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The paper deals with the numerical solution of Cauchy Singular Integral Equations based 
on some non standard polynomial quasi–projection of de la Vallée Poussin type. Such kind 
of approximation presents several advantages over classical Lagrange interpolation such 
as the uniform boundedness of the Lebesgue constants, the near–best order of uniform 
convergence to any continuous function, and a strong reduction of Gibbs phenomenon. 
These features will be inherited by the proposed numerical method which is stable and 
convergent, and provides a near-best polynomial approximation of the sought solution by 
solving a well conditioned linear system. The numerical tests confirm the theoretical error 
estimates and, in case of functions subject to Gibbs phenomenon, they show a better local 
approximation compared with analogous Lagrange projection methods.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the present paper we consider the numerical solution of the following class of Cauchy Singular Integral Equations 
(CSIEs)

D f (y) + νK f (y) = g(y), −1 < y < 1, (1)

where ν denotes a real constant, g a known function and, corresponding to a Jacobi weight of the following kind

u(x) = vα,−α(x) := (1 − x)α(1 + x)−α, with 0 < |α| < 1, (2)

the operators D and K are defined as follows

D f (y) := cos(πα) f (y)u(y) − sin(πα)

π

1∫
−1

f (x)

x − y
u(x)dx, (3)

K f (y) :=
1∫

−1

k(x, y) f (x)u(x)dx, −1 < y < 1, (4)
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where k(x, y) is a known kernel function, and the integral in (3) has to be understood in the Cauchy principal value sense.
These equations have been widely studied in the literature due to their relevance in the applications. There exist several

problems leading to this kind of equations like, for instance, the renewed “airfoil equation”, described in [13], or the linear 
elastic crack problems, as shown in [17]. More in general CSIEs are strictly related to boundary value problems arising in 
various and different fields as, for instance, in potential theory and in hydrodynamics (see for instance [2,14,33]).

The solvability of equation (1) has been investigated in several approximation spaces [25,24,34,4,15,18,21]. In this paper, 
we consider the equation in spaces of locally continuous functions equipped with suitable weighted uniform norms. Hence, 
we focus on the case that, in such spaces, (1) has a unique solution, say f ∗ , which can be approximated by polynomials at 
the desired precision.

Indeed the “global” approximation approach, that means constructing methods based on the polynomial approximation 
tools, leads to very efficient and accurate methods, since the approximants behave, more or less, like the best polynomial 
approximation of the unknown. Moreover, the construction of these approximants turns to be stable and the matrices 
connected to the methods are well conditioned.

In particular, several polynomial projection methods have been introduced in the literature in order to find good poly-
nomial approximations of the sought solution f ∗ . The most commonly used polynomial projection for these methods is the 
Lagrange projection interpolating at suitable Jacobi zeros the choice of which depends on the weight u (see for instance 
[4,16,22,8] and the references therein). However, it is known that numerical methods based on Lagrange interpolation re-
quire a different strategy in the case that the exponent α in (2) does not allow to get optimal Lebesgue constants. Moreover, 
even using Lagrange projections with optimal Lebesgue constants, the error estimates contain an unavoidable logarithmic 
factor, dealing with uniform norms.

Here we are going to show how these problems can be overcome by employing some non–standard polynomial quasi–
projections of de la Vallée Poussin (shortly VP) type. Such kind of polynomial approximation has been firstly introduced 
in [36] for Chebyshev weights, and further generalized to more general weights and several multivariate domains, in order 
to get a valid alternative to classical Lagrange interpolation (see, e.g. [39,37,40,35,30,29,26]). Following the trigonometric 
pattern, VP approximating polynomials are defined as discretized versions of certain VP means (i.e., delayed arithmetic 
means) of the Jacobi–Fourier partial sums. Equivalently, such means can be achieved by filtering higher degree Jacobi–Fourier 
partial sums with a VP filter function [41]. Similarly to Lagrange interpolating polynomial, the VP approximating polynomials 
are based on the values of the target function at Jacobi zeros but, at such zeros, they generally do not interpolate the 
function except in some special cases, such as for Chebyshev weights [37,31,32]. In particular, Chebyshev–VP interpolation 
has been recently used for solving Prandtl’s integro–differential equations [10,9] and the generalized airfoil equation [23]
that is a particular case of (1). Here we are going to show that even in the general case when the VP approximating 
polynomials are not interpolating, they constitute an effective tool to get convergent, stable and efficient numerical methods 
for solving (1). VP approximating polynomials have the peculiarity of depending on two degree–parameters: n ∈ N , which 
determines the number of Jacobi nodes, and m ∈N which determines the action range of the VP mean and can be arbitrarily 
fixed such that 0 < m < n. It is known that in the limiting case m = 0, VP polynomials reduce to Lagrange polynomials 
interpolating at n Jacobi zeros, but taking the additional parameter 0 < m < n the resulting VP approximation presents 
several advantages over the Lagrange interpolation at the same Jacobi nodes. In particular, by VP approximation, we can get 
uniformly bounded Lebesgue constants for a larger set of Jacobi weights, which includes those Jacobi weights ensuring the 
optimal, logarithmic, growth of the Lebesgue constants related to Lagrange interpolation at the same nodes [37,38,31,29].

This feature will allow us to follow a unique strategy, based on the same VP approximating polynomials for all 0 < |α| <
1, contrarily to the Lagrange case. Moreover, as the number of nodes n → ∞, choosing any degree parameter 0 < m < n
such that m ∼ n ∼ (n − m), it is known that the VP approximating polynomials converge with the same rate of the error 
of best polynomial approximation in suitable weighted uniform norms, providing a near–best approximation for any locally 
continuous function. On the contrary, the Lagrange polynomials converge to the interpolated function only if it is sufficiently 
smooth, due to the typical log n factor corrupting the error estimates [20,37].

As expected, we prove that also the numerical method we are proposing inherits this advantage over typical methods 
based on Lagrange interpolation, presenting near–best error estimates. More precisely, for the numerical solution of (1)
we introduce two possible numerical procedures based on VP polynomial approximation. In both the cases, due to well–
known mapping properties of the dominant operator D , especially on polynomials, we only take care of approximating the 
integral operator K and the known function g . We approximate the latter by its VP polynomial associated with u−1 while 
we propose two possible approximations of K . In the case that we know or can easily compute the so called modified 
moments, i.e. the values of K applied to Jacobi polynomials associated with u, then we can take the VP approximating 
polynomial of K f (always associated with u−1) as approximation of K f . In the general case, we propose to approximate 
the kernel function k(x, y) by its bivariate VP polynomial deduced via tensor product and associated with suitable Jacobi 
weights. Contrarily to the previous case, such a procedure yields a discrete approximate equation, which does not require 
the calculation of modified moments or any other integral but at the cost of introducing an additional sum in the drafting 
of the associated linear system. On the other hand, it is fully discrete and always applicable, even with weakly singular 
kernels, due to the good distances between the nodes related to the single variables x and y (see [19]).

We prove that both the resulting numerical methods are stable and convergent. Moreover, they both provide a unique 
polynomial solution that converges to f ∗ at the same rate of the error of best polynomial approximation of f ∗ . Hence, com-
pared with analogous methods based on Lagrange interpolation, we succeed in cutting off that logarithmic factor we have 
2
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previously mentioned. Even if this result is relevant from the theoretical point of view, we remark that the absence/presence 
of an additional log factor is difficult to appreciate from a computational point of view, especially for very smooth functions, 
if we measure the error in the sup norm. However, if we look at the pointwise errors, the numerical tests show some 
improvements in the case of functions subject to the Gibbs phenomenon, reflecting the known ability of VP approximation 
in facing such phenomenon (see e.g. [41,29]).

The paper is organized as follows. In Section 2 some preliminaries are given in three subsections concerning the func-
tional spaces, equation (1), and the VP approximating polynomials we are dealing with, respectively. Section 3 concerns 
the proposed numerical methods and is also divided in three subsections: the first introduces the approximate discrete 
equations, the second specifies their associated linear systems, and the third regards the uniform convergence and stability 
of the numerical solution achieved by solving these systems. Section 4 deals with the numerical experiments and, finally, 
Section 5 contains the proof of the new stated results.

2. Notation and preliminary results

Throughout the paper we denote by C a positive constant that may have different values at different occurrences, and 
we write C �= C(n, f , ...) to mean that C > 0 is independent of n, f ,... Moreover, if a, b > 0 depend on some parameters then 
a ∼ b denotes that there exists a constant C > 0 independent of such parameters and such that C−1a ≤ b ≤ Ca. Furthermore, 
Pm denotes the space of the algebraic polynomials of degrees less than or equal to m.

