Mild drought conditions were noted
based on the mean values of the VCI index in the years 2001, 2003, 2006, 2008, 2009, 2013,
2015, 2016, 2017, 2018, 2020, 2021, 2022, and 2023. In contrast, moderate drought events
were noted for VHI mean values across all studied years except for 2005 and 2007.
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The concentration of values for the T TCI, VCI, and VHI between 18.7 and 80.4 indicates
that the Najd region mainly experiences mild to no-drought conditions; this suggests a
stable climate with moderate variations in temperature and precipitation. Additionally, the
data may be averaged over larger scales, smoothing out extreme variations. Overall, these
indices reflect a dynamic interaction between the relatively stable climatic conditions and
the drought rate in the study area.

3.2. Pearson Correlation Coefficient Analysis (PCA) between Drought Indices (DIs)

Based on the correlation analysis between DIs (TCI, VCI, and VHI) through the study
period (Table 3), the VHI index shows the highest positive correlation with the VCI index,
with a correlation coefficient of 0.829 (p < 0.01). Furthermore, a weak correlation was
observed between the VHI index and TCI index, with a correlation coefficient of 0.679.
The correlation between the VCI index and TCI index was calculated, and a very weak
correlation was observed (0.152).

Table 3. PCA analysis of drought indices (DIs).

Correlation Coefficient

Average TCI Average VCI Average VHI
Average TCI 1 0.152 0.679 **
Average VCI 0.152 1 0.829 **
Average VHI 0.679 ** 0.829 ** 1

** Correlation is significant at the 0.01 level (2-tailed).
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According to Table 3, the correlation between TCI, VCI, and VHI indices tends to
increase with longer time periods. The vegetation growth is influenced by the current and
previous months of condition, including those before vegetation growth started.

As a result, the vegetation growth regime and vegetation index are more strongly
closely related to wet/drought conditions over longer time periods. This means that VHI,
TCI, and VCI indices, which are closely tied to the vegetation index used to monitor the
agricultural drought, show a stronger correlation over an extended period of time.

3.3. The Drought Hazard Index (DHI) Assessment

To assess the spatial distribution of drought hazard in the Najd region over a specific
time period, maps of drought occurrence severity were examined. The spatial distribution
of the DHI index revealed that drought hazard severity was highest in the northern parts
of the study area, with a gradual decrease towards the south and eastern parts of the
investigated area. It was observed that the majority of the study area experienced less than
moderate drought risk, covering 44% of the total area. Additionally, a significant portion
of the area (56% of the total area) was classified as having very severe drought risk, as
shown in Figure 10. The percentages of areas covered by drought hazard classes at different
timescales are provided in Table 4.
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Table 4. Drought hazard severity in the Najd region.

Drought Severity Weight Occurrence
Probability (%) Area (%)

Near-normal drought 1 ≤69.71 21

Moderate drought 2 ≤8.27 23

Very severe drought 4 ≤2.59 56

4. Discussion

The impact of drought on agricultural productivity, climate conditions, and land
desertification is indeed significant and requires thorough investigation and strategic
management [40]. Therefore, this study examining multiple drought indices alongside
vegetation index and surface temperature in the hyper-arid region of the Sultanate of Oman
(the Najd region) from 2001 to 2023 is commendable. By considering various drought
indices simultaneously, this research can provide a more comprehensive understanding
of the spatiotemporal characteristics of drought in the study region [10]. Utilizing indices
such as TCI, VCI, and VHI allows for a multidimensional analysis of drought impacts,
considering temperature stress, vegetation health, and overall environmental conditions.
This approach aligns with relevant literature, which emphasizes the importance of integrat-
ing multiple indicators to effectively capture the complexity of drought phenomena. For
instance, studies such as Kogan (1997) [32] and Cao et al. (2021) [41] demonstrate that using
combined indices offers a nuanced view of drought severity and its effects on ecosystems.
Hence, this approach allows for a holistic view of drought conditions, which is crucial for
enhancing the accuracy and reliability of drought assessment and contributing valuable
insights for better drought management and mitigation strategies [42].

