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Abstract: As zero-carbon fuels, hydrogen and ammonia are of great interest in the transition toward
a climate-neutral transportation system. In order to use these fuels and their blends in reciprocat-
ing engines, a characterization of the combustion of NH3/H2/air mixtures at high pressures and
temperatures is needed. The aim of this work is to compute the Laminar Flame Speed (LFS) of
NH3/H2/air mixtures by varying the thermochemical conditions of the reactants. For this purpose,
several simulations have been carried out using different kinetic reaction mechanisms. The accuracy
of the model has been assessed by comparing the results with experimental data available in the
scientific literature. Finally, the influence of mixture composition and thermodynamic conditions of
the reactants on LFS has been assessed by considering temperature and pressure values relevant to
automotive applications and not yet explored in the literature. By adding H2 to NH3/air mixtures,
LFS increases exponentially. By plotting the logarithm of LFS as a function of the H2 mole fraction,
the numerical results are well fitted by using a second-degree polynomial regression. However, a
linear regression is accurate enough if the H2 mole fraction does not exceed 0.6. Regarding the effect
of pressure, the decrease in LFS with increasing pressure is less important as pressure increases. On
the other hand, LFS increases with temperature, and this effect is more pronounced as the H2 mole
fraction decreases and pressure increases.

Keywords: e-fuels; hydrogen; ammonia; laminar flame speed; engine-like conditions; zero-carbon
combustion; climate neutrality

1. Introduction

Over the last few years, ammonia (NH3) has been carefully taken into account for
use as an alternative fuel. Synthetic fuels are generally classified with different colors
based on the production process, on the sources to be used during the production process,
and on the amount of carbon emissions [1]. Ammonia synthesized using hydrogen that
is produced by water electrolysis, powered by renewable energy sources, is a green fuel,
typically known as e-ammonia, and is characterized by no-direct CO2 emissions. The use of
e-ammonia instead of green hydrogen can overcome the concerns and inefficiencies related
to hydrogen storage and transport. As a matter of fact, hydrogen is characterized by the
highest gravimetric energy density of any fuel, but the low volumetric mass density of
hydrogen under ambient conditions results in a relatively low volumetric energy density.
This usually requires to store hydrogen at cryogenic conditions [2]. Ammonia, on the
other hand, liquifies, for example, at atmospheric temperature (298 K) and 0.998 MPa or at
atmospheric pressure (0.1 MPa) and 239.57 K [3], thus making its transport and distribution
much easier than hydrogen. In this scenario, ammonia may play an important role in the
decarbonization process of the automotive industry.

Nonetheless, ammonia combustion also presents some drawbacks, such as high toxic-
ity and very low Laminar Flame Speed (LFS). A solution to improve ammonia combustion is
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the addition of hydrogen, as shown in the literature by both experimental and numerical ap-
proaches. Ichikawa et al. [4] measured the laminar flame speed of ammonia/hydrogen/air
stoichiometric mixtures by observing the spherically propagating premixed flame in a
constant volume chamber. The initial temperature of the mixture was set at 298 K and three
pressures, namely 0.1, 0.3 and 0.5 MPa, were considered, whereas hydrogen mole fraction
was varied in the range 0–1. The results show that by adding hydrogen to ammonia the
LFS exponentially increases. Even if the LFS decreases by increasing the pressure, the
presence of hydrogen provides a similar behavior for all values of pressure. The same
authors also carried out numerical simulations by using five different kinetic reaction mech-
anisms, thus finding qualitative but not quantitative agreement with experimental data.
More recently, Han et al. [5] measured the LFS of NH3/air, NH3/H2/air, NH3/CO/air
and NH3/CH4/air mixtures at atmospheric pressure by using a heat flux burner and by
considering different equivalence ratios and composition ratios. Hydrogen was found to
be the most effective additive fuel to increase the LFS of ammonia. The equivalence ratio
that maximizes the LFS of NH3/H2 blends is equal to about 1.05 and increases with the H2
mole fraction. Li et al. [6] developed a detailed chemical mechanism and a reduced one for
NH3/H2 mixtures. The comparison with available experimental data under atmospheric
conditions shows that a good agreement was obtained for lean and stoichiometric mixtures,
whereas both mechanisms over-predict LFS for rich mixtures. Simulations of turbulent
non-premixed jet flames were performed and the structure of the reaction region was
analyzed, showing that NO concentration significantly increases in the high-temperature
zone, where near-stoichiometric conditions occur. In addition, NO2 increases in the lean
regions. LFS correlations for NH3/H2 mixtures were proposed by Pessina et al. [7], who
used a fitting procedure of the simulation data. Such correlations were used to carry out
Computational Fluid Dynamics (CFD) simulations, with ad hoc combustion models, to
predict the LFS at engine-like conditions. The results show that by adding hydrogen with
mole fractions between 0.4 and 0.6, the LFS of NH3/H2 mixtures approaches the value
obtained with gasoline, even under high temperature and pressure conditions, namely
820 K and 4 MPa, 948 K and 8 MPa, and 1012 K and 10 MPa.