2.1. Functional spaces

For any Jacobi weight v with nonnegative exponents, we denote by C0
v the space of all locally continuous functions on 

[−1, 1] (i.e. continuous in any compact interval I ⊆] − 1, 1[) satisfying

lim
x→±1

f (x)v(x) = 0, if v(±1) = 0. (5)

C0
v , equipped with the norm

‖ f ‖C0
v
:= ‖ f v‖∞ = max

x∈[−1,1] | f (x)|v(x),

is a Banach space. Moreover, by virtue of (5), all functions belonging to C0
v , even those unbounded with algebraic singulari-

ties at the endpoints ±1, can be approximated at the desired precision by polynomials, holding the following

f ∈ C0
v ⇐⇒ lim

n→∞ En( f )v = 0, (6)

where En( f )v denotes the error of best approximation of f ∈ C0
v in the space Pn , i.e.

En( f )v = inf
P∈Pn

‖( f − P )v‖∞.

It is well known that, as n → ∞, the rate of convergence of such error depends on the smoothness of the function f and it 
can be characterized by the following main-part moduli of smoothness introduced in [11] by Z. Ditzian and V. Totik

�s
ϕ( f , t)v = sup

0<h≤t

[
sup

x∈[−1+2h2s2,1−2h2s2]
|v(x)�s

hϕ f (x)|
]

, s ∈N,

where

�s
hϕ f (x) =

s∑
i=0

(−1)i
(

s

i

)
f

(
x + sh

2
ϕ(x) − ihϕ(x)

)
, ϕ(x) :=

√
1 − x2.

In fact, for all n ∈N sufficiently large (say n ≥ n0) and t > 0 sufficiently small (say t ≤ t0), the following Jackson and Stechkin 
type inequalities hold [11]

En( f )v ≤ C

1
n∫

0

�s
ϕ( f , τ )v

τ
dτ , C �= C(n, f ), (7)

�s
ϕ( f , t)v ≤ Cts

[1/t]∑
n=0

(n + 1)s−1 En( f )v , C �= C( f , t), (8)

so that for any 0 < r < s ∈N , we get
3
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En( f )v = O(n−r) ⇐⇒ �s
ϕ( f , t)v = O(tr).

In the literature, several approximation spaces have been introduced in order to classify the smoothness of the functions f
w.r.t. the decay of En( f )v as n → ∞ (see e.g. [1]). Here we focus on the following subspaces of C0

v

Zr(v) := { f ∈ C0
v : sup

n>0
(n + 1)r En( f )v < ∞}, r > 0,

equipped with the following norm

‖ f ‖Zr(v) := ‖ f v‖∞ + sup
n>0

(n + 1)r En( f )v , r > 0.

These spaces, usually known as Hölder–Zygmund spaces, are Banach spaces compactly embedded into C0
v . They constitute 

a particular case of the Besov–type spaces studied in [12]. Moreover, they belong to a larger class of approximation spaces 
introduced in [15, p.204].

Taking into account (7)–(8), we have the following norm equivalence [12]

‖ f ‖Zr(v) ∼ ‖ f v‖∞ + sup
t>0

�s
ϕ( f , t)v

tr
, s > r > 0.

Moreover, from (7) we deduce

En( f )v ≤ C
‖ f ‖Zr(v)

nr
, C �= C(n, f ), ∀ f ∈ Zr(v), r > 0. (9)

Finally, in some occurrence, in the paper we also consider weighted L1 spaces. In this setting, the Jacobi weight v ∈ L1 may 
have negative exponents and we can repeat all the previous definitions and inequalities by replacing the weighted uniform 
norm with

‖ f ‖L1
v
:= ‖ f v‖1 =

1∫
−1

| f (x)|v(x)dx,

and the space C0
v with

L1
v = { f : ‖ f v‖1 < ∞}.

In order to distinguish the L1 from the infinity case, in L1
v we are going to use the notation En( f )v,1, �s

ϕ( f , t)v,1, and Z 1
r (v)

for the errors of best approximation, moduli of smoothness, and Hölder–Zygmund subspaces, respectively.

2.2. Mapping properties and solvability of CSIEs

Throughout the paper, we consider any weight satisfying (2) as a ratio of two Jacobi weights with nonnegative exponents, 
and we use the following standard setting:

u(y) = u+(y)

u−(y)
, where

{
u+(y) := (1 − y)max{0,α}(1 + y)max{0,−α}
u−(y) := (1 − y)max{0,−α}(1 + y)max{0,α}. (10)

We point out that equation (2) defines a class of weights to which belong both a Jacobi weight and its inverse. Consequently, 
according to the notation introduced in (10), we remark that

(u−1)+ = u− and (u−1)− = u+. (11)

For simplicity, in the sequel we are going to state all the results for a weight u as in (2), but we underline the same holds 
by replacing u with u−1, taking into account (11).

Firstly, we recall the following fundamental result [21,34]

Theorem 2.1. For all r > 0, the map D : Zr(u+) → Zr(u−) defined by (3) is a bounded operator having bounded inverse D−1 = D̂
given by

D̂ f (y) := cos(πα) f (y)u−1(y) + sin(πα)

π

1∫
f (x)

x − y
u−1(x)dx. (12)
−1

4
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As a consequence, by the Fredholm’s alternative theorem we get the following result on the unique solvability of equation 
(1) in Hölder–Zygmund spaces.

Theorem 2.2. Let us assume that, for some r > 0, g ∈ Zr(u−) and the map K : Zr(u+) → Zr(u−) defined by (4) is a compact operator. 
Then equation (1) has a unique, stable, solution f ∗ ∈ Zr(u+) provided that the associated homogeneous equation has only the null 
solution, i.e. if ker(D + νK ) = {0} in Zr(u+).

In the remaining part of this subsection, we recall some useful results on the operator K defined by (4). In particular, 
from the literature we have several sufficient conditions ensuring the compactness of the map K : Zr(u+) → Zr(u−). These 
conditions involve the smoothness of the bivariate kernel function k and are usually expressed in terms of the univariate 
functions k(1)

x or k(2)
x obtained by fixing equal to x ∈ [−1, 1] the first or the second variable, respectively, i.e.

k(1)
x (t) := k(x, t) and k(2)

x (t) := k(t, x), −1 ≤ t ≤ 1. (13)

As regards the case we keep fixed the first variable (that is the integration variable) we recall the following result concerning 
the function k(1)

x [15, Prop. 4.12]

Proposition 2.3. Let r > 0. If there exists a Jacobi weight v with nonnegative exponents such that 1/(vu−) ∈ L1 , the function 
k(x, y)v(x)u−(y) is continuous on [−1, 1]2 , and v(x)k(1)

x ∈ Zr(u−) uniformly w.r.t. x ∈ [−1, 1], then the map K : C0
u+ → Zr(u−)

is bounded.

On the other hand, concerning the case we fix the second variable, we recall the following inequalities involving the 
function k(2)

x [8, Lemma 2.1]

‖u−K f ‖∞ ≤ 	‖ f u+‖∞, 	 := sup
|x|≤1

u−(x)‖k(2)
x ‖L1

1/u−
, (14)

En(K f )u− ≤ 	n‖ f u+‖∞, 	n := sup
|x|≤1

u−(x)En(k(2)
x )L1

1/u−
. (15)

From (14) and (15) we easily deduce the next proposition involving Hölder–Zygmund type subspaces of L1
v .

Proposition 2.4. Let r > 0 and set v = 1/u− . If the kernel k is s.t. u−(x)k(2)
x ∈ L1

v uniformly w.r.t. x ∈ [−1, 1], then the map K :
C0

u+ → C0
u− is bounded. Moreover, if for some r > 0 we have that u−(x)k(2)

x ∈ Z 1
r (v) holds uniformly w.r.t. x ∈ [−1, 1], then the map 

K : C0
u+ → Zr(u−) is bounded.

Recalling the compact embedding

Zs(u+) ⊂ C0
u+ , ∀s > 0, and Zr(u−) ⊂ Zs(u−), ∀s ∈]0, r[

we remark that under the hypotheses of Proposition 2.3 or 2.4, we also get the following

(i) K : C0
u+ → Zs(u−) is a compact operator for all 0 < s < r,

(ii) K : Zs(u+) → Zr(u−) is a compact operator for all s > 0.

