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Abstract: Complexes of Schiff bases (SBs) with metals are promising compounds exhibiting a broad

range of applications, such as catalysts, polymers, dyes, and several biological activities, including

antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic

actions. Considering the crisis that the whole world is now facing against antimicrobial-resistant

bacteria, in the present review, we chose to focus on the activity of SBs as antimicrobials, particularly

underlying the most recent studies in this field. Finally, some interesting catalytic applications

recently described for metal complexes with SBs have also been discussed.
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1. Introduction

The widespread usage of SBs in chemistry, industry, medicine, and pharmacy has
notably enhanced the interest in these intriguing compounds [1,2]. The functional feature
of SBs is represented by the azomethine group -C=N-, where the substituents may be
alkyl, aryl, or heterocyclic groups. The carbon atom of the imine bond is predisposed to
nucleophilic addition, whereas the nitrogen atom holds an extremely reactive free electron
pair, able to form stable complexes with metals. The catalytic activity of SBs [3], their
corrosion inhibition behavior [4], as well as the action as photosensitizers [5], and fluo-
rescent chemo-sensors tools for the detection of Cu2+ and Fe3+ metal ions [6] have been
reported. Moreover, numerous biological activities were described in the literature for
these compounds [7–9], such as antitumoral [10–12]; antimicrobial [13]; antimalarial [14];
antioxidant; neuroprotective; antidiabetic; antidepressant [15]; anti-inflammatory [16];
and acetylcholinesterase (AChE)-, butyrylcholinesterase (BChE)- [17–19], and carbonic
anhydrase-inhibiting [20] ones. Moreover, coatings made of SBs have been shown to im-
prove the bioactivity of materials, suggesting the use of these compounds in medicine [21].
In a biological context, the azomethine nitrogen of SBs represents a site for the binding of
metal ions with numerous biomolecules, including proteins and amino acids, responsible
for its biological activities. The highly stable complexes formed by SBs with transition
metals often lead to compounds with strongly enhanced activities in inorganic [22,23]
and bioinorganic chemistry [24], materials science [25], and pharmacology for biomedical
applications [26–30]. The most described biological activities regarding the SBs complexes
are antitumoral [31–35], antioxidant [36,37], antidiabetic [38–41], antimalarial [42], anti-
arthritic [43], antimicrobial [44–48], neuroprotective, catalase-like and catecholase-like
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enzymatic [49,50], and DNA-binding [51,52]. Recently, Aggarwal et al. (2022) [53] under-
lined the potential applicability of some SBs and their metal complexes for the treatment of
COVID-19 [54], which may represent valid alternatives to the classic treatments for this
disease [55,56]. Moreover, the liposomal formulation of an SBs complex with arsenic has
been described as an agent for drug delivery for the treatment of acute promyelocytic
leukemia [57]. The importance of hybrid materials of SB complexes with metals and laccase,
an oxygen-reducing enzyme, has also been studied [58]. Recently, stilbene-derivatized
SB ligands and their Cu(II) complexes have been suggested as radio-imaging agents for
the diagnosis of Alzheimer’s by positron emission tomography when prepared with the
positron-emitting radioisotope Cu-64 [59]. Among metals, the coordination chemistry of
SBs with inner transition metals, such as lanthanide(III) ions, has promptly progressed
in the last decade because of its vast range of applications, specifically in physical ap-
plications such as magnetic, luminescence, lasers, optical glasses, telecommunications,
biosciences, and numerous biological activities [60,61]. Given the numerous properties of
complexes of SBs with metals, we decided to focus on a single activity exerted by this class
of compounds. Antimicrobial resistance (AMR) has been declared by the World Health
Organization (WHO) to be one of the major global health problems, specifically one of the
top ten public health threats worldwide [62,63]. Several studies address the most clinically
important pathogens, called ESKAPE pathogens, represented by both Gram-positive and
Gram-negative bacteria, namely, Enterococcus faecium and Staphylococcus aureus (Gram-
positive bacteria) and Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp. (Gram-negative bacteria) [64]. In this context, the purpose of this
review was to highlight the antimicrobial activity exerted by SBs complexed with metals
dwelling specifically on the most recent studies in this field. Moreover, some interesting
studies regarding the catalytic activity of these compounds have been described.