This study addresses a crucial aspect of environmental monitoring in regions such as
the Najd region of the Sultanate of Oman, where climate change and its impacts, such as
drought, are becoming increasingly severe [23]. The evaluation and correlation of DIs such
as TCI, VCI, and VHI from 2001 to 2023, using data from the MODIS satellite datasets and
the GEE platform, is a significant effort to enhance the accuracy and reliability of drought
assessment [43]. By leveraging the extensive temporal and spatial coverage of MODIS
data along with the powerful processing capabilities of GEE, this approach allows for a
comprehensive analysis of drought conditions over time. This integration improves the
precision of drought monitoring and provides valuable insights into the spatiotemporal
dynamics of drought [44].

One of the primary challenges in agricultural drought assessment in the Sultanate
of Oman is the scarcity of reliable in-situ climate data [10,45]. The sparse distribution of
weather stations and the incomplete and intermittent nature of the data they provide make
it difficult to capture accurate climate variations, especially temperature changes, which are
critical for drought analysis [46]. Limited spatial coverage and data gaps hinder the ability
to monitor and assess drought conditions comprehensively. This challenge underscores
the importance of using remote sensing technologies and satellite datasets, such as those
provided by MODIS, which offer consistent, wide-ranging, and continuous data. These
tools can supplement ground-based observations, providing a more reliable and detailed
understanding of climate dynamics and their impact on drought [47]. The use of RS
data helps to mitigate these issues by providing consistent and comprehensive coverage
over large areas, making it possible to monitor drought conditions more effectively and
accurately [1].

The rising temperatures and worsening drought conditions in Oman, with about
50% of the country affected by severe and frequent drought events, highlight the urgent
need for improved monitoring and assessment techniques [10]. The Najd region, having
experienced moderate drought events consistently over the past 23 years, serves as a critical
area for this study. Accurately estimating the severity and progression of droughts using
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DIs can provide valuable insights into the trends and patterns of drought occurrences,
which is essential for developing effective mitigation and adaptation strategies.

The results of our study are stated below:

1. The results of the TCI index values over the study period exhibit variations over
time, with notable minimum observed values in specific years (2001, 2005, 2009, 2010,
2014, 2015, 2016, 2017, 2019, 2020, and 2021); this indicates periods of more severe
temperature conditions in the study area during those years [14]. The TCI index
values trend shows an increase in temperature in the years 2014 to 2023 compared
to the years 2001 to 2013; this trend suggests a worsening of temperature conditions
over the years, which can have implications for the study region’s environment and
ecosystems [48]. The TCI mean values throughout different years ranged from 18.9
to 80.9, indicating the varying severity of drought conditions over time. Therefore,
the analysis provides valuable insights into the impact of temperature conditions on
drought dynamics in the Najd region, emphasizing the importance of considering
multiple factors in assessing drought conditions through indices such as TCI and
VCI indices [49]. Song et al. (2018) [50] used MODIS-based indices to study drought
conditions in China. Their findings highlighted how extreme temperature conditions,
reflected by low TCI values, were crucial for understanding drought dynamics and
impacts on agriculture. This supports the observation that minimum TCI values
signify critical temperature stress periods.

2. The spatial distribution maps of the VCI index revealed that several years, including
2001, 2003, 2006, 2008, 2009, 2013, 2015, 2016, 2017, 2018, 2020, 2021, 2022, and 2023,
were characterized by mild drought conditions, and the mean VCI values ranged from
48.2 to 67 throughout the study period. This indicates fluctuations in vegetation health
and moisture availability in the region over the years. The results suggest a varying
pattern of drought severity, with certain years experiencing milder drought conditions
while others show wetter conditions. These results provide valuable insights into the
dynamics of vegetation response to environmental conditions in the Najd region over
the studied time period; the results are similar to the VCI analysis on spatiotemporal
variations of spring drought in China by Liang et al. (2021) [51]. Omondi, (2010) [52]
employed statistical models to analyze VCI trends in the Horn of Africa, finding that
VCI values significantly correlated with seasonal rainfall patterns. Their analysis re-
vealed a mean VCI decrease during drought years, with VCI values dropping by up
to 20 compared to non-drought years; the study highlighted those periods with a VCI
below 50 corresponded with severe drought conditions and reduced vegetation health.

