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Abstract Given a mechanical system whose phase space .Mn is equipped with 
a complex structure J , and a Hermitian line bundle .(E, H) → M, a coherent 
state map is an anti-holomorphic embedding .K : M → CP

(
M

)
built in 

terms of .(J, H), with .M = H 0
(
M, L2 O

(
T ∗(n, 0)(M) ⊗ E

))
, such that for any 

pair of classical states .z, ζ ∈ M the number .〈K (z), K (ζ )〉 is the transition 
probability amplitude from the coherent state .K (z) to .K (ζ ). We examine three 
related questions, as follows: (i) We generalize Lichnerowicz’s theorem (on . ±
holomorphic maps of finite-dimensional compact Kählerian manifolds) to describe 
anti-holomorphic maps .K : M → CP(M ) as harmonic maps that are absolute 
minima within their homotopy classes. (ii) If the phase space is a domain . M =
" ⊂ Cn and .E → " is a trivial Hermitian line bundle such that . γ = H

(
σ0 , σ0

)
∈

AW(") (i.e., . γ is an admissible weight), we discuss the use of .Kγ (z, ζ ) [the 
.γ -weighted Bergman kernel of . "] vis-a-vis to the calculation of the transition 
probability amplitudes, focusing on the case where ." = "n is the Siegel domain 
and .γ (z) = γa(z) =

(
Im(zn) − |z′|2

)a , .a > −1. (iii) We study the boundary 
behavior of a coherent state map .K : " → CP

[
L2H("n , γa)

]
. 

Mathematics Subject Classification (2010) 32A40, 32K2, 32V15, 58E20 

1 Coherent State Maps: Odzijewicz’s Construction 

Let .Mn be a complex n-dimensional manifold and .π : E → M a complex line 
bundle equipped with i) a holomorphic structure .

{
φα : π−1(Uα) → Uα×C

}
α∈I and 

such that each . Uα is the domain of a local complex coordinate system . 
(
z1
α , · · · , znα

)

on . M and with ii) a Hermitian bundle metric H . Let us set . σα(z) = φ−1
α (z, 1)
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for any . z ∈ Uα . Let .M = H 0(M, L2 O
(
T ∗ (n,0)(M) ⊗ E

))
be the space of . L2

holomorphic sections in the holomorphic line bundle .T ∗ (n,0)(M)⊗E → M. Every  
.s ∈ M is locally represented as .s

∣∣
Uα

= (α σα ⊗ dz1
α ∧ · · · dznα for some . (α ∈

O
(
Uα

)
. A . L2 inner product on . M (organizing . M as a Hilbert space) is given by 

.〈s1 , s2〉 = in
2
∫

M
H ∗(s1 , s2), s1, s2 ∈ M , (1) 

. H ∗(s1 , s2)∣∣
Uα

= (1
α (

2
α γα dz

1
α ∧ · · · ∧ dznα ∧ dz1

α ∧ · · · ∧ dznα ,

. γα ≡ H
(
σα , σα

)
, α ∈ I.

Let .z ∈ M and .α ∈ I such that .z ∈ Uα , and let us set .δα
z (s) = (α(z) for any 

.s ∈ M . By a result of K. Gawedzki (cf. [21]) 

.
∣∣(α(z)

∣∣ ≤ Cα‖s‖ (2) 

hence, .δα
z : M → C is continuous. By the Riesz representation theorem, there is 

.kz,α ∈ M such that 

. δα
z (s) =

〈
s, kz,α

〉
= in

2
∫

M
H ∗(s, kz,α

)

where 

. kz,α
∣∣
Uβ

= Kαβ (z, · ) σβ ⊗ dz1
β ∧ · · · ∧ dznβ ,

. H ∗(s, kz,α
)
= Kαβ(z, · )(β γβ dz1

β ∧ · · · ∧ dznβ ∧ dz1
β ∧ · · · ∧ dznβ .

Let ." ⊂ Cn be an open set. A weight on . " is a Lebesgue measurable function 
.γ : " → (0, +∞). The set of all weights on . " is denoted by .W(") (a Banach 
manifold modeled on .L∞(", R), cf. [32]). Let .L2(", γ ) consist of all measurable 
functions .( : " → C such that .‖(‖γ < ∞ where 

. ((, +)γ =
∫

"
((z)+(z) γ (z) d µ(z), ‖(‖γ = ((, ()1/2

γ ,

(. µ is the Lebesgue measure on .R2n) and let us set .L2H(", γ ) = O(")∩L2(", γ ). 
A weight .γ ∈ W(") is admissible if i) the evaluation functional . δz : L2H(", γ ) →
C, .δz(() = ((z) and ii) .L2H(", γ ) is a closed subspace of .L2(", γ ). Let . AW(")

be the set of all admissible weights (an open subset of . W("), cf. [32]). If . M = " ⊂
Cn, .φ : E 1 " × C (a vector bundle isomorphism), . σ0 is the (globally defined) 
holomorphic frame .σ0(z) = φ−1(z, 1), and .γ = H(σ0 , σ0) ∈ AW("), then
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. H 0(", L2 O
(
T ∗ (n,0)(")⊗ E

))
1 L2H(" , γ )

(a Hilbert space isomorphism). When .γ = H
(
σ0 , σ0

)
satisfies .γ−a ∈ L1(") for 

some .a > 0, a simple proof to Gawedzki’s lemma (2) was given by Z. Pasternak-
Winiarski, [31]. As a remarkable feature of Pasternak-Winiarski’s proof, it relies 
on the relationship between holomorphic and subharmonic functions, rather than a 
power series argument.1 Indeed, for each . z ∈ ", let .r > 0 such that .B2r (z) ⊂ ". By  
Corollary 2.1.15 in [26], p. 75, if .( ∈ O("), then .|(|P is subharmonic for every 
. P > 0. Let .p = (1 + a)/a > 1 and .P = 2/p. Then, for every . ( ∈ L2H(", γ )

and every . ζ ∈ Br(z)

. |((ζ )|2/p ≤ 1
Vol

[
Br(ζ )

]
∫

Br(ζ )
|((w)|2/p d µ(w) ≤

(by Hölder’s inequality with .1/p + 1/q = 1, hence .q = 1 + a) 

. ≤ 1
Vol

[
Br(ζ )

]
( ∫

Br(ζ )
|(|2 γ d µ

)1/p( ∫

Br(ζ )
γ−q/p d µ

)1/q

yielding 

. |((ζ )| ≤ C ‖(‖γ , C = 1

Vol
[
Br(ζ )

](1+a)/(2a)

( ∫

"
γ−a d µ

)1/(2a)
.