2. SBs Complexes with Metals as Antimicrobials

The antimicrobial activity of some SBs complexes with transition metals is described
in this paragraph. Generally, the data refer to the lowest concentration of the tested
antimicrobial agent (minimal inhibitory concentration, MIC) that is able to inhibit the
visible growth of the bacterium being investigated. Microbes were generally referred to
as the American Type Culture Collection (ATCC), the National Collection of Industrial
Microorganisms (NCIM), and the Microbial Type Culture Collection (MTCC). Some authors
determined the antimicrobial activity by measuring the diameter (as mm) of the zone
showing the complete inhibition (inhibition zone diameter, IZD) determined by using the
agar well diffusion method. In one article by Kargar et al. (2022) [65], Percentage Mean
Mycelial Inhibition (PMMI) is reported against Aspergillus brasiliensis.

2.1. SBs Complexes with Transition Metals

The antimicrobial activities of some SBs complexes with transition metals recently
described are reported in Table 1.

Aroua et al. (2023) [66] described the synthesis and characterization of diverse com-
plexes derived from SBs and the evaluation of their antitumoral, antimicrobial, and insec-
ticide activities. The antibacterial activity was studied against Gram-negative Escherichia
coli and Gram-positive Bacillus subtilis (standard drug: tetracycline, IZD = 35 mm and
38 mm, respectively), whereas the antifungal activity was studied against Aspergillus niger
(standard drug: nystatin, IZD = 32 mm). Complexes Cl2Cr (1) and ClMn (2) with Cr(III)
and Mn(II), respectively, were the most active of the study as antimicrobials.

Alorini et al. (2023) [67] described the synthesis and antitumoral and antimicrobial
activities of 2-((E)-(4-((E)-4-chlorobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol
as SB ligand complexed with Mn(II), Co(III), Ni(II), Cu(II), and Zn(II). The antibacterial
and antifungal activities were studied against Salmonella enterica serovar Typhi and Candida
albicans, respectively, using gentamycin (IZD = 17 mm against S. enterica ser. Typhi at
10 mg/mL) and clotrimazole (IZD = 21 mm against C. albicans at 10 mg/mL) as standards.
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Complex Co(L)(Cl)2(H2O)2 (3) with Co(III) was the most active against the microbial strains
used.

Al-Janabi et al. (2023) [68] recently reported an interesting study on metal complexes
(Ni(II), Pd(II), Pt(II), Zn(II), and Hg(II)) SBs derived from 4-chloro-3-methyl phenyl hy-
drazine as dual inhibitors of SARS-CoV-2 and antibacterials. The antibacterial activity
was evaluated against S. aureus and P. aeruginosa, and compound 4 showed an interesting
activity in comparison to the reference amoxicillin (IZD = 29 ± 1.0 mm and 31 ± 0.61 mm
against S. aureus and P. aeruginosa, respectively). Interestingly, the compound was also an
inhibitor of the main protease (Mpro) of the virus SARS-CoV-2 [69].

Devi et al. (2022) [70] reported the synthesis of sixteen complexes of four SB ligands
with transition metals, namely Co(II), Ni(II), Cu(II), and Zn(II), deriving from 4-(benzyloxy)-
2-hydroxybenzaldehyde and their in vitro antioxidant, antimicrobial activity, and molecular
docking studies. In vitro antimicrobial activities were studied against four bacterial strains
(S. aureus, B. subtilis, P. aeruginosa, and E. coli) and two fungal strains (A. niger and C.
albicans). Ciproxacin (MIC = 0.0047 µmol/mL) and fluconazole (MIC = 0.0051 µmol/mL
against C. albicans and MIC = 0.0102 µmol/mL against A. niger) were used as references.
Complexes with Ni and Cu (5–8) were the most active against bacteria and fungi. They
showed comparable activity to standard drugs against C. albicans. The potential mechanism
of action was suggested through molecular modeling studies. Docking of complex 6 with
enzyme C. albicans sterol 14-alpha demethylase suggested a hydrophobic binding.

