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A B S T R A C T

In this paper, we propose two numerical approaches for approximating the solution of the
following kind of integral equation

𝑓 (𝑦) − 𝜇 ∫

1

−1
𝑓 (𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥) 𝑑𝑥 = 𝑔(𝑦), 𝑦 ∈ [−1, 1],

where 𝑓 is the unknown solution, 𝜇 ∈ R∖{0}, 𝑘, 𝑔 are given functions not necessarily known
in the analytical form, and 𝑤 is a Jacobi weight. The proposed projection methods are based
on the constrained mock-Chebyshev least squares polynomials, and starting from data known
at equally spaced points, provide a fine approximation of the solution. Such peculiarity can be
helpful in all cases we deal with experimental data, typically measured at equispaced points. We
prove the introduced methods are stable and convergent in some Sobolev subspace of 𝐶[−1, 1].
Several numerical tests confirm the theoretical estimates and numerical effectiveness of the
proposed methods.

1. Introduction

Let us consider the following Fredholm integral equation of the second kind

𝑓 (𝑦) − 𝜇 ∫

1

−1
𝑓 (𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥) 𝑑𝑥 = 𝑔(𝑦), 𝑦 ∈ [−1, 1], (1)

where 𝑓 is the unknown solution, 𝜇 ∈ R∖{0}, 𝑤 is a Jacobi weight, the kernel 𝑘 is defined on [−1, 1]2, and the right hand function
𝑔 is defined on [−1, 1].

Fredholm integral equations of the type (1) are frequently models for problems arising in mathematical physics and engineering,
such as, for instance, Love’s equation that describes the electrostatic problem of a circular plate condenser in an unbounded perfect
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fluid [1]. Furthermore, many efficient numerical methods to solve this kind of equation are available in the literature (see, e.g. [2–
4]), most of them require that the involved functions be known analytically, since are based on the zeros of orthogonal polynomials.
However, in many applications, the data are obtained by experiments on the field through instruments sampling the functions at
equally spaced points. So, the methods mentioned above do not apply, unfortunately. On the other hand, approaches based on
piecewise polynomial approximation usually lead to low-degree approximations [2]. About global methods based on equally spaced
nodes, we mention [5], where the authors proposed a Nyström method based on the so-called Generalized Bernstein polynomials
(see [6] and the references therein). Here, we introduce projection methods that make use of the constrained mock-Chebyshev
least-squares polynomials, an approximation tool introduced in [7], which produces accurate results starting from values attained at
equally spaced grids. Such operators were developed to reduce the Runge phenomenon [8,9]. The idea over which mock-Chebyshev
least squares approximation relies is to select a subset of nodes that best mimic the behavior of Chebyshev-Lobatto ones, i.e. the so-
called mock-Chebyshev set of nodes. The remaining nodes of the starting grid are used in a simultaneous regression process to improve
he accuracy of the approximation. By tensor product, this approximation operator was generalized to the hypercube [−1, 1]𝑑 , 𝑑 ∈ N

in [10], and applied to develop different numerical methods based on it. For instance, to introduce a stable and accurate quadrature
formula with a high degree of exactness [11,12], a numerical differentiation formula [13] and a product integration rule in [14].

In this paper, we use the constrained mock-Chebyshev least squares polynomials to approximate the solution of Eq. (1),
developing two different cases: in the first, only the function 𝑔 is known on a set of equispaced points; in the second, also the
bivariate kernel 𝑘 is known on an equally spaced grid. These approaches carry out well-conditioned linear systems. Stability and
convergence of the methods are proved in some Sobolev-type subspaces of 𝐶[−1, 1].

The outline of the paper is the following. Section 2 contains some preliminary notations and properties of the approximation
polynomial tools to introduce the methods. These last are introduced and studied in Section 3. Section 4 collects some numerical
tests to show the efficiency of the described methods. Finally, Section 5 states the proofs of the main results.

2. Preliminaries

In the sequel, by  we will denote any positive constant having different meanings at different occurrences, and the notation
 ≠ (𝑎, 𝑏,…) will be used to underline that  does not depend on 𝑎, 𝑏,… . Moreover, if 𝐴,𝐵 > 0 are quantities depending on some
parameters, the writing 𝐴 ∼ 𝐵, has to be understood as there exists a constant  ≠ (𝐴,𝐵) such that −1𝐵 ≤ 𝐴 ≤ 𝐵. Furthermore,
P𝑟 denotes the space of the algebraic polynomials of degrees less than or equal to 𝑟. Finally, for any bivariate function 𝑞(𝑥, 𝑦), we
denote the projections of the function 𝑞(𝑥, 𝑦) on one variable as 𝑞𝑦(𝑥) and 𝑞𝑥(𝑦) respectively.

