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Abstract

In the framework of Extended Irreversible Thermodynamics it is developed a two-temperature

model (for electrons and phonons, respectively) of thermoelectric effects. The expression of the

maximum efficiency in terms of these two temperatures is derived as well. It is proved that, for

the electron temperature higher than the phonon temperature, the two-temperature model yields

an efficiency which is higher with respect to that of the single-temperature model. Two possible

experiments to estimate the electron temperature are suggested.
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Nomenclature

cv specific heat at constant volume

c
(e)
v specific heat at constant volume of electrons

c
(p)
v specific heat at constant volume of phonons

E electric-field vector

i electric-current density vector

J(s) specific-entropy flux vector

q overall local heat-flux vector

q(e) local heat-flux vector due to electrons

q(p) local heat-flux vector due to phonons

s specific entropy

T average temperature

Te electrons temperature

Tp phonons temperature

u specific internal energy

ue specific internal energy of electrons

up specific internal energy of phonons

Z figure-of-merit

Greek symbols

ε Seebeck coefficient

η thermoelectric efficiency

λ total thermal conductivity
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λe electrons thermal conductivity

λp phonons thermal conductivity

µe electron chemical potential

Π Peltier coefficient

ρ mass density

%(e) specific electric charge

Σ thermodynamic state space

σe electrical conductivity

σ(s) rate of entropy-density production

τe relaxation time of electrons

τi relaxation time of electric charges

τp relaxation time of phonons

Subscripts

e electrons

eff effective

i electric-current density

max maximum

p phonons

Superscripts

(e) electrons

(p) phonons

(s) entropy

3



I. INTRODUCTION

Thermoelectricity is actually viewed as a very interesting source of electric power because

of its ability to convert heat flow directly into electricity. In particular, thermoelectric devices

as energy converters are easily scalable and do not have moving parts, or liquid fuels. These

excellent features make them applicable in almost any situation where large quantities of

heat tend to go to waste, from clothing to large industrial facilities.

Whilst the thermoelectric materials have been known and understood for quite some

time, so far they have not been efficient enough to be used commercially. Currently, many

research groups are investing their efforts in finding new materials with appropriate prop-

erties to better use thermoelectric effects, creating so efficient thermoelectric devices. A

good thermoelectric material will have very poor thermal conductivity λ, but a very high

electrical conductivity σe, so that the so-called figure-of-merit Z = ε2σe/λ, with ε being the

Seebeck coefficient, which is the main responsible of the thermoelectric efficiency, is as high

as possible.

Indeed, the advent of nanotechnology is widening the range of applicability of thermo-

electric materials. In fact, the nanostructures used in materials maintain good electrical

conductivity, while reducing the thermal conductivity. The performances of thermoelectric

devices can thus be enhanced with the use of nanotechnology-based materials that have im-

proved thermoelectric properties and good solar energy absorption abilities. Thermoelectric

materials based on Bi2 Te3, for example, stand out as perfect examples highlighting the role

of nanomaterials for thermoelectric devices. Carbon nanotubes and graphene sheets as ther-

moelectric materials also exhibit improved thermoelectric properties. In general, the usage

of nanostructures smaller than the wavelength of light enhances the scattering of photons

decreasing so the thermal conductivity. This decreasing in the thermal conductivity seems

to be the most vital benefit of nanostructuring for thermoelectric materials.

Although it is very clear the importance of using nanotechnology in thermoelectricity,

the design of good thermoelectric nanodevices is still far from its optimal solution. This

principally because the physics at nanoscale presents some dark points, as for instance the

role played by memory, nonlocal and nonlinear effects, as well as the appropriate definition

of temperature in nonequilibrium situations [1–5].

In Ref. [6] we have investigated the influence of nonlocal effects on the figure-of-merit
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in cylindrical nanowires, and predicted how it depends on the features of the transversal

section. In the present paper, instead, we focus our attention especially on the role of

the temperature and on the possibility of accounting for different values for electron and

phonon temperature. Our investigation starts by the observation that, as the electron mean-

free path `e is usually shorter than the phonon mean-free path `p, when heat propagates in

a system whose characteristic size L is such that `e < L < `p, it is expected a very high

number of electron collisions, and only scant phonon collisions. This yields that the electron

temperature Te may reach its local-equilibrium value, whereas the phonon temperature Tp

is still far from its own local-equilibrium value. Conversely, when the electron mean-free

path (corresponding to the electron-phonon collisions) is large, one may have the so-called

phenomenon of ”hot electrons”, namely, a population of electrons whose average kinetic

energy (i.e., the kinetic temperature) is considerably higher than that of the phonons [7, 8].

Another situation in which it is possible to have different temperatures for phonons and

electrons is when a high-frequency electromagnetic radiation is used to supply energy to the

system, since in such a case the electrons receive energy at a rate higher than that at which

they give energy to the phonons. Therefore, it would be interesting to find possible ways to

measure both temperatures [9, 10].

Besides being appealing from the theoretical point of view, accounting for two different

temperatures is also important in practical applications, since it leads to a more realistic

computation of the thermodynamic efficiency of the thermoelectric devices.

Here we develop a mesoscopic model of enhanced thermoelectric equations which account

for different phonon and electron temperatures. Following the way drawn in Refs. [6, 11],

we also assume that the overall heat flux q has two different contributions: the phonon heat

flux q(p) and the electron heat flux q(e), in such a way that q = q(p) + q(e).

The layout of the paper is the following. In Sec. II, we develop a theoretical model

describing thermoelectric effects when the electrons and the phonons do not have the same

temperature. As a consequence of the second Kelvin relation, we suggest a possible way

to measure those temperatures. In Sec. III, as a practical application of that model, we

determine the efficiency of a thermoelectric generator. We point out that the difference

between electron and phonon temperature can contribute to improve the thermoelectric

efficiency. In Sec. IV we draw the main conclusions and we underline that our model may

also cope with the phonon-drag phenomenon, suggesting so a further experiment to check
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both the electron and the phonon temperature.