To the best of our knowledge, the LFS of NH3/H2 mixtures has been experimentally
measured up to 0.7 MPa. This was carried out by Shrestha et al. [8] at 473 K, for H2 content
up to 20% and for an equivalence ratio equal to 1.1. On the other hand, in the literature,
different chemical kinetic mechanisms for NH3/H2 mixtures have been proposed by several
authors [5,9–13], for pressures and temperatures relatively low with respect to operating
thermodynamic conditions typical of thermal engines. The characterization of the flame
structure and speed with temperatures and pressures reached at end-of-compression stroke
in engines is of the utmost importance for engine combustion simulations. Therefore, five
kinetic mechanisms [9–13] have been used to analyze the laminar flame structure and speed
of NH3/H2 blends under several temperatures and pressures for different fuel mixture
compositions and equivalence ratios. The numerical results have been compared with
available experimental data and the most accurate kinetic models have been used for further
analyses at much higher pressures and temperatures. Specifically, in this work, the laminar
flame structure and speed of NH3/H2 blends have been analyzed under thermodynamic
conditions that have not yet been investigated in the literature. The major contribution of
this work is to assess whether the linear trend proposed by Ichikawa et al. [4] to correlate
LFS and H2 mole fraction, X(H2), in a semi-logarithmic scale, based on experimental data
up to 0.3 MPa for stoichiometric mixtures, also occurs for higher pressures and lean/rich
mixtures. Furthermore, for each pressure, several values of X(H2), ranging from 0.0 to 1.0,
have been considered, whereas in Ref. [4] the upper limit of X(H2) has been reduced as
pressure increases. Indeed, in Ref. [4], X(H2) ranges from 0.0 to 1.0 at 0.1 MPa, from 0.0 to
0.6 at 0.3 MPa, and from 0.0 to 0.4 at 0.5 MPa. The thermodynamic conditions of this work
are summarized in Table 1. Two correlations, i.e., a linear regression and a second-degree
polynomial regression, have been proposed to predict LFS as a function of X(H2) in a
semi-logarithmic scale. The results of the two correlations have carefully been compared.
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The measurements of Ref. [4] show that the influence of hydrogen addition is similar at
0.1, 0.3 and 0.5 MPa. By extending the range of conditions up to 8.0 MPa, the numerical
results show that the influence of hydrogen addition decreases with increasing pressure
and equivalence ratio. Finally, the steady flame structure, under laminar conditions, and its
thickness have been analyzed to assess the influence of H2 addition to the fuel composition
and to explore the kinetics that lead to LFS enhancement by the addition of H2.

Table 1. Thermodynamic conditions and mixture compositions used for the simulations.

Pressure [MPa] Temperature [K] Equivalence Ratio H2 Mole Fraction in
the Fuel Mixture

0.1, 0.3, 0.5, 1.0,
2.0, 3.0, 4.0, 8.0 300, 373, 473, 800 [0.7–1.5] [0.0–1.0]

This work is organized as follows: first, the numerical model is described and validated
against experimental data, then the results obtained at pressure up to 8.0 MPa are discussed,
and, finally, the conclusions are summarized.

2. The Model
2.1. Governing Equations

Ansys® Academic Research Chemkin-Pro Release 20.2 software [14] has been used
to study the laminar flame structure and speed of NH3/H2 mixtures. This code has been
implemented for premixed, one-dimensional laminar flames under steady-state conditions
and isobaric combustion. The governing equations are the flow rate continuity, the energy
conservation, the mass balance of each chemical species and the thermally perfect gas
equation of state, which can be, respectively, written as follows:

.
M = ρuAr, (1)

.
M

dT
dx

− 1
cp

d
dx

(
λAr

dT
dx

)
+

Ar

cp

K

∑
k=1

ρYkVkcpk
dT
dx

+
Ar

cp

K

∑
k=1

.
ωkhkWk = 0, (2)

.
M

dYk
dx

+
d

dx
(ρArYkVk)− Ar

.
ωkWk = 0, (3)

ρ =
pW
RT

. (4)

In the above equations,
.

M is the mass flow rate, ρ is the mass density, u is the gas
velocity, Ar is the area of the reactor section (whose default value is equal to 1 m2), T is
the temperature, cp is the specific heat at constant pressure of the gas mixture, λ is the
thermal diffusivity of the mixture, Yk is the mass fraction of the k-th chemical species, K
is the number of species, Vk is the diffusion velocity of the k-th species, cpk is the specific
heat at constant pressure of the k-th species,

.
ωk is the chemical production rate of the k-th

species, hk is the specific enthalpy of the k-th species, Wk is the molecular weight of the k-th

species, p is the pressure,
-

W is the molecular weight of the mixture and R is the universal
gas constant.

The chemical production rate is computed by assuming that kinetics is governed by
the law of mass action and the forward rate coefficients, kf, are computed by using the
modified Arrhenius equation, which reads:

kf = ATβexp
(
−EA

RT

)
, (5)

where A is the pre-exponential factor, β is a nondimensional factor, and EA is the activation
energy of the reaction.
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A multi-component diffusion model has been employed together with the Soret effect
to take into account the thermal diffusion. This effect is especially required for mixtures with
large molar fractions of hydrogen. The multi-component model evaluates the transport
properties using the Dixon–Lewis method [15] and the diffusion velocity is computed
as follows:

Vk = V′
k + V′′

k , (6)

where V′
k is the ordinary diffusion velocity and V′′

k is the thermal diffusion velocity, which
are evaluated as follows [16]:

V′
k =

1
XkW

K

∑
j ̸=k

WjDk,jdj, (7)

V′′
k = − DT

k
ρYk

1
T
∇T, (8)

with:
dj = ∇Xj +

(
Xj − Yj

) 1
p
∇p. (9)

In the above equations, Xk is the mole fraction of the k-th species, Dk,j is the diffusion
coefficient of the species k in species j and DT

k is the thermal diffusion coefficient of the
k-th species.