Al-Shboul et al. (2022) [71] described the synthesis, characterization, computational,
and biological activity of four SBs derived from 2,2′-diamino-6,6′-dibromo-4,4′-dimethyl-
1,1′-biphenyl or 2,2′-diamino-4,4′-dimethyl-1,1′-biphenyl, and 3,5-dichloro- or 5-nitro-
salicylaldehyde, and their complexes with Fe(II), Cu(II), and Zn(II), obtained by reaction
with copper-, iron-, and zinc-acetate. The compounds were tested for their antibacterial
activity against Gram-positive (Micrococcus luteus, S. aureus) and Gram-negative (E. coli)
bacteria, using amoxicillin as a reference drug (IZD: 25, 35, and 10 mm, respectively). The
complexes with Zn (Z2Zn, 9) and Fe (Z4Fe, 11) showed slight activity against S. aureus, even
though lower than the reference. The complex with Zn (Z3Zn, 10) showed the same antibac-
terial activity of the reference against M. luteus. Only complexes with copper (Z1Cu, 12

and Z3Cu, 13) were active against Gram-negative E. coli, with Z3Cu (13) exerting higher
activity than the reference.

Abdel-Rahman et al. (2022) [72] described five complexes with Co(II), Ni(II), VO(II),
Cr(III), and La(III) synthesized from a tridentate NNO monobasic chelating SB ligand (Z)-
2-((pyridin-2-ylimino)methyl)phenol. The complexes were tested for their antimicrobial,
antioxidant, and antitumoral activities. Antimicrobial activities were studied against S.
aureus, K. pneumoniae, E. coli, and Streptococcus mutans, a pathogen of dental caries [73].
All the complexes showed slight to high antimicrobial activity, with the exception of the
complex with V and La against K. pneumoniae. The most interesting activity was observed
for the NiL complex (14), which showed antibacterial activity similar to or higher than
the references gentamicin and ampicillin. Gentamicin was used as a standard for Gram-
negative bacteria (E. coli, IZD = 27 ± 0.5 mm; and K. pneumoniae, IZD = 25 ± 0.5 mm)
and ampicillin for Gram-positive bacteria (S. aureus IZD = 22 ± 0.1 mm and S. mutans,
IZD = 30 ± 0.5 mm). The IZD value of NiL complex (14) against E. coli was even higher
than the reference gentamicin. Both complexes NiL (14) and LaL (15) showed slight activity
with respect to ampicillin against S. aureus.

Daravath et al. (2022) [74] reported a study on three SBs complexes with copper (16–18)
and their antimicrobial activities against bacteria and fungi not generally investigated,
namely Gram-positive Bacillus amyloliquefaciens and Sclerotium rolfsii and Macrophomina
phaseolina fungal strains. The study was also carried on against Gram-negative E. coli. Strep-
tomycin was used as the reference against bacteria (IZD = 25 ± 0.17 mm and 25 ± 0.15 mm
against B. amyloliquefaciens and E. coli, respectively), whereas mancozeb was used as the
reference against fungi (IZD = 24 ± 0.14 mm and 25 ± 0.15 mm, respectively).
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Kargar et al. (2022) [65] described the synthesis of two complexes formed between
mono and dinuclear SBs and Zn(II) (Z1, 19 and Z2, 20, respectively) and their biological
activities as antimicrobial agents against two Gram-positive (S. aureus and B. cereus) and
two Gram-negative (E. coli and P. aeruginosa) bacterial strains. The two compounds showed
slight activity against Gram-positive bacteria compared with standard chloramphenicol
(IZD = 30 mm) and Gram-negative E. coli (chloramphenicol, IZD = 33 mm), whereas they
demonstrated interesting activity against the Gram-negative bacterium P. aeruginosa, being
more active than the reference (chloramphenicol, IZD = 11 mm). The complexes showed
significant antifungal activity against C. albicans (clotrimazole, IZD = 25 mm), while they
were inactive against A. brasiliensis.

