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Assessing Reciprocity in Polarimetric SAR Data
Augusto Aubry, Senior Member, IEEE, Vincenzo Carotenuto, Senior Member, IEEE, Antonio De Maio, Fellow,

IEEE, Luca Pallotta, Senior Member, IEEE

Abstract— This letter studies the conformity with the reci-
procity theorem on measured polarimetric SAR data. The
problem is formalized via a binary hypothesis test where the
reciprocity assumption is tested versus its alternative (absence
of reciprocity). The Generalized Likelihood Ratio (GLR) is used
as design criterion and the resulting decision rule ensures the
Constant False Alarm Rate (CFAR) property. At the analysis
stage, the performance of the GLR statistic is analyzed on
simulated data as well as on two different measured datasets
(collected by two systems) thus highlighting the effectiveness of
the approach.

Index Terms— Polarimetric SAR, reciprocity, covariance ma-
trix.

I. INTRODUCTION

In monostatic backscattering scenarios, where the transmit

and receive antennas are co-located, the polarimetric scattering

matrix, also known as the Sinclair matrix, is defined as [1, eq.

(3.15)]

S =

(

SHH SHV

SVH SVV

)

whereby the SXY entry is the complex scattering return for

X transmit polarization and Y receive polarization. For tar-

gets/media whose internal state is unaltered by the polarization

of the transmit signal, the reciprocity theorem requires that the

two cross-polar terms are equal, i.e., SHV = SVH and enforces

a symmetric structure to S. This is expected to be the case

for most natural scatterers even if real data might not always

exactly comply with the reciprocity theorem due to statistical

fluctuations, Faraday rotations [2], as well as measurement

errors related to channel mismatches and sensor non idealities.

To circumvent this drawback, calibration procedures can be

used as for instance those summarized in [3, Sections 13-15].

The calibrated image is then used for polarimetric processing

applications such as coherent change detection, classification,

etc. [1], [4]–[15], assuming that reciprocity holds true. In

fact, only three channels are usually processed (possibly the

cross-channel is computed as the coherent average of the

HV and VH returns [16]). In this respect it would be of

interest to develop a statistical test aimed at ascertaining to

what extent the polarimetric scattering matrix of a pixel in a

calibrated SAR image complies with the reciprocity condition.

This is indeed the scope of this study which formulates the

compliance with reciprocity as a binary hypothesis test where
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the reciprocity (H0) is tested versus its alternative (i.e., lack of

reciprocity, H1), with a given confidence level represented by

the type-I error of the test (i.e., false alarm probability PFA).

The problem is solved resorting to the Generalized Likelihood

Ratio Test (GLRT) and the performance of the technique is

assessed on simulated data as well as on real recorded SAR

data collected by two different systems with different hardware

and operating frequency.

The remainder of the letter is organized as follows: Section

II is devoted to problem formulation and GLRT derivation,

whereas Section III describes the conducted analyses as well

as the obtained results. Finally, Section IV draws some con-

clusions.

Notation

The adopted notation uses boldface for vectors a (lower

case), and matrices A (upper case). The transpose, conjugate,

and conjugate transpose are denoted by (·)T , (·)∗, and (·)†,

respectively. tr {·} and det(·) are the trace and the determinant

of the square matrix argument, respectively. I indicates the

identity matrix, 1 is a vector of all 1 entries, and 0 is a vector

of all 0 entries, whose sizes are determined from the context.

Finally, the letter j represents the imaginary unit (j =
√
−1).

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

A Quad-Pol SAR sensor, for each pixel of the image under

test, measures N = 4 complex returns collected from four

different polarimetric channels. The N returns associated with

the same pixel are organized in the specific order HH, VV,

HV, and VH to form the vector xl,m, l = 1, . . . , L and m =
1, . . . ,M (L and M are the vertical and horizontal size of

the image), therefore, a 3-D data stack of size M × L × N
is available. For the generic pixel under test, a rectangular

neighbourhood A of size K = W1 × W2 ≥ N is extracted,

and the vectors within it are indicated as x1, . . . ,xK .