In this work, five different reaction mechanisms have been selected under different
temperature and pressure conditions and the numerical results have been compared with
experimental data available in the scientific literature. Specifically, the mechanisms con-
sidered are summarized in Table 2, where a label is given to identify each mechanism and
the numbers of chemical species and reactions of each mechanism are provided. All the
mechanisms have been used to investigate the combustion of NH3/H2 mixtures with mole
fractions of hydrogen ranging between 0.0 and 1.0. The oxidant is air, which is composed
of 79% nitrogen and 21% oxygen by mole concentration.

Table 2. Reaction mechanisms used for the simulations.

Reference Label Number of Species Number of Reactions

Zhang et al. [9] M1 38 263

Otomo et al. [10] M2 32 231

Gotama et al. [11] M3 32 165

Stagni et al. [12] M4 41 203

Singh et al. [13] M5 32 259

2.2. Numerical Method

A one-dimensional computational domain of 0.1 m in length has been considered.
Such a length has been chosen based on a numerical test on the independence of the results
on the length of the computational domain in the range of 0.05–0.15 m. The domain has
been discretized by using an adaptive numerical grid by setting a maximum number of
grid points equal to 1000.

The numerical solution procedure is based on a finite difference approach, to reduce
the boundary problem to a system of algebraic equations. Such a system has been solved
by Newton’s algorithm. In the case such an algorithm fails to converge, a solution estimate
is conditioned by a pseudo-time integration of the governing equations, thus providing
an initial estimate closer to the steady-state solution. The numerical model discretizes the
domain into a number of grid points in order to satisfy specific criteria on the maximum
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gradient and curvature of the solution vector between two adjacent grid points. The criteria
to be satisfied for each pair of points [j − 1, j] are:∣∣Φn,j − Φn,j−1

∣∣ ≤ δ[(Φn)max − (Φn)min], (10)∣∣∣∣∣
(

dΦn

dx

)
j
−

(
dΦn

dx

)
j−1

∣∣∣∣∣ ≤ γ

[(
dΦn

dx

)
max

−
(

dΦn

dx

)
min

]
, (11)

where Φn is the n-th component of the solution vector and δ and γ are the gradient and
curvature parameters, respectively. The numerical algorithm keeps adding intermediate
points in each subinterval until the above criteria have been satisfied. It follows that by
reducing the values of the two parameters, the number of grid points and the accuracy of
the results increase. In the computations, four consecutive grid refinements with decreasing
values of gradient and curvature parameters have been considered, as specified in Table 3.
For particular stiffness cases, the gradient parameter in the last refinement has been set
equal to 0.015 to obtain an increase in the numerical accuracy of the results. For instance,
Figure 1 shows the LFS versus the number of grid points of each continuation for two
cases with both a stoichiometric mixture of NH3/H2/air at 300 K and different H2 molar
fractions and pressures. The figure shows that with four consecutive continuations, a very
accurate value of LFS is obtained. Indeed, the difference between the final and the previous
continuation values of LFS is less than 0.3% for all cases. For the sake of completeness,
Figure 2 shows the grid size distribution along the x-axis in the flame region for the initial,
the second and the fourth continuations. The temperature profile is also given for the last
continuation. The figure shows that, in the flame region, the grid size decreases as the
continuations increase, leading to an increase in the numerical accuracy in terms of LFS.

Table 3. Gradient and curvature parameters for each grid refinement.

Grid Refinement Gradient Parameter Curvature Parameter

0 0.1 0.5

1 0.08 0.3

2 0.06 0.1

3 0.03 0.07

4 0.01/0.015 0.05
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for a stoichiometric mixture of NH3/H2/air at 300 K with different values of X(H2) and pressure.

In order to reduce the computational time and to speed up the numerical convergence
for each simulation, an inlet velocity of the reactant mixture close to the expected one has
been set. The timestep has been set in the range of 10−10–10−6 s, depending on the stiffness
of the problem to be solved.
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3. Results and Discussion

In the first instance, the model was validated by comparing the results with available
experimental data, summarized in Table 4. Two sets of data have been considered. The
first set accounts for stoichiometric mixtures at three different pressures, namely 0.1, 0.3
and 0.5 MPa, with different H2 content in the NH3/H2 blend, at about 300 K. The second
set accounts for three different temperatures, i.e., 298 K, 373 K and 473 K and different
equivalence ratios and fuel blending ratios at 0.1 MPa. Then, a parametric study was carried
out to analyze the LFS of different NH3/H2 mixtures for temperatures and pressures higher
than those used for the model validation. To this end, three mechanisms have been selected
based on the best agreement with available experimental data. Finally, the laminar flame
structure under steady conditions has been analyzed to understand the role of H2 on
the production and consumption of the most important chemical species for the case
with reactants at 800 K and 4.0 MPa. Such conditions correspond to typical SI engine
thermodynamic conditions at spark timing.

Table 4. Experimental conditions used for the model validation.