Hajari et al. (2022) [75] described the synthesis and biological activity of several 15-
membered ring symmetrical pentaaza macrocyclic SBs complexed with Zn(II), Mn(II), and
Cd(II), namely [ZnLBr]ClO4, [MnLBr]ClO4 and [CdLBr]ClO4 (21–23) and their cytotoxicity,
antibacterial, and antioxidant activities. The antibacterial activity was studied against
Gram-positive (S. aureus, B. subtilis, and Listeria monocytogenes) and Gram-negative (E.
coli, Klebsiella oxytoca, and Salmonella typhimurium), and the complexes showed moderate
effectiveness against all the tested bacteria. The references used were penicillin, ampicillin,
vancomycin, and tetracycline. The most active were vancomycin (IZD = 14, 18, 24 mm
against S. aureus, B. subtilis, and L. monocytogenes, respectively, and IZD = 22, 20, and 18 mm
against E. coli, K. oxytoca, and S. typhimurium, respectively) and tetracycline (IZD = 27, 23,
27 mm against S. aureus, B. subtilis, and L. monocytogenes, respectively, and IZD = 29, 29, and
24 mm against E. coli, K. oxytoca, and S. typhimurium, respectively). S. aureus was the most
resistant bacterium, whereas, interestingly, high activity was found for all three complexes
against Gram-negative E. coli.

Jyothi et al. (2022) [76] described the study of Co(II) complexes with N-methyl thio
semicarbazide SBs for their cytotoxicity, DNA binding, and antimicrobial studies. The most
interesting results were found for complex II (24) against Gram-positive B. subtilis and
fungus Fusarium Oxysporium Lycopersicum, even though with lower activity than references
in both cases (penicillin, IZD between 15 and 16 mm against B. subtilis and ketoconazole,
IZD between 15 and 16 mm against F.O. Lycopersicum).

Li et al. (2022) [77] described the design, synthesis, and biological evaluation of dinu-
clear Bi(III) complexes with isoniazid-derived SBs. The antibacterial activity was tested against
Gram-positive S. aureus and B. subtilis (references vancomycin: MIC = 2 and 0.5 µg/mL;
kanamycin, MIC = 2.5 and 1.125 µg/mL; tetracycline, MIC = 0.125 and 0.125 µg/mL against
S. aureus and B. subtilis, respectively) and Gram-negative E. coli and P. aeruginosa (references
kanamycin, MIC = 8 and >128 µg/mL; tetracycline, MIC = 4 and 32 µg/mL against E. coli
and P. aeruginosa, respectively). Complexes 4a and 5a (25 and 26) were the most interesting
of the series.

Saroya et al. (2022) [78] described a study on organotin(IV) complexes derived from
tridentate SBs and their antimicrobial and antioxidant activities. The antibacterial activity
was studied against Gram-positive B. subtilis (MTCC 441) and S. aureus (MTCC 2901)
and two Gram-negative E. coli (MTCC 732) and P. aeruginosa (MTCC 424) (ciprofloxacin,
MIC = 0.00471 µmol/mL against all bacteria). The antifungal potency was examined
against two fungal strains: C. albicans (MTCC 227) and A. niger (MTCC 9933) (fluconazole,
MIC = 0.01020 µmol/mL against both fungi strains). Compound 27 was the most active,
casually showing the same MIC value of 0.01080 µmol/mL against bacteria and fungi.
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Table 1. SBs metal complexes with transition metals with antibacterial activities.

Structure Compd MIC or IZD Ref.
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10536) 

IZD = not active (K. pneumoniae ATCC 
10031) 

IZD = 20.3 ± 0.6 mm (S. aureus ATCC 
13565) 

IZD = 17.9 ± 0.5 mm (S. mutans ATCC 
25175) 

Abdel-
Rahman et al. 