In conclusion let us focus on the case that the function k(x, y) is one of the following weakly singular kernels

kμ(x, y) :=
{

ln |x − y|, if μ = 0,

|x − y|μ, if μ �= 0 and μ > −1.
(16)

In this case we recall the following result (e.g., see [22])

Theorem 2.5. For any μ > 1, let K μ be the operator defined by (4) with kernel function as in (16). For all μ > −1 with μ �= 0, the map 
K μ : C0

u+ → Z1+μ(u−) is bounded and, consequently, K μ : Zr(u+) → Zr(u−) is a compact operator for all 0 < r ≤ 1 + μ. Similarly, 
in the case μ = 0, for any 0 < r < 1 we have K μ : C0

u+ → Zr(u−) is bounded and K μ : Zr(u+) → Zr(u−) is compact.

Finally, we recall that in case of weakly singular kernels as in (16), there exist suitable recurrence relations for computing 
the modified moments 

∫ 1 kμ(x, y)p j(u, x)u(x)dx for any |y| < 1 and j = 0, 1,... (see, e.g., [22]).
−1

5



JID:APNUM AID:4644 /FLA [m3G; v1.343] P.6 (1-21)

D. Occorsio, M.G. Russo and W. Themistoclakis Applied Numerical Mathematics ••• (••••) •••–•••
3. VP filtered polynomial approximation

For an arbitrary Jacobi weight w and any n ∈N , let pn(w, x), or simply pn(w), denote the orthonormal Jacobi polynomial 
corresponding to w and having degree n with positive leading coefficient. If a function f is known at the zeros of pn(w), 
here denoted by

xw
n,1 < xw

n,2 < ... < xw
n,n,

then we can construct the VP approximating polynomial of f , which depends on an additional degree parameter m ∈ N , 
0 < m < n, and it is defined as follows

V m
n (w, f , x) :=

n∑
i=1

f (xw
n,i)


m
n,i(w, x), |x| ≤ 1, (17)

with


m
n,i(w, x) = λw

n,i

n+m−1∑
j=0

μm
n, j p j(w, xu

n,i)p j(w, x), i = 1, ...,n, (18)

where λw
n,i = [∑n−1

j=0 p2
j (w, xw

n,i)]−1 are the well-known Christoffel numbers w.r.t. w , and μm
n, j are filtering coefficients of VP 

type given by

μm
n, j :=

{
1 if j = 0, ...,n − m,
n+m− j

2m if n − m + 1 ≤ j ≤ n + m − 1.
(19)

Note that both the degree parameters 0 < m < n determine the general degree of the approximating VP polynomial of f , 
i.e. V m

n (w, f ) ∈ Pn+m−1, and also the degree of the polynomials satisfying the following preserving property [37].

V m
n (w, P ) = P , ∀P ∈ Pn−m. (20)

The mapping properties as well as the weighted approximation provided by VP polynomial quasi-projections V m
n (w) : f →

V m
n (w, f ) in the spaces C0

v and L1
v (critical for Lagrange interpolation) have been studied in the literature for general Jacobi 

weights w and v (see, e.g., [37,38,31,32,6]).
In this paper, we will focus on the particular case that w is a Jacobi weight as in (2). Moreover, we will use the following 

notation concerning the degree parameters

m ∼ n iff m < n ≤ Cm holds with C �= C(n,m), (21)

m ≈ n iff c1m ≤ n ≤ c2m holds with c2 ≥ c1 > 1 independent of n,m. (22)

The first relation, m ∼ n (which agrees with the notation introduced in Section 2) is sufficient to get the following uniform 
boundedness of VP operator V m

n (u) in suitable spaces of locally continuous functions [37].

Theorem 3.1. For all m ∼ n and any weight u as in (2), the map V m
n (u) : C0

u+ → C0
u+ is uniformly bounded w.r.t. n and m. In particular, 

we have

‖V m
n (u, f )u+‖∞ ≤ C max

1≤i≤n
|( f u+)(xu

i,n)|, ∀ f ∈ C0
u+ , C �= C(n,m, f ), (23)

and the following error estimate holds

En+m−1( f )u+ ≤ ‖[ f − V m
n (u, f )]u+‖∞ ≤ CEn−m( f )u+ , C �= C(n,m, f ). (24)

We point out that, due to (20), the uniform boundedness result (23) is equivalent to the error estimate (24) where n −m
can be also constant since the assumption m ∼ n does not exclude this case even if both n and m tend to infinity (e.g. 
when m = n − 1). The stronger assumption m ≈ n overcomes such a problem since it implies that (n − m) ∼ n holds too. 
Consequently, by the previous result we get

lim
n→∞
m≈n

‖[ f − V m
n (u, f )]u+‖∞ = 0, ∀ f ∈ C0

u+ , (25)

being the convergence order comparable with that one of the errors of best polynomial approximation En( f )u+ . In particular, 
for all m ≈ n, from (7) we deduce
6
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‖[ f − V m
n (u, f )]u+‖∞ ≤ C

1
n∫

0

�s
ϕ( f , t)u+

t
dt, ∀ f ∈ C0

u+ , C �= C(n,m, f ), (26)

and from (9), we get

‖[ f − V m
n (u, f )]u+‖∞ ≤ C

nr
‖ f ‖Zr(u+), ∀ f ∈ Zr(u+), C �= C(n,m, f ). (27)

Moreover, from Theorem 3.1 and some recent results proved in [27,28], we can deduce the following theorem which will 
be useful in the sequel.

Theorem 3.2. Let u be a Jacobi weight as in (2) and D the associated operator given by (3). For all f ∈ C0
u+ , we have

‖D[V m
n (u, f )]u−‖∞ ≤ C max

1≤i≤n
|( f u+)(xu

i,n)|, ∀m ∼ n, C �= C(n,m, f ), (28)

and

‖D[ f − V m
n (u, f )]u−‖∞ ≤ C

1
n∫

0

�s
ϕ( f , t)u+

t
dt, ∀m ≈ n, C �= C(n,m, f ). (29)

With regard to the behavior of VP approximation in Hölder–Zygmund spaces, we recall the following (see, e.g., [5,10,23])

Theorem 3.3. For all r > 0 and any weight u as in (2), if m ∼ n then the map V m
n (u) : Zr(u+) → Zr(u+) is uniformly bounded w.r.t. 

n and m. Moreover, for all m ≈ n and any s ∈]0, r], we have

‖ f − V m
n (u, f )‖Zs(u+) ≤ C

nr−s
‖ f ‖Zr(u+), ∀ f ∈ Zr(u+), C �= C(n,m, f ). (30)

Finally, concerning the behavior of VP approximation error in weighted L1 norm, we recall the following result [38,5].

Theorem 3.4. Suppose that u is a Jacobi weight as in (2), f ∈ L1
1/u− is everywhere defined in ] − 1, 1[, and m ∼ n. If f is a function of 

bounded variation (shortly f ∈ BV) then we have

‖[ f − V m
n (u, f )]1/u−‖1 ≤ C

n

1∫
−1

ϕ(t)

u−(t)
|df (t)|, C �= C(n,m, f ). (31)

Moreover, in case f is a locally continuous function, we get

‖[ f − V m
n (u, f )]1/u−‖1 ≤ C

n

1
n∫

0

�s
ϕ( f , t)1/u−,1

t2
dt, C �= C(n,m, f ). (32)

In conclusion, recalling that the analogous of (7)–(8) holds in weighted L1 norm, by Theorem 3.4, similarly to (25), we 
get

lim
n→∞
m≈n

‖[ f − V m
n (u, f )]1/u−‖1 = 0, ∀ f ∈ BV, (33)

and the convergence rate depends on the smoothness of f ∈ L1
1/u− .