Reference p [MPa] T [K] X(H2) ϕ

Ichikawa et al. [4] 0.1, 0.3, 0.5 298 [0–1] [0.8–1.2]

Han et al. [5] 0.1 298 [0–0.45] [0.8–1.4]

Shrestha et al. [8] 0.1 473 [0–0.3] [0.8–1.4]

Smallbone et al. [17] 0.1 298 1 1

Lee et al. [18] 0.1 298 0.1, 0.3, 0.5 1

Li et al. [19] 0.1 293 [0.4–0.6] 1, 1.3, 1.4

Kumar and Meyer [20] 0.1 298 0.25, 0.55, 0.8, 1 1

Zitouni et al. [21] 0.1 298 [0–0.8] [0.8–1.4]

Wang et al. [22] 0.1, 0.3, 0.5 298 0.4, 0.6 [0.7–1.5]

Gotama et al. [11] 0.1, 0.5 298 0.4 [0.8–1.4]

Lhuillier et al. [23] 0.1 298, 373, 473 [0–0.6] [0.8–1.4]

Lee et al. [24] 0.1 298 0.5 0.8, 1

Mei et al. [25] 0.1 300 0 [0.9–1.3]

Zakaznov et al. [26] 0.1 293 0 [0.8–1.3]
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3.1. Model Validation

Figure 3 shows the numerical results for stoichiometric mixtures at 300 K and
0.1 MPa, obtained by using the kinetic models of Table 2 and compared with several
measurements [4,11,17–22]. The figure shows that LFS increases exponentially with H2
molar content in the fuel blend, in agreement with Ref. [4]. Both experimental data and the
simulations give similar results for low values of X(H2), whereas some discrepancies arise
as hydrogen content increases. The mechanism proposed by Singh et al. [13] predicts the
highest values of LFS for any value of X(H2), whereas Otomo et al. [10] mechanism predicts
the lowest values of LFS for X(H2) less than 0.6. For pure hydrogen, the mechanism by
Gotama et al. [11] provides the lowest LFS. However, the dispersion of the numerical data
is comparable to the variability of the measurements by different authors.
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Figure 4 shows the comparison between the experimental data and the present nu-
merical results in terms of LFS as a function of hydrogen mole fraction of the NH3/H2
mixture, in the range 0.0–0.6, at T = 300 K, ϕ = 1 and different pressures, namely 0.1, 0.3
and 0.5 MPa. The conditions used for the experiments are listed in Table 4. Figure 4 shows
an additional set of experimental data by Han et al. [5] with pressure equal to 0.1 MPa. For
the sake of clarity, this set is not reported in Figure 3. For all the selected pressures, the
numerical results fall between those obtained with the mechanism of Singh et al. [13] and
those obtained with the mechanism of Otomo et al. [10]. With a hydrogen molar content
equal to 60%, the numerical values of LFS range from 56.6 to 71.7 cm/s at 0.1 MPa, from
38.1 to 51.3 cm/s at 0.3 MPa, and from 29.5 to 40.6 cm/s at 0.5 MPa. At 0.3 and 0.5 MPa,
although all mechanisms give reasonable results, Zhang et al. [9] mechanism provides the
best agreement with measurements [4,11,22] for any hydrogen molar content.

Thus, the results have been analyzed to assess the influence of pressure on LFS. For
this purpose, the percentage reduction in LFS with pressure, LFS%red, as a function of
the H2 mole fraction has been evaluated for each of the mechanisms from Table 2. The
expression used to compute LFS%red by increasing pressure from pi to pf reads:

LFS%red =
LFS(pi)− LFS(pf)

LFS(pi)
, (12)
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where LFS(pi) and LFS(pf) are the laminar flame speeds for the lower and the higher
values of pressure, respectively.
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Two different data sets have been considered to analyze the influence of pressure
increase from 0.1 to 0.3 MPa and from 0.1 to 0.5 MPa. The mean percentage reduction in LFS
has been computed across the five mechanisms for each H2 mole fraction. Such a percentage
reduction is shown in Figure 5 together with the bars that represent the variability between
the maximum and minimum percentage reduction across the five mechanisms. The figure
shows that this percentage reduction is less pronounced as pressure increases. For example,
at X(H2) equal to 0.4, where the maximum decrease occurs, reductions of 35% and 48% are
observed with a pressure increase by a factor of 3 and 5, respectively. Moreover, the figure
shows that, for a molar fraction of H2 equal to 0.2, the mean values are closer to the upper
limit of the range of variability. This is because the mechanism of Otomo et al. [10] gives
a percentage reduction in LFS by increasing pressure from 0.1 to 0.3 MPa and from 0.1 to
0.5 MPa close to 16% and 30%, respectively, whereas higher and closer values are predicted
by the other mechanisms. The highest percentage reduction in LFS is predicted by using
Gotama et al.’s [11] mechanism for all X(H2) values, except for X(H2) = 0.4. For such a case,
the highest reduction is observed by using Singh et al. [13] mechanism.
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In the next section, the influence of pressure will be analyzed to assess whether a
further increase in pressure provides the same behavior discussed here.

Several simulations have been carried out in order to study the LFS of different
NH3/H2 fuel mixtures as a function of equivalence ratio at 0.1 MPa by using the kinetic
mechanisms from Table 2. Six H2 mole fractions, i.e., 0.0, 0.05, 0.3, 0.4, 0.5 and 0.6, and
three temperatures, i.e., 298, 373 and 473 K, have been considered. Figures 6–8 show the
numerical results obtained at 298, 373 and 473 K, respectively, together with the measured
data in Table 4. Once again, for cases with many available measurements, the dispersion of
the numerical data obtained by using different mechanisms is comparable to the variability
of measurements by different authors. For all temperatures, numerical results show that
the maximum value of LFS is obtained for rich mixtures, with ϕ close to 1.1 or higher, and
X(H2) equal to 0.6.