The coherent state map is 

. K : M → CP(M ), K (z) =
[
kz,α

]
, z ∈ M,

where .α ∈ I is picked up such that .z ∈ Uα and . [s] denotes the projective ray through 
.s ∈ M \ {0}. See also [5, 6]. Let us consider the globally defined .(0, 2)-tensor field 
g on . M such that 

. g
∣∣
Uα

=
n∑

j,k=1

∂2 Kαα(z, z)

∂z
j
α ∂zkα

dzjα 2 dzkα , α ∈ I.

By a foundational result due to A. Odzijewicz [30], the coherent state map . K is an 
anti-holomorphic embedding if and only if . K is one to one and g is positive definite. 
If this is the case, g is a Kählerian metric (the Bergman metric of . M) so that classical 
states of a mechanical system whose phase space is . M may be quantized (within the

1 The typical proof of (2) in the case .γ ≡ 1 (leading to the Bergman kernel of . ", cf., e.g., [23]) 
is to represent .( ∈ O(") in power series in a polidisc .P(z, ε) ⊂ ", and profit from the fact that 
monomials of the form .(ζ − z)α , .α ∈ Zn

+, are mutually orthogonal in .L2(P(z, ε)
)
. 
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quantization scheme proposed by A. Odzijewicz, cf. op. cit.) only when . M meets 
the topological requirements needed to support globally defined Kählerian metrics. 
See also [29]. Given a set E, let .F (E) denote the space of all functions .f : E → C. 
Let 

. H = H 0(M, C∞(
T ∗ (n,0)(M)⊗ E

))

[a Hilbert space with the inner product (1)]. For every .α ∈ I , we consider 

. Tα : H → F
(
Uα

)
,

(
Tα s

)
(z) = 〈s, kz,α〉 , s ∈ H , z ∈ Uα .

By a result of A. Odzijewicz (cf. [30]) .Tαs ∈ O
(
Uα

)
for every .α ∈ I if and only 

if .K : M → CP(M ) is anti-holomorphic. For every .s ∈ H , the holomorphic 
functions .Tαs glue up to a unique holomorphic section . T s in .T ∗ (n,0)(M)⊗E such 
that .(T s)

∣∣
Uα

= Tαs for any .α ∈ I , thus yielding a linear operator: 

. T : H → H 0(M, L2 O
(
T ∗ (n,0)(M)⊗ E

))

(the Bergman-Gawedzki-Odzijewicz projection). Note that .T s = s, i.e., T repro-
duces the square integrable E-valued holomorphic n-forms. The kernel .N (T ) is a 
closed subspace of . H ; hence, the range .R(T ) may be organized2 as a Hilbert space 
with the inner product: 

. 〈s1 , s2〉R(T ) = 〈Pσ 1 , Pσ 2〉 , σ j ∈ T −1(sj
)
, j ∈ {1, 2},

where .P : H → H 3N (T ) is the orthogonal projection. Then 

. ‖s‖R(T ) = inf
{
‖σ‖H : σ ∈ T −1(s)

}
.

Cf. also [2]. 

2 Kählerian Structure of CP(M ) 

Let .M be a separable Hilbert space. The present section reviews the complex 
structure J and the Fubini-Study metric g on the complex projective space . P =
CP(M ) =

(
M \ {0}

)/
C∗ (cf. [35]). For every point . p ∈ P , let . + be a normalized 

representative of p, i.e., .p = [+] and .‖+‖ = 1. One sets  

.V ⊥
[+] =

{
( ∈ M :

〈
+, (

〉
= 0

}
, Ũ[+] = M \ V ⊥

[+] ,

2 By a result of S. Saitoh, [34]. 
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ϕ̃+ : Ũ[+] → V ⊥[+], ϕ̃+(() = 1 
〈(, +〉 ( − +. 

.V ⊥
[+] is a closed subspace of .M and hence a complex Hilbert space itself. If . π :

M \ {0} → P is the projection, let us set .U[+] = π
(
Ũ[+]

)
⊂ P . Then, . ϕ̃+

descends to a bijection .ϕ+ : U[+] → V ⊥
[+], so that .

{(
U[+] , ϕ+

)
: ‖+‖ = 1} is a 

.C∞ atlas on . P . Given a point .p ∈ P , .p = [+] with .‖+‖ = 1, .(Up , ϕ+) is a local 
chart about p, with the model space . V ⊥

p . Let us consider the ordinary identification 
of the tangent space .Tp(P) with the model space of the local chart .(Up , ϕ+) i.e., 

. ϕP
p : Tp(P) → V ⊥

p , ϕP
p

(
γ̇
)
= d0

(
ϕ+ ◦ γ

)
1.

The almost complex structure J on . P is given by 

. Jp(w) =
(
ϕP
p

)−1
[
i ϕP

p (w)
]
, w ∈ Tp(P), i =

√
−1.

Let . JC be the .C-linear extension of J to .T (P)⊗C, so that .Spec
(
JC)

= {±i}. Let  
then 

. T 1,0(P)p = Eigen
(
JC ; +i

)
=

{
X − i Jp X : X ∈ Tp(P)

}
.

Let .Fp(P) be the set of all .C∞ functions .f : U → C, defined on some 
open neighborhood .U ⊂ P of p. .Fp(P) is a complex algebra, in a natural 
manner, except for the uniqueness of units. Let .Derp(P) be the space of derivations 
.v : Fp(P) → C i.e. i) v is .C-linear, ii) .v(fg) = v(f ) g(p) + f (p) g(v), and 
iii) for any open set .U ⊂ P with .p ∈ U , the function .v : C∞(U, C) → C is 
continuous [with respect to the locally convex topology of .C∞(U, C) as a Fréchet 
space]. As well as in finite-dimensional manifold theory, the useful interpretation of 
.Tp(P) as the space of derivations on the algebra .Fp(P) comes from the .C-linear 
isomorphism: 

. Fp : Tp(P) → Derp(P),

Fp(γ̇ ) = v, v(f ) = (f ◦ γ )′(0) ∈ C, f ∈ Fp(P).