In general case of bounded variation functions, (31) yields

‖[ f − V m
n (u, f )]1/u−‖1 = O(n−1), ∀ f ∈ B V , C �= C(n,m, f ). (34)

that is the same behavior of the error of best polynomial approximation in En( f )1/u−,1. Similarly, in case of smoother 
functions, the error estimate (32) yields

En( f )1/u−,1 = O(n−r) ⇐⇒ ‖[ f − V m
n (u, f )]1/u−‖1 = O(n−r), ∀r > 1,

and, in particular, for all functions f ∈ Z 1
r (1/u−) with r > 1, we have

‖[ f − V m
n (u, f )]1/u−‖1 ≤ C

r
‖ f ‖Z 1(1/u−), ∀m ≈ n, C �= C(n,m, f ). (35)
n r

7



JID:APNUM AID:4644 /FLA [m3G; v1.343] P.8 (1-21)

D. Occorsio, M.G. Russo and W. Themistoclakis Applied Numerical Mathematics ••• (••••) •••–•••
4. The numerical method

4.1. The approximate equations

We are going to consider two kinds of approximation of the CSIE (1), which are the following:

D f (y) + νKn f (y) = gn(y), −1 < y < 1, (36)

D f (y) + ν K̄n f (y) = gn(y), −1 < y < 1, (37)

where, for simplicity, we use the same symbol f to denote the (generally different) unknowns in different equations.
In both the previous approximate equations, the original right-hand side term g has been approximated by its VP poly-

nomial corresponding to the weight u−1 and parameters m ≈ n, namely we set

gn(y) := V m
n (u−1, g, y), |y| ≤ 1. (38)

In (36) the same kind of approximation has been used for the operator K getting the following approximate operator

Kn f (y) := V m
n (u−1, K f , y), |y| ≤ 1. (39)

In (37) the approximation operator K̄n has been obtained by replacing the kernel function k(x, y) with its bivariate VP 
polynomial deduced via tensor product from the univariate VP polynomials associated with the weight u (w.r.t. the first 
variable) and u−1 (w.r.t. the second variable). More precisely, for any m ≈ n, we consider the polynomial

Vm
n k(x, y) :=

n∑
i=1

n∑
j=1

k(xu
n,i, xu−1

n, j )
m
n,i(u, x)
m

n, j(u−1, y), |x| ≤ 1, |y| ≤ 1, (40)

that defines

K̄n f (y) :=
1∫

−1

Vm
n k(x, y) f (x)u(x)dx. (41)

We point out that all the approximations in (38), (39) and (41) depend on both parameters n and m. However, for simplicity, 
in our notation we underline only the dependence on n since m ≈ n and ∀m ≈ n we always get the same estimates. As 
regards the approximation provided by the operator Kn defined in (39), we state the following

Theorem 4.1. Let r > 0 and suppose K : C0
u+ → Zr(u−) be a bounded operator. Hence, for all f ∈ C0

u+ and any m ≈ n, the operator 
Kn satisfies the following estimates

‖K f − Kn f ‖C0
u−

≤ C
nr

‖ f u+‖∞, C �= C(n, f ), (42)

‖K f − Kn f ‖Zs(u−) ≤ C
nr−s

‖ f u+‖∞, ∀s ∈]0, r], C �= C(n, f ). (43)

Under the assumptions of Proposition 2.4 that imply K : C0
u+ → Zr(u−) is a bounded operator, we get the previous 

estimates hold for the approximation operator K̄n too, as specified in the following

Theorem 4.2. Let r > 0 and suppose that u−(x)k(2)
x ∈ Z 1

r (1/u−) holds uniformly w.r.t. x ∈ [−1, 1]. Hence, for all f ∈ C0
u+ and any 

m ≈ n, the operator K̄n satisfies the following estimates

‖K f − K̄n f ‖C0
u− ≤ C

nr
‖ f u+‖∞, C �= C(n, f ), (44)

‖K f − K̄n f ‖Zs(u−) ≤ C
nr−s

‖ f u+‖∞, ∀s ∈]0, r], C �= C(n, f ). (45)

Finally, another common feature of the approximate equations (36) and (37) is given by the following

Proposition 4.3. If the equation (36) or (37) has a solution, then it belongs to Pn+m−1.

In the next subsection we will see how equations (36) and (37) differ in the computations required to solve them.
8
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4.2. The linear systems for computing the numerical solution

Throughout this subsection, we assume that there exists a unique solution of the approximate equation (36) or (37) and 
we focus on its numerical computation. This aspect will suggest us which one of the equations to consider.

Due to Proposition 4.3, in both the approximate equations we look for a polynomial solution in the form

f m
n (y) =

n+m−1∑
j=0

c j p j(u, y), |y| ≤ 1, (46)

being {c j} j=0,..,n+m−1 the (n + m) unknown coefficients.
Let us first focus on the case that f m

n in (46) is the solution of the approximate equation (36).
Note that by (38) and (17)–(18), we get

gn(y) = V m
n (u−1, g, y) =

n+m−1∑
j=0

p j(u−1, y)

[
μm

n, j

n∑
l=1

λu−1

l g(xu−1

n,l )p j(u−1, xu−1
n,l )

]
. (47)

Moreover, setting

m j(y) :=
1∫

−1

p j(u, x)k(x, y)u(x)dx, j = 0,1, ...,n + m − 1, |y| < 1, (48)

we observe that

K f m
n (y) =

n+m−1∑
j=0

c jm j(y), |y| < 1,

and consequently, by (39) and (17)–(18), we get

Kn f m
n (y) = V m

n (u−1, K f , y) =
n+m−1∑

j=0

p j(u−1, y)

[
μm

n, j

n∑
l=1

λu−1

l K f (xu−1

n,l )p j(u−1, xu−1

n,l )

]
,

=
n+m−1∑

j=0

p j(u−1, y)

[
μm

n, j

n+m−1∑
i=0

ci

n∑
l=1

λu−1

l p j(u−1, xu−1

n,l )mi(xu−1

n,l )

]
. (49)

On the other hand, recalling the well known invariance property of D [34]

Dp j(u) = p j(u−1), j = 0,1,2, ...,

we have

D f m
n (y) =

n+m−1∑
j=0

c j p j(u − 1, y). (50)

Summing up, if we replace the expression (46) of the solution f m
n in equation (36) then, by (47), (49), (50), we get

n+m−1∑
j=0

p j(u−1, y)

[
c j + νμm

n, j

n+m−1∑
i=0

ci

n∑
l=1

λu−1
l p j(u−1, xu−1

n,l )mi(xu−1

n,l )

]

=
n+m−1∑

j=0

p j(u−1, y)

[
μm

n, j

n∑
l=1

λu−1

l g(xu−1

n,l )p j(u−1, xu−1

n,l )

]
,

and we can compute the coefficients {c j}n+m−1
j=0 by solving the next linear system

c j + νμm
n, j

n+m−1∑
i=0

ci

n∑
l=1

λu−1

l p j(u−1, xu−1

n,l )mi(xu−1

n,l ) (51)

= μm
n, j

n∑
l=1

λu−1

l g(xu−1

n,l )p j(u−1, xu−1

n,l ), j = 0,1, ...,n + m − 1.
9
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In a more compact matrix form, setting

c := [c0, c1, ..., cn+m−1]T ∈Rn+m,

M = diag(μm
n,0, ...,μ

m
n,n+m−1) ∈R(n+m)×(n+m),

P = (pi, j)i, j ∈R(n+m)×n, pi, j := pi(u−1, xu−1

n, j ), i = 0, ..,n + m − 1, j = 1, ..,n,

�u = diag(λu
n,1, ..., λ

u
n,n) ∈Rn×n,

R = M P�u−1 ∈ R(n+m)×n,

g :=
[

g(xu−1

n,1 ), ..., g(xu−1

n,n )
]T ∈ Rn,

v = R g ∈Rn+m,

W = (wi, j) ∈Rn×(n+m), wi, j := m j(xu−1

i ), i = 1, ..,n, j = 0, ..,n + m − 1.

(52)

linear system (51) becomes

(I + ν A)c = v, A := RW, (53)

where, as usual, I ∈R(n+m)×(n+m) denotes the identity matrix.
We underline that the above numerical procedure can be used in all the cases that the kernel function k(x, y) is such 

that the integrals in (48), i.e. its first n + m modified moments are known or easily computable at the zeros of pn(u−1). If 
this is not the case, we do not know the elements of W and cannot consider (36).