2.1. Function spaces

Let 𝐶[−1, 1] be the space of continuous functions in [−1, 1] endowed with the norm

‖𝑓‖∞ ∶= max
𝑥∈[−1,1]

|𝑓 (𝑥)|.

The error of best polynomial approximation in 𝐶[−1, 1] is defined as

𝐸𝑟(𝑓 ) = inf
𝑄𝑟∈P𝑟

‖𝑓 −𝑄𝑟‖∞,

and (see e.g. [15])

lim
𝑟→∞

𝐸𝑟(𝑓 ) = 0 if and only if 𝑓 ∈ 𝐶[−1, 1].

In 𝐶[−1, 1] we will consider the following Sobolev-type subspace of order 𝑠 ∈ N, 𝑠 ≥ 1,

𝑊𝑠 ∶=
{

𝑓 ∈ 𝐶[−1, 1] ∶ 𝑓 (𝑠−1) ∈ (−1, 1) and ‖𝑓 (𝑠)𝜙𝑠
‖∞ < ∞

}

, 𝜙(𝑥) =
√

1 − 𝑥2,

where (−1, 1) denotes the set of the absolutely continuous functions on every closed subset [𝑎, 𝑏] ⊂ (−1, 1), equipped with the
norm

‖𝑓‖𝑊𝑠
= ‖𝑓‖∞ + ‖𝑓 (𝑠)𝜙𝑠

‖∞.

The error of the best polynomial approximation for functions in 𝑊𝑠 can be estimated by the following Favard-type inequality [16]

𝐸𝑟(𝑓 ) ≤ 
‖𝑓‖𝑊𝑠

𝑟𝑠
,  ≠ (𝑟, 𝑓 ). (2)

2.2. Orthogonal polynomials and Lagrange interpolating polynomial

Setting {𝑇𝑖(𝑥) ∶= cos(𝑖 arccos 𝑥)}𝑖≥0, and 𝜎(𝑥) ∶= 1
√

1−𝑥2
, let be

{

𝑝𝑖(𝜎, 𝑥) ∶=
𝑇𝑖(𝑥)

}𝑟
(3)
2

‖𝑇𝑖‖2,𝜎 𝑖=0
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‖𝑇𝑖‖2,𝜎 ∶=

(

∫

1

−1
𝑇𝑖(𝑥)2𝜎(𝑥) 𝑑𝑥

)
1
2

=

⎧

⎪

⎨

⎪

⎩

√

𝜋, 𝑛 = 0,
√

𝜋
2 , 𝑛 ≠ 0,

the orthonormal sequence of the first kind of Chebyshev polynomials.
Setting {𝑧𝓁}𝑟+1𝓁=1 the zeros of 𝑝𝑟+1(𝜎), let 𝑟(𝜎) be the Lagrange operator mapping continuous functions into polynomials of degree

𝑟,

𝑟(𝜎) ∶ 𝐶[−1, 1] → P𝑟,

.t.

𝑟(𝜎, 𝑓 , 𝑧𝓁) = 𝑓 (𝑧𝓁), 𝓁 = 1, 2,… , 𝑟 + 1.

he polynomial 𝑟(𝜎) can be represented in the following form

𝑟(𝜎, ℎ, 𝑦) =
𝜋

𝑟 + 1

𝑟
∑

𝑗=0
𝑝𝑗 (𝜎, 𝑦)

𝑟+1
∑

𝓁=1
ℎ(𝑧𝓁)𝑝𝑗 (𝜎, 𝑧𝓁). (4)

In what follows, it will be useful the following result [17]

Theorem 2.1. Let 𝑞 be a positive integer. For any 𝑓 ∈ 𝑊𝑞 , 𝑞 ≥ 1 and 0 ≤ 𝑠 ∈ N, 𝑠 ≤ 𝑞 we have

‖𝑓 − 𝑟(𝜎, 𝑓 )‖𝑊𝑠
≤ 

log 𝑟
𝑟𝑞−𝑠

‖𝑓‖𝑊𝑞
,  ≠ (𝑟, 𝑓 ).

Finally, for 𝑚 ∈ N,

𝜉𝐶𝐿
𝑖 = −cos

(

𝜋
𝑚
𝑖
)

, 𝑖 = 0,… , 𝑚,

s the set of Chebyshev–Lobatto nodes of order 𝑚.

2.3. Constrained mock-Chebyshev least squares operator

For 𝑛 ∈ N, let 𝑋𝑛 be the set of 𝑛 + 1 equispaced nodes in the interval [−1, 1], i.e.

𝑋𝑛 = {𝜉0,… , 𝜉𝑛}, 𝜉𝑖 = −1 + 2
𝑛
𝑖, 𝑖 = 0,… , 𝑛.