II. THE PHENOMENOLOGICAL LAWS

The analysis of coupled transport processes is one of the outstanding aspects of the

classical theory of nonequilibrium thermodynamics [3, 12]. In the present section we aim to

derive the phenomenological laws describing the thermoelectric effects whenever the different

heat carriers (i.e., the phonons and the electrons in our case) no longer have the same

temperature.

Since we assume that the heat carriers behave as a mixture of gases flowing through the

crystal lattice [13, 14], it seems logical to suppose that the internal energy of phonons per

unit mass up, the internal energy of electrons per unit mass ue and the electrical charge per

unit mass of electrons %(e) belong to the state space. In particular, we assume that those

state-space variables are ruled by the following evolution equations:

ρ∂tup = −∇ · q(p) (1a)

ρ∂tue = −∇ · q(e) + E · i (1b)

ρ∂t%
(e) = −∇ · i (1c)

with ρ as the mass density, E as the electric field, and i as the electric-current density [6].

We note that the summation of Eqs. (1a) and (1b) turns out the well-known energy-balance

equation

ρ∂tu+∇ · q = E · i

obtained in Ref. [15] in the absence of a magnetic field, once the total internal energy per

unit mass of the system u is supposed to be given by the constitutive relation

u = up + ue (2)

According with the basic principles of Extended Irreversible Thermodynamics (EIT) [3,

5], we may assume that the fluxes of previous unknown variables (namely, q(p), q(e) and

i) are the other state-space variables. Elevating the fluxes to the status of independent

variables amounts to introduce memory and nonlocal effects into the formalism [16, 17].
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In the Appendix at the end of the paper it is shown that, whenever the relaxation times

of those fluxes are negligible, the choice above of the state-space variables implies that the

specific entropy s is such that s = s
(
up;ue; %

(e)
)
. Therefore, in that case, from the Gibbs

relation between s and the state variables, we have

ds =
∂s

∂up
dup +

∂s

∂ue
due +

∂s

∂%(e)
d%(e) ⇒ ∂ts =

1

Tp
∂tup +

1

Te
∂tue −

µe
%(e)Te

∂t%
(e) (3)

wherein Tp = (∂s/∂up)
−1, Te = (∂s/∂ue)

−1, and µe/
(
%(e)Te

)
= −∂s/∂%(e), µe being the

chemical potential of the electrons.

Although Eq. (3) does not present any problem from the theoretical point of view, from

the practical point of view, instead, it may lead to some perplexities due to the presence

of Tp and Te therein. In fact, one may naturally wonder whether they are measurable

quantities, or not [9, 10]. Referring the readers to the end of the present section for a first

possible answer to that question, now let us only observe that we are allowed to postulate the

following further constitutive equations which relate the partial internal energies appearing

in Eqs. (1) to those temperatures:

up = c(p)
v Tp (4a)

ue = c(e)
v Te (4b)

wherein c
(p)
v and c

(e)
v are the phonon and the electron specific heats at constant volume [18],

respectively. As a consequence of Eqs. (4), since the total internal energy u can be expressed

through the average temperature T as u = cvT , being cv = c
(p)
v + c

(e)
v the specific heat at

constant volume of the whole system [19], from the coupling of Eqs. (2) and (4) we obtain

T =
c

(p)
v Tp + c

(e)
v Te

cv
(5)

which states a very strict link between Tp, Te and T , the latter being a measurable quan-

tity in practical applications. Note that in the very general case c
(p)
v and c

(e)
v should be

temperature-dependent functions, but here we deal only with the simplest situation in which

those material functions are constant, in order to emphasize the essential physical ideas and

their consequences.

In few words, we regard the phonons and electrons as a mixture of gases flowing through

the crystal lattice [13, 14], each of which is endowed with its own temperature. In this

way, according with the theory of fluid mixtures with different temperatures [20–22], we are
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allowed to assume that each constituent obeys the same balance laws as a single fluid, and

it has its own temperature. The average temperature of the mixture has been introduced

by the consideration that the internal energy of the mixture is the same as in the case of a

single-temperature mixture [21].

The substitution of Eqs. (1) into Eq. (3) leads to

ρ∂ts =− ∇ · q
(p)

Tp
− ∇ · q

(e)

Te
+

µe
%(e)Te

∇ · i +
E · i
Te

=

−∇ ·
(

q(p)

Tp
+

q(e)

Te
− µe
%(e)Te

i

)
− q(p) · ∇Tp

T 2
p

− q(e) · ∇Te
T 2
e

− i

Te
∇
(
µe
%(e)

)
+

(
µe

%(e)T 2
e

)
i · ∇Te +

E · i
Te

(6)

Recalling that the time rate of the specific entropy has to obey the balance law

ρ∂ts = −∇ · J(s) + σ(s) (7)

with J(s) being the entropy flux, and σ(s) the entropy source, the comparison between Eqs. (6)

and (7) leads to the following identifications:

J(s) =
q(p)

Tp
+

q(e)

Te
− µe
%(e)Te

i (8a)

σ(s) = − 1

Tp

{
q(p) · ∇Tp

Tp

}
− 1

Te

{[
q(e) − µe

%(e)
i

]
· ∇Te
Te

}
+

1

Te

{
i ·
[
E−∇

(
µe
%(e)

)]}
=
∑

α
J(α) ·X(α) (8b)

wherein J(α) is the thermodynamic flux, and X(α) is its conjugated thermodynamic force [3,

12].