Let .S = {+ ∈ M : ‖+‖ = 1} be the sphere in . M . Let .+ ∈ S and let .{+ν}ν≥0 be a 
complete orthonormal system in . M , adapted to the decomposition . M = V ⊥

[+]⊕C+

i.e. .+0 = + and .{+ν}ν≥1 is a complete orthonormal system in . V ⊥
[+]. Every . ( ∈ M

decomposes as .( = ∑∞
ν=0 aν +ν , where .aν = 〈( , +ν〉, with convergence in the 

. M norm. Let 

.wν : M → C, wν(() = 〈(, φν〉 , ( ∈ M ,
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[the “complex coordinates” on .M (associated to the complete orthonormal system 
.{+ν}ν≥0)]. For any function .f : A → C defined on an open subset .A ⊂ V ⊥

p , any  
point .(0 ∈ A, and any direction .( ∈ V ⊥

p , .‖(‖ = 1, the directional derivative 
.(∂f/∂()((0) is customarily: 

. 
∂f

∂(
((0) = lim

t→0

1
t

{
f

(
(0 + t (

)
− f

(
(0

)}
.

Next, for every element .f : U → C of the algebra .Fp(P), and for each point 
.q ∈ U ∩ Up ⊂ P let 

.

( ∂

∂+ν

)

q
∈ Derq(P),

( ∂

∂+ν

)

q
(f ) = ∂(f ◦ ϕ−1

+ )

∂+ν

(
ϕ+(q)

)
. (3) 

Let .+ ∈ S and set .p = [+] ∈ P . For every derivation .v ∈ Derp(P), the series 

.

∞∑

ν=1

v
(
wν ◦ ϕ+

) ( ∂

∂+ν

)

p
(4) 

converges in .Derp(P) and its sum is v. Let .U ⊂ M be an open subset and let E be 
a complex Banach space. Let .f : U → E be a .R-differentiable function. If .a ∈ U , 
then let .Df (a) ∈ E be the differential of f at a. Next, we set  

. D′′f (a)(() := 1
2

{
Df (a)(()+ i Df (a)(i ()

}
, ( ∈ M .

As . Df : U → L (M , E)

. D′′f (a)(() =
∞∑

ν=0

wν(()
∂f

∂wν
(a)

where 

. 
∂f

∂wν
(a) := 1

2

{ ∂f

∂+ν
(a)+ i

∂f

∂(i +ν)
(a)

}
∈ E.

We adopt the conventions and notations in [28]. .f : U → E is holomorphic (cf. 
[28], p. 33) if for every .a ∈ U , there is a ball .Br(a) ⊂ U and a sequence of 
polynomials .Pm ∈ P

(
mH , E

)
such that 

.f (() =
∞∑

m=0

Pm(( − a)
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uniformly for .( ∈ Br(a). The common and useful characterization is (cf. Corollary 
13.17 in [28], p. 108) .f : U → E is holomorphic if and only if f is .R-differentiable 
and .D′′f = 0. The theory in [28] is built for functions .f : U → E defined on open 
subsets .U ⊂ M where . M is a complex Banach space. In the case at hand [i.e., . M
is a complex Hilbert space and a complete orthonormal system .{+ν}ν≥0 in .M has 
been fixed], holomorphy is also equivalent to 

. 
∂f

∂wν
(a) = 0, a ∈ U, ν ≥ 0.

Let us illustrate the calculus we introduced [an analog to the classical finite-
dimensional Wirtinger calculus (cf. [36]) on the complex Hilbert space . M ] by  
showing that the projection .π : M \ {0} → P is a holomorphic mapping. The 
target space is an infinite-dimensional manifold [the infinite-dimensional complex 
projective space .P = CP(M )] so for every .( ∈ M \ {0} one should prove 
that the local representation of . π with respect to the local chart .

(
Up , ϕ+

)
[with 

.+ = (1/‖(‖)( ∈ S and .p = π(+)] is a (vector-valued) holomorphic function. 
See also [13, 15]. Said local representation is .ϕ̃+ : Ũp → V ⊥

p , which is clearly 
.R-differentiable. Moreover, for every . (0 ∈ Ũp

. 
∂ϕ̃+

∂+ν
((0) = lim

s→0

1
s

{
ϕ̃+

(
(0 + s +ν

)
− ϕ̃+

(
(0

)}

=






1
〈(0 , +〉 +ν if ν ≥ 1,

1
〈(0 , +〉2

[
〈(0 , +〉+ − (0

]
if ν = 0,

and a similar calculation shows that 

. 
∂+̃+

∂(i +ν)

(
(0

)
= i

∂ϕ̃+

∂+ν

(
(0

)

i.e., .D′′ϕ̃+

(
(0

)
= 0. Q.e.d. 

Let us recall the Fubini-Study metric .h = hF-S on . P , i.e., 

.hp(X, Y ) = 1
2

Re
〈
X − i Jp X, Y − i Jp Y

〉
p
, X, Y ∈ Tp(P), . (5) 

〈Z, W 〉p = 
1 
4 

〈 
ϕP 
p (Z), ϕ

P 
p (W) 

〉 
M , Z,  W  ∈ Tp(P) ⊗R C . (6) 

Previous to Definition (6), one extends .ϕP
p : Tp(P) → V ⊥

p , by .C-linearity, to a 
map .ϕP

p : Tp(P)⊗R C → V ⊥
p . Note that
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. 〈Z, W 〉p =
〈
ϕP
p (X), ϕP

p (Y )
〉
M , Z = X − i Jp X, W = Y − i Jp Y,

and then 

. hp(X, Y ) = 1
2

Re
〈
ϕP
p (X), ϕP

p (Y )
〉
M .