Fixed the integers 𝑚, 𝑝, 𝑟, chosen as in [7, Sections 2 and 4],

𝑚 =
⌊

𝜋
√

𝑛
2

⌋

, 𝑝 =
⌊

𝜋
√

𝑛
12

⌋

, 𝑟 = 𝑚 + 𝑝 + 1, (5)

et 𝑟 = {𝑢0(𝑥),… , 𝑢𝑟(𝑥)} be an orthonormal basis of P𝑟. Let

𝑋′
𝑚 = {𝜉′0,… , 𝜉′𝑚} ⊂ 𝑋𝑛, 𝜉′𝑖 ≈ −cos

( 𝜋
𝑚
𝑖
)

, 𝑖 = 0,… , 𝑚,

e the subset of mock-Chebyshev nodes, i.e. the node 𝜉′𝑖 satisfies

|𝜉′𝑖 − 𝜉𝐶𝐿
𝑖 | = min

𝑗=0,…,𝑛
|𝜉𝑗 − 𝜉𝐶𝐿

𝑖 |, 𝑖 = 0,… , 𝑚.

We assume that the set 𝑋𝑛 is rearranged so that the first 𝑚 + 1 points coincide with those of 𝑋′
𝑚, and the basis 𝑟 so that the

irst 𝑚 + 1 elements span the space P𝑚. Under the previous assumptions, we set 𝒃 = [𝑓 (𝜉0),… , 𝑓 (𝜉𝑛)]𝑇 and

𝑉 = [𝑢𝑗 (𝜉𝑖)] 𝑖=0,…,𝑛
𝑗=0,…,𝑟

,

he Vandermonde-like matrix associated to 𝑋𝑛 and 𝑟. The constrained mock-Chebyshev least squares operator maps continuous
unctions into polynomials of degree 𝑟

𝑃𝑟,𝑛 ∶ 𝐶[−1, 1] → P𝑟

uch that

𝑃𝑟,𝑛(𝑓, 𝑥) ∶=
𝑟
∑

𝑘=0
𝑎𝑘𝑢𝑘(𝑥),

here the coefficients vector 𝒂 = [𝑎0,… , 𝑎𝑟]𝑇 of 𝑃𝑟,𝑛(𝑓 ) associated to the basis 𝑟 can be computed by solving a generalization of
ormal equations [18, Ch. 16]

[

2𝑉 𝑇 𝑉 𝐶𝑇 ] [𝒂
]

=
[

2𝑉 𝑇 𝒃
]

, (6)
3

𝐶 0 𝒛 𝒅
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where 𝐶 = [𝑢𝑗 (𝜉𝑖)] 𝑖=0,…,𝑚
𝑗=0,…,𝑟

, 𝒅 = [𝑓 (𝜉0),… , 𝑓 (𝜉𝑚)]𝑇 and 𝒛 = [𝑧1,… , �̂�𝑚+1]𝑇 is the Lagrange multipliers vector. In the following, we

denote by 𝑃𝐶
𝑟,𝑛(𝑓, 𝑥) the constrained mock-Chebyshev least squares operator expressed in the basis (3), i.e.

𝑃𝐶
𝑟,𝑛(𝑓, 𝑥) ∶=

𝑟
∑

𝑘=0
𝑎𝑘𝑝𝑘(𝜎, 𝑥) ∈ P𝑟. (7)

For a given operator 𝐻 ∶ 𝑋 → 𝑌 , the symbol ‖𝐻‖𝑋→𝑌 denotes the norm of 𝐻 as map of 𝑋 into 𝑌 , i.e. ‖𝐻‖ = sup𝑓∈𝑋
‖𝐻𝑓‖𝑌
‖𝑓‖𝑋

. About
the error estimate in the uniform norm, setting for brevity

‖𝑃𝐶
𝑟,𝑛‖∞ ∶= ‖𝑃𝐶

𝑟,𝑛‖𝐶[−1,1]→𝐶[−1,1]

we recall the following result [13].

Theorem 2.2. For any 𝑓 ∈ 𝐶[−1, 1]

‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖∞ ≤ (1 + ‖𝑃𝐶

𝑟,𝑛‖∞)𝐸𝑟(𝑓 ),

where  ≠ (𝑟, 𝑓 ).

Remark 2.3. Since in [13] (see also [19]) it has been proved that

‖𝑃𝐶
𝑟,𝑛‖∞ ≤ 𝐵𝑛 ∼ 𝑛2, (8)

in view of (2), for any 𝑓 ∈ 𝑊𝑠 we have

‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖∞ ≤ 𝐵𝑛

‖𝑓‖𝑊𝑠

𝑟𝑠
,  ≠ (𝑟, 𝑓 ). (9)

2.4. Bivariate constrained mock-Chebyshev least squares operator

Denoting by 𝑋𝑛 × 𝑋𝑛 the equispaced grid of (𝑛 + 1)2 nodes in [−1, 1]2, in [10] the operator 𝑃𝐶
𝑟,𝑛 has been generalized to the

bivariate case. Indeed, for any continuous function ℎ(𝑥, 𝑦), the biviariate constrained mock-Chebyshev least squares operator is defined
s follows