Experience indicates that J(α) and X(α) are not independent, but that there exists a

relationship between them. Moreover, it has been observed that, for a large class of irre-

versible processes, the thermodynamic fluxes are linear functions of the forces, to a good

approximation [5, 12, 23]. This observation, which is also the simplest way to ensure that

σ(s) is a non-negative quantity whatever the thermodynamic process is, allows us to write

the following phenomenological relations for the fluxes appearing in our theoretical model:

−q(p) = L11
∇Tp
Tp

+ L12
∇Te
Te

+ L13

[
E−∇

(
µe
%(e)

)]
(9a)

µe
%(e)

i− q(e) = L21
∇Tp
Tp

+ L22
∇Te
Te

+ L23

[
E−∇

(
µe
%(e)

)]
(9b)

i = L31
∇Tp
Tp

+ L32
∇Te
Te

+ L33

[
E−∇

(
µe
%(e)

)]
(9c)
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In Eqs. (9) the quantities Lαβ mean the phenomenological coefficients, which are related

to experimental quantities. The transport coefficients Lαβ are related to the thermo-physical

properties of the material at hand. In general, the Lαβ depend on the elements of the state

space as well as on the thermodynamic forces. In such a case, we are dealing with a non-

linear nonequilibrium theory (NLNET) [24]. If, instead, these coefficients depend only on

the elements of the state space, then we face with a semi-linear nonequilibrium theory

(SLNET) [24]. Finally, if the Lαβ are constant, then we deal with a linear nonequilibrium

theory (LNET) [24]. The coefficients Lαα relate the thermodynamic current to its own

conjugated thermodynamic force. The cross-coefficients Lαβ with α 6= β, instead, are rep-

resentative of the coupling between different physical effects [12, 25]. Any phenomenon in

which two or more transport effects are coupled, such as thermal and electrical conductivity,

or thermal conductivity and diffusion, is called cross-effect [12, 25].

As the thermoelectric effects arise from the physical interrelation between heat flow and

electric current, in the classical thermoelectric models the cross-coefficients Lαβ with α 6= β,

are only related to the coupled transport of heat and electricity. In the present model, in-

stead, the thermoelectric effect is driven by three generalized thermodynamic forces, namely,

the phonon and electron temperature gradient and the force due to the electric field and to

the chemical potential of the electric charge. As a consequence, the cross-coefficients L12 and

L21 account for the cross effects due to the different temperatures of the heat carriers (which

are lacking in the classical case), the coefficients L13 and L31 represent the coupling between

the phonon temperature gradient ad the electric current, and the coefficients L23 and L32

account for the coupling between the electron temperature gradient ad the electric current.

In the standard thermoelectric models, with Tp = Te, we have only two cross-coefficients

and a 2 × 2 transport matrix. Here, instead, we have six cross-coefficients and a 3 × 3

transport matrix. To be compatible with the second law of thermodynamics (expressed as

the positive-definite character of the entropy production) the matrix of phenomenological

coefficients Lαβ must be positive definite [12]. On the other hand, the Onsager reciprocal

relations [26, 27] ensure that the transport matrix is symmetric, so that the Sylvester cri-

terion concerning the positive definiteness of real-symmetric n × n matrices is applicable.

Such a criterion states that the positiveness of all the leading principal minors of the matrix

is necessary and sufficient to ensure that it is positive definite [28].

Recalling that in our theory q = q(p) +q(e), in a somewhat different form the phenomeno-
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logical equations (9) may be also written as

q = − (λp + λep)∇Tp − (λe + λpe)∇Te +

(
µe
%(e)

+ Π

)
i (10a)

i = −σeε∇Te + σe

[
E−∇

(
µe
%(e)

)]
(10b)

once the following identifications are made:
L11 = λpTp; L12 = λpeTe; L13 = 0

L21 = λepTp; L22 = λeTe + σeεTeΠ; L23 = −σeΠ

L31 = 0; L32 = −σeεTe; L33 = σe

(11)

with Π as the Peltier coefficient, and λp and λe as the thermal conductivities of the material

whenever the sole phonons or electrons [6, 29], respectively, are the heat carriers. It is worth

observing that, as the phonon and electron internal energies (or, due to Eqs. (4), the phonon

and electron temperatures) enter the state space, our model is developed within the frame

of a semi-linear nonequilibrium theory.

Indeed, since we are regarding the phonons and the electrons as constituents of a same

mixture of flowing heat carriers, then, in principle, one must take into account the pos-

sible interactions between them, which yield further thermal contributions. Therefore, in

Eq. (10a) the material functions λpe and λep express those contributions to the total thermal

conductivity of the material. Referring the readers to the Appendix for more comments,

here we only note that the use of these thermal conductivities, arising from the phenomeno-

logical coefficients L12 and L21 in Eqs. (9a) and (9b), respectively, are representative of the

cross effects in the constitutive equations for the diffusive fluxes q(p) and q(e). However, as

it will be seen in Sec. III, these cross effects do not play any relevant role on the efficiency

in the thermoelectric energy conversion, being the difference in the two temperatures the

principal responsible for possible enhancements of it.

In Eqs. (11) we assumed L13 = L31 = 0 since it seems logical because the phonons

are not expected to be directly sensitive to the external electric field, at least in a first

approximation. For polar lattices, this possibility would be open, and L13 could be different

from zero. However, here we take the simplest expression.

Owing to the Onsager reciprocal relations [26, 27], from Eqs. (11) we obtain

λpe = λep

(
Tp
Te

)
(12a)

Π = εTe (12b)
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According to the Sylvester’s criterion, the additional constraints

λp > 0 (13a)

λp (λe + σeΠ) > λpeλep (13b)

λpλe > λpeλep (13c)

are necessary and sufficient to ensure that the entropy production is non-negative along

arbitrary thermodynamic processes. In fact, due the positive definiteness of the matrix of

the transport coefficients, the entropy production is positive whenever at least one thermo-

dynamic force is different from zero, and vanishes when all the thermodynamic forces are

zero. Such a situation characterizes the quasi-static (i.e., reversible) processes [30], which

correspond to zero entropy production.