(2022)  
[72] 

 
 

16 

IZD = 20 ± 0.21 mm (B. 
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IZD = 20 mm
(S. aureus ATCC 29213)

Al-Shboul et al.
(2022) [71]
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27

MIC = 0.01080 µmol/mL
(B. subtilis MTCC 441)

MIC = 0.01080 µmol/mL
(E. coli MTCC 732)

MIC = 0.01080 µmol/mL
(P. aeruginosa MTCC 424)
MIC = 0.01080 µmol/mL

(C. albicans MTCC 227)
MIC = 0.01080 µmol/mL

(A. niger MTCC 9933)

Saroya et al.
(2022) [78]

2.2. SBs Complexes with Inner Transition Metals (Lanthanides and Actinides) as Antimicrobials

Complexes with inner transition metals, such as lanthanides and actinides, have often
shown interesting results. Complex LaL (15) by Abdel-Rahman et al. (2022) [72] has been
described in the previous paragraph. Other antimicrobial activities of lanthanide complexes
with SBs are summarized below (Table 2).

Andiappan et al. (2023) [79] reported the study of several metal complexes of SBs
with rare earth (Er, Pr, and Yb) inorganic metals, Schiff-Er (28), Schiff-Yb (29), and Schiff-Pr
(30), as antibacterial and antitumoral agents. Complex Schiff-Pr (29) with praseodymium
showed antibacterial activity against P. aeruginosa and S. aureus. The complex showed
IZD = 24 mm against both bacteria, which was comparable to that of streptomycin used as
the standard drug (IZD = 25 mm) against P. aeruginosa and higher than that of the standard
(IZD = 20 mm) against S. aureus. Complexes. Complex Schiff-Er (28) and Schiff-Yb (29)
showed antibacterial activity, even though it was lower than Schiff-Pr (30).

Alqasaimeh et al. (2023) [80] described three neutral lanthanides SB coordination
complexes with lanthanides (Nd, Tb, and Dy) with (2-((p-tolylimino)methyl)phenol) SB.
The antimicrobial activity was evaluated in vitro against Gram-positive bacteria S. aureus,
Gram-negative (E. coli) using gentamicin and amikacin as standards against S. aureus and
against the fungus C. albicans using nystatin as the standard. La, Lb, and Lc (31, 32, and 33)
showed activity against bacteria and fungi. It is interesting to note that the free ligand was
inactive against bacteria. Particularly, Lc (33) was the most active against C. albicans.
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Table 2. SBs complexes with inner transition metals (lanthanides and actinides) with antimicrobial activity.

Structure Compd MIC or IZD Ref.
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(31)
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Hussein et al. (2023) [81] described the synthesis and biological studies of complexes
of lanthanides (lanthanum, neodymium, erbium, gadolinium, and dysprosium) with SBs
deriving from antipyrine. Antibacterial studies were carried out at concentrations 10−3 M
against S. aureus, B. subtilis, E. coli, and K. pneumoniae. The highest activity against S. aureus
was found for [La2(C26H28O2N6)2(NO3)6]·6H2O (34) and [Gd2(C26H28O2N6)2(NO3)6]·6H2O
(35), whereas [Er2(C26H28O2N6)2(NO3)6]·6H2O (36) showed activity, lower than the other
two, against both S. aureus and B. subtilis.

Awolope et al. (2023) [82] reported the synthesis and antibacterial and antioxidant
activity of some SBs with transition metals and actinides. The antibacterial activity was
evaluated against Gram-positive S. aureus and E. faecalis and Gram-negative K. pneumoniae
and P. aeruginosa. The most interesting compounds of the study as antibacterials were
UrO2SV and ZrOSV (37 and 38). Specifically, UrO2SV (37) showed higher activity against S.
aureus and K. pneumoniae (nystatin was used as standard, IZD = 27 and 23 mm, respectively),
whereas compound ZrOSV (38) showed slight activity against E. faecalis and P. aeruginosa
(nystatin, IZD = 25 and 22 mm, respectively).