The Hermitian form .〈 · , · 〉p may also be recovered as follows (cf., e.g., [35]). 
Given two tangent vectors .X, Y ∈ Tp(P), let .pX , pY ∈ Cp be two .C1 curves 
.(−ε, ε) → P such that .X = ṗX and .Y = ṗY . Let .+ ∈ S such that . p = [+]
and let .(X , (Y : (−ε, ε) → S be, respectively, lifts of .pX and .pY such that 
.(X(0) = + and .(Y (0) = +. Also, let us set 

. V := (̇X , W := (̇Y , V , W ∈ T+(S).

Then 

. 〈ϕP
p (X), ϕP

p (Y )〉H

= 4
{〈

ϕS
+(V ), ϕS

+(W)〉H −
〈
ϕS

+(V ), +
〉
H

〈
+, ϕS

+(W)
〉
H

}

where .ϕS
+ : T+(S) → E+ is the natural identification of the tangent space to the 

sphere with the model space of the local chart 

. χ−+ : S \ {−+} → E+ ,

. χ−+(() = 1
1 + Re 〈( , φ〉H

[
( − Re 〈( , +〉H +

]
,

. E+ =
{
ψ ∈ H : Re 〈(, +〉H = 0

}
.

The tangent space .Tp(P) at a point .p ∈ P is organized in a natural manner as a 
complex Hilbert space [via the isomorphism .ϕP

p : Tp(P) 1 V ⊥
p ]. If we set 

. Vν ≡ F−1
p

( ∂

∂+ν

)

p
, ν ≥ 1,

then .
{
Vν : ν ≥ 1

}
is a complete orthonormal system in .Tp(P). Indeed, the scalar 

product on .Tp(P) is 

.〈V, W 〉 =
〈
ϕP

+ V , ϕP
+ W

〉
H , V , W ∈ Tp(P). (7)
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For each fixed .ν ≥ 1, we consider the curve .γν(s) = ϕ−1
+

(
s +ν

)
, .|s| < ε, so that 

.γν ∈ Cp. Then, .Fp

(
γ̇ν

)
=

( ∂

∂+ν

)

p
and .

(
ϕ+ ◦ γν

)
(s) = s +ν yielding . ϕP

p

(
γ̇ν

)
=

d0
(
ϕ+ ◦ γν

)
1 = +ν , and hence, .〈Vν , Vµ〉 = δνµ. The completeness of . {+ν : ν ≥

1} in .V ⊥
p implies that of .{Vν : ν ≥ 1}. Q.e.d. 

3 A Lichnerowicz-Type Homotopy Formula 

Let . M be a complex n-dimensional Hermitian manifold, with perhaps nonempty 
boundary .∂M, equipped with the Hermitian metric g. Let .(J, h) be the complex 
structure and the Fubini-Study metric on .P = CP(M ). Let . K : M → CP(M )

be a . C1 map, and let .dK : T (M) → T
(
P) be the tangent map. Let us consider 

the maps: 

. ∂K : T 1,0(M) → T 1,0(P), ∂K : T 1,0(M) → T 0,1(P),

∂K : T 0,1(M) → T 1,0(P), ∂ K : T 0,1(M) → T 0,1(P),

defined by 

. 

T 0,1(P)
∂K←− T 1,0(M)

∂K−→ T 1,0(P)

20,1 ↑ j1,0 ↓ ↑ 21,0

T (P)⊗ C (dK )C←− T (M)⊗ C (dK )C−→ T (P)⊗ C

20,1 ↓ j0,1 ↑ ↓ 21,0

T 0,1(P)
∂ K←− T 0,1(M)

∂K−→ T 1,0(P)

A . C1 map .K : M → P is holomorphic (respectively, anti-holomorphic) if . ∂K =
0 (respectively, if .∂K = 0). Next, let 

. ‖∂K ‖ : M → [0, +∞), ‖∂K ‖ : M → [0, +∞),

be defined as follows. Let .z ∈ M and let .{Vj : 1 ≤ j ≤ n} be a local frame in the 
holomorphic tangent bundle .T 1,0(M), defined on an open neighborhood .U ⊂ M of 
z, such that 

.g
(
Vj , Vk

)
= δjk , Vk = Vk , 1 ≤ j, k ≤ n.
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Then 

. ‖∂K ‖2
z =

n∑

j=1

hK
(
(∂K )Vj , (∂K )Vj

)
z
,

‖∂K ‖2
z =

n∑

j=1

hK
(
(∂K )Vj , (∂K )Vj

)
z
.

Here, .hK = K −1h is the bundle metric induced by h on the pullback bundle 
.K −1T (P) → M. For every . C1 map . K : M → P

. Trg
(
K ∗h

)
= 2

(∥∥∂K
∥∥2 +

∥∥∂K
∥∥2

)
.

Let .D ⊂⊂ M be a relatively compact domain and let us consider the functionals: 

. ED , E′
D , E′′

D : C1(M, P
)
→ R ,

ED(K ) = 1
2

∫

D
Trg

(
K ∗h

)
d vg ,

E′
D(K ) =

∫

D

∥∥∂ K
∥∥2

d vg , E′′
D(K ) =

∫

D

∥∥∂K
∥∥2

d vg .

Then 

. K is holomorphic ⇐⇒ E′′
D(K ) = 0 for any D ⊂⊂ M,

K is anti-holomorphic ⇐⇒ E′
D(K ) = 0 for any D ⊂⊂ M.

A . C1 map .K : M → P = CP(M ) is harmonic if 

. 
d

dt

{
ED

(
Kt

)}

t=0
= 0

for any relatively compact domain .D ⊂⊂ M, and any smooth 1-parameter variation 
.
{
Kt

}
|t |<ε

⊂ C1(M, P) of .K0 = K such that .Supp(V ) ⊂ D, where . V ∈
C

(
K −1T P) is the infinitesimal variation induced by .

{
Kt

}
|t |<ε

, i.e., 

. V (z) =
(
d(z,0)K

) ( ∂

∂t

)

(z,0)
, K(z, t) = Kt (z), z ∈ M, |t | < ε .

Cf. [14] for the basic notions and results in harmonic maps theory, in the finite-
dimensional setting. Let h be an arbitrary Kählerian metric on . P and let . " be its 
Kählerian 2-form. Let .K : M → P be a . C2 map, and let us set
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. 3(K ) = ‖∂K ‖2 − ‖∂K ‖2 , LD(K ) =
∫

D
3(K ) d vg .