The relation (12b) is well known in thermoelectricity when Te is replaced by T . In that

case it is referred to as the second Kelvin relation, and it has been used since the early days

in the study of thermoelectric phenomena. The different result predicted by Eq. (12b) with

respect to the usual statement of the second Kelvin relation (i.e., Π = εT ) should not be

considered as a surprising and unexpected result. In fact, the classical statement is correct

in the case that phonons and electrons have the same temperature. In the case they have a

different temperatures, instead, the relation (12b) seems more appropriate with respect to

the classical form. That result is also not against Onsager reciprocity relations [26, 27] but,

on the contrary, it is an illustration of them, more accurate and precise than the classical

expression with a single temperature, as it is obtained from the symmetry of coefficients Lαβ

appearing in Eqs. (11).

Equation (12b) may be also very useful in practical applications if one is wondering to

measure Tp and Te. In fact, by means of a usual thermometer, one is only able to check

the average temperature T , defined by Eq. (5). Equation (12b) turns out that Te should be

given as the ratio between Π and ε. Therefore, if one is able to measure Π and ε then, by

the coupling of Eqs. (5) and (12b), in principle, it will be possible to determine Tp, too. In

fact, setting
α =

c
(e)
v

cv
; 1− α =

c
(p)
v

cv

β1 =
Te
T

; β2 =
Tp
T

(14)
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from Eq. (5) we have

αβ1 + (1− α) β2 = 1⇔ β2 =
1

1− α
−
(

α

1− α

)
β1 (15)

Finally, observing that α ∈ ]0; 1[, the physical constraint β2 > 0 implies that β1 ∈ ]0;α−1[.

From Eq. (15) it is easy to see that the condition β1 = 1 ⇒ β2 = 1, namely, in this case

Te ≡ Tp ≡ T : the two-temperature model described by Eqs. (10) reduces to the usual

single-temperature model [3, 11], i.e.,

q = −λ∇T +

(
µe
%(e)

+ Π

)
i

i = −σeε∇T + σe

[
E−∇

(
µe
%(e)

)]
once the thermal conductivity λ of the material is supposed to be given as λ = λp+λe+2λpe.

Previous considerations allow us to claim that our model also shows a strong enough physical

insight.

III. EFFICIENCY OF THERMOELECTRIC GENERATORS

Research in recent years has been focused on developing both thermoelectric structures,

and materials that have high efficiency. In the present section we point out the influence of

accounting for two different temperatures in the calculation of the efficiency η of a thermo-

electric generator, defined as the ratio between the electric-power output Pel and the total

heat supplied per unit time Q̇, namely,

η =
Pel

Q̇
(16)

To this end, for the sake of simplicity, we consider a single one-dimensional (y is the sole

cartesian coordinate) thermoelectric element of length L under steady conditions. The hot

side is held at a temperature T h (assumed to be the upper side, at y = L), and the cold

side at the temperature T c (the lower side, at y = 0). We also assume that i and Q̇ enter

uniformly into the hot side of the element. In such a situation, the electric-power output is

Pel = i ·
∫ L

0

Edy = iε
(
T he − T ce

)
− i2L

σe
(17)

once the electric field is given by Eq. (10b) with vanishing values of ∇
(
µe/%

(e)
)
, for the sake

of simplicity, and ε and σe do not depend on the temperature.
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From Eq. (10b), instead, we obtain that the total heat supplied per unit time is

Q̇ =

∫ L

0

q dy = Λp

(
T hp − T cp

)
L

+ Λe

(
T he − T ce

)
L

+ Πi (18)

wherein Λp = λp + λep, and Λe = λe + λpe.

Inserting Eqs. (17) and (18) into Eq. (16) we obtain

η =
iε
(
T he − T ce

)
− i2Lσ−1

e

Λp

(
T hp − T cp

)
L−1 + Λe (T he − T ce )L−1 + Πi

(19)

If we introduce in Eq. (19) the coefficients β1 and β2 defined in Eqs. (14), and take into

account Eq. (12b), by straightforward calculations we have

η =

(
1− T c

T h

) εx− λx2

σeβ1

γ + 1

T h
+ εx

⇔ η = ηcηr (20)

wherein we set λ = Λp + Λe, γ = (Λp/λ) (β2/β1 − 1), and x is the following ratio between

the electric current and the heat flux:

x =
iL

λ (T h − T c)
(21)

Moreover, in Eq. (20) ηc = 1 − T c/T h is the usual Carnot efficiency, and ηr is a reduced

efficiency. Since ηc represents the ideal limit of the thermodynamic efficiency, in practical

applications one should find the right way to enhance ηr in order to have a good thermo-

electric efficiency. Indeed, it is easy to see that whenever the ratio x defined above gets the

value

xopt =

(
γ + 1

εT

)√1 +
Z̄Tβ1

γ + 1
− 1

 (22)

with Z̄ = ε2σe/λ, then the reduced efficiency gets its maximum value, and the thermoelectric

efficiency reads

ηmax = ηc


Z̄Tβ1 + 2 (γ + 1)

1−

√
1 +

Z̄Tβ1

γ + 1


Z̄Tβ1

 (23)
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which reduces to the classical form for the maximum thermoelectric efficiency [3, 31] when-

ever Tp and Te coincide, i.e., when β1 = β2 = 1 and γ = 0.

From Eq. (23) it easy to recover the usual result that the larger the figure-of-merit, the

higher the efficiency of a thermoelectric device.

However, Eq. (23) clearly points out that also the differences between Tp and Te influence

ηmax, whereas the cross effects related to the phenomenological coefficients L12 and L21 in

Eqs. (9a) and (9b) substantially remain unaltered the predictions of our two-temperature

model with respect those of the usual single-temperature model. This may be interesting in

practical applications, since the most part of the research groups is focusing the attention

only on the search of new materials with high values of the figure-of-merit.

In Fig. 1 we plot the behavior of the ratio ηmax/ηc as a function of β1 for two different

values of the nondimensional parameter α, i.e., α = 0.05 and α = 0.5. For the sake of

illustration in our computation we assumed Λp = Λe, as the materials commonly used in

thermoelectric applications show a phonon thermal conductivity which is approximately

equal to the electron thermal conductivity. Moreover, we supposed that Z̄T = 1.