3. According to VHI index spatial distribution maps, all studied years (with the excep-
tion of 2005 and 2007) were classified as moderate drought years, and the mean VHI
values ranged from 36.6 to 70.5 throughout the study period. Based on Jalayer et al.
(2023) [53], the VHI index results underscore the persistent nature of drought condi-
tions in the Najd region, with a noticeable escalation in severe drought events in the
latter years of the study period. The spatial and temporal analysis of VHI provides
valuable insights into the evolving drought patterns in the region, emphasizing the
need for effective mitigation and adaptation strategies to address the heightened risk
of drought in the study area [54].

4. The high positive correlation between VHI and VCI (0.829, p < 0.01) underscores a
robust linear relationship, implying that VCI is a significant predictor of VHI. The
correlation coefficient between the VHI index and TCI index is 0.679, indicating a
positive correlation. This suggests that as the VHI index increases, the TCI index tends
to increase. Meanwhile, the correlation coefficient between the VCI index and TCI
index is 0.152, indicating a positive and very weak correlation; this result is compatible
with Al-Kindi et al.’s (2022) study [55], which aimed at drought monitoring using
various drought indices (DIs) in the northern part of the United Arab Emirates.

5. The DHI index’s spatial analysis reveals significant regional disparities in drought
severity, highlighting the most severe conditions in the northern regions of the study
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area, and the spatial distribution maps indicate that the northern regions experienced
the highest levels of drought risk, with severity gradually decreasing towards the
south and east. Specifically, the data show that approximately 44% of the total area
fell under moderate drought risk, while a substantial 56% faced very severe drought
risk. The differential in drought severity underscores the importance of understand-
ing regional variations in drought severity and the need for proactive measures to
build resilience and mitigate the impacts of drought on vulnerable communities and
ecosystems [56].

Despite the advancements in satellite-based drought indices (DIs), several limitations
persist; for instance, (i) ground validation is still required to ensure accuracy in local
conditions, a process that is particularly challenging in remote and arid regions; (ii) the need
for expertise in remote sensing and climate science means that misinterpretation of satellite-
derived indices can lead to incorrect assessments of drought severity; (iii) the relatively
recent introduction of continuous satellite observations (e.g., MODIS since 2001) limit
the availability of long-term historical data for robust trend analysis; (iv) the moderate
resolution of satellite imagery may not capture fine-scale variations in drought conditions,
especially in heterogeneous landscapes or small-scale agricultural plots. Researchers in
developing regions or those with limited resources may face difficulties accessing and
processing large datasets, such as those available through Google Earth Engine (GEE).
Furthermore, while these indices offer valuable quantitative measures, they may not fully
reflect the socio-economic impacts of drought on local communities, which are essential for
comprehensive risk assessment and management.

5. Conclusions and Recommendations

Conducting a comprehensive study on agricultural drought assessment in the hyper-
arid region of the Sultanate of Oman using DIs (VCI, TCI, and VHI), MODIS satellite
datasets, and the GEE platform is a valuable approach for monitoring and analyzing
drought conditions and calculating the SAI to determine anomalies in the DIs can provide
insights into the severity and duration of drought, events in the Najd region. Additionally,
correlating the DIs with each other using the Pearson correlation coefficient can help identify
relationships and patterns in the data. Given the limited availability of in-situ weather
stations in the Najd region, RS data have become especially important for monitoring and
analyzing droughts over an extended period from 2001 to 2023. This study contributes
valuable information for understanding the spatial and temporal distribution of agricultural
droughts in this hyper-arid region, and the study conclusions are as follows:

1. The TCI index exhibited temporal variations over the study period, with notable
minimum values observed in specific years (2001, 2005, 2009, 2010, 2014, 2015, 2016,
2017, 2019, 2020, and 2021). Furthermore, there was a discernible trend of increasing
temperatures from 2014 to 2023 compared to earlier years, indicating potential climate
change impacts.