For lower hydrogen mole fractions, i.e., 0.0 and 0.05, the M3 mechanism predicts
higher values of LFS as the equivalence ratio is lower than 1.1, whereas, for richer mixtures,
M4 gives higher LFS than the other mechanisms. On the other hand, the M2 mechanism
gives the lowest values of LFS, except for lean mixtures, where the lowest values are found
with the M1 mechanism. For other H2 mole fractions, M2 gives the lowest LFS, whereas
the highest values are obtained by using M5 for most cases. Specifically, M3 and M4 give
higher values of LFS than M5 for X(H2) = 0.3 with an equivalence ratio less than 0.8 for
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each temperature of interest; this is also the case for hydrogen mole fraction equal to 0.4
with the temperature equal to 298 K.
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Figure 9 shows the percentage increment of LFS with temperature, LFS%inc, as a
function of equivalence ratio for three values of X(H2), namely 0.0, 0.3 and 0.6, at 0.1 MPa.
Increasing the temperature from Ti to Tf, LFS%inc is evaluated as follows:

LFS%inc =
LFS(Tf)− LFS(Ti)

LFS(Ti)
, (13)

where LFS(Ti) and LFS(Tf) are the laminar flame speeds for the lower and the higher
values of temperature, respectively. LFS%inc is computed for each mechanism, and the
mean value is shown in Figure 9. The bars represent the range of variability for the entire
set of reaction mechanisms. Two data sets are plotted. The first set refers to an increase in
temperature from 298 to 373 K, and the second set refers to an increase in temperature from
373 to 473 K.
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An increase in temperature by 75 K starting from 298 K results in a lower percentage
increase in LFS with respect to that obtained with an increase of 100 K starting from 373 K.
However, the trends as a function of equivalence ratio are similar for the two data sets,
regardless of the mole fraction of hydrogen. The only exception is the case with X(H2) = 0.3
and ϕ equal to 0.7, for which the largest differences are obtained depending on the kinetic
mechanism. For each H2 mole fraction, the highest increase in LFS is found for either
ϕ = 0.7 or ϕ = 0.8, whereas the minimum occurs at about ϕ = 1.1.

The influence of temperature on LFS decreases with increasing H2 mole fractions, there-
fore the case with pure ammonia provides the highest increase. Finally, with X(H2) = 0.6,
the lowest variability of the numerical results is found. In the next paragraph, the influ-
ence of temperature on LFS has been investigated for hydrogen/ammonia mixtures under
engine-like thermodynamic conditions.
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3.2. A Parametric Analysis

A parametric study has been carried out to analyze the laminar flame speed of NH3/H2
mixtures under engine-relevant thermodynamic conditions. Three mechanisms, namely
Zhang et al. [9], Gotama et al. [11] and Stagni et al. [12], have been chosen since they
provide results that are in better agreement with available experimental data at pressure
(Figure 4) and temperature (Figures 7 and 8) conditions above the ambient. Hence, the
M2 and M5 mechanisms have not been employed for the parametric analysis discussed in
this section. Indeed, for the stoichiometric mixtures of Figure 4, the M5 mechanism [13]
overpredicts LFS measurements at 300 K with pressure equal to 0.1 and 0.3 MPa and a molar
fraction of H2 greater than 0.4. For cases at ambient pressure and temperature equal to
373 K (Figure 7) and 473 K (Figure 8), the M5 mechanism overestimates the measurements
when the H2 molar fraction is higher than 0.3 for all equivalence ratios considered in this
work. On the other hand, the M2 mechanism [10] underestimates the experimental data of
Figures 7 and 8 with a molar fraction of H2 higher than 0.3 for all equivalence ratios.

First, the influence of pressure, in the range 0.1–3.0 MPa, has been investigated by
considering different NH3/H2 mixtures, with three equivalence ratios, namely 0.8, 1.0 and
1.2, at 300 K. The results obtained with the M1 mechanism are shown in Figure 10. Similar
trends are obtained with the M3 and M4 mechanisms, though they are not shown for the
sake of conciseness. A semi-logarithmic scale is used in order to assess whether a linear
trend between the logarithm of LFS and the H2 mole fraction, as proposed by Ichikawa
et al. [4] based on experimental data up to 0.3 MPa for stoichiometric mixtures, occurs for
higher pressures and lean/rich mixtures. Furthermore, for each pressure, X(H2) ranges
from 0.0 to 1.0, whereas in Ref. [4] the upper limit of the H2 molar fraction has been reduced
as pressure increases. Specifically, in Ref. [4], X(H2) ranges from 0.0 to 1.0 at 0.1 MPa, from
0.0 to 0.6 at 0.3 MPa, and from 0.0 to 0.4 at 0.5 MPa.

From Figure 10, a quasi-linear dependence between the logarithm of LFS and the H2
mole fraction is observed, according to the following equation:

LFS
LFS0

= eαX(H2), (14)

where LFS0 is the laminar flame speed of pure ammonia and α is the slope of the linear
interpolation of the numerical data, computed by means of the method of the least squares.
The coefficient of determination, R2, has also been considered to assess the accuracy of such
a fitting. R2 is evaluated as:

R2 = 1 − ∑n
i=1(LFSi − LFSa,i)

2

∑n
i=1(LFSi − LFSmean)

2 , (15)

where n is the number of data, LFSi is the i-th laminar flame speed, LFSa,i is the correspond-
ing fitting value and LFSmean is the mean value of the computed LFSs.