As it can be seen, the maximum efficiency increases for increasing values of β1. This

means that the bigger Te with respect to Tp, the better the performances of thermoelectric

devices. Indeed, Fig. 1 also allows to analyze the role played by c
(e)
v and c

(p)
v , the latter

being usually higher than the former. In fact, it points out that the (positive) slope of the

curve ηmax = ηmax (β1) gradually decreases whenever α assumes very small values, whereas

it basically takes a constant value when α reaches high enough values, in such a way that

whenever Te > Tp, the higher α, the higher ηmax.

At the very end, we observe that in Fig. 1 the value ηmax/ηc = 0.17, attained whenever

β1 = 1 [? ] corresponds to the case of a single-temperature model. Thus we may con-

clude that whenever the electron temperature is higher than the phonon temperature, our

two-temperature model yields an efficiency which is higher than that of the usual single-

temperature model.

IV. CONCLUSIONS

Thermoelectric devices have gained importance in recent years as viable solutions for ap-

pealing applications such as spot cooling of electronic components, remote power generation
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FIG. 1: Behavior of ηmax/ηc versus β1 for two different values of the nondimensional parameter

α = c
(e)
v /cv: theoretical results arising from Eq. (23). In figure, β1 < 1⇒ Tp > Te, β1 = 1⇒ Tp =

Te, and β1 > 1⇒ Tp < Te.

in space stations and satellites, etc. These solid-state devices have long been known for

their reliability, rather than their efficiency. They do not contain moving parts, and their

performances primarily rely on the material selection which, indeed, has not yet achieved

sufficiently satisfactory candidates for widespread practical applications. Therefore, the re-

search in recent years has been focused on developing both thermoelectric structures, and

materials that have higher efficiencies than that of the currently available materials. The

advent of nanotechnologies, which allow to improve the actual performances of thermoelec-

tric devices, has shifted the focus towards a deeper understanding of the carrier-transport

behavior in nanostructures. In fact, the quantum confinement in nanostructures increases

the local-carrier density of states per unit volume near the Fermi energy, yielding an en-

hancement in the Seebeck coefficient [32], while the thermal conductivity can be decreased
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due to phonon confinement and phonon scattering [33, 34]. This way, the combined benefits

of reduced thermal conductivity and improved Seebeck coefficient imply theoretically higher

values of ZT compared to the bulk structures. However, experimental observations have

not been able to achieve the presumed benefits of nanostructured thermoelectric devices,

despite theoretically predicted improvements.

Owing to the need for a better understanding of the effect of all the significant factors

contributing to the thermoelectric figure-of-merit of nanoscale devices, in a previous paper [6]

we have investigated the influence of nonlocal effects on it in cylindrical nanowires, and we

predicted how Z depends on the features of the transversal section.

Here, instead, we have analyzed the possible consequences of accounting for different tem-

peratures for the different heat carriers which may be interesting in practical applications,

as we pointed out in Sec. I and Sec. III. In particular, in the framework of EIT [3, 5], in the

present paper we have developed a model of enhanced thermoelectric equations assuming

that the population of heat carriers behaves as a mixture of flowing gas particles [6, 13, 14]

with different temperatures, according with the theory proposed by Ruggeri and cowork-

ers [20–22]. It seems worth noticing that accounting for different temperatures is also a

well-known mechanism of heat conduction in complex materials, where one of the compo-

nents can be thermally excited independently of the other [7, 8, 35, 36]. In the case of

thermoelectric effects, instead, we feel that the consideration of two temperatures is, at

least, a theoretical valuable approach because it allows to identify with better conceptual

clarity which part of the several effects is directly related to electrons (or holes), which one

to phonons, and which one to their mutual interactions. Thus, it is worth to explore it for

its own conceptual sake, as a model wider than the usual one, working directly with a single

temperature. On the other side, this may open the possibility of new practical strategies,

although the effects are expected to be small in usual circumstances. In fact, the results in

Eq. (23), arising from the two-temperature model in Eqs. (10), point out that the bigger the

electron temperature than the phonon temperature, the higher the performances of a ther-

moelectric device. This can be clearly seen in Fig. 1 wherein ηmax increases for enhancing

values of the nondimensional ratio β1 = Te/T . Figure 1 also allows us to make a comparison

between the theoretical predictions of a single-temperature model (β1 = 1) and those of our

two-temperature model (β1 6= 1). In particular, whenever Te is higher than Tp, it points out

that the latter model yields a larger efficiency in the thermoelectric energy conversion with
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respect to that predicted by the former model.

Since from the theoretical point of view it seems very clear the importance of accounting

for Te and Tp, it would be very useful in practical applications to find a possible way to

estimate those temperatures [9, 10]. To this end, by observing that our theoretical model

predicts that the classical second Kelvin relation breaks down, as stated by Eq. (12b), we also

proposed a possible way of checking both temperatures. In more details, we observed that if

one is able to measure at nanoscale the Peltier and the Seebeck coefficients separately, then

their ratio would turn out, in principle, the electron temperature and then, as a consequence

of Eq. (5), the phonon temperature, too. It is worth to note that at nanoscale the different

material functions may deviate from their corresponding bulk values, in such a way that

several methods of measuring them may be found in literature [37, 38].

From the practical point of view, the way of having a truly different temperature for

electrons (and holes) and lattice (phonons) is by means of a pulse-laser excitation yielding

its energy to the charged particles (electrons), which later share their energy excess with the

lattice. Despite the lattice may be also charged, the much higher mass of the ions makes

that the electrons may absorb more energy from the pulse. However, this strategy is not of

interest for practical thermoelectric devices, because it would require spending energy on the

laser, from which only a part would be taken by the system. A different strategy would be by

using a system composed of two (or several) thin layers (as for instance a superlattice) which

are shorter than the phonon mean-free path, but larger than the electron mean-free path.