Theorem 1 Let . M be a compact complex n-dimensional Hermitian manifold-with-
boundary .∂M , equipped with the Hermitian metric g, and let .Kt : M → P , 
.0 ≤ t ≤ 1, be a smooth  1-parameter family of .C2 maps, and let us consider the 
1-parameter family of 1-forms on . M: 

.αK(τ ) =
∫ τ

0
K ∗

t

(∂Kt

∂t
>"

)
d t ∈ "1(M), 0 ≤ τ ≤ 1. (8) 

(i) If g is a locally conformal Kähler metric, with the fundamental 2-form . "M

and the Lee form . ω, then 

.L
(
Kτ

)
− L

(
K0

)
=

∫

∂M
βK(τ )+ (n− 1)

∫

M
ω ∧ βK(τ ), (9) 

for any .0 ≤ τ ≤ 1, where 

. βK(τ ) =
1

(n− 1)! αK(τ ) ∧
(
"M)n−1

.

(ii) If g is Kählerian, then 

. L
(
Kτ

)
− L

(
K0

)
=

∫

∂M
βK(τ ).

In particular, if . M is closed, then the map 

. t ∈ [0, 1] ?−→ L
(
Kt

)
∈ R

is constant. 
(iii) Every (anti) holomorphic map .K : M → P from a closed Kählerian 

manifold .M is an absolute minimum point of the energy functional . E :
C2(M, P) → [0, +∞) within its homotopy class .[K ] and in particular 
. K is a harmonic map. 

Here, .L ≡ LM and .X >" denotes the interior product with the vector field X. To  
prove Theorem 1, one starts by observing that3 

.〈"M, K ∗"〉 = 2 3(K ), . (10)

3 The proof of (10) is straightforward. The proof of (11) is a rather involved calculation not reported 
here. 
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∂ 
∂t 

( 
K ∗t " 

)
= 2 d

[
K ∗t 

(∂Kt 
∂t 

>" 
)]

(11) 

for any smooth 1-parameter family of . C2 maps .Kt : M → P , . t ∈ R. By (10) 

. 2 3(Kt ) d vg = 〈"M , K ∗
t "〉 d vg =

[by (2.7.11) in [22], p. 70] 

. = "M ∧ ∗
(
K ∗

t "
)
=

[by the property (iii) in [22], p. 70, of the Hodge operator . ∗ on .(M, g)] 

. =
(
K ∗

t "
)
∧ ∗"M

so that 

.2
[
L

(
Kt

)
− L

(
K0

)]
=

∫

M

[(
K ∗

t " −K ∗
0 "

)
∧ ∗"M

]
. (12) 

Let us consider the 1-parameter family of 1-forms .
{
αK(t)

}
0≤t≤1 ⊂ "1(M) given 

by (8). Then [by (11)] 

. K ∗
t " −K ∗

0 " =
∫ t

0

∂

∂τ

{
K ∗

τ "
}
d τ = d αK(t).

Consequently [by (12)] 

.L
(
Kt

)
− L

(
K0

)
=

∫

M

(
d αK(t)

)
∧ ∗"M. (13) 

From now on, let g be a locally conformal Kähler (l.c.K.) metric with the Lee form 
.ω ∈ "1(M), so that .d"M = ω ∧ "M (cf. [11]). Then 

. d
(
∗ "M)

= d
[ 1
(n− 1)!

(
"M)n−1

]

= 1
(n− 2)! d"M ∧

(
"M)n−2 = 1

(n− 2)! ω ∧
(
"M)n−1

,

.
(
d αK(t)

)
∧ ∗"M = d

(
αK(t) ∧ ∗"M)

− αK(t) ∧ d
(
∗ "M)

= d βK(t)+ (n− 1)ω ∧ βK(t).
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Q.e.d. 
Finally, we prove statement (iii) in Theorem 1. Let .K : M → P be an (anti) 

holomorphic map, and let .L : M → P be an arbitrary . C2 map homotopic to . K . 
Let .K : M × [0, 1] → P be a smooth homotopy .K : K 1 L and let us set 
.Kt (z) = K(z, t). As .E′(L ) ≥ 0 and . E′′(L ) ≥ 0

. E(L ) = E′(L )+ E′′(L ) ≥
∣∣E′(L )− E′′(L )

∣∣ = |L(L )| = |L(K1)| =

[by (ii) in Theorem 1] 

. = |L(K0)| = |L(K )| =
∣∣E′(K )− E′′(K )

∣∣

=






E′((K ) if K is holomorphic

E′′(K ) if K is anti-holomorphic

= E′(K )+ E′′(K ) = E(K ).

In particular, .K0 = K is a critical point of the function .t ?−→ E(Kt ). Q.e.d. 

4 Transition Probability Amplitudes 

Let .z ∈ M be a classical state and let .K (z) =
[
kz,α

]
∈ CP(M ) be the 

corresponding coherent state. The transition probability amplitude from z to . ζ is 

. aβα(ζ, z) =
〈 kz,α∥∥kz,α

∥∥ ,
kζ,β∥∥kζ,β

∥∥
〉

and .
∣∣aβα(ζ, z)

∣∣2 is the transition probability density. Therefore, the novelty brought 
forth by A. Odzijewicz (cf. [30]) is reducing the calculation of the transition 
probability amplitudes .aβα(ζ, z) to the calculation of the kernels .Kβ α(ζ, z). When 
.M = " ⊂ Cn and .E 1 " × C, these are weighted Bergman kernels that are at 
least as difficult to compute as the ordinary (unweighted) Bergman kernels. Yet the 
explicit expression of reproducing kernels of sorts is available only for a handful 
of particular domains (cf., e.g., S. Krantz, [26], pp. 47-51, J.P. D’Angelo, [9], G. 
Francsics & N. Hanges, [20], for the unit ball .Bn = {z ∈ Cn : |z| < 1} and certain 
complex ovals in the unweighted case, and Z. Pasternak-Winiarski, [31], F. Forellli 
& W. Rudin, [19], for the unit ball . B1 in the weighted case). See also [7, 8]. We 
emphasize that the construction of . K and its use in the calculation of the transition 
probability amplitudes relies on a number of structural assumptions, such as the 
following:
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(I) . M is sufficiently ample (cf. [30]). 
(II) The pullback by .K of the Fubini-Study metric on .CP(M ) is a globally 

defined Kählerian metric on . M. 
(III) .(E, H) is a quantum bundle [i.e., the curvature form of the canonical 

Hermitian connection on .(E, H) is a symplectic structure on . M]. 
(IV) The measure on the phase space got from the data . (E, H)

. Kαα(z, z) γα(z) dz
1
α ∧ · · · ∧ dznα ∧ dz1

α ∧ · · · ∧ dznα

coincides with the Liouville measure (up to a multiplicative constant). 