The polarimetric returns x1, . . . ,xK are modeled as inde-

pendent and identically distributed (i.i.d.) zero-mean circularly

symmetric complex Gaussian vectors whose covariance matrix

is M1 in the presence of a generic non-reciprocal medium

and M 0 when a reciprocal medium is considered. To discern

between the occurrence of reciprocity and its alternative, the

following binary hypothesis test is defined:

{

H0 : reciprocity

H1 : non-reciprocity
(1)

Under the H0 hypothesis, the covariance is structured as:
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M0 =









M̄
δ δ
δ1 δ1

δ∗ δ∗
1

δ∗ δ∗
1

σ2
11

†









+ γ2
I, (2)

where M̄ is a 2 × 2 Hermitian positive semidefinite matrix

and γ2 accounts for the thermal noise power level. The first

term stems from the observation that under the reciprocity

assumption the covariances of the entries in

[SHH, SVV, SHV, SVH] = [SHH, SVV, SHV, SHV] ,

which coincide with the correlations due to the zero-mean

assumption, satisfy

E

[

|SHV|2
]

= E

[

|SVH|2
]

= E

[

SHVS
†
VH

]

= E

[

SVHS
†
HV

]

= σ2,
(3)

E

[

SHHS
†
HV

]

= E

[

SHHS
†
VH

]

= δ, (4)

and

E

[

SVVS
†
HV

]

= E

[

SVVS
†
VH

]

= δ1. (5)

Introducing the unitary matrix U

U =





I 0 0

0
T 1/

√
2 1/

√
2

0
T 1/

√
2 −1/

√
2



 , (6)

it is possible to transform M 0 in a block diagonal matrix, i.e.,

UM0U
† =





I 0 0

0
T 1/

√
2 1/

√
2

0
T 1/

√
2 −1/

√
2













M̄
δ δ
δ1 δ1

δ∗ δ∗
1

δ∗ δ∗1
σ2

11
†













I 0 0

0
T 1/

√
2 1/

√
2

0
T 1/

√
2 −1/

√
2



+ γ2
I

=

(

M̃ 0

0
T γ2

)

,

(7)

where M̃ is a 3× 3 Hermitian positive definite matrix.

To solve Problem (1), we resort to the GLRT, whose

expression is given by

max
M1

f (r1, r2, . . . , rK |M1, H1)

max
M0

f (r1, r2, . . . , rK |M0, H0)

H1

>
<
H0

η, (8)

with η a suitable threshold and f (r1, r2, . . . , rK |Mh, Hh)
the likelihood under the Hh hypothesis, h = 0, 1. The

expression of the maximum likelihood under H1 hypothesis

can be derived as

max
M1

f (r1, r2, . . . , rK |M 1, H1)

= max
M1

1

πNK [det(M1)]K
exp

{

−tr
(

S0M
−1

1

)}

=
cN,K

[det(S0)]K
,

(9)

where cN,K is a constant and S0 =
∑K

i=1
xix

†
i . As to the H0

hypothesis, the maximum likelihood can be cast as

max
M0

f (r1, r2, . . . , rK |M0, H0)

= max
M0

1

πNK [det(M 0)]K
exp

{

−tr
(

S0M
−1

0

)}

= max
M̃ ,γ

1

πNK [det(M̃ )]Kγ2K
exp

{

−tr
(

Sc1M̃
−1
)}

exp
{

−Sc2γ
−2
}

=
cN,K

[det(Sc1)]KSK
c2

,

(10)

where

S1 = US0U
† =

(

Sc1 w

w† Sc2

)

.

Therefore, from the ratio of (9) and (10), the GLRT can be

evaluated as

det(Sc1)

det(S0)
Sc2

H1

>
<
H0

η, (11)

with η a suitable modification of the original threshold. Now,

since det(S0) = det(S1), (11) can be also written in the

following more compact form

det(Sc1)

det(S1)
Sc2 =

det(Sc1)

det(Sc1)(Sc2 −w†S
−1

c1 w)
Sc2

=
Sc2

(Sc2 −w†S
−1

c1 w)
,

(12)

where in the first equality, the expression of a block partitioned

matrix determinant [17] is used. Finally, the GLRT can be also

written in the following equivalent form

w†S
−1

c1 w

Sc2

H1

>
<
H0

η, (13)

Two important remarks are now necessary.