2. Several years, including 2001, 2003, 2006, 2008, 2009, 2013, 2015, 2016, 2017, 2018, 2020,
2021, 2022, and 2023, were characterized by mild drought conditions based on the
VCI index, with mean values ranging from 48.2 to 67 throughout the study period.
This suggests periodic but relatively moderate levels of vegetation stress in the region.

3. Except for 2005 and 2007, all studied years were classified as moderate drought years
based on the VHI index, indicating persistent drought conditions in the region. A
noticeable escalation in severe drought events was observed towards the latter years
of the study period, emphasizing the evolving nature of drought patterns and the
need for effective mitigation and adaptation strategies.

4. A strong positive correlation was found between VHI and VCI indices, indicating
a robust linear relationship and highlighting VCI as a significant predictor of VHI.
Positive correlations were also observed between VHI and TCI indices, albeit with
varying strengths, while the correlation between VCI and TCI indices was positive
but very weak.
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5. The northern regions of the study area faced the most severe drought hazards, grad-
ually diminishing towards the south and east. Approximately 44% of the total area
was classified as under moderate drought risk, while the remaining 56% faced very
severe drought risk, underscoring the widespread and significant impacts of drought
in the study area.

Overall, these results emphasize the complex interplay of climatic factors and their
implications for agricultural drought vulnerability in the Najd region.

In our future studies, addressing the limitations of satellite-based drought indices
(DIs) involves a multifaceted approach, as follows:

1. Ground Validation and Local Accuracy:

(a) Increase the number and coverage of ground-based monitoring stations, es-
pecially in remote and arid regions. Collaborative networks between local
governments, research institutions, and international organizations can help
achieve these goals.

(b) Leverage local knowledge and observations from communities to validate
satellite data and improve local accuracy.

2. Expertise and Interpretation:

(a) Provide training for local experts and stakeholders in remote sensing and
climate science to improve the interpretation of satellite data.

(b) Develop more intuitive tools and platforms that can assist non-experts in
interpreting satellite-derived indices.

3. Historical Data Limitations:

(a) Combine satellite data with other historical datasets, such as meteorological
records or historical maps, to extend the temporal analysis.

(b) Use climate models to simulate past conditions and fill gaps in the historical record.

4. Resolution and Fine-Scale Variations:

(a) Where possible, use higher-resolution satellite data or combine multiple data
sources to capture finer-scale variations.

(b) Apply statistical and machine learning techniques to downscale coarse-resolution
data to better reflect local conditions.

5. Access to Data and Resources:

(a) Foster partnerships between researchers, governments, and organizations to
share resources and expertise.

(b) Support and utilize open access platforms and initiatives like Google Earth
Engine (GEE) to facilitate data access and processing.

6. Socio-Economic Impact Assessment:

(a) Combine satellite data with socio-economic data through integrated assess-
ment models to capture the broader impacts of drought.

(b) Engage with local communities to understand and incorporate their experi-
ences and impacts into drought assessments.

By addressing these limitations with targeted strategies, the effectiveness and reliability
of satellite-based drought indices for better drought monitoring and management can
be improved.

Author Contributions: Conceptualization, M.S.A.N., P.D., C.F., A.S., E.M.S. and M.E.F.; methodology,
M.S.A.N., P.D., C.F., A.S., E.M.S. and M.E.F.; software, M.E.F.; validation, M.S.A.N., C.F., A.S., E.M.S.
and M.E.F.; formal analysis, M.S.A.N. and M.E.F.; investigation, M.S.A.N.; resources, M.S.A.N.,
P.D., C.F., A.S., E.M.S. and M.E.F.; data curation, M.S.A.N., P.D., C.F., A.S., E.M.S. and M.E.F.;
writing—original draft preparation, M.E.F.; writing—review and editing, M.S.A.N., P.D., C.F., A.S.,
E.M.S. and M.E.F.; visualization, M.S.A.N., P.D., C.F., A.S., E.M.S. and M.E.F.; supervision, M.S.A.N.,
C.F., A.S. and M.E.F.; project administration, C.F. and M.E.F.; funding acquisition, M.S.A.N., P.D., A.S.,
E.M.S. and M.E.F. All authors have read and agreed to the published version of the manuscript.