When applied (as in [3]) to the Siegel domain . M = "n = {z = (z′ , zn) ∈
Cn−1 × C : Im(zn) > |z′|2}, the trivial line bundle .E = "n × C and the family of 
Hermitian metrics 

. Ha

(
σ0 , σ0

)
= ρa , a > −1, ρ(z) = Im(zn)− |z′|2 , z ∈ "n ,

the coherent state map .Ka : "n → CP
[
L2H

(
"n , γa

)]
is determined by the 

weighted Bergman kernel .Kγa (ζ, z) associated to the (admissible) weight . γa ∈
AW("n), .γa = ρa , that was explicitly computed by E. Barletta and S. Dragomir 
(cf. [1]) by combining a very general method discovered by S. Saitoh (cf. op. cit.) 
with the use of an integral transform on the Siegel domain due to M.M. Djrbashian 
and A.H. Karapetyan (cf. [10]), thus allowing for the calculation of the transition 
probability amplitudes: 

. a00(ζ, z) =
[ 2 ρ(z)1/2 ρ(ζ )1/2

i
(
z1 − ζ1

)
− 2 〈ζ ′ , z′〉

]n+a+1
.

When the given mechanical system interacts with an external field B (i.e., 
by exploiting the approach by R. Penrose, [33], the Hermitian structure on 
E is deformed as .H ?→ eB H ), the coherent state map changes to . K :
"n → CP

[
L2H

(
"n , e

Bγa
)]

, and while the explicit weighted Bergman kernel 
.KeBγa

(ζ, z) isn’t available, one may exploit (cf. [3]) the analyticity4 of the map: 

. K : AW("n) → HA("n), γ ?→ Kγ ,

[associating to every admissible weight . γ the corresponding weighted Bergman 
kernel .Kγ regarded as an element of the complex Fréchet space .HA(")], yielding 
a series development

4 Discovered by Z. Pasternak-Winiarski, [32]. 
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. K(1+h)γa = Kγa +
∞∑

k=1

(−1)k K(k)
1, γa (h, · · · , h),

h = eB − 1 ∈ B 1
2
(0) ⊂ L∞(

"n , R
)
.

As emphasized by A. Odzijewicz (cf. [30]), Z. Pasternak-Winiarski’s methods are 
effective for the case of weak external fields . ε B, .0 < ε << 1, and one may show 
(cf. again [3]) that the transition probability amplitude from z to . ζ (when identified 
with coherent states in .CP

[
L2H("n , e

ε B γa)
]
) equals 

. 

[ 2 ρ(z)1/2 ρ(ζ )1/2

i
(
z1 − ζ1

)
− 2 〈ζ ′ , z′〉

]n+a+1

+ 8ε

(cn,a)2 ρ(z)
n+a+1

2 ρ(ζ )
n+a+1

2

∫

"n

{[
ρ(z)n+a+1 ∣∣Kγa (w, z)

∣∣2

+ ρ(ζ )n+a+1 ∣∣Kγa (ζ, w)
∣∣2

]
Kγa (ζ, z)]

− cn,a

2
Kγa (ζ, w)

}
B(w) ρ(w)a dµ(w)+ O

(
ε2)

where 

. Kγa (ζ, z) =
2n−1+a cn,a

[
i
(
z1 − ζ1

)
− 2 〈ζ ′ , z′〉

]n+1+a
,

cn,a = π−n(a + 1) · · · (a + n).

A. Odzijewicz’s structural assumptions (I)–(IV) in Sect. 2 were investigated in [3], 
and one found that for every 

. H ∈
{
Ha , eεB Ha : B ∈ L∞("n , R), ε > 0, a > −1

}

the assumptions (I)–(III) are satisfied, while the assumption (IV) is questionable 
and indeed only partially satisfied by the model investigated in [3]. Indeed, let . γ ∈
AW("n)∩C∞("n) be a smooth admissible weight. If .H(σ0 , σ0) = γ , then . (E,H)

is a quantum bundle, and there is yet another Hermitian bundle metric . Ĥ on E given 
by 

.Ĥ
(
σ0 , σ0

)
ζ
= (−i)n "00(γ )ζ

K00(ζ, ζ )
, ζ ∈ "n ,

"00(γ ) = det
[
ωjk

]
, ω = curv(E, H).
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Both H and . Ĥ are sections in the complex line bundle .E∗ ⊗ E∗ (with . H @= 0) so  
their quotient is well defined, providing the map 

. F : AW("n) ∩ C∞("n) → C∞("n), F (γ ) = Ĥ

H
.

As it turns out, the structural assumption (IV) is equivalent to the requirement that 
.F(γ )ζ is a constant, both with respect to . γ and . ζ . Instead the result in [3] is that  

. F
(
γa

)
= 1

cn,a

(
− a

2π

)n
, a > −1,

so .F(γa) is a constant function, while F is not.5 

5 Boundary Behavior of Coherent State Maps 

Let M be a CR manifold, of CR dimension .n − 1, equipped with the CR structure 
.T1,0(M). Cf. the monograph [12] for the main conventions and notations in CR and 
pseudohermitian geometry. Given a . C1 map .f : M → P , we adopt the following 
notations: 

. 