�̂�𝐶
𝑟,𝑛(ℎ, 𝑥, 𝑦) ∶= 𝑃𝐶

𝑟,𝑛(𝑃
𝐶
𝑟,𝑛(ℎ𝑦, 𝑥), 𝑦) =

𝑟
∑

𝑗=0

𝑟
∑

𝑖=0
ℎ𝑖,𝑗𝑝𝑖(𝜎, 𝑦)𝑝𝑗 (𝜎, 𝑥). (10)

Given the estimates in the univariate case, we can easily deduce

‖ℎ − �̂�𝐶
𝑟,𝑛(ℎ)‖∞ ≤ 𝐵2

𝑛

‖ℎ‖𝑊𝑠

𝑟𝑠
,  ≠ (𝑟, 𝑓 ). (11)

holding for any function ℎ ∈ 𝐖𝑠.

2.5. The constrained mock-Chebyshev least squares product integration rule

Based on the previous constrained mock-Chebyshev least squares polynomial 𝑃𝐶
𝑟,𝑛(𝑓 ), in [14] the following quadrature rule was

ntroduced

∫

1

−1
𝑓 (𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥)𝑑𝑥 = ∫

1

−1
𝑃𝐶
𝑟,𝑛(𝑓, 𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥)𝑑𝑥 + 𝑒𝑟,𝑛(𝑓, 𝑦) =

𝑟
∑

𝑘=0
𝑎𝑘𝑀

𝑤
𝑘 (𝑦) + 𝑒𝑟,𝑛(𝑓, 𝑦), (12)

where 𝑒𝑟,𝑛(𝑓, 𝑦) is the remainder term and {𝑀𝑤
𝑘 (𝑦)}𝑟𝑘=0 are the modified moments of 𝑘 in the first kind Chebyshev system, i.e.

𝑀𝑤
𝑘 (𝑦) ∶= ∫

1

−1
𝑝𝑘(𝜎, 𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥)𝑑𝑥.

They are usually computed using suitable recurrence relations depending on the nature of the kernel 𝑘 and related to the three-term
recurrence formula for the orthogonal polynomials.

About the error estimate, the following result holds true

Theorem 2.4 ([14]). For any 𝑓 ∈ 𝐶[−1, 1], under the assumption

sup
𝑦∈[−1,1]

‖𝑘𝑦𝑤‖1 < ∞,

then

sup
𝑦∈[−1,1]

|𝑒𝑟,𝑛(𝑓, 𝑦)| ≤ (1 + 𝐵𝑛)𝐸𝑟(𝑓 ), (13)

where  ≠ (𝑟, 𝑓 ).
4
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3. Main results

First, we state a result about the estimate of the operator 𝑃𝑟,𝑛 ∶ 𝑊𝑠 → 𝑊𝑠.

heorem 3.1. For any 𝑓 ∈ 𝑊𝑞 ,

‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖𝑊𝑠

≤  𝐵𝑛

‖𝑓‖𝑊𝑞

𝑟𝑞−𝑠
,

where  ≠ (𝑟, 𝑓 ).

Remark 3.2. Given estimate (8) the uniform convergence of 𝑃𝐶
𝑟,𝑛(𝑓 ) to 𝑓 is assured when 𝑞 − 𝑠 > 4.

In particular, setting 𝑞 = 𝑠, by Theorem 3.1 we get the following result about the norm of the operator 𝑃𝐶
𝑟,𝑛 ∶ 𝑊𝑠 → 𝑊𝑠

heorem 3.3. For any 𝑠 ≥ 1,

‖𝑃𝐶
𝑟,𝑛‖𝑊𝑠→𝑊𝑠

∶= sup
‖𝑓‖𝑊𝑠=1

‖𝑃𝐶
𝑟,𝑛(𝑓 )‖𝑊𝑠

≤  𝐵𝑛,

here  ≠ (𝑟).

Denoted by  the identity operator and setting

𝑓 (𝑦) ∶= 𝜇 ∫

1

−1
𝑓 (𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥) 𝑑𝑥. (14)

q. (1) can be rewritten in the following operatorial form

( −)𝑓 = 𝑔. (15)

As it is known (see, e.g. [2]), if the kernel 𝑘 is a continuous function the integral operator  ∶ 𝐶[−1, 1] → 𝐶[−1, 1] is compact,
nd hence, assuming ker{ − } = {0}, Eq. (15) admits a unique solution 𝑓 ∈ 𝐶[−1, 1], for any 𝑔 ∈ 𝐶[−1, 1]. If in addition, the
ernel 𝑘 satisfies the assumption

sup
𝑦∈[−1,1]

‖𝑘𝑦‖𝑊𝑠
< ∞, 𝑠 ≥ 1, (16)

hen 𝑓 ∈ 𝑊𝑠 and if also 𝑔 ∈ 𝑊𝑠, then the solution 𝑓 ∈ 𝑊𝑠 too.
Now we introduce two different methods: the first focuses on the case when the values of 𝑔 are known in a discrete set of equally

paced nodes, and the analytical form of the kernel 𝑘 is given; the second one applies when both the kernel 𝑘 and the right-hand
ide term 𝑔 are sampled only on a grid of equally spaced nodes in [−1, 1]2 and [−1, 1], respectively.