Remote Sens. 2024, 16, 2960 21 of 23

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The manuscript presented a scientific collaboration between scientific institutions
in three countries (Oman, Italy, and Egypt). The authors would like to thank the National Authority
for Remote Sensing and Space Science (NARSS), Assiut University, University of Basilicata, and the
Ministry of Agriculture, Fisheries and Water Resources of Oman for funding the field survey and
satellite data.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. El Kenawy, A.M.; Al Buloshi, A.; Al-Awadhi, T.; Al Nasiri, N.; Navarro-Serrano, F.; Alhatrushi, S.; Robaa, S.; Domínguez-Castro,

F.; McCabe, M.F.; Schuwerack, P.-M. Evidence for intensification of meteorological droughts in Oman over the past four decades.
Atmos. Res. 2020, 246, 105126. [CrossRef]

2. Sayers, P.; Yuanyuan, L.; Moncrieff, C.; Jianqiang, L.; Tickner, D.; Xiangyu, X.; Speed, R.; Aihua, L.; Gang, L.; Bing, Q. Drought
risk Management: A Strategic Approach; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2016;
ISBN 978-92-3-1000942.

3. Zhao, M.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Xie, Y. Assessing socio-economic drought evolution characteristics and their
possible meteorological driving force. Geomat. Nat. Hazards Risk 2019, 10, 1084–1101. [CrossRef]

4. Rembold, F.; Meroni, M.; Atzberger, C.; Ham, F.; Fillol, E.; Thenkabail, P. Agricultural drought monitoring using space-derived
vegetation and biophysical products: A global perspective. Remote Sens. Handb. 2016, 3, 349–365.

5. Gibson, A.J.; Verdon-Kidd, D.C.; Hancock, G.R.; Willgoose, G. Catchment-scale drought: Capturing the whole drought cycle
using multiple indicators. Hydrol. Earth Syst. Sci. 2020, 24, 1985–2002. [CrossRef]

6. Wang, P.; Wu, X.; Hao, Y.; Wu, C.; Zhang, J. Is Southwest China drying or wetting? Spatiotemporal patterns and potential causes.
Theor. Appl. Climatol. 2020, 139, 1–15. [CrossRef]

7. Zhang, Y.; Xia, J.; Yang, F.; She, D.; Zou, L.; Hong, S.; Wang, Q.; Yuan, F.; Song, L. Analysis of drought characteristic of Sichuan
province, Southwestern China. Water 2023, 15, 1601. [CrossRef]

8. Sara Tokhi, A. Yield Assessment of Grapes in Drought Prone Areas Using Satellite Remote Sensing-Based Time-Series Datasets
and Machine Learning Approach. Ph.D. Dissertation, Graduated School of Life and Environmental Sciences, University of
Tsukuba, Tsukuba, Japan, 2022.

9. Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices
at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [CrossRef]

10. Mansour, S. Geospatial modelling of drought patterns in Oman: GIS-based and machine learning approach. Model. Earth Syst.
Environ. 2024, 10, 3411–3431. [CrossRef]

11. Fiorentino, C.; D’Antonio, P.; Toscano, F.; Donvito, A.; Modugno, F. New Technique for Monitoring High Nature Value Farmland
(HNVF) in Basilicata. Sustainability 2023, 15, 8377. [CrossRef]

12. Belal, A.-A.; El-Ramady, H.R.; Mohamed, E.S.; Saleh, A.M. Drought risk assessment using remote sensing and GIS techniques.
Arab. J. Geosci. 2014, 7, 35–53. [CrossRef]

13. West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and
future opportunities. Remote Sens. Environ. 2019, 232, 111291. [CrossRef]