T 0,1(P)
∂bf←− T1,0(M)

∂bf−→ T 1,0(P)

20,1 ↑ j1,0 ↓ ↑ 21,0

T (P)⊗ C (df )C←− T (M)⊗ C (df )C−→ T (P)⊗ C

20,1 ↓ j0,1 ↑ ↓ 21,0

T 0,1(P)
∂bf←− T0,1(M)

∂bf−→ T 1,0(P)

Let .X be a complex topological vector space, and let .U ⊂ M be an open set. A 
. C1 function .u : U → X is a (vector-valued) CR function if .Z(u) = 0 for every 
.Z ∈ T1,0(M). A . C1 mapping .f : M → P is a CR mapping if . (dzf )C T1,0(M)z ⊂
T 1,0(P)z for any .z ∈ M . 

For every .C1 mapping .f : M → P , of a CR manifold M into the infinite 
dimensional complex projective space .P = CP(M ), the following statements are 
equivalent:

5 This however suffices (cf. [3]) for recovering .a00(ζ, z) by averaging .a00(w, z) a00(ζ, w) [the 
transition probability amplitude from z to . ζ with simultaneous transition through w] over .w ∈ "n. 
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(i) f is a CR mapping. 
(ii) .∂bf = 0. 

(iii) For every .z ∈ M , the function 

. u : f−1(Up) → V ⊥
p , u = ϕ+ ◦ f, p :=

[
+

]
= f (z),

is a (vector valued) CR function. 

Let ." ⊂ Cn be a domain with smooth boundary . ∂", and let . K ∈ C∞(
" , P

)

be a solution (smooth up to the boundary) to the Dirichlet problem: 

.∂ K = 0 in ", K = f on ∂", (14) 

for a given .f ∈ C∞(∂", P). We seek for the compatibility conditions that the 
boundary data f should satisfy along . ∂". We start by looking at the case of the 
Siegel domain ."n (the case where the tangential Cauchy-Riemann equations were 
first discovered, cf. H. Lewy, [27]). For every .a ∈ R let .Ma = ρ−1(a), where 
.ρ(z) = Im(zn) − |z′|2, so that .a ≥ 0 A⇒ Ma ⊂ "n. In particular, .M0 = ∂"n. 
Each .Ma is a strictly pseudoconvex real hypersurface in . Cn, equipped with the CR 
structure .T1,0(Ma) ≡ span

{
Lk : 1 ≤ k ≤ n− 1

}
where 

. 
(
ja

)
∗ Lk =

(
Zk + 2 i zk Zn

)ja , 1 ≤ k ≤ n− 1, Zj ≡ ∂

∂zj
, 1 ≤ j ≤ n,

and .ja : Ma → Cn is the inclusion. Here, .Zja ≡ Z ◦ ja . Let .K : "n → P be 
a solution to the Dirichlet problem (14) with ." = "n. In particular, .K is smooth 
up to the boundary, i.e., there is an open set .D ⊂ Cn with .D ⊃ "n and a . C∞

map .F : D → P such that .F
∣∣
"n

= K . For every .a ∈ [0, +∞), let us set 
.fa := K ◦ ja where .ja = j

∣∣
Ma

: Ma → "n and .j : D → Cn is the inclusion (with 

.f0 = f ). The base and three out of four faces of the triangular prism6 

T 1,0(P) T (P)⊗ C 

T0,1(Ma) T  (Ma)⊗ C 

T 0,1(") T (")⊗ C 

21,0 

(d ja)C 

j0,1 

(d fa)C 

(d ja)C 

(dK )C 

∂K 

j1,0 

are commutative; hence, so does the fourth face, i.e., 

.∂bfa =
(
∂ K

)
◦

(
d ja

)C
. (15)

6 “Collapsed” on its base. 
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Let .K : "n → P be a . C1 mapping. Let .+ ∈ S and .p = π(+) ∈ P . Then, for 
every .z ∈ K −1(Up) and any . 1 ≤ j ≤ n

. 
(
∂ K

)
z
Zj, z =

1

〈 ˜K (z), +〉2

∞∑

ν=1

{〈 ˜K (z), +
〉 〈∂ ˜K

∂zj
(z), +ν

〉

−
〈 ˜K (z) , +ν

〉 〈∂ ˜K

∂zj
(z) , +

〉}
Wν ,K (z) (16) 

where . ˜K : K −1(Up) → Ũp is any .C1 map such that .K = π ◦ ˜K . Only the 
(infinite-dimensional analog to the) homogeneous coordinates .wν : M \ {0} → C, 
.ν ≥ 0, of a point in . P were used so far. The same symbol will denote the (infinite-
dimensional analog to the) local coordinates: 

. wν : Up → C, wν(q) =
〈
ϕ+(q), +ν

〉
, q ∈ Up , ν ≥ 1,

that is, 

. wν(q) =
〈
( , +ν

〉
〈
( , +

〉 , q = [(], ν ≥ 1.

For any .C1 map .K : "n → P the local components of .K are the functions 
.K ν : K −1(Up) → C got as the compositions 

. K −1(Up)
K−→ Up

wν−→ C .

Then 

. 
∂K ν

∂zj
(z) = 1

〈 ˜K (z), +〉2

{
〈 ˜K (z), +〉

〈∂ ˜K

∂zj
(z), +ν

〉

− 〈 ˜K (z), +ν〉
〈∂ ˜K

∂zj
(z), +

〉}

and (16) may be written in the more familiar form 

.
(
∂K

)
z
Zj, z =

∞∑

ν=1

∂K ν

∂zj
(z) Wν ,K (z) . (17) 

Theorem 2 Let .K : "n → P a solution smooth up to the boundary to the 
Dirichlet problem:
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. ∂K = 0 in "n , K = f on ∂"n ,

for some .f ∈ C∞(
∂"n , P). Then, f is a CR mapping, i.e., .∂bf = 0 along .∂"n. 

Let .z0 ∈ ∂"n be a boundary point, and let .p = K (z0) ∈ P . Let .+ ∈ S such 
that .p =

[
+

]
. Let .A := F−1(Up

)
⊂ D, so that .A ∩ "n is a neighborhood of 

. z0 in (the manifold with boundary) . "n. Let .{zm}m≥1 ⊂ A ∩ "n be a sequence of 
points such that .zm → z0 as .m → ∞, and let us set .am = ρ(zm), . m ≥ 1. The  
set .A ∩ "n is foliated by (open pieces of) level sets of . ρ, so that for every . m ≥ 1
the point . zm belongs to the leaf .A ∩ Mam . As .