A. Remark 1: CFAR Property

Observe that under H0

S1,w =

(

M̃
−1/2

0

0
T γ−1

)

S1

(

M̃
−1/2

0

0
T γ−1

)

(14)

is a complex Wishart matrix with identity matrix parameter.

Besides Sc1,w = M̃
−1/2

Sc1M̃
−1/2

and Sc2,w = Sc2/γ
2.
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The decision statistic at the left hand side of (12) can be

written as

det(Sc1)

det(S1)
Sc2 =

det(Sc1,w)

det(S1,w)
Sc2,w (15)

and its distribution, under H0, turns independent of M̃ and

γ2 due to the identity matrix parameter of S1,w. Hence, the

Constant False Alarm Rate (CFAR) property can be claimed.

B. Remark 2: Noise Level Estimation

If reciprocity holds true, i.e., test (13) selects the H0

hypothesis, it is also possible to obtain directly from the matrix

S1 the ML estimate of the sensor noise level based on the

component Sc2. Specifically, γ̂2 = Sc2/K . This could be

very useful for some additional signal processing/classification

applications which can benefit from the noise level knowledge.

III. PERFORMANCE ASSESSMENT

This section is devoted to the performance study of the

proposed GLRT for reciprocity analysis on polarimetric SAR

images. The first subsection considers a quantitative analysis

on simulated data, whereas the subsequent analyzes reciprocity

on measured full-polarimetric SAR data.

A. Analysis on Simulated Data

The present subsection shows the results obtained on simu-

lated data, considering the detection probability PD as figure

of merit. Due to the lack of a closed form expression, PD

is evaluated over 103 Monte Carlo simulations, setting the

threshold to ensure a certain nominal false alarm probability,

i.e., PFA = 10−4.

Thanks to the CFAR property, the threshold is computed

in the presence of white interference. Whereas, under the

H1 hypothesis, the simulated data xk, k = 1, . . . ,K , are

modeled as zero-mean N -dimensional (N = 4 in this case)

i.i.d. complex circular Gaussian vectors sharing the covariance

matrix M1 = M̄1 + γ2I , i.e.,

xk ∼ CN (0,M1) , k = 1, . . . ,K,

with γ2 = 10−3 the actual thermal noise power level and M̄1

a specific N × N Hermitian matrix, associated with a scene

composed of trees [4],

M̄1 =

0.256









1 0.61 0 0
0.61 0.89 0 0
0 0 0.16 0.16 (1 + ξ) e−jφ

0 0 0.16 (1 + ξ) ejφ 0.16 (1 + ξ)
2









,

where ξ is a scaling factor that models modulus variations,

and φ accounts for phase mismatches between the HV and

VH channels1.

Figure 1 reports PD versus the parameter ξ for some number

of looks K of practical interest. Each subplot refers to a

1Note that, for ξ = 0 and φ = 0◦, the considered model is associated to
a perfectly reciprocal medium.

specific scenario in terms of phase difference among the

polarimetric channels HV and VH. Precisely, φ is chosen for

the three subplots, respectively, as: a) φ = 0, b) a uniform

random variable φ = U [−5◦, 5◦], c) a uniform random variable

φ = U [−10◦, 10◦]. The curves clearly show that for ξ values

close to 0, the H0 hypothesis (i.e., reciprocity) is detected,

whereas moving away from that value, the H1 hypothesis (i.e.,

non-reciprocity) is preferred. In addition, from the graphs it

can be pointed out that an increment in the number of looks

produces an always better detection for even smaller variations

between the two channels. Finally, increasing the variability

of φ (i.e., from subplot a to c), H1 selection arises also in

correspondence of ξ = 0, confirming the effectiveness of the

test to detect phase mismatches in the cross-polarized returns.
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Fig. 1. PD versus ξ for different number of looks, and perfect phase matching
between the two channels HV and VH (a), random phase variation U [−5◦, 5◦]
(b) and random phase variation U [−10◦, 10◦] (c). The nominal PFA is set to
10−4.

B. Test on Measured SAR Data

This subsection validates reciprocity on two different full-

polarimetric datasets2:

• L-band (1.25 GHz) coherent polarimetric dataset, ac-

quired by the fully polarimetric Danish airborne SAR sys-

tem, ElectroMagnetic Institute Synthetic Aperture Radar

(EMISAR) on April 17th, 1998. The image (1750×1000
pixels) represents a scene of the Foulum Area (DK),

Denmark, and contains a mixed urban, vegetation and

water area.