For all mechanisms, R2 decreases as pressure increases for any equivalence ratio, thus
suggesting that the accuracy of the linear correlation worsens with increasing pressure. In
order to address this issue, α and R2 have been computed by fitting the numerical data,
obtained by using the M1 mechanism, up to X(H2) equal to 0.6. Indeed, Figure 10 shows
that linear correlations (solid lines) accurately fit the numerical data with H2 mole fraction
ranging from 0 to 0.6. The results are summarized in Table 5, where the determination
coefficient is denoted as R2

α, which is also given in Figure 11 as a function of pressure for the
three equivalence ratios under consideration. For each equivalence ratio, α monotonically
decreases as pressure increases, which suggests that the influence of hydrogen addition
to the mixture is reduced. This is because, as a matter of fact, with more hydrogen in the
fuel mixture, mass diffusivity should increase but this is counterbalanced by the increase in
pressure. For each pressure value, α decreases with increasing equivalence ratio, since the
H2 Lewis number increases and thermal diffusion plays a more important role. On the other
hand, R2

α is always higher than 0.99, it decreases as ϕ increases and approaches 1.0 for lean
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mixtures and low pressures, as shown in Figure 11. R2
α decreases with increasing pressure

for the lean case, reaches a minimum value at 1.0 MPa under stoichiometric conditions,
and only slightly changes for the rich case.
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Table 5. Correlation coefficients and coefficients of determination obtained with the M1 mechanism
from Table 2 for different pressures and equivalence ratios at T = 300 K.

p [MPa] α R2
α β1 β2 R2

β

ϕ = 0.8

0.1 4.01535 0.99912 4.46199 −0.85382 0.99928

0.3 3.78417 0.99910 3.66447 0.13347 0.99965

0.5 3.65400 0.99816 3.28495 0.57963 0.99982

1.0 3.44229 0.99674 2.76635 1.13354 0.99993

2.0 3.16464 0.99565 2.24763 1.56685 0.99978

3.0 2.97080 0.99551 1.98115 1.69605 0.99954
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Table 5. Cont.

p [MPa] α R2
α β1 β2 R2

β

ϕ = 1.0

0.1 3.74508 0.99900 4.01731 −0.54984 0.99900

0.3 3.51541 0.99596 3.21302 0.45000 0.99937

0.5 3.35729 0.99387 2.77596 0.94952 0.99971

1.0 3.10613 0.99217 2.18010 1.57654 0.99997

2.0 2.84256 0.99228 1.65541 2.04374 0.99953

3.0 2.69021 0.99296 1.41644 2.19024 0.99885

ϕ = 1.2

0.1 3.51514 0.99274 3.38537 0.14472 0.99748

0.3 3.31057 0.99204 2.73452 0.96245 0.99939

0.5 3.20450 0.99201 2.41179 1.35772 0.99985

1.0 3.03999 0.99156 1.94449 1.89475 0.99993

2.0 2.82580 0.99130 1.44550 2.38350 0.99916

3.0 2.67350 0.99202 1.16852 2.58980 0.99804
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Figure 11. Determination coefficients for the linear regression and the second-order polynomial
regression as a function of pressure for different equivalence ratios by using the M1 mechanism from
Table 2 at T = 300 K.

A further improvement on the fitting of the numerical data for the entire range of H2
mole fractions is proposed as a second-degree polynomial fit, which reads:

LFS
LFS0

= eβ1X(H2)+β2[X(H2)]
2
, (16)

where β1 and β2 are the correlation coefficients, given in Table 5 together with the co-
efficients of determination, R2

β, which are also shown in Figure 11. The second-degree
polynomial regressions are shown as dashed lines in Figure 10. Such regressions are com-
puted by using the method of least squares, i.e., by minimizing the sum of the squares of
the difference between the numerical value of LFS for each X(H2) and the value provided
by the polynomial fit. The figure shows a very good fitting of the numerical data for the
entire range of H2 mole fractions. Moreover, Table 5 and Figure 11 show that R2

β is always
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higher than R2
α, thus suggesting that the second-degree polynomial fit is also an improved

approximation in the range [0.0–0.6]. β1, like α, decreases as pressure and equivalence ratio
increase, whereas β2 has the opposite trend, i.e., it increases as pressure and equivalence ra-
tio increase. It is worth noting that β2, which represents the concavity of the second-degree
polynomial, is negative for cases with pressure equal to 0.1 MPa and ϕ equal to 0.8 and
1.0. Moreover, Figure 11 shows that R2

β has a maximum value of 1.0 MPa for all the three
equivalence ratios under consideration.

Figure 12 shows LFS as a function of pressure in a semi-logarithmic scale for different
H2 mole fractions in the fuel mixture and different equivalence ratios using the M1 mech-
anism from Table 2 at T = 300 K. As expected, LFS decreases as pressure increases for all
cases. The reduction is almost linear when pure hydrogen is used, while for the other cases,
a more noticeable influence of pressure is observed especially with pressures lower than
0.5 MPa.
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equivalence ratios by using the M1 mechanism from Table 2 at T = 300 K.

In order to assess the influence of pressure, Figure 13 shows the percentage reduction
in LFS, with respect to the case at 0.1 MPa, as pressure increases for three equivalence ratios.
As previously, the lines represent the mean reduction across the three mechanisms used for
the computations, i.e., M1, M3 and M4, whereas the bars represent the range of variability
between the maximum and the minimum reduction for each H2 molar fraction. The figure
shows that the variability of the numerical results is generally lower for intermediate values
of X(H2). This is less evident for ϕ = 1.2, but it still occurs, especially for higher pressures.
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Figure 13. Mean percentage reduction in LFS with increasing pressure as a function of hydrogen
mole fraction in the NH3/H2 fuel mixture obtained with M1, M3 and M4 mechanisms from Table 2
and ϕ = 0.8, 1 and 1.2, at T = 300 K. The bars represent the range of variability.