3. Chitosan SBs Complexes as Antimicrobials

Chitosan SBs have shown interesting biological activities [83] as being anticancer [84,85],
antioxidant [86–88], antibacterial [89–92], and antidiabetic [93]. Some chitosan-based SBs
are used for the removal of toxic metal ions from the aqueous medium, including Fe(III) [94],
Pb(II) [95], Cu(II), Cd(II) [96], Cr(III) [97], and Cr(VI) [98,99]. Some authors also describe
chitosan SBs complexes with metals and their biological activities as antitumoral and
antimicrobial. Specifically, an interesting study describes the synthesis of biopolymeric
chitosan-supported SB complexes with Cu(II), Ni(II), and Zn(II) and their biological evalua-
tion as antitumoral agents against MG-63 osteosarcoma cancer cell lines. The complexes
were more active than pure chitosan against the cancer MG63 cell line [100]. Recently,
some chitosan SBs-based polyelectrolyte complexes with graphene quantum dots have
been described, along with their prospective biomedical applications as antibacterials. One
compound, namely PE-G-3 (structure not shown), showed interesting activity against Heli-
cobacter pylori measured by the in vitro inosine 5′-monophosphate dehydrogenase (IMPDH)
inhibitory assay, as long as its activity to enhance wound healing [101]. A recent study by
Ignatova et al. (2022) [102] described the synthesis of an SB derivative (Ch-8Q) of chitosan
and 8-hydroxyquinoline-2-carboxaldehyde and novel fibrous materials successfully ob-
tained from Ch-8Q and polylactide (PLA) by one-pot electrospinning of their blend solution
and the complexes of the mats with Cu(II) and Fe(III). The incorporation of Ch-8Q in the
fibrous mats and complexation with Cu(II) and Fe(III) led to the ability to kill all S. aureus
bacteria within 3 h of contact. Moreover, in contrast to the chitosan-containing mats, which
only reduce the adhesion of pathogenic bacteria S. aureus, Ch-8Q-containing materials and
their complexes inhibit bacterial adhesion.

Tao et al. (2023) [103] have recently reported an interesting study on SB deriving CS-CT-
CCa complex (39) with natural citral (CT), chitosan (CS), and calcium citrate (CCa) and its
activity against Vibrio parahaemolyticus, which is defined the “number one killer” of seafood
products (Table 3). The complex, which had good dispersion properties and an excellent sus-
tained released ability, was active against V. parahaemolyticus and increased the membrane
permeability of V. parahaemolyticus, also determining the inhibition of biofilm-forming
ability in a dose-dependent manner. CT mainly comes from the essential oil of lemon
grass and has vigorous antibacterial activity: it was used for comparison against V. para-
haemolyticus (MIC = 1024 µg/mL) along with CS-CT (MIC = 256 µg/mL) and ciprofloxacin
(MIC = 4 µg/mL).
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Table 3. Chitosan SBs complexes with metals with antimicrobial activity.
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Ru(COSB)(H2O)2]Cl2
(42)

IZD = 12 mm
(A. flavus)

IZD = 12 mm
(A. niger)

IZD = 11 mm
(P. chryogenum)

IZD = 10 mm
(F. oxysporum)
IZD = 12 mm

(T. viride)

Amirthaganesan
et al. (2022)

[104]

Amirthaganesan et al. (2022) [104] reported a study on ruthenium(III) complexes de-
rived from chitosan SBs (Ru(CVSB)(H2O)2]Cl2 (40), Ru(CSSB)(H2O)2]Cl2 (41) and Ru(COSB)
(H2O)2]Cl2 (42), and their antifungal activity evaluation against Aspergillus flavus, A. niger,
Penicillim chryogenum, Fusarium oxysporum, and Trichoderma viride, by disc diffusion method.
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Amphotericin-B was used as the standard drug (IZD = 22, 26, 20, 22, and 26 mm, respec-
tively). Ruthenium(III) complexes showed higher antifungal activity than their parent
ligands.