3.1. Method 1

By means of the Lagrange operator 𝑟(𝜎) defined in Section 2.2, project Eq. (15) on P𝑟 and look for a polynomial solution of the
orm

𝑓𝑟+1(𝑦) =
𝑟
∑

𝑘=0
𝛼𝑘𝑝𝑘(𝜎, 𝑦).

hen we consider the following finite-dimensional equation

( − ̂𝑟+1)𝑓𝑟+1 = �̂�𝑟+1, (17)

here for any 𝑓 ∈ 𝐶[−1, 1]

̂𝑟+1𝑓 (𝑦) = 𝑟(𝜎,𝑟+1𝑓, 𝑦), (18)

with

𝑟+1𝑓 (𝑦) = 𝜇 ∫

1

−1
𝑃𝐶
𝑟,𝑛(𝑓, 𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥)𝑑𝑥 (19)

and, setting 𝑃𝐶
𝑟,𝑛(𝑔, 𝑥) =

∑𝑟
𝑖=0 𝑑𝑖𝑝𝑖(𝜎, 𝑥),

�̂�𝑟+1(𝑦) = 𝑟(𝜎, 𝑃𝐶
𝑟,𝑛(𝑔), 𝑦) =

𝑟
∑

𝑗=0
𝑝𝑗 (𝜎, 𝑦)𝑑𝑗 . (20)

By (12)

𝑟+1𝑓𝑟+1(𝑧𝓁) = 𝜇
𝑟
∑

𝛼𝑘𝑀
𝑤
𝑘 (𝑧𝓁),
5

𝑘=0



Journal of Computational and Applied Mathematics 447 (2024) 115886F. Dell’Accio et al.

i

i

T
s

then the coefficients {𝛼𝑗}𝑟𝑗=0 are solutions of the linear system

𝛼𝑗 − 𝜇 𝜋
𝑟 + 1

𝑟
∑

𝑘=0
𝛼𝑘

𝑟+1
∑

𝓁=1
𝑀𝑤

𝑘 (𝑧𝓁)𝑝𝑗 (𝜎, 𝑧𝓁) = 𝑑𝑗 , 𝑗 = 0, 1,… 𝑟. (21)

If the system admits the unique solution {𝛼∗𝑗 }
𝑟
𝑗=0, the polynomial

𝑓 ∗
𝑟+1(𝑦) =

𝑟
∑

𝑘=0
𝛼∗𝑘𝑝𝑘(𝜎, 𝑦)

is the unique solution of the finite-dimensional Eq. (17).

Theorem 3.4. Let  and ̂𝑟+1 the operators defined in (14) and (18), respectively. If for some 𝑞 − 𝑠 > 4, 𝑠, 𝑞 ∈ N

𝑞 ∶= sup
𝑦∈[−1,1]

‖𝑘𝑦‖𝑊𝑞
< +∞, (22)

𝑞 ∶= sup
𝑥∈[−1,1]

‖𝑘𝑥‖𝑊𝑞
< +∞, (23)

then

lim
𝑟
‖̂𝑟+1 −‖𝑊𝑠→𝑊𝑠

= 0. (24)

Through (24), given Theorem [2, Th.2.1.1], it follows that under the assumptions of Theorem 3.4, the discrete operator (𝐼−𝑟+1)
s invertible, and the inverse is uniformly bounded in 𝑟

sup
𝑟

‖(𝐼 −𝑟+1)−1‖𝑊𝑠→𝑊𝑠
< +∞,

.e. Method 1 is stable.
About Method 1, we can prove the following

heorem 3.5. Under the assumptions of Theorem 3.4, for any 𝑔 ∈ 𝑊𝑞 and for 𝑟 sufficiently large (say 𝑟 > 𝑟0), Eq. (17) admits a unique
olution 𝑓 ∗

𝑟+1 ∈ P𝑟 and the following estimate holds true

‖𝑓 − 𝑓 ∗
𝑟+1‖𝑊𝑠

= 
(

𝐵𝑛
log 𝑟
𝑟𝑞−𝑠

)

, (25)

where the constants in ‘‘’’ are independent of 𝑟.