• C-band (5.30 GHz) coherent polarimetric dataset, ac-

quired by the dual-frequency fully polarimetric Convair-

580 SAR from the Canadian Centre for Remote Sensing

(CCRS) on June 26th, 2001. The image (222 × 3429
pixels) represents a scene of Ottawa (Ontario), Canada,

and contains a mixed urban and vegetation area.

2Both data can be downloaded at https://earth.esa.int/web/polsarpro/data-

sources/sample-datasets [16].
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In Figure 2, reciprocity is assessed for the Foulum EMISAR

data. Precisely, the figure shows the image span3, the modulus

of the difference between the HV and VH channels, the values

of the GLR computed over the image by using a sliding

window of size K = W × W = 9, and the results of the

test exploiting a threshold evaluated for a nominal PFA equal

to 10−4. Figure 3 is structurally equal to Figure 2, but it

refers to the Ottawa Convair data. The results of these tests

(subplots d) highlight that these two fully-polarimetric data can

be assumed to share the reciprocity property since the number

of detections (i.e., H1 hypothesis) is very limited with respect

to the overall number of analyzed pixels within images. As a

matter of fact, as drawn in Table I, the percentage of pixels

that do not exhibit a reciprocal behavior is only the 0.04% and

3% of the total for EMISAR and Convair data, respectively.

Notice the agreement among the detection maps in Figures

2-d) - 3-d) and the |HV − VH| values reported in 2-b) and

3-b): detections correspond to high values of |HV − VH|.
Some discussion on the results is now necessary. In this

respect it is worth observing that texture changes, edges/mixed

boundaries, as well as deviations from Gaussianity can trigger

false decisions on reciprocity. This would suggest the use

of a multistage test to assess the lack of reciprocity in the

sense that, if a detection is declared, it could be necessary

a confirmation via a test (possibly more sophisticated) which

is robust with respect to texture variations. Besides, it could

also be possible that moving toward edges/boundaries the

assumption of i.i.d. looks could be violated determining a false

response of the test due to data with different and possibly

mixed scattering mechanisms. The last observations might

allow for a possible justification of the different number of

threshold crossings for the two considered datasets in that

the different degree of heterogeneity in the illuminated scene

probably plays an important role.

TABLE I

PERCENTAGE OF ESTIMATED PIXELS COMPLYING H0 (NOT COMPLYING

H1) WITH RECIPROCITY ON THE REAL DATA OF FIGURES 2-3.

L-Band EMISAR C-Band Convair

H0 99.96% 97%

H1 0.04% 3%

IV. CONCLUSIONS

Reciprocity is an important assumption usually made in

polarimetric SAR signal processing. This letter has considered

the problem of assessing the compliance of measured polari-

metric SAR data with reciprocity. In this respect a GLRT-based

framework is proposed to discriminate among reciprocity and

its counterpart. The decision rule ensures the CFAR property

and permits the selection of a detection threshold independent

of the operative environment and on the sensor characteris-

tics. The numerical examples on simulated data has given a

quantitative measurement of the effectiveness of the proposed

3Recall that the span is defined as the power of the SAR image, i.e., the
sum of the square modules of the polarimetric channels.
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Fig. 2. Reciprocity assessment for the L-band EMISAR data of Foulum Area,
DK, using K = 9 looks. Image span in dB (a), modulus of the difference
between the HV and VH channels in dB (b), GLR statistics (c), and GLRT
(d). The nominal PFA evaluated on simulated white data is set equal to 10−4.
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Fig. 3. Reciprocity assessment for the C-band Convair data of Ottawa Area,
CA, using K = 9 looks. Image span in dB (a), modulus of the difference
between the HV and VH channels in dB (b), GLR statistics (c), and GLRT
(d). The nominal PFA evaluated on simulated data is set equal to 10−4.

approach. In addition, the tests on two different measured

SAR data have confirmed the benefits and effectiveness of

this technique.

Possible future research avenues might concern the exten-

sion of the framework to an environment where the power

of the returns changes from pixel to pixel. This implies that

the polarimetric covariance matrix is spatially varying and the

sample covariance matrix is no longer the ML estimate.
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