Hence, we are going to take the approximate equation (37) whose solution, for simplicity, we continue to denote as f m
n

given by (46).
In order to find the unknown coefficients {c j} j=0,..,n+m−1, in this case we observe that by (40), (41) and (46), we have

K̄ f m
n (y) =

n+m−1∑
i, j=0

μm
n,iμ

m
n, j p j(u−1, y)

⎡
⎣ 1∫
−1

pi(u, x) f m
n (x)u(x)dx

⎤
⎦

×
n∑

l,�=1

λu
�λu−1

l pi(u, xu
n,�)p j(u−1, xu−1

n,l )k(xu
n,�, xu−1

n,l )

=
n+m−1∑

j=0

p j(u−1, y)

⎡
⎣μm

n, j

n+m−1∑
i=0

μm
n,ici

n∑
l,�=1

λu
�λu−1

l pi(u, xu
n,�)p j(u−1, xu−1

n,l )k(xu
n,�, xu−1

n,l )

⎤
⎦ ,

that is, setting

κi, j :=
n∑

l,�=1

λu
�λu−1

l pi(u, xu
n,�)p j(u−1, xu−1

n,l )k(xu
n,�, xu−1

n,l ), i, j = 0, ...,n + m − 1,

we get

K̄n f m
n (y) =

n+m−1∑
j=0

p j(u−1, y)

[
μm

n, j

n+m−1∑
i=0

μm
n,iciκi, j

]
. (54)

Hence, if the polynomial in (46) is the solution of (37) then, by (47), (50) and (54), we deduce the identity

n+m−1∑
j=0

p j(u−1, y)

[
c j + νμm

n, j

n+m−1∑
i=0

μm
n,iciκi, j

]

=
n+m−1∑

j=0

p j(u−1, y)

[
μm

n, j

n∑
l=1

λu−1

l g(xu−1

n,l )p j(u−1, xu−1

n,l )

]

that leads to the following linear system

c j + νμm
n, j

n+m−1∑
i=0

μm
n,iciκi, j = μm

n, j

n∑
l=1

λu−1

l g(xu−1

nl )p j(u−1, xu−1

n,l ), j = 0, ..,n + m − 1. (55)
10
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In order to represent this system in a matrix form, besides the notation in (52), let us introduce the following matrices

Q = (pi, j)i, j ∈R(n+m)×n, pi, j := pi(u, xu
n, j), i = 0, ..,n + m − 1, j = 1, ..,n

S = M Q �u−1 ∈R(n+m)×n,

K = (ki, j)i, j ∈Rn×n,ki, j := k(xu
n,i, xu−1

n, j ), i, j = 1, ..,n.

Therefore the system (55) can be rewritten as:

(I + νB)c = v, B := S K AT . (56)

In conclusion, in the case the matrix W of the modified moments is known, we can use this data and solving the linear 
system (53) that is equivalent to solve approximate equation (36). In the general case, starting from the matrix K , we can 
always set the linear system (56) whose solution allows to compute, by means of (46), the solution of approximate equation 
(37) at any |y| ≤ 1.

In the next subsection, we are going to see that whatever linear system/ approximate equation we solve, we can get the 
same degree of approximation with similar error estimates.

4.3. Convergence and stability results

In this subsection, we are going to state the unique solvability of the previous approximate equations (36) and (37) and 
the associated linear systems. Moreover, we study the stability and convergence providing sharp error estimates for the 
approximate polynomial solutions.

In order to do this, we first need to prove that operators D +νKn and D +ν K̄n are invertible and uniformly bounded. The 
proof of these properties can be lead in a standard way (see for instance [3]) and the main tool is the strong convergence 
of the operator sequences {Kn}n and {K̄n}n to K in the space where we want to consider D + νKn and D + ν K̄n .

On the other hand Theorem 4.1, together with Proposition 2.4, and Theorem 4.2 state sufficient conditions on the kernel 
k(x, y) in order to get the strong convergence results of {Kn}n and {K̄n}n to K .

Therefore we can prove the following stability results, in the statements of which we will omit the subscripts in the 
operator norms, the meaning being clear.

Theorem 4.4. Let K : C0(u+) → Zr(u−), with r > 0 be bounded, and assume ker(D + νK ) = {0}. Then operators D + νKn :
Zs(u+) → Zs(u−), 0 < s < r, have bounded inverses for all sufficiently large m ≈ n. Moreover we have

sup
m≈n

‖(D + νKn)−1‖ < +∞, (57)

and the condition number of D + νKn tends to the condition number of D + νK , i.e.

lim
n→∞
m≈n

‖D + νKn‖‖(D + νKn)
−1‖

‖D + νK‖‖(D + νK )−1‖ = 1. (58)

An analogous result, under different additional assumptions for k(x, y), can be obtained for D + ν K̄n .

Theorem 4.5. Let u−(x)k(2)
x ∈ Z 1

r (1/u−) with r > 0, uniformly w.r.t. x ∈ [−1, 1], and assume ker(D + νK ) = {0}. Then operators 
D + ν K̄n : Zs(u+) → Zs(u−), 0 < s < r, have bounded inverses for all sufficiently large m ≈ n. Moreover (57) and (58) hold true with 
D + νKn replaced by D + ν K̄n.

We conclude with the convergence estimates of the previous methods. About the first method we get

Theorem 4.6. Let the assumptions of Theorem 4.4 be fulfilled with r > 0. Then for all m ≈ n, equation (36) has a unique solution 
f m
n ∈Pn+m−1 satisfying

‖( f ∗ − f m
n )u+‖∞ ≤ C

nr
‖g‖Zr(u−), C �= C(n, f ∗) (59)

‖( f ∗ − f m
n )‖Zs(u+) ≤ C

nr−s
‖g‖Zr(u−), s < r, C �= C(n, f ∗), (60)

where f ∗ denotes the unique solution of equation (1).

About the second method we have
11
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Theorem 4.7. Let the assumptions of Theorem 4.5 be fulfilled with r > 0. Then for all m ≈ n, equation (37) has a unique solution 
f m
n ∈Pn+m−1 , and

‖( f ∗ − f m
n )u+‖∞ ≤ C

nr
‖g‖Zr(u−), C �= C(n, f ∗) (61)

‖( f ∗ − f m
n )‖Zs(u+) ≤ C

nr−s
‖g‖Zr(u−), s < r, C �= C(n, f ∗), (62)

where f ∗ denotes the unique solution of equation (1).

Remark. We underline that the convergence and stability results here obtained can be compared with the analogous one 
proposed in the literature and based on the Lagrange interpolating operator (see for instance [22,8]). The main advantages 
in our approach are the following.

• The main results, in the cited papers, require the kernel has to fulfill assumptions in the space Zr w.r.t. the weighted 
uniform norm, while we succeeded in proving the corresponding results with “minimal” assumptions in L1 weighted 
norm.

• In the Lagrange case it is necessary to restrict the values for the exponent α (α ≥ 1/2), in the definition of the weight 
u, in order to obtain optimal Lebesgue constant or alternatively one has to use 2 additional interpolation points in order 
to recover the optimal behavior. Therefore it is necessary to solve different linear systems for different values of α. On 
the contrary we have no restriction on α.

• Due to the boundedness of the VP operators in the convergence estimates we have no extra log factors as it occurs in 
the Lagrange case.

5. Numerical tests

We are going to show the performance of the proposed methods by some numerical experiments, making comparisons 
with the analogous procedures obtained replacing V m

n (u−1, f ) with the Lagrange polynomial Lm+n(u−1, f ) ∈ Pn+m−1, in-
terpolating f at the zeros of pn+m(u−1) (see [22,7]). Such method, referred to as Lag-method in the following, allows us 
to construct the sequence { f Lag

N }N≥1 approximating the solution f ∗ of (1). We recall that for the Lag-method in [22], the 
constraint α ≥ 1

2 holds true.
Denoting by Y a sufficiently large uniform mesh of points in [−1, 1], for any y ∈ Y let

eV P
n,m( f , y) = | f̂ V P (y) − f m

n (y)|u+(y), eLag
n+m( f , y) = | f̂ Lag(y) − f Lag

n+m(y)|u+(y),

being f̂ V P (y), f̂ Lag(y) the values achieved by means of higher degree implementation of the VP and Lag-method, respec-
tively, and

EV P
n+m := max

y∈Y

(
eV P

n,m( f , y)
)

,

E Lag
n+m := max

y∈Y

(
eLag

n+m( f , y)
)

.
(63)

In the case the involved functions g and/or k are very smooth, the pointwise absolute errors have been computed by means 
of

ẽV P
n,m( f , y) = | f m

n (y) − f 2m
2n (y)|u+(y), ẽLag

n+m( f , y) = | f Lag
n+m(y) − f Lag

2n+2m(y)|u+(y),

defining in this case

ẼV P
n+m := max

y∈Y

(
ẽV P

n,m( f , y)
)

,

Ẽ Lag
n+m := max

y∈Y

(
ẽLag

n+m( f , y)
)

.
(64)

By condV P
n+m , condLag

n+mwe denote the condition numbers of the linear system in infinity matrix norm for the VP and Lag-
method, respectively. In all the tests we report the values of n for both VP and Lag methods. About the choice in VP method 
satisfying m ≈ n, we have chosen m = �θn�, with θ ∈ {0.1 : 0.1 : 0.9}, and in the tables, for any n, we have reported the value 
of the selected θ . The solutions of the involved linear systems have been computed by the Gaussian elimination method.