4. Metal Complexes with SBs with Catalytic Activity

Metal complexes with SBs are often studied and used for their catalytic activities.
Table 4 summarizes the compounds endowed with this activity most recently reported.
Bikas et al. (2023) [105] described the synthesized and characterization of two dinuclear
Zn(II) complexes with SBs, namely Zn2(L1)2(N3)2 (43) and Zn2(L2)2(N3)2 (44), derived
from 4-aminoantipyrine. The complexes were demonstrated to be active catalysts in the
reaction of benzonitrile and sodium azide for the synthesis of tetrazoles. The model com-
pound for tetrazoles used was 5-phenyl-1H-tetrazole. Neshat et al. (2023) [106] reported
the synthesis and characterization of a Cu(II) complex CuL2 (45) with a bidentate SB de-
rived from Ortho-vanillin. The catalytic activity was studied in the oxidation of selected
primary and secondary alcohols. The complex showed higher performance in the oxida-
tions of secondary alcohols under mild reaction conditions. The catalytic activity in the
oxidation of secondary aromatic alcohols was shown to be higher with substrates contain-
ing electron-withdrawing substituents, whereas it was low in the oxidation of aliphatic
primary alcohols. The authors suggested a radical mechanism for the catalytic activity.
Rabiei et al. [107] recently described a functionalized metal–organic-framework nanocat-
alyst, which is an SB complex with Cu and Pd [Cu(BDC-NH2)@Schiff base Pd(II) (46)],
for C–N coupling. It was obtained via a two-step post-synthetic modification reaction of
Cu(BDC-NH2) with N,N′-bis(5-formylpyrrol-2-ylmethyl) homopiperazine followed by Pd
ion immobilization. Optimization of the C–N coupling reaction of p-tolylboronic acid with
1-(2-oxo-2-phenylethyl)-1H-pyrrole-2-carbonitrile in the presence of this catalyst was stud-
ied. The catalyst showed several advantages, being robust and stable under the reaction
conditions, easily separated from the mixture, capable of being reused up to seven times,
and producing products with high yields. Jabbari et al. [108] described the preparation
of a V(O)-SB complex on MCM-41 (Mobil Composition of Matter No. 41) as a stable,
efficient, reusable, and chemoselective nanocatalyst for the oxidative coupling of thiols
and oxidation of sulfides. The complex, named V(O)-5NSA-MCM-41 (47), can be used
for the synthesis of disulfide and sulfoxide derivatives using hydrogen peroxide (H2O2)
as a biocompatibility, inexpensive, and available oxidant. Products were obtained with
good yields. Recently, the development of magnetic Fe3O4-chitosan immobilized Cu(II)
SB catalyst [Fe3O4@CS@Schiffbase@Cu (48)] has been reported [109]. This heterogeneous
catalyst has been demonstrated to be an efficient and reusable catalyst for microwave-
assisted one-pot synthesis of propargylamines via the A3 coupling reaction of aldehydes,
alkynes, and amines. The catalyst was efficiently recyclable and reusable even after six
cycles and proved its superiority over homogenous catalysts by producing 95% of the
desired product.
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5. Summary

SBs are a well-documented class of ligands able to bind almost all metals of the periodic
table. They represent an ideal ligand scaffold since they have shown a large spectrum of
biological activities, including antitumor, antiviral, antimicrobial, and anti-inflammatory
activities. Complexes of SBs with transition metals have shown numerous applications
as catalysts in various biological systems, corrosion inhibitors, polymers, and dyes. Schiff
base complexes of transition metal ions catalyze several homogeneous and heterogeneous
reactions in which numerous substrates, such as sulfides, aldehydes, phenols, thioanisoles,
styrenes, and so on, are converted into the important precursors of drugs and materials.
These reactions are usually conducted under mild and stable conditions, giving the desired
products in high yields. Furthermore, another advantage that must be considered is that
they can be simply separated from the reaction mixture and reused several times.

Interestingly, SBs metal complexes are used in therapeutic or biological applications
either as potential drug candidates or diagnostic probes and analytical tools. Their numer-
ous activities, including antitumoral, antimicrobial, antioxidant, and neuroprotective ones,
are widely documented. Since AMR is a mounting threat to health and well-being globally,
the main aim of this review was to focus, explore, and summarize the most recent available
research studies regarding the antimicrobial activity exerted by these compounds. Some
of the described compounds showed in vitro antimicrobial activities comparable to, and
sometimes higher than, the reference drugs. The antimicrobial activity of metal complexes
with SBs and their known anticorrosive potential may have great potential for their future
application in several types of surgeries. Finally, the identification of new compounds
belonging to this class may represent a new strategy to limit or overcome the occurrence
of resistant strains, counteracting antibiotic resistance. The reviewed data clearly suggest
that SBs metal complexes deserve particular consideration for their application in different
fields, including medicinal chemistry and catalysis.