Remark 3.6. Given estimate (8), the convergence is assured for 𝑞 − 𝑠 > 4. Moreover, under the same assumptions of Theorem 3.5,
considering 𝑠 = 1, it follows

‖𝑓 − 𝑓 ∗
𝑟+1‖∞ ≤ ‖𝑓 − 𝑓 ∗

𝑟+1‖𝑊1
= 

(

log 𝑟
𝑟𝑞−5

)

. (26)

3.2. Method 2

Projecting equation (15) by means of the constrained mock-Chebyshev least squares operator onto the space P𝑟 and looking for
a polynomial solution of the form

𝑓𝑟+1(𝑦) =
𝑟
∑

𝑘=0
𝛽𝑘𝑝𝑘(𝜎, 𝑦),

we consider the following finite-dimensional equation

( − ̃𝑟+1)𝑓𝑟+1 = 𝑔𝑟+1, (27)

where for any 𝑓 ∈ 𝐶[−1, 1]

̃𝑟+1𝑓 (𝑦) = 𝑃𝐶
𝑟,𝑛(

∗
𝑟+1𝑓, 𝑦), (28)

with

∗
𝑟+1𝑓 (𝑦) = 𝜇 ∫

1

−1
𝑃𝐶
𝑟,𝑛(𝑘𝑦, 𝑥)𝑓 (𝑥)𝑤(𝑥)𝑑𝑥 (29)

and

̂𝐶
6

𝑔𝑟+1(𝑦) = 𝑃𝑟,𝑛(𝑔, 𝑦).
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Setting

�̂�𝐶
𝑟,𝑛(𝑘, 𝑥, 𝑦) =

𝑟
∑

𝑗=0

𝑟
∑

𝑖=0
𝑘𝑖,𝑗 𝑝𝑗 (𝜎, 𝑦)𝑝𝑖(𝜎, 𝑥)

it is no hard to see that

̃𝑟+1𝑓 (𝑦) = 𝜇 ∫

1

−1
�̂�𝐶
𝑟,𝑛(𝑘, 𝑥, 𝑦)𝑓 (𝑥)𝑤(𝑥)𝑑𝑥

= 𝜇
𝑟
∑

𝑗=0

𝑟
∑

𝑖=0
𝑘𝑖,𝑗 𝑝𝑗 (𝜎, 𝑦)∫

1

−1
𝑝𝑖(𝜎, 𝑥)𝑓 (𝑥)𝑤(𝑥)𝑑𝑥,

and the finite-dimensional equation takes the form

𝑓𝑟+1(𝑦) − 𝜇
𝑟
∑

𝑗=0
𝑝𝑗 (𝜎, 𝑦)

𝑟
∑

𝑖=0
𝑘𝑖,𝑗 ∫

1

−1
𝑝𝑖(𝜎, 𝑥)𝑓𝑟+1(𝑥)𝑤(𝑥)𝑑𝑥 =

𝑟
∑

𝑗=0
𝑑𝑗𝑝𝑗 (𝜎, 𝑦),

by which the coefficients {𝛽𝑘}𝑟𝑘=0 defining 𝑓𝑟+1 are solution of the following linear system

𝛽𝑗 − 𝜇
𝑟
∑

𝑘=0
𝛽𝑘

𝑟
∑

𝑖=0
𝑘𝑖,𝑗𝐴𝑖,𝑘 = 𝑑𝑗 , 𝑗 = 0, 1,… , 𝑟, (30)

where

𝐴𝑖,𝑘 = ∫

1

−1
𝑝𝑖(𝜎, 𝑥)𝑝𝑘(𝜎, 𝑥)𝑤(𝑥)𝑑𝑥. (31)

Remark 3.7. In case 𝑤 = 𝜎, it is 𝐴𝑖,𝑘 = 𝛿𝑖,𝑘, and system (30) takes the simpler form

𝛽𝑗 − 𝜇
𝑟
∑

𝑘=0
𝛽𝑘𝑘𝑖,𝑘 = 𝑑𝑗 , 𝑗 = 0, 1,… , 𝑟.

We can prove the following theorem

Theorem 3.8. Let  and ̃𝑟+1 be the operators defined in (14) and (28), respectively. For 𝑞, 𝑠 ∈ N s.t. 𝑞 − 𝑠 > 8

𝑞 ∶= sup
𝑦∈[−1,1]

‖𝑘𝑦‖𝑊𝑞
< +∞, (32)

𝑞 ∶= sup
𝑥∈[−1,1]

‖𝑘𝑥‖𝑊𝑞
< +∞, (33)

then

lim
𝑟
‖̃𝑟+1 −‖𝑊𝑠→𝑊𝑠

= 0.