In what follows we will call VP1 the method deriving by the finite dimensional equation (36) and analogously VP2 that 
deriving by the finite dimensional equation (37).

All the computations were performed in double-machine precision (epsD ≈ 2.22044e − 16) by using MATLAB R2021a.
12
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Table 1
Example 1: weighted maximum errors.

n θ EV P
n+m condV P

n+m E Lag
n+m condLag

n+m

17 0.1 4.86e-02 1.50 4.86e-02 8.49
33 0.1 3.36e-02 1.50 3.36e-02 11.1
65 0.1 1.92e-02 1.50 1.93e-02 14.2
129 0.1 1.18e-02 1.50 1.18e-02 17.7
257 0.8 3.94e-03 1.50 7.84e-03 21.5
513 0.1 4.02e-03 1.50 4.00e-03 25.6
1025 0.1 1.83e-03 1.50 1.82e-03 30.3

Fig. 1. Example 1: weighted pointwise errors for n = 1025, and θ = 0.1.

Table 2
Example 1: weighted pointwise errors.

y = −0.4543286573146292 y = 0.6011422845691383 y = 0.8035070140280561

eV P
n,m( f , y) eLag

n+m( f , y) eV P
n,m( f , y) eLag

n+m( f , y) eV P
n,m( f , y) eLag

n+m( f , y)

9.52e-08 6.38e-05 9.12e-09 2.23e-06 6.34e-09 1.14e-06

y = −0.3035470941883768 y = 0.2043486973947896 y = .009919839679358718

eV P
n,m( f , y) eLag

n+m( f , y) eV P
n,m( f , y) eLag

n+m( f , y) eV P
n,m( f , y) eLag

n+m( f , y)

2.49e-05 2.46e-05 1.10e-06 8.59e-07 2.34e-06 1.36e-06

Example 1. Consider equation (1), with

α = 0.5, ν = −13π, u+ = v
1
2 ,0,

k(x, y) = 1

1 + 10(y − x)2
+ 1√

1 + 10(y − x)2
, g(y) = |y + 0.4|0.7.

Here in view of the smoothness of the kernel k we use the method VP2. The function g ∈ Zr(u−) with r = 0.7, and the 
expected order of convergence of our method is O(n−0.7) The experiment has been performed for values of θ varying in 
the set {0.1 : 0.1 : 0.9}, with m = �θn�, being θ selected for any n so that the best result for the VP method is achieved. 
The Lag-method has been implemented so that the order of the final linear is the same of the VP method, i.e. (n + m). The 
results about the maximum errors as defined in (63) are displayed in Table 1, showing that the convergence results of both 
the methods are comparable to each other, while the condition numbers of the linear systems, bounded in VP method for n 
increasing, moderately diverge in the Lag method. The graphic of the pointwise absolute errors in the interval (−0.5, −0.3) 
(see Fig. 1) evidences a better performance of the VP method around the critical point y = −0.4, while the Lag-method 
presents overshoots and oscillations spilling over the whole interval.

To evidence the local improvement induced by the VP method w.r.t. the Lag method, in Table 2 we report the pointwise 
errors for 6 points y ∈ Y , selected from those for which VP method or Lag-method gain the best results. To be more precise, 
for n = 1025 and θ = 0.1, we have selected the first three nodes among those the VP2 method achieves the “best results” 
(see the results in the top of Table 2), while the other three points are those for which the Lag-method gains the “best 
results” (see the results in the bottom of Table 2). As we can see, a faster improvement is induced by VP method which 
gains until 3 digits, but the best results obtained by the Lag-method allow at most 2 digits.
13
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Table 3
Example 2: weighted pointwise errors.

y = −0.4 y = −0.5 y = 0.5

n ẽV P
n,m( f , y) ẽLag

n+m( f , y) ẽV P
n,m( f , y) ẽLag

n+m( f , y) ẽV P
n,m( f , y) ẽLag

n+m( f , y)

16 7.80e-01 1.86e-02 5.49e-01 2.49e-01 4.52e-02 4.88e-02
32 1.44e-01 1.76e-02 4.48e-02 8.66e-03 1.32e-02 4.14e-02
64 9.16e-03 5.23e-03 3.99e-03 2.32e-03 1.09e-04 8.53e-04
128 1.91e-04 1.38e-05 5.43e-05 2.52e-05 8.20e-09 5.50e-06
256 6.62e-10 1.62e-08 8.82e-09 4.51e-09 6.96e-13 1.00e-10
512 5.18e-14 7.78e-13 6.89e-14 8.25e-13 6.07e-13 6.87e-13

Table 4
Example 2.

n θ ẼV P
n+m condV P

n+m Ẽ Lag
n+m condLag

n+m

16 0.12 1.35e-01 1.15 3.18e-02 1.38e+01
32 0.12 1.44e-01 2.56 1.07e-01 1.72e+01
64 0.12 2.31e-02 2.56 1.69e-02 2.08e+01
128 0.12 3.48e-04 2.56 2.86e-04 2.48e+01
256 0.12 6.31e-07 2.56 7.25e-08 2.52e+01
512 0.12 9.19e-13 2.56 9.95e-13 2.57e+01

Example 2. Consider equation (1), with

α = 0.6, ν = − 1

2π
, u+ = v0.6,0

k(x, y) = 1

1 + 10(y − x)2
+ 1√

1 + 10(y + x)2
,

g(y) = 1

1 + 100(0.5 − y)2
+ 1√

1 + 100(0.5 + y)2

In Table 4 are displayed the maximum errors as defined in (64) for n varying and θ fixed in the VP method, and for the 
Lag-method of order n + m. Analyzing the maximum errors, the VP method seems to have a worse behavior w.r.t. the Lag 
method. Moreover, the expected machine precision for small n is never gained in both the methods, since eventhough g ∈
Zr(u−) for any r > 0 it presents two picks at the points y = ±0.5 (see the graphic of g in Fig. 2), allowing to “large” norms 
of g in Zr(u−) as r is “large”. For instance, with r = 7 it is ‖g‖Zr(u+) ∼ 109, while for r = 11 it is ‖g‖Zr(u+) ∼ 1.5 × 1016. In 
the same Table are given the conditioning of the final linear systems. As we can see, they are bounded in the VP method, 
while moderately diverge in the Lag-method. In particular in Table 3 are reported the weighted pointwise errors for some 
selected points, and the results evidence a better local performance of the VP method versus the Lag-method at the “critical” 
points y = ±0.5. Moreover, in Fig. 3 there is the graphic of the absolute pointwise errors provided by both the methods, 
and it is confirmed that the VP2 method provides almost everywhere better results than the Lag method, along the whole 
interval.

Example 3. Consider equation (1), with

α = 0.9, ν = 1, u+ = v0.9,0,

k(x, y) = | cos(y − π

4
)|4.5 + | sin(x)|3.5,

g(y) = |x|5.5.

Here the function g belongs to Z5.5(u+), and in view of the poor regularity of the kernel, the order of convergence is 
O

(
1

n3.5

)
for our method and O

(
log(n+m)

(n+m)3.5

)
for the Lag-method. The maximum errors as defined in (64) are displayed in 

Table 5. They appear almost comparable to each other, with a little bit improvement gained by the VP method.
Nevertheless, to compute f m

n are required n values of g and n2 values of the kernel k, while to compute f Lag
n+m are needed 

n + m and (n + m)2 evaluations of g and k, respectively. Hence, we can conclude that a saving in computing the samples 
is realized by using the VP method to achieve a comparable approximation, and this represents another interesting point of 
view in the comparison between the computational costs.

Next two test deals with VP1 method, and involve kernels of the type k(x, y) = |x − y|λ, λ > −1. In this case the functions 
m j(y) defined in (48) can be computed by means of suitable recurrence relations given in [22].
14
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Fig. 2. Example 2: Graphic of the right hand-side function g .

Fig. 3. Pointwise weighted errors n = 1024, θ = 0.12.