(
∂K

)
zm

= 0, it follows [by (17)] 

that .
∂K ν

∂zj
(zm) = 0, .m ≥ 1, .ν ≥ 1, hence [as .K ν is smooth up to the boundary, 

i.e., .K ν ∈ C∞(
A∩"n

)
] .0 = lim

m→∞
∂K ν

∂zj
(zm) =

∂K ν

∂zj
(z0). Finally, [by (15) with 

.a = 0] .
(
∂b f

)
z0
Zj, z0 =

∞∑

ν=1

∂K ν

∂zj
(z0) Wν ,K (z0) = 0. Q.e.d. 

6 Conclusions and Open Problems 

Coherent state maps as considered through this paper are symplectic maps . K :
M → CP(M ) of a symplectic manifold .

(
M, "M

)
into a complex projective 

Hilbert space .CP(M ) with the Fubini-Study symplectic form . ", i.e., the setting 
is that in [30] where the claimed novelty is that .K may be used to quantize 
classical observables, as well, and indeed a quantization procedure (related to the 
Kostant-Souriau geometric quantization and to .∗-product quantization) is provided. 
Given a quantum line bundle E over . M, the complex Hilbert space . M customarily 
adopted is the space of holomorphic sections in E that are square integrable 
with respect to the Liouville measure (cf. [21]), and the actual novelty in [30] 
is a construction of .K where .M is the space of all . L2 holomorphic sections in 
.T ∗ (n,0)(M) ⊗ E. Such a construction is related to the weighted Bergman kernels 
.Kαα(ζ, z) on .L2H("α , γα), thus allowing for the use of methods in complex 
analysis of several complex variables (cf. [26]), e.g., reducing the calculation of 
the transition probability amplitudes .aαβ(ζ, z) to the calculation of the weighted 
Bergman kernels involved. Here [with the notations in Sect. 1], ."α = χα(Uα), 
.γα = H

(
σα , σα

)
◦ χ−1

α , and .χα =
(
z1
α , · · · , znα

)
: Uα → Cn. Under a 

number of structural assumptions [cf. (I)–(IV) in Sect. 4, the coherent state map 
.K is an anti-holomorphic embedding, so that .K ∗ h [where h is the Fubini-
Study metric on .CP(M )] is a Kählerian metric on . M. Consequently, to quantize 
classical states of a mechanical system, its phase space . M should be equipped 
with a complex structure, and the resulting complex manifold . M must satisfy the 
topological restrictions allowing for the existence of (globally defined) Kählerian 
metrics (cf., e.g., [22]). Let . M be a non-Kählerian locally conformal Kähler (l.c.K.)
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manifold (cf. [11]). Let .λ ∈ C, .0 < |λ| < 1, and let .Gλ be the discrete 
group of holomorphic transformations of .M \ {0} generated by .( ?−→ λ (. 
Let .CHλ(M ) :=

(
M \ {0}

)/
Gλ be the quotient space (an infinite-dimensional 

analog to the complex Hopf manifold, cf. [11]). The properties of .CHλ(M ) and 
of the natural projection .CHλ(M ) → CP(M ) (a principal fibration in tori, in 
the finite-dimensional case) were not investigated, so far. Is there any useful (anti) 
holomorphic embedding .K : M → CHλ(M )? If that is the case, does . CHλ(M )

admit a metric g similar to the Boothby metric of a complex Hopf manifold (cf. 
[11]) and is .K ∗g a l.c.K. metric on . M? 

Let ." ⊂ Cn be a domain with .∂" ∈ C2 and let .µ : ∂" → R be a Szegö 
admissible weight (cf. [37], p. 321, and [38]). Let .Sµ(ζ, z) be the Szegö kernel 
of .L2H(∂", µ). The investigation of the properties of the map . KS : " →
CP

(
L2H(∂", µ)

)
, .KS(ζ ) =

[
Sµ(ζ, · )

]
, .ζ ∈ ", is an open problem. If . " = Bn

(the unit ball), is there a natural metric . gS on .CP
(
L2H(∂", µ)

)
such that . 

(
KS

)∗
gS

is the Szegö metric (cf. [4])? See also [24, 25]. Can the construction of .KS be 
recovered to the case where . " is replaced by an arbitrary complex manifold . M (the 
base manifold of a given Hermitian line bundle over . M)? 

Let ." = {ϕ < 0} ⊂ Cn+1 be a domain with smooth boundary, and let 
.∂" = {ϕ = 0} be endowed with the CR structure induced by the complex structure 
on . Cn. Let .E → ∂" be a CR-holomorphic complex line bundle (cf. [12]) and 
let .8n+1, 0(∂") be the canonical line bundle. Then, .8n+1, 0(∂") ⊗ E is a CR-
holomorphic bundle. Let .E 1 ∂"×C and .µ : ∂" → R a Szegö admissible weight. 
Let H be the Hermitian structure on E given by .H(σ0 , σ0) = µ. If . θ = i

2

(
∂ − ∂

)
ϕ

and .θα = dzα , .1 ≤ α ≤ n, then any CR-holomorphic section s in . 8n+1, 0(∂")⊗E

may be represented as .s = ( σ0 ⊗ θ ∧ θ1 ∧ · · · ∧ θn for some CR function 
.( ∈ CR∞(∂"). Let .Mb consist of all CR-holomorphic sections s that are . L2 in the 
sense that .

∫
∂" H ∗(s, s) < ∞, where . H ∗(s, s) = |(|2 µ θ ∧ θ1 ∧ θn∧ θ1 ∧ · · ·∧ θn

[with .θα = θα]. Is there any useful (anti) CR embedding .Kb : ∂" → CP
(
Mb

)
, and 

if that is the case, can .Kb be used to quantize observables on .∂" [leading – when 
.∂" is nondegenerate – to a theory alternative to that by [16] (on quantization of 
contact manifolds)]? See also [17, 18]. Can .Kb be realized as the boundary values 
of a coherent state map .K : " → CP(M )? 
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