The figure shows that the largest LFS reduction is observed with X(H2) in the range
[0.4–0.6], depending on the value of pressure and ϕ. For the highest H2 mole fractions,
the LFS percentage reduction decreases and reaches the minimum for the combustion of
pure hydrogen.

Furthermore, the influence of pressure on LFS is more pronounced at lower pressures.
For instance, for ϕ = 0.8 and X(H2) = 0.0, by increasing pressure from 0.1 to 0.3 MPa and
from 0.1 to 1.0 MPa, LFS decreases by about a factor of two, i.e., 30% and 58%, respectively.
For the same case, at 2.0 MPa and 3.0 MPa, the LFS percentage reduction is about 70% and
75% compared to LFS under atmospheric conditions.

Finally, stoichiometric mixtures of NH3/H2 with X(H2) up to 0.8 with temperature
equal to 800 K and pressure varying from 0.5 to 8.0 MPa, which represent engine-like
thermodynamic conditions, have been investigated. For the sake of conciseness, the
simulations have been performed using only the mechanism by Zhang et al. [9]. The
results are shown in Figure 14, where numerical data are given by symbols, whereas the
correlations are plotted by using a solid line for the first-degree polynomial and a dashed
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line for the second-degree polynomial. The first-degree polynomial has been calculated for
0.0 ≤ X(H2) ≤ 0.6, whereas the second-degree polynomial has been extended to the entire
range of the hydrogen molar fraction.
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Table 6 summarizes the correlation coefficients, as well as the coefficients of determi-
nation of such fittings. The table shows that R2

α is less than that obtained with temperature
equal to 300 K, indicating that the first-degree approximation is even less accurate as tem-
perature increases. On the other hand, the coefficient of determination obtained with the
second-degree polynomial is always higher than 0.999, thus suggesting that the proposed
fitting model is adequate and very accurate. Both correlation coefficients α and β1 show
a monotonic decrease with increasing pressure, as already seen at T = 300 K, whereas β2
increases up to 2.0 MPa and then decreases. By comparing α and β1 with those computed
at lower temperature for the same pressure, it is noticeable that both coefficients decrease as
temperature increases. In Figure 15, the determination coefficients as a function of pressure
are given. The figure shows that R2

α and R2
β have opposite trends, with a minimum and a

maximum value, respectively, at 2.0 MPa.

Table 6. Correlation coefficients and coefficients of determination obtained with the M1 mechanism
from Table 2 for different pressures, ϕ = 1, and T = 800 K.

p [MPa] α R2
α β1 β2 R2

β

ϕ = 1.0

0.5 3.00838 0.99207 2.33794 1.07392 0.99938

1 2.79248 0.98931 1.85683 1.54954 0.99986

2 2.53740 0.98838 1.45236 1.82900 0.99989

4 2.27164 0.98941 1.19617 1.82809 0.99944

8 2.01777 0.99128 1.08260 1.59253 0.99907

Figure 16 shows the percentage reduction in LFS with increasing pressure from 0.5
to 1.0, 2.0, 4.0 and 8.0 MPa, as a function of H2 mole fraction for the stoichiometric fuel
mixture at 800 K. Only the mechanism by Zhang et al. [9] has been used; therefore, bars are
not provided. For all pressure increments, the trends are similar: LFS reduction initially
increases as H2 mole fraction increases, reaches a maximum, and then decreases. As
pressure increases from 0.5 to 1.0 MPa, LFS decreases by 15% with pure ammonia and
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reaches a maximum decrease of about 25% where X(H2) is about 0.55. As pressure increases
from 0.5 to 2.0 MPa, LFS reduction is about 30% with pure ammonia, whereas the maximum
reduction is about 45% where X(H2) is approximately 0.6. A further increase in pressure
leads to a further reduction in LFS, up to about 50% for pure ammonia when pressure
increases from 0.5 to 8.0 MPa, whereas the maximum shifts towards higher values of H2
mole fraction, reaching a value of about 73%. Therefore, the more the pressure increases,
the less it influences the LFS.
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Figure 16. Percentage reduction in LFS with increasing pressure as a function of hydrogen mole
fraction in the NH3/H2 fuel mixture by using the M1 mechanism from Table 2 at T = 800 K and ϕ = 1.

Finally, the influence of temperature on LFS has been analyzed by comparing the
numerical results at 300 and 800 K. As expected, LFS increases with temperature for all
pressures and mixture compositions. Figure 17 shows the percentage increment of LFS as
temperature increases from 300 to 800 K as a function of H2 mole fraction in the fuel mixture
for three different pressures, namely 0.5, 1.0 and 2.0 MPa, for ϕ = 1. The figure shows that
the influence of temperature on LFS is higher for pure ammonia, and it reduces almost
linearly as H2 mole fraction increases. Furthermore, the increase in LFS with temperature
is higher as pressure increases. As an example, for the case of pure ammonia at 2.0 MPa,
the LFS at 800 K is 10.3 times the LFS at 300 K, whereas for the mixture with 80% by mole
of H2 at 0.5 MPa the LFS at 800 K is 6.4 times that at 300 K.
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3.3. Structure of the NH3/H2 Flame

The steady laminar flame structure of stoichiometric NH3/H2 mixtures has been
analyzed at 800 K and 4.0 MPa. These thermodynamic conditions are mostly encountered
at spark timing of SI engines. Two cases with and without hydrogen addition have been
compared, i.e., X(H2) = 0.4 and X(H2) = 0.0. The kinetic mechanism of Zhang et al. [9]
has been used for the simulations. Figure 18 shows the temperature, reactants and major
products profiles for the two cases.
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Figure 18. Temperature, reactants and major products profiles of stoichiometric NH3/H2/Air flames
at p = 4.0 MPa and T = 800 K, with X(H2) equal to 0.4 and 0.0, by using the M1 mechanism from
Table 2.