Table 5
Example 3.

n θ ẼV P
n+m condV P

n+m Ẽ Lag
n+m condLag

n+m

32 0.3 1.21e-04 3.54e+01 4.81e-05 4.05e+01
64 0.3 8.65e-06 3.54e+01 5.84e-06 4.31e+01
128 0.3 6.69e-07 3.54e+01 5.41e-07 4.55e+01
256 0.3 5.52e-08 3.54e+01 2.52e-08 4.80e+01
512 0.3 4.59e-09 3.54e+01 2.17e-09 5.05e+01
1024 0.3 4.15e-10 3.54e+01 3.09e-10 5.31e+01
2048 0.3 2.94e-11 3.54e+01 5.33e-11 5.57e+01

Example 4. This test can be found in [22]. Let be in (1)

α = 2

3
, ν = 1, u+ = v

2
3 ,0,

k(x, y) = |x − y|− 1
8 , g(y) = 1 + y2.

The theoretical order of convergence is O
(

1

n
7
8

)
for our method and O

(
log(n+m)

(n+m)
7
8

)
for the Lag-method. We start comparing 

the values attained for y = 0.5 and y = 0.9 by the approximant f m
n (y) with those achieved by f Lag

n (y) (instead of f Lag
n+m ,) 

since these are provided in [22, Ex.1, p.323].
As we can see from Table 6, the results are almost comparable, since the same numbers of fixed digits are attained by 

both the methods.
Now, similarly to the previous tests, the maximum weighted errors and the condition numbers of the linear systems are 

shown in Table 7, where we have computed f Lag
n+m to obtain final systems of the same orders. The convergence results are 

comparable to each other, while the condition numbers of the linear systems are bounded in the VP method, but moderately 
diverge in the Lag-method.

Example 5. Consider the equation (1), with
15
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Table 6
Example 4: approximate values for y = 0.5 and y = 0.9.

y = 0.5 y = 0.9

n θ f m
n (y) f Lag(y) f m

n (y) f Lag
n (y)

16 0.4 1.00 1.00099 6.346e-01 6.3465e-01
32 0.3 1.00099 1.000993 6.34659e-01 6.346596e-01
64 0.1 1.000993 1.0009932 6.34659e-01 6.346596e-01
128 0.4 1.00099326 1.0009932 6.3465960e-01 6.3465960e-01
256 0.1 1.000993269 1.000993269 6.34659602e-01 6.34659602e-01
512 0.4 1.0009932693 1.0009932693 6.34659602e-01 6.34659602e-01

Table 7
Example 4.

n θ EV P
n+m condV P

n+m E Lag
n condLag

n

16 0.1 3.93e-04 7.57 3.53e-04 11.705
32 0.1 3.59e-05 7.58 3.07e-05 12.310
64 0.4 3.98e-06 7.59 1.76e-06 12.724
128 0.2 3.12e-07 7.59 3.28e-07 12.855
256 0.1 1.99e-08 7.59 2.86e-08 12.947
512 0.2 2.14e-09 7.59 1.56e-09 13.015
1024 0.1 1.73e-10 7.59 2.21e-10 13.045

Table 8
Example 5:maximum errors.

n θ EV P
n+m condV P

n+m E Lag
n condLag

n

16 0.1 3.7007e-01 26.3 4.3809e-01 44.48
32 0.2 3.6803e-01 26.3 3.4120e-01 46.58
64 0.1 2.3635e-01 26.3 2.3080e-01 47.51
128 0.1 2.2164e-01 26.3 2.1441e-01 48.15
256 0.1 1.0897e-01 26.3 1.4869e-01 48.53
512 0.1 9.8079e-02 26.3 9.0089e-02 48.76

Fig. 4. Example 5: Pointwise weighted errors for n = 256, and θ = 0.1.

α = 0.89, ν = 1, u+ = v0.89,0,

k(x, y) = |x − y| 1
3 ,

g(y) = |x| 1
11 + |x − 0.5| 1

7 .

In this case we use VP1 and the Lag-method as implemented in [22]. The function g ∈ Z 1
11

(u−) and the theoretical order of 

convergence is O
(

1

n
1

11

)
for our method and O

(
log(n+m)

(n+m)
1

11

)
for the Lag-method. See Table 8 and Fig. 4.

6. Proofs of the main results

Proof of Theorem 3.2. Inequality (28) has been already stated in [28, Lemma 4.3].
16
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In order to prove (29), we note that by (3), (10), (24) and (7), we get

‖D[ f − V m
n (u, f )]u−‖∞

≤ C‖[ f − V m
n (u, f )]u+‖∞ + C sup

|y|≤1

∣∣∣∣∣∣
1∫

−1

f (x) − V m
n (u, f , x)

x − y
u(x)dx

∣∣∣∣∣∣ u−(y)

≤ C

1
n∫

0

�s
ϕ( f , t)u+

t
dt + C sup

|y|≤1

∣∣∣∣∣∣
1∫

−1

f (x) − V m
n (u, f , x)

x − y
u(x)dx

∣∣∣∣∣∣ u−(y)

where C �= C(n, m, f ). Hence, the statement follows recalling that by [28, Eq. (50)] we have

∣∣∣∣∣∣
1∫

−1

f (x) − V m
n (u, f , x)

x − y
u(x)dx

∣∣∣∣∣∣ u−(y) ≤ C

1
n∫

0

�s
ϕ( f , t)u+

t
dt, C �= C(n,m, f , y). �

Proof of Theorem 4.1. The statements (42) and (43) follow by applying estimates (27) and (30) with f , u, u+ replaced by 
K f , u−1, u− , respectively, and taking into account that we assumed

‖K f ‖Zr(u−) ≤ C‖ f u+‖∞, C �= C( f ). �
Proof of Theorem 4.2. Let us first prove (44). Taking into account that

K f − K̄n f = (K f − Kn f ) − (K̄n f − Kn f ),

and observing that Proposition 2.4 allows us to apply Theorem 4.1 for estimating the norm of K f − Kn f , it is sufficient to 
prove that

‖Kn f − K̄n f ‖C0
u−

≤ C
nr

‖ f u+‖∞, C �= C(n, f ). (65)

To this aim we observe that, using the notation introduced in (13) and the univariate VP polynomial, if we set

K ∗
n f (y) =

1∫
−1

V m
n (u,k(2)

y , x) f (x)u(x)dx, (66)

then the operator K̄n can be equivalently written as follows

K̄n f (y) = V m
n (u−1, K ∗

n f , y) (67)

Consequently, applying Theorem 3.1 (with f , u replaced by K f − K ∗
n f , u−1 resp.) we get

‖Kn f − K̄n f ‖C0
u− = ‖V m

n (u−1, K f − K ∗
n f )‖C0

u− ≤ ‖K f − K ∗
n f ‖C0

u− ,

and to prove (65) we are going to state

‖K f − K ∗
n f ‖C0

u− ≤ C
nr

‖ f u+‖∞. (68)

This can be proved by applying (35) (with f replaced by k(2)
y ), as follows

‖K f − K ∗
n f ‖C0

u−
≤ max|y|≤1

u−(y)

1∫
−1

∣∣k(2)
y (x) − V m

n (u,k(2)
y , x)

∣∣| f (x)|u+(x)

u−(x)
dx

≤ ‖ f u+‖∞ max|y|≤1
u−(y)

∥∥[k(2)
y − V m

n (u,k(2)
y )]1/u−

∥∥
1

≤ C‖ f u+‖∞ max|y≤1
u−(y)

‖ky‖Z 1
r (1/u−)

nr
≤ C

nr
‖ f u+‖∞

Now let us prove (45). For any s ∈]0, r], by using (44) we have
17



JID:APNUM AID:4644 /FLA [m3G; v1.343] P.18 (1-21)

D. Occorsio, M.G. Russo and W. Themistoclakis Applied Numerical Mathematics ••• (••••) •••–•••
‖K f − K̄n f ‖Zs(u−) = ‖K f − K̄n f ‖C0
u−

+ sup
i∈N0

(1 + i)s Ei(K f − K̄n f )u−

≤ C
nr

‖ f u+‖∞ + sup
i∈N0

(1 + i)s Ei(K f − K̄n f )u− . (69)

In order to estimate the last addendum, we distinguish two cases.
For all integers i ≥ n + m − 1, taking into account that K̄n f ∈Pn+m−1 for any f ∈ C0

u+ , and using (9), we have

Ei(K f − K̄n f )u− = Ei(K f )u− ≤ C
‖K f ‖Zr(u−)

(1 + i)r
≤ C

‖ f ‖C0
u+

(1 + i)r
.