Theorem 3.9. Under the assumption (32) and (33), for any 𝑔 ∈ 𝑊𝑞 , 𝑞 − 𝑠 > 8 and for 𝑟 sufficiently large (say 𝑟 > 𝑟0), Eq. (27) admits
a unique solution 𝑓 ∗

𝑟+1 ∈ P𝑟 and the following estimate holds true

‖𝑓 − 𝑓𝑟+1‖𝑊𝑠
= 

( 1
𝑟𝑞−𝑠−8

)

, (34)

where the constants in ‘‘’’ are independent of 𝑟.

The proof follows from Theorems 3.8 and 3.1, by using the same arguments for the error estimation of Method 1.

3.3. Pros and cons

Let us compare our methods with other ones, under the common assumption that the known functions 𝑘, 𝑔 belong to 𝑊𝑞 . In [5]
it was studied a Nyström type method based on the so-called Generalized Bernstein polynomials (shortly GB) 𝐵𝑛,𝓁(𝑓 ) ∈ P𝑟, constructed
n 𝑛 + 1 equally spaced nodes in [−1, 1]. As it is known, in Nyström type methods a quadrature sum approximates the integral,
nd, under suitable assumptions, the solution of the obtained finite-dimensional equation converges to the exact one, with the same
ate of convergence of the employed quadrature rule. Now, coming back to the method in [5] (there implemented in [0, 1]), if the

additional parameter 𝓁 ≥ 𝑞
2 , the error of the GB method behaves as (𝑛−𝑞∕2), i.e., roughly speaking, as half of the order of the

best approximation estimate 𝐸𝑛(𝑓 ) in the space 𝑊𝑞 . From this point of view, by (26) and (34), both our Methods 1 and 2 converge
lower than the GB method. However, our method requires 𝑟 ∼

√

𝑛∕2 function’s evaluation, while the GB method requires 𝑛 + 1
function’s evaluations. Another aspect to take into account is the loss of precision of the GB method when 𝓁 trespasses a certain
hreshold [5], since for 𝑛 fixed and 𝓁 → ∞ the sequence 𝐵𝑛,𝓁(𝑓 ) uniformly converges to the Lagrange polynomial interpolating

at 𝑛 + 1 equally spaced points of [−1, 1]. It is hardly worth mentioning that interpolation processes on equidistant nodes have
xponentially divergent Lebesgue constants, which is why a projection method based on them can lead to disastrous results [3].
7
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Consider now the projection method in [3] based on the Lagrange polynomial 𝑟(𝜎), whose rate of convergence is ( log 𝑟𝑟𝑞 ). It
rovides a better performance w.r.t. our methods, but it requires the samples of 𝑔, 𝑘 at the zeros of the orthonormal polynomial
𝑟(𝜎), which it is not always possible to deal with experimental data.

. Computational details and numerical tests

In this section, we provide some numerical details about the construction of the algebraic linear systems we solve in both methods.
n the second part we present some tests to numerically prove the accuracy of our methods, comparing them also with the results
btained through the global method proposed in [5].

.1. The linear system of method 1

The linear system (21) can be rewritten in the following matrix form
(

𝐈𝑟+1 − 𝜇 𝜋
𝑟 + 1

𝐏𝐌
)

𝜶𝑟+1 = 𝒅𝑟+1, (35)

here 𝐈𝑟+1 is the identity matrix of order (𝑟 + 1), 𝜶𝑟+1 = [𝛼0,… , 𝛼𝑟]𝑇 , 𝒅𝑟+1 = [𝑑0,… , 𝑑𝑟]𝑇 and

𝐏 = (𝑝𝑖,𝑗 ) ∈ R(𝑟+1)×(𝑟+1), with 𝑝𝑖,𝑗 = 𝑝𝑖(𝜎, 𝑧𝑗 ), (36)

𝐌 = (𝑚𝑖,𝑗 ) ∈ R(𝑟+1)×(𝑟+1), with 𝑚𝑖,𝑗 = 𝑀𝑤
𝑗 (𝑧𝑖). (37)

The entries of the matrix 𝑃 are

𝑝𝑖,𝑗 = cos
(

𝑖
(2𝑗 − 1)
2(𝑟 + 1)

𝜋
)

,

nd those of the matrix 𝑀 can be evaluated by suitable three-term recurrence relations, where the computation of the starting
oments 𝑀0(𝑧𝑖) depends on the nature of the kernel 𝑘. Once evaluated them, the successive {𝑀𝑗 (𝑧𝑖)}𝑟𝑗=1 require (𝑟2) long operations

shortly l.o.). The construction of the right-hand side vector 𝒅𝑟+1 leads to (𝑛2) l.o. [7, Section 7], and the final linear system (35)
as been solved by Gauss elimination.