Author Contributions: Conceptualization, A.C. and M.S.S.; writing—original draft preparation, D.I.
and J.C.; methodology, D.I.; A.M. and F.G.; validation, J.C. and C.S.; writing—review and editing,
A.C. and C.S.; supervision, P.L. and M.S.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.;
Benguerba, Y. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun.

2023, 150, 110451. [CrossRef]
2. Catalano, A. Schiff bases: A short survey on a promising scaffold in drug discovery. Curr. Med. Chem. 2023, 30, 4170–4180.

[CrossRef] [PubMed]
3. Gupta, K.C.; Sutar, A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008, 252, 1420–1450.

[CrossRef]
4. Afshari, F.; Ghomi, E.R.; Dinari, M.; Ramakrishna, S. Recent advances on the corrosion inhibition behavior of Schiff base

compounds on mild steel in acidic media. ChemistrySelect 2023, 8, e202203231. [CrossRef]
5. Upendranath, K.; Venkatesh, T.; Nayaka, Y.A.; Shashank, M.; Nagaraju, G. Optoelectronic, DFT and current-voltage performance

of new Schiff base 6-nitro-benzimidazole derivatives. Inorg. Chem. Commun. 2022, 139, 109354. [CrossRef]
6. Alam, M.Z.; Khan, S.A. A review on Schiff base as a versatile fluorescent chemo-sensors tool for detection of Cu2+ and Fe3+ metal

ion. J. Fluoresc. 2023; in press. [CrossRef]
7. Aytac, S.; Gundogdu, O.; Bingol, Z.; Gulcin, I. Synthesis of Schiff bases containing phenol ring and investigation of their

antioxidant capacity, anticholinesterase, butyrylcholinesterase and carbonic anhydrase inhibition properties. Pharmaceutics 2023,
15, 779. [CrossRef]

https://doi.org/10.1016/j.inoche.2023.110451
https://doi.org/10.2174/0929867330666230201121432
https://www.ncbi.nlm.nih.gov/pubmed/36725824
https://doi.org/10.1016/j.ccr.2007.09.005
https://doi.org/10.1002/slct.202203231
https://doi.org/10.1016/j.inoche.2022.109354
https://doi.org/10.1007/s10895-022-03102-1
https://doi.org/10.3390/pharmaceutics15030779


Inorganics 2023, 11, 320 24 of 28

8. Raju, S.K.; Settu, A.; Thiyagarajan, A.; Rama, D.; Sekar, P.; Kumar, S. Biological applications of Schiff bases: An overview. GSC

Biol. Pharm. Sci. 2022, 21, 203–215. [CrossRef]
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17. Çakmak, R.; Başaran, E.; Şentürk, M. Synthesis, characterization, and biological evaluation of some novel Schiff bases as potential
metabolic enzyme inhibitors. Archiv. Pharm. 2022, 355, 2100430. [CrossRef] [PubMed]

18. El-Azab, A.S.; Abdel-Aziz, A.A.-M.; Ghabbour, H.A.; Bua, S.; Nocentini, A.; Alkahtani, H.M.; Alsaif, N.A.; Al-Agamy, M.H.M.;
Supuran, C.T. Carbonic anhydrase inhibition activities of Schiff’s bases based on quinazoline-linked benzenesulfonamide.
Molecules 2022, 27, 7703. [CrossRef] [PubMed]

19. Taha, M.; Rahim, F.; Zaman, K.; Anouar, E.H.; Uddin, N.; Nawaz, F.; Sajid, M.; Khan, K.M.; Shah, A.A.; Wadood, A.; et al.
Synthesis, in vitro biological screening and docking study of benzo[d]oxazole bis Schiff base derivatives as a potent anti-Alzheimer
agent. J. Biomol. Struct. Dynam. 2023, 41, 1649–1664. [CrossRef]
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