If the electron and phonon contributions to the heat flux within the layers are, respectively,

q(e) = −λe∇Te and q(p) = −λp∇Tp, and the temperature discontinuities at an interface

are ∆Te = Reqe and ∆Tp = Rpqp, Re and Rp being the respective thermal resistance of the

interface, one may obtain the profile for Te and Tp along the system. Both temperatures must

be equal to the heat baths at the two ends of the whole system, but they may be different

from each other along the system. By using suitable materials to have Re, Rp, λe and λp

(or a suitably reduced effective phonon thermal conductivity), one could have regions with

Te higher than Tp, and regions with Te lower than Tp. A detailed analysis of both profiles

should be carried out to study the global effects of these differences on the efficiency of the

thermoelectric conversion in the whole device. Of course, electrons exchange energy with

phonons everywhere. Thus, it would be convenient that the electron heat flux is relatively

large, in order that this energy exchange does not bring to zero the temperature differences.
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These effects should be studied in detail. Though the final practical outcome may turn to be

small, the new detailed physical understanding of the system would be worth of the effort.

Indeed, in our two-temperature model the problem of measuring Te and Tp may be also

related to the phonon-drag phenomenon [39, 40]. The classical theory of thermoelectricity,

in fact, is based on the assumption that the flow of charge carriers and phonons can be

treated independently. Under this assumption, the Seebeck coefficient depends solely by the

spontaneous electron diffusion. However, when the two flows are linked, the effect of electron-

phonon scattering should be taken into account. Hence, in general, the Seebeck coefficient

shows two independent contributions: the conventional electron-diffusion contribution and

the phonon-drag contribution [40]. The diffusion part is caused by the spatial variation

of the electronic occupation in the presence of a thermal gradient, whereas the drag part

arises by the interaction between anisotropic lattice vibrations and mobile charge carriers.

The overall phonon-drag effect leads to an increase in the Seebeck coefficient. If we look

at Eq. (10b), we may observe that it allows to introduce the following effective Seebeck

coefficient

εeff = εβ1 ⇔ β1 =
εeff

ε
(24)

which also allows to claim that the deviation of the effective Seebeck coefficient from its bulk

value represents a further possible measurement of the electron temperature. Moreover,

along with previous observations about the phonon-drag phenomenon, from Eq. (24) we

further claim that in general β1 should be greater than unit, namely, Te > Tp.

Appendix: compatibility with second law of thermodynamics

The results we derived in the present paper are based upon the system of equations (10).

In Sec. II we already pointed out a sufficient set of thermodynamic conditions ensuring the

compatibility of those equations with the second law. Indeed, Eqs. (10) follow from the

assumption that the specific entropy only depends on the basic variables up, ue and %(e),

whereas, according with the general principles of EIT [3, 5, 16, 17], we have assumed that

both those variables, and the independent fluxes q(p), q(e) and i belong to the state space.

Here we spend more comments about that assumption. In doing this, we take advantage of

the second law of thermodynamics.
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The second law, accounting for the natural evolution of a system in any possible ther-

modynamic process, in fact, is a very valuable tool to study the physical consistency of any

thermodynamic model. In terms of the entropy density s, its local form reads as in Eq. (7),

wherein the entropy source has to be non-negative in any admissible thermodynamic pro-

cess. Since in Eq. (7) neither s, nor J(s) belong to the state space, then they have to be

expressed through constitutive equations. If we assume for them the very general forms

s = s
(
up;ue; %

(e); q(p); q(e); i
)

J(s) = J(s)
(
up;ue; %

(e); q(p); q(e); i
) (25)

then, by the chain rule, from Eq. (7) we get

σ(s) = ρ

(
∂s

∂up
∂tup +

∂s

∂ue
∂tue +

∂s

∂%(e)
∂t%

(e) +
∂s

∂q(p)
· ∂tq(p) +

∂s

∂q(e)
· ∂tq(e) +

∂s

∂i
· ∂ti

)
+
∂J(s)

∂up
· ∇up +

∂J(s)

∂ue
· ∇ue +

∂J(s)

∂%(e)
· ∇%(e) +

∂J(s)

∂q(p)
: ∇q(p) +

∂J(s)

∂q(e)
: ∇q(e) +

∂J(s)

∂i
: ∇i

(26)

wherein the colon stands for the double inner product of two matrices. Second law of ther-

modynamics dictates that the right-hand side of Eq (26) must be nonnegative for arbitrary

thermodynamic processes. It contains the higher derivatives ∂tup, ∂tue, ∂t%
(e), ∂tq

(p), ∂tq
(e),

∂ti, ∇up, ∇ue, ∇%(e), ∇q(p), ∇q(e) and ∇i, which can assume completely arbitrary val-

ues [41], as they account for the natural and independent evolution in the space-time of the

basic variables up, ue and %(e), as well as for the evolution of the independent fluxes q(p),

q(e) and i.

The evolution equations of up, ue and %(e) are given by Eqs. (1), whereas the time rates

of q(p), q(e) and i in our model read, respectively,

τp∂tq
(p) + q(p) = −λp∇Tp − λpe∇Te (27a)

τe∂tq
(e) + q(e) = −λep∇Tp − (λe + σeεΠ)∇Te + σeΠ

[
E−∇

(
µe
%(e)

)]
+

(
µe
%(e)

)
i (27b)

τi∂ti + i = −σeε∇Te + σe

[
E−∇

(
µe
%(e)

)]
(27c)

wherein τp, τe and τi are the relaxation times of phonons, electrons and electric current,

respectively [6, 42]. In steady-state situations, or whenever those relaxation times are van-

ishing, from Eqs. (27) it is easy to recover Eqs. (10).
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Before to go further in the thermodynamic analysis, we feel that Eqs. (27) deserve

some comments. They introduce a theoretical model for thermoelectric effects which al-

lows to point out clearly which part of the several effects is directly related to the different

heat/electric carriers, and which one to their mutual interactions. Mutual interactions, in

particular, in Eqs. (27a) and (27b) are introduced by cross effects of the form λpe∇Te and