Thus, recalling that s ≤ r we get

sup
i≥n+m−1

(1 + i)s Ei(K f − K̄n f , t)u− ≤ C sup
i≥n+m−1

(1 + i)s−r‖ f ‖C0
u+

≤ C
‖ f ‖C0

u+
nr−s

. (70)

On the other hand, by using (42) and (65), for all integers 0 ≤ i < n + m − 1 we get

Ei(K f − K̄n f , t)u− ≤ ‖K f − K̄n f )u−‖∞ ≤ C
nr

‖ f u+‖∞,

and hence

sup
i<n+m−1

(1 + i)s Ei(K f − K̄n f )u− ≤ C
‖ f u+‖∞

nr−s
(71)

In conclusion, (45) follows by (69)–(71). �
Proof of Proposition 4.3. Let us write the equation as follows

D f = gn − νTn f , Tn ∈ {Kn, K̄n}
and apply the operator D̂ to both the members. By Theorem 2.1 we get

f = D̂[gn − νTn f ]
where gn −νTn f ∈Pn+m−1 holds for all f satisfying the above identity. Hence, the statement follows by taking into account 
D̂ maps polynomials into polynomials of the same degree [34]. �
Proofs of Theorems 4.4 and 4.5. The proofs can be lead in a standard way starting by the strong convergence of the se-
quences {Kn}n and {K̄n}n to K : Zr(u+) → Zr(u−)) that can be easily deduced by (43) and (45) respectively. The interested 
reader can consult for instance the proof of Theorem 4.2 in [23]. �
Proof of Theorem 4.6. First of all we recall that the operator D̂ defined in (12) is the inverse operator of D . Thus instead of 
(1) and (36) we can consider the corresponding “regularized” equations

(I + ν D̂ K ) f = D̂g and (I + ν D̂ Kn) f = D̂gn (72)

Note that, by our assumptions, these equations are equivalent to (1) and (36) but they can be considered also in the larger 
spaces C0

u+ and Zs(u+) with 0 < s < r. This fact can be proved following standard arguments (see, e.g. [22]) by taking into 
account that

lim
n→∞
m≈n

‖D̂ K − D̂ Kn‖C0
u+→C0

u+ = 0 = lim
n→∞
m≈n

‖D̂ K − D̂ Kn‖Zs(u+)→Zs(u+)

holds since, from the boundedness of D̂ and (43), we get for all f ∈ C0u+ the following

‖(D̂ K − D̂ Kn) f ‖C0
u+

≤ ‖(D̂ K − D̂ Kn) f ‖Zs(u+) ≤ C‖(K − Kn) f ‖Zs(u−) ≤ C
nr−s

‖ f ‖C0
u+

.

Hence, in particular, our assumptions ensure that for all m ≈ n, the operators (I + D̂ Kn) are uniformly bounded and invertible 
with uniformly bounded inverses if we take both domain and range equal to C0

u+ or Zs(u+) with 0 < s < r.
Moreover, starting from (72), it is possible to deduce the following identity concerning the solutions f ∗ and f m

n of 
equation (1) and (36), respectively
18
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f ∗ − f m
n = (I + ν D̂ Kn)−1

[
D̂(g − gn) + ν D̂(Kn f ∗ − K f ∗)

]
. (73)

In order to prove (59), we use that (I + ν D̂ Kn)−1 : C0
u+ → C0

u+ is uniformly bounded w.r.t. n, and apply (29) with D, u, u+
replaced by D̂, u−1, u− , respectively. In this way, by (73) we get

‖( f ∗ − f m
n )u+‖∞ ≤ C

[
‖D̂(g − gn)u+‖∞ + ‖D̂(Kn f ∗ − K f ∗)u+‖∞

]
(74)

≤ C

1
n∫

0

�ϕ(g, t)u−
t

dt + C

1
n∫

0

�ϕ(K f ∗, t)u−
t

dt

≤ C
‖g‖Zr(u−)

nr
+ C

‖K f ∗‖Zr(u−)

nr

≤ C
‖g‖Zr(u−)

nr
+ C

‖ f ∗‖C0
u+

nr

and (59) follows taking into account that

‖ f ∗‖C0
u+

≤ ‖ f ∗‖Zr(u+) = ‖(D + νK )−1 g‖Zr(u+) ≤ C‖g‖Zr(u−).

Similarly, in order to prove (60) we start once again from (73). Hence, using the uniform boundedness of the operators 
(I + ν D̂ Kn)−1 : Zs(u+) → Zs(u+) and D̂ : Zs(u−) → Zs(u+), applying Theorem 3.3 with u, u+ replaced by u−1, u− and 
recalling (43), we deduce

‖( f ∗ − f m
n )u+‖Zs(u+) ≤ C

[
‖D̂(g − gn)‖Zs(u+) + ‖D̂(Kn f ∗ − K f ∗)‖Zs(u+)

]
≤ C

[‖g − gn‖Zs(u−) + ‖Kn f ∗ − K f ∗‖Zs(u−)

]
≤ C

‖g‖Zr(u−)

nr−s
+ C

‖ f ∗‖C0
u+

nr−s
≤ C

‖g‖Zr(u−)

nr−s
. �

Proof of Theorem 4.7. In order to prove (61) we can proceed as in the proof of Theorem 4.6 starting now from

(I + ν D̂ K̄n) f m
n = D̂gn.

Thus by (73) we get

‖( f ∗ − f m
n )u+‖∞ ≤ C

[
‖D̂(g − gn)u+‖∞ + ‖D̂(K̄n f ∗ − K f ∗)u+‖∞

]
. (75)

In order to estimate the second norm at the right–hand side we remark that

‖D̂(K̄n f ∗ − K f ∗)u+‖∞ = ‖D̂(K̄n f ∗ − Kn f ∗)u+‖∞ + ‖D̂(Kn f ∗ − K f ∗)u+‖∞

and the second term is the same as in (74). On the other hand, recalling the definition of Kn and (67) we get

‖D̂(K̄n f ∗ − Kn f ∗)u+‖∞ = ‖D̂ V m
n (u−1, K ∗

n f ∗ − K f ∗))u+‖∞.

By (28) applied to f = K ∗ f ∗ − K f ∗ , with D̂, u−1, u+ in place of D, u, u− respectively, it follows that

‖D̂ V m
n (u−1, K ∗

n f − K f ))u+‖∞ ≤ C‖(K ∗
n f ∗ − K f ∗)u−‖∞.

Recalling the definition of K ∗
n given in (66), the right hand side can be easily bounded by using the L1 convergence estimate 

(35) and we finally get

‖D̂(K̄n f ∗ − Kn f ∗)u+‖∞ ≤ C
‖ f u+‖∞

nr
max

x∈[−1,1] ‖k(2)
x ‖Zr(u−1− )

. (76)

Therefore (61) follows by (75), using (76) and (29) applied to f = g , with D̂, u−1, u+ in place of D, u, u− , respectively.
Finally, in order to prove (62) we can repeat word by word the proof of (60) in Theorem 4.6 and using (45) instead of 

(43). �

19
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7. Conclusion

We present a new numerical method for solving CSIE in order to improve the local accuracy provided by classical 
numerical methods based on Lagrange interpolation at Jacobi zeros.

Indeed, it is well–known that Lagrange–based methods provide optimal error estimates w.r.t. weighted L2 –norms. Apart 
from a logarithmic factor, the same holds with weighted L∞–norms, getting a convergence rate comparable with the error 
of best polynomial uniform approximation of the unknown function f . The latter, in turn, depends on the smoothness of the 
known functions in the CSIE. However, in case of smooth data functions with isolated singularities, Lagrange interpolation 
is not always able to provide a better approximation in the smoother parts, suffering of the Gibbs phenomenon.

To overcome this problem and improve the local accuracy, here, we propose to use VP polynomial approximation at 
Jacobi zeros.

The resulting numerical method has been deeply investigated from both the theoretical and computational/numerical 
sides.

In theory, similarly to Lagrange–based method, we prove the convergence order is comparable with that of the best uni-
form polynomial approximation of f , but without any logarithmic factor. Moreover, we get stability and well–conditioning 
results not achievable by Lagrange–based methods.

In practice, the absence/presence of the logarithmic factor is not revealed by the numerical experiments, that show al-
most comparable values of the maximum numerical error. However, compared with Lagrange–based methods, the linear 
system associated to our method displays condition numbers that do not increase with the dimension of the system. More-
over, in case of isolated singularities in the data, we obtain a much better behavior of the pointwise error in the more 
regular parts, generally interested by the Gibbs phenomenon.
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