14. Wei, W.; Zhang, J.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Comparative evaluation of drought indices for monitoring drought based on
remote sensing data. Environ. Sci. Pollut. Res. 2021, 28, 20408–20425. [CrossRef] [PubMed]

15. Hedayat, H.; Kaboli, H.S. Drought risk assessment: The importance of vulnerability factors interdependencies in regional drought
risk management. Int. J. Disaster Risk Reduct. 2024, 100, 104152. [CrossRef]

16. He, B.; Lü, A.; Wu, J.; Zhao, L.; Liu, M. Drought hazard assessment and spatial characteristics analysis in China. J. Geogr. Sci. 2011,
21, 235–249. [CrossRef]

17. Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi,
S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications:
A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [CrossRef]

18. Waleed, M.; Sajjad, M. On the emergence of geospatial cloud-based platforms for disaster risk management: A global scientometric
review of Google Earth engine applications. Int. J. Disaster Risk Reduct. 2023, 97, 104056. [CrossRef]

19. Aksoy, S.; Gorucu, O.; Sertel, E. Drought monitoring using MODIS derived indices and google earth engine platform.
In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey,
16–19 July 2019; pp. 1–6.

20. Khan, R.; Gilani, H. Global drought monitoring with big geospatial datasets using Google Earth Engine. Environ. Sci. Pollut. Res.
2021, 28, 17244–17264. [CrossRef] [PubMed]

21. Ejaz, N.; Bahrawi, J.; Alghamdi, K.M.; Rahman, K.U.; Shang, S. Drought monitoring using landsat derived indices and Google
Earth engine platform: A case study from Al-Lith Watershed, Kingdom of Saudi Arabia. Remote Sens. 2023, 15, 984. [CrossRef]

https://doi.org/10.1016/j.atmosres.2020.105126
https://doi.org/10.1080/19475705.2018.1564706
https://doi.org/10.5194/hess-24-1985-2020
https://doi.org/10.1007/s00704-019-02935-4
https://doi.org/10.3390/w15081601
https://doi.org/10.1080/19475705.2022.2044394
https://doi.org/10.1007/s40808-024-01958-9
https://doi.org/10.3390/su15108377
https://doi.org/10.1007/s12517-012-0707-2
https://doi.org/10.1016/j.rse.2019.111291
https://doi.org/10.1007/s11356-020-12120-0
https://www.ncbi.nlm.nih.gov/pubmed/33405156
https://doi.org/10.1016/j.ijdrr.2023.104152
https://doi.org/10.1007/s11442-011-0841-x
https://doi.org/10.1109/JSTARS.2020.3021052
https://doi.org/10.1016/j.ijdrr.2023.104056
https://doi.org/10.1007/s11356-020-12023-0
https://www.ncbi.nlm.nih.gov/pubmed/33394397
https://doi.org/10.3390/rs15040984


Remote Sens. 2024, 16, 2960 22 of 23

22. Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for drought assessment using global soil moisture data.
Remote Sens. 2018, 10, 1265. [CrossRef]

23. Al-Hashmi, H. Land Degradation in the Sultanate of Oman: Reasons and Intervention Measures. In Combating Desertification in
Asia, Africa and the Middle East: Proven Practices; Springer: Dordrecht, The Netherlands, 2013; pp. 401–423. [CrossRef]

24. Cooper, J.P.; Zazzaro, C. The Farasan Islands, Saudi Arabia: Towards a chronology of settlement. Arab. Archaeol. Epigr. 2014, 25,
147–174. [CrossRef]

25. Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate
classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [CrossRef] [PubMed]

26. Al-Mashaikhi, K. Evaluation of Groundwater Recharge in Najd Aquifers Using Hydraulics, Hydrochemical, and Isotope
Evidences. Ph.D. Thesis, Friedrich Schiller University, Jena, Germany, 2011.

27. Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and
impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [CrossRef]

28. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First
operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [CrossRef]

29. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

30. Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating
MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [CrossRef]

31. Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100.
[CrossRef]

32. Kogan, F.N. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [CrossRef]
33. Yagci, A.L.; Di, L.; Deng, M. The effect of corn–soybean rotation on the NDVI-based drought indicators: A case study in Iowa,

USA, using Vegetation Condition Index. GIScience Remote Sens. 2015, 52, 290–314. [CrossRef]
34. Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Analysis of the long-term agricultural drought onset, cessation,

duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia.
Environ. Syst. Res. 2018, 7, 13. [CrossRef]

35. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [CrossRef]
36. Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58.

[CrossRef]
37. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th

Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183.
38. Sönmez, F.K.; Kömüscü, A.Ü.; Erkan, A.; Turgu, E. An analysis of spatial and temporal dimension of drought vulnerability in

Turkey using the standardized precipitation index. Nat. Hazards 2005, 35, 243–264. [CrossRef]
39. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
40. Azadi, H.; Keramati, P.; Taheri, F.; Rafiaani, P.; Teklemariam, D.; Gebrehiwot, K.; Hosseininia, G.; Van Passel, S.; Lebailly, P.;

Witlox, F. Agricultural land conversion: Reviewing drought impacts and coping strategies. Int. J. Disaster Risk Reduct. 2018, 31,
184–195. [CrossRef]

41. Cao, S.; He, Y.; Zhang, L.; Chen, Y.; Yang, W.; Yao, S.; Sun, Q. Spatiotemporal characteristics of drought and its impact on
vegetation in the vegetation region of Northwest China. Ecol. Indic. 2021, 133, 108420. [CrossRef]

42. Alsafadi, K.; Al-Ansari, N.; Mokhtar, A.; Mohammed, S.; Elbeltagi, A.; Sh Sammen, S.; Bi, S. An evapotranspiration deficit-based
drought index to detect variability of terrestrial carbon productivity in the Middle East. Environ. Res. Lett. 2022, 17, 014051.
[CrossRef]

43. Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought monitoring over Yellow River
basin from 2003–2019 using reconstructed MODIS land surface temperature in Google Earth Engine. Remote Sens. 2021, 13, 3748.
[CrossRef]

44. Hashemzadeh Ghalhari, M.; Vafakhah, M.; Damavandi, A.A. Agricultural drought assessment using vegetation indices derived
from MODIS time series in Tehran Province. Arab. J. Geosci. 2022, 15, 412. [CrossRef]

45. Boluwade, A. Spatial-temporal assessment of satellite-based rainfall estimates in different precipitation regimes in water-scarce
and data-sparse regions. Atmosphere 2020, 11, 901. [CrossRef]

46. Gyaneshwar, A.; Mishra, A.; Chadha, U.; Raj Vincent, P.D.; Rajinikanth, V.; Pattukandan Ganapathy, G.; Srinivasan, K.
A contemporary review on deep learning models for drought prediction. Sustainability 2023, 15, 6160. [CrossRef]

47. Wu, D.; Qu, J.J.; Hao, X. Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. Int. J.
Remote Sens. 2015, 36, 5403–5425. [CrossRef]

48. Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring drought using composite drought indices based on remote sensing.
Sci. Total Environ. 2020, 711, 134585. [CrossRef] [PubMed]

49. Zhuo, W.; Huang, J.; Zhang, X.; Sun, H.; Zhu, D.; Su, W.; Zhang, C.; Liu, Z. Comparison of five drought indices for agricultural
drought monitoring and impacts on winter wheat yields analysis. In Proceedings of the 2016 Fifth International Conference on
Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–6. [CrossRef]