λep∇Tp, arising from the phenomenological coefficients L12 and L21 in Eqs. (9) which are

peculiar of our two-temperatures model. We already observed that these effects do not play

any direct relevant role on the thermoelectric efficiency. They are very important, instead,

if one is wondering to determine both the Tp profile and the Te profile in our system. In

fact, since they couple the differential equations for q(p) and q(e), then also small perturba-

tions in one temperature have repercussions on the other temperature. However, we note

that the analysis of the possible influence of cross effects in the constitutive equations for

thermoelectricity is a very interesting research playground, since it may allow to discover

new ways to enhance the performances of thermoelectric devices, as it has been pointed out

in Ref. [11], for example.

Equations (27) follow from the observation that each thermodynamic flux J(α) is described

by a generalized transport equation of the form [5]

τα∂tJ
(α) + J(α) = Lαβ ·X(β)

wherein Lαβ is the matrix of the phenomenological coefficients. It is worth observing that

whenever the relaxation times τp, τe and τi are negligible, the summation of Eqs. (27a)

and (27b) turns out Eq. (10a), whereas Eq. (27c) reduces to Eq. (10b).

To derive the thermodynamic restrictions imposed by the inequality σ(s) ≥ 0, it is possible

to follow the procedure proposed by Liu [43] which introduces the constraints in Eqs. (1)

and Eqs. (27) by means of suitable Lagrange multipliers, in such a way that the following

inequality has to be fulfilled:

σ(s) − γp
(
ρ∂tup +∇ · q(p)

)
− γe

(
ρ∂tue +∇ · q(e) − E · i

)
− γi

(
ρ∂t%

(e) +∇ · i
)

− Γp

(
τp∂tq

(p) + q(p) + λp∇Tp + λpe∇Te
)

− Γe

{
τe∂tq

(e) + q(e) + λep∇Tp + (λe + σeεΠ)∇Te − σeΠ
[
E−∇

(
µe
%(e)

)]
−
(
µe
%(e)

)
i

}
− Γi

{
τi∂ti + i + σeε∇Te − σe

[
E−∇

(
µe
%(e)

)]}
≥ 0 (28)
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Since the Lagrange multipliers γp, γe, γi, Γp, Γe and Γi are well-defined on the state

space [41], as consequence of the coupling of Eq. (26) and inequality (28), thermodynamic

restrictions ensue by nullifying the coefficients of the higher derivatives [41].

In particular, setting equal to zero each coefficient of the time-derivatives of the state-

space variables, one has:

∂s

∂up
= γp ⇔

1

Tp
= γp (29a)

∂s

∂ue
= γe ⇔

1

Te
= γe (29b)

∂s

∂%(e)
= γi ⇔ −

µe
%(e)Te

= γi (29c)

∂s

∂q(p)
=

Γpτp
ρ

(29d)

∂s

∂q(e)
=

Γeτe
ρ

(29e)

∂s

∂i
=

Γiτi
ρ

(29f)

These relations turn out useful information about the dependence of the specific entropy

on the state-space variables. A possible form of s compatible both with the principle of

maximum entropy at the equilibrium, and with Eqs. (29) is

s = s0

(
up;ue; %

(e)
)
− τp

2ΛpT 2
p

q(p) · q(p) − τe
2 (Λe + εΠσe)T 2

e

q(e) · q(e) − τi
2εσeT 2

e

i · i (30)

provided the following identifications are made:

Γp =
ρ

2ΛpT 2
p

q(p) (31a)

Γe =
ρ

2 (Λe + εΠσe)T 2
e

q(e) (31b)

Γi =
ρ

2εσeT 2
e

i (31c)

From Eq. (30) it follows that whenever the relaxation times τp, τe and τi are negligible,

then the dependence of s on the fluxes q(p), q(e) and i may be neglected as well, and one may

assume s ≈ s0

(
up;ue; %

(e)
)
. The result above proves that the Gibbs equation (3), postulated

in Sec. II, is in accordance with second law of thermodynamics.

Moreover, if one sets equal to zero the coefficients of the the first-order spatial derivatives
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of the state-space variables, the following further set of thermodynamic restrictions ensues:

∂J(s)

∂up
c(p)
v = Γpλp + Γe

[
λep + σeΠ

∂

∂up

(
µe
%(e)

)]
+ Γiσe

∂

∂up

(
µe
%(e)

)
(32a)

∂J(s)

∂ue
c(e)
v = Γpλpe + Γe

{
λe + σeΠ

[
ε+

∂

∂ue

(
µe
%(e)

)]}
+ Γiσe

[
ε+

∂

∂ue

(
µe
%(e)

)]
(32b)

∂J(s)

∂%(e)
= σe (ΠΓe + Γi)

∂

∂%(e)

(
µe
%(e)

)
(32c)

∂J(s)

∂q(p)
= γpU (32d)

∂J(s)

∂q(e)
= γeU (32e)

∂J(s)

∂i
= γiU (32f)

with U being the unitary matrix.

It is easy to verify by direct substitution that the system of thermodynamic restric-

tions (32) admits as solution the constitutive equation (8a).

These thermodynamic considerations allow to claim that the model equations (10), which

are a particular case of the more general equations (27), are in accordance with the basic

principles of continuum physics.
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22



Recerca of the Generalitat of Catalonia under grant No. 2009-SGR-00164.

[1] D. Y. Tzou, Macro to micro-scale heat transfer. The lagging behaviour. New York: Taylor and

Francis, 1997.

[2] Z. M. Zhang, Nano/Microscale heat transfer. New York: McGraw-Hill, 2007.

[3] G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding nonequilibrium thermodynamics.

Berlin: Springer, 2008.