The figure shows that the burnt gas temperature with hydrogen addition is above
2500 K, whereas a lower burnt gas temperature occurs for the pure ammonia case. The
flame thickness, δth, has been evaluated by using the following relation:

δth =
Tb − Tu∣∣∣dT

dx

∣∣∣
max

, (17)
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where Tb and Tu are the burnt and unburned gas temperatures, respectively. The flame
thickness is 21 µm and 42 µm for the cases with and without hydrogen, respectively. It
means that, with 40% by mole of H2 in the fuel blend, the thickness is halved compared to
the case of pure ammonia.

Figure 19 shows the major intermediate species profiles of NH3/H2/Air flames for
the cases with and without hydrogen addition. When hydrogen is added to the fuel
blend, intermediate species are produced and depleted faster than those of the case of pure
ammonia, and higher peak molar fractions occur.
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Figure 19. Intermediate major chemical species profiles of stoichiometric NH3/H2/Air flames at
p = 4.0 MPa and T = 800 K with X(H2) equal to 0.4 and 0.0 by using the M1 mechanism from Table 2.

The main oxidation reaction of ammonia is NH3 +OH = NH2 +H2O, which produces
NH2, which in turn is oxidized mainly by OH through the reaction NH2 + OH = NH +
H2O, as well as by H and O radicals. However, in the pre-heating zone, at low and medium
temperatures, NH2 is quickly converted to H2NO through the reaction NH2 + HO2 =
H2NO + OH. Indeed, as shown in Figure 19 for both cases with and without hydrogen,
in the pre-heating zone, H2NO mole fraction is higher than that of the other chemical
species. After the peak, H2NO decomposes into lighter molecules such as NO, OH and
H. On the other hand, at high temperature NH2 is also depleted through the reaction
NH2 + O = HNO + H, which produces HNO, which reacts with O, OH and O2 to produce
NO. NO is also produced by the reaction N2 + O = N + NO. As shown in Figure 18,
hydrogen addition in the fuel mixture reduces the amount of ammonia, so NO consumption
through the reactions with NH and NH2 is reduced, leading to higher NO concentrations
in the burnt gases, as shown in Figure 19.

Furthermore, the presence of hydrogen increases the amount of H radicals through
the reactions H2 + O = OH + H and H2 + OH = H + H2O, and, as a result, O radicals
produced by H + O2 = O + OH also increase. Thus, higher HO2 concentrations occur in
the pre-heating zone. Finally, both the role of H radicals in the conversion of ammonia to
NH2 and NH and the role of O radicals in the conversion of NH2 and NH to HNO, NO
and N2O increase, as shown in Figure 19, making the mixture more reactive and resulting
in a higher laminar flame speed, as shown in Section 3.2.
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4. Conclusions

Numerical simulations have been carried out to analyze the speed and structure of
laminar flames of NH3/H2 mixtures under conditions that have not yet been experimentally
investigated. To this end, one-dimensional simulations have been performed by using
three kinetic reaction mechanisms. These mechanisms have been selected based on the best
agreement with available experimental data of NH3/H2 mixtures at 300 K and pressure
up to 0.5 MPa, and at 0.1 MPa and temperature up to 473 K. Although the results of this
numerical study need to be definitely compared with more experiments under engine-like
thermochemical conditions, the outcome of this work provides insights for further studies
on NH3/H2 flames. The main findings can be summarized as follows:

• LFS exponentially increases with H2 mole fraction, at 300 K and 800 K and for all
pressures and equivalence ratios considered in this work;

• In a semi-logarithmic scale, a second-degree polynomial regression accurately predicts
the numerical results, with R2

β varying in the range of 0.99748–0.99997. However, even
a linear regression provides a good accuracy with H2 mole fractions in the range of
0.0–0.6, and such a regression may be employed for less time-consuming computations.
Both regressions may be used for further studies, specifically for CFD simulations of
engines fueled with synthetic fuels;

• α values show that the enhancement of LFS as the H2 mole fraction increases in the
range of 0.0–0.6 is lower as pressure and temperature increase, and as ϕ increases from
0.8 to 1.2;

• As expected, LFS decreases as pressure increases. However, the more pressure in-
creases, the less it influences the LFS. Furthermore, the increase in LFS with tempera-
ture is higher as pressure increases and H2 mole fraction decreases;

• Under thermodynamic engine-relevant conditions, i.e., 800 K and 4.0 MPa, the flame
thickness for a stoichiometric mixture of NH3/H2/Air with 40% by mole of H2 in the
fuel blend is halved compared to the case of pure ammonia;

• The analysis of the flame structure shows the kinetics that leads to LFS enhancement
by H2: the presence of hydrogen in the fuel mixture enhances the formation of radicals,
such as H, O and OH, thus increasing the reactivity of the mixture and, subsequently,
the laminar flame speed.
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