https://doi.org/10.3390/rs10081265
https://doi.org/10.1007/978-94-007-6652-5_19
https://doi.org/10.1111/aae.12046
https://doi.org/10.1038/sdata.2018.214
https://www.ncbi.nlm.nih.gov/pubmed/30375988
https://doi.org/10.1016/j.ecolind.2015.11.062
https://doi.org/10.1016/S0034-4257(02)00091-3
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/j.jag.2012.09.010
https://doi.org/10.1016/0273-1177(95)00079-T
https://doi.org/10.1175/1520-0477(1997)078%3C0621:GDWFS%3E2.0.CO;2
https://doi.org/10.1080/15481603.2015.1038427
https://doi.org/10.1186/s40068-018-0115-z
https://doi.org/10.4324/9780203771587
https://doi.org/10.1023/A:1013388814894
https://doi.org/10.1007/s11069-004-5704-7
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.ijdrr.2018.05.003
https://doi.org/10.1016/j.ecolind.2021.108420
https://doi.org/10.1088/1748-9326/ac4765
https://doi.org/10.3390/rs13183748
https://doi.org/10.1007/s12517-022-09741-9
https://doi.org/10.3390/atmos11090901
https://doi.org/10.3390/su15076160
https://doi.org/10.1080/01431161.2015.1093190
https://doi.org/10.1016/j.scitotenv.2019.134585
https://www.ncbi.nlm.nih.gov/pubmed/32000314
https://doi.org/10.1109/Agro-Geoinformatics.2016.7577702


Remote Sens. 2024, 16, 2960 23 of 23

50. Song, Y.; Fang, S.; Yang, Z.; Shen, S. Drought indices based on MODIS data compared over a maize-growing season in Songliao
Plain, China. J. Appl. Remote Sens. 2018, 12, 046003. [CrossRef]

51. Liang, L.; Qiu, S.; Yan, J.; Shi, Y.; Geng, D. VCI-based analysis on spatiotemporal variations of spring drought in China. Int. J.
Environ. Res. Public Health 2021, 18, 7967. [CrossRef] [PubMed]

52. Omondi, P. Agricultural drought indices in the greater horn of Africa (GHA) countries. In Proceedings of the Agricultural
Drought Indices Proceedings of an Expert Meeting, Murcia, Spain, 2–4 June 2010; p. 128.

53. Jalayer, S.; Sharifi, A.; Abbasi-Moghadam, D.; Tariq, A.; Qin, S. Assessment of spatiotemporal characteristic of droughts using in
situ and remote sensing-based drought indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1483–1502. [CrossRef]

54. Kumar, V.; Chu, H.-J. Spatiotemporal consistency and inconsistency of meteorological and agricultural drought identification:
A case study of India. Remote Sens. Appl. Soc. Environ. 2024, 33, 101134. [CrossRef]

55. Al-Kindi, H.; Al-Ruzouq, R.; Hammouri, N.; Shanableh, A. Monitoring Drought with Various Indices in Northern Part of UAE
Using Different Satellite Image. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing
Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2339–2342. [CrossRef]

56. Nasrollahi, M.; Khosravi, H.; Moghaddamnia, A.; Malekian, A.; Shahid, S. Assessment of drought risk index using drought
hazard and vulnerability indices. Arab. J. Geosci. 2018, 11, 606. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1117/1.JRS.12.046003
https://doi.org/10.3390/ijerph18157967
https://www.ncbi.nlm.nih.gov/pubmed/34360256
https://doi.org/10.1109/JSTARS.2023.3237380
https://doi.org/10.1016/j.rsase.2023.101134
https://doi.org/10.1109/IGARSS46834.2022.9884113
https://doi.org/10.1007/s12517-018-3971-y

	Introduction 
	Materials and Methods 
	Description of the Investigated Area 
	The Data Used and Processing 
	Drought Indices (DIs) Utilization 
	Temperature Condition Index (TCI) 
	Vegetation Condition Index (VCI) 
	Vegetation Health Index (VHI) 

	Pearson Correlation Coefficient Analysis (PCA) 
	The Drought Hazard Index (DHI) Calculation 
	Google Earth Engine (GEE) Tools 
	The Study Methodology 

	Results 
	Evaluation of Drought Indices 
	Temperature Condition Index (TCI) 
	Vegetation Condition Index (VCI) 
	Vegetation Health Index (VHI) 

	Pearson Correlation Coefficient Analysis (PCA) between Drought Indices (DIs) 
	The Drought Hazard Index (DHI) Assessment 

	Discussion 
	Conclusions and Recommendations 
	References