[4] S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin:

Springer, 2010.

[5] D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin:

Springer, fourth revised ed., 2010.

[6] A. Sellitto, V. A. Cimmelli, and D. Jou, “Thermoelectric effects and size dependency of the

figure-of-merit in cylindrical nanowires,” Int. J. Heat Mass Transfer, vol. 57, pp. 109–116,

2013.

[7] D. Jou, A. Sellitto, and V. A. Cimmelli, “Phonon temperature and electron temperature in

thermoelectric coupling,” J. Non-Equilib. Thermodyn., vol. 38, pp. 335–361, 2013.

[8] D. Jou, A. Sellitto, and V. A. Cimmelli, “Multi-temperature mixture of phonons and electrons

and nonlocal thermoelectric transport in thin layers,” Int. J. Heat Mass Transfer, vol. 71,

pp. 459–468, 2014.

[9] S. Berciaud, M. Y. Han, K. F. Mak, L. E. Brus, P. Kim, and T. F. Heinz, “Electron and optical

phonon temperatures in electrically biased graphene,” Phys. Rev. Lett., vol. 104, p. 227401 (4

pages), 2010.

[10] M. Schreier, A. Kamra, M. Weiler, J. Xiao, G. E. W. Bauer, R. Gross, and S. T. B. Goen-

nenwein, “Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in

magnetic insulator/normal metal hybrid structures,” Phys. Rev. B, vol. 88, p. 094410, 2013.

[11] A. Sellitto, “Crossed nonlocal effects and breakdown of the Onsager symmetry relation in a

thermodynamic description of thermoelectricity,” Physica D, vol. 243, pp. 53–61, 2014.

[12] S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics. Amsterdam: North-Holland

Publishing Company, 1962.

[13] G. Chen, Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons,

23



Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005.

[14] F. X. Alvarez, D. Jou, and A. Sellitto, “Phonon hydrodynamics and phonon-boundary scat-

tering in nanosystems,” J. Appl. Phys., vol. 105, p. 014317 (5 pages), 2009.

[15] B. D. Coleman and E. H. Dill, “Thermodynamic restrictions on the constitutive equations of

electromagnetic theory,” ZAMP, vol. 22, pp. 691–702, 1971.

[16] G. Lebon, “Heat conduction at micro and nanoscales: A review through the prism of Extended

Irreversible Thermodynamics,” J. Non-Equilib. Thermodyn., vol. 39, pp. 35–59, 2014.

[17] V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, “Entropy Principle and Recent Results in

Non-Equilibrium Theories,” Entropy, vol. 16, pp. 1756–1807, 2014.

[18] Z. Lin, L. V. Zhigilei, and V. Celli, “Electron-phonon coupling and electron heat capacity

of metals under conditions of strong electron-phonon nonequilibrium,” Phys. Rev. B, vol. 77,

p. 075133 (17 pages), 2008.

[19] L. X. Benedict, S. G. Louie, and M. L. Cohen, “Heat capacity of carbon nanotubes,” Solid

State Commun., vol. 100, pp. 177–180, 1996.

[20] H. Gouin and T. Ruggeri, “Identification of an average temperature and a dynamical pressure

in a multitemperature mixture of fluids,” Phys. Rev. E, vol. 78, p. 016303 (7 pages), 2008.

[21] T. Ruggeri and J. Lou, “Heat conduction in multi-temperature mixtures of fluids: the role of

the average temperature,” Phys. Lett. A, vol. 373, pp. 3052–3055, 2009.

[22] T. Ruggeri, “Multi-temperature mixture of fluids,” Theoret. Appl. Mech., vol. 36, pp. 207–238,

2009.

[23] I. Gyarmati, Nonequilibrium Thermodynamics. Berlin: Springer, 1970.

[24] I. Gyarmati, “On the wave approach of thermodynamics and some problems of non-linear

theories,” J. Non-Equilib. Thermodyn., vol. 2, pp. 236–260, 1977.

[25] Y. D. adn I. Sandler, “Linear-nonequilibrium thermodynamics theory for coupled heat and

mass transport,” Int. J. Heat Mass Transf., vol. 44, pp. 2439–2451, 2001.

[26] L. Onsager, “Reciprocal relations in irreversible processes I,” Phys. Rev., vol. 37, pp. 405–426,

1931.

[27] L. Onsager, “Reciprocal relations in irreversible processes II,” Phys. Rev., vol. 38, pp. 2265–

2279, 1931.

[28] G. T. Gilbert, “Positive Definite Matrices and Sylvester’s Criterion,” The American Mathe-

matical Monthly, vol. 08, pp. 44–46, 1991.

24



[29] N. Stojanovic, D. H. S. Maithripala, J. M. Berg, and M. Holtz, “Thermal conductivity in

metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz

law,” Phys. Rev. B, vol. 82, p. 075418 (9 pages), 2010.

[30] M. W. Zemanski and R. H. Dittman, Heat and Thermodynamics. New York: MacGraw-Hill,

seventh revised ed., 1997.

[31] G. Benenti, K. Saito, and G. Casati, “Thermodynamic bounds on efficiency for systems with

broken time-reversal symmetry,” Phys. Rev. Lett., vol. 106, p. 230602 (4 pages), 2011.

[32] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric

figure of merit,” Phys. Rev. B, vol. 47, pp. 12727–12731, 1993.

[33] A. Balandin and K. L. Wang, “Effect of phonon confinement on the thermoelectric figure of

merit of quantum wells,” J. Appl. Phys., vol. 84, p. 6149 (5 pages), 1998.

[34] A. Balandin and K. L. Wang, “Significant decrease of the lattice thermal conductivity due to

phonon confinement in a free-standing semiconductor quantum well,” Phys. Rev. B, vol. 58,

pp. 1544–1549, 1998.

[35] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces

exposed to ultrashort laser pulses,” Sov. Phys. JETP, vol. 39, p. 375, 1974.
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