.2. The linear system of method 2

Denoted by

𝐀 = (𝐴𝑖,𝑗 ) ∈ R(𝑟+1)×(𝑟+1), 𝑖, 𝑗 = 0,… , 𝑟,

𝐇 = (𝑘𝑗,𝑖) ∈ R(𝑟+1)×(𝑟+1), 𝑖, 𝑗 = 0,… , 𝑟,

ith 𝐴𝑖,𝑗 are defined as in (31), the system (30) becomes

(𝐈𝑟+1 − 𝜇𝐇𝐀)𝜷𝑟+1 = 𝒅𝑟+1, (38)

here 𝜷𝑟+1 = [𝛽0,… , 𝛽𝑟]𝑇 , 𝒅𝑟+1 = [𝑑0,… , 𝑑𝑟]𝑇 . The matrix 𝐇 is obtained as solution of the bivariate constrained mock-Chebyshev
east squares interpolant KKT system and requires (𝑛4) l.o.. The matrix 𝐀 is symmetric and can be computed by applying 𝑟2 Gauss
uadrature rules, for a global amount of (𝑟3) l.o.. In particular, when 𝑤 = 𝜎, it is 𝐀 = 𝐈𝑟+1. The construction of the vector 𝒅𝑟+1
equires (𝑛2) l.o. [7, Section 7], and the linear system (38) has been solved by Gauss elimination.

.3. Numerical examples

In the first example, the exact solution 𝑓 ∗ is known, and hence we compute the relative error

𝑒𝑟,𝑛(𝑓 ) = max
𝑦𝑖∈I

|𝑓 ∗(𝑦𝑖) − 𝑓 ∗
𝑟+1(𝑦𝑖)|

|𝑓 ∗(𝑦𝑖)|
, (39)

where I is a sufficiently dense mesh in [−1, 1]. In the remaining examples, the exact solution 𝑓 ∗ is unknown and in these cases, we
report the relative errors

𝜖𝑟,𝑛(𝑓 ) = max
𝑦𝑖∈I

|𝑓 (𝑦𝑖) − 𝑓 ∗
𝑟+1(𝑦𝑖)|

|𝑓 (𝑦𝑖)|
, (40)

where 𝑓 is the solution obtained by the Nyström method in [2]. Indeed, we assume 𝑓 as the exact solution since the method is
stable and convergent (see e.g. [2], Ch.4).

In each table we display the condition number in infinity norm of the matrix (35) or (38), depending on the chosen method.
Finally, we point out that all the computations were carried out in Matlab R2022a in double precision on a MacBook Pro laptop
8

with 16Gb RAM under the MacOS system.
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Table 1
Numerical results for Example 4.1 by Method 1.
𝑛 𝑚 𝑝 𝑟 𝑒𝑟,𝑛(𝑓 ) cond

50 15 6 22 1.74e−12 1.20e+01
100 22 9 32 3.41e−12 1.20e+01

Table 2
Numerical results for Example 4.1 by Method 2.
𝑛 𝑚 𝑝 𝑟 𝑒𝑟,𝑛(𝑓 ) cond

50 15 6 22 6.26e−11 1.20e+01
100 22 9 32 3.76e−11 1.20e+01

Table 3
Numerical results for Example 4.2 by Method 1.
𝑛 𝑚 𝑝 𝑟 𝜖𝑟,𝑛(𝑓 ) cond

50 15 6 22 2.55e−06 1.27
100 22 9 32 1.33e−08 1.27
250 35 14 50 2.73e−09 1.27
500 49 20 70 4.55e−11 1.27
1000 70 28 99 7.62e−13 1.27

Example 4.1. Let us consider the following equation

𝑓 (𝑦) − 1
2𝜋 ∫

1

−1

𝑓 (𝑥)𝑒𝑥+𝑦
√

1 − 𝑥2
𝑑𝑥 = 𝑒𝑦

(

𝑦 −
𝐼1(2)
2

)

,

hose exact solution is 𝑓 (𝑦) = 𝑦𝑒𝑦. In this case the kernel 𝑘(𝑥, 𝑦) = 𝑒𝑥+𝑦 and the right hand side term 𝑔(𝑦) = 𝑦 − 𝑒𝑦−1 𝐼1(2), where
𝐼1(𝑦) is the modified Bessel function of the first kind, are both smooth functions and 𝑤(𝑥) = 𝑣−1∕2,−1∕2(𝑥) is the first kind Chebyshev

eight. Table 1 and 2 report the numerical results obtained by Method 1 and Method 2, respectively. About the latter one, we
ssume that 𝑘 and 𝑔 are both sampled only over the equally spaced nodes of the grid. Both methods show comparable results and
ood conditioning of the associated linear systems. This behavior is motivated by the smoothness of the involved functions.

xample 4.2. Let us consider the following equation

𝑓 (𝑦) − 1
12 ∫

1

−1
𝑓 (𝑥)(𝑥2 + 𝑦2) log (3 − 𝑥) (1 − 𝑥)2

√

1 + 𝑥 𝑑𝑥 =
|

|

|

|

𝑦 − 1
2
|

|

|

|

11
2
,

whose exact solution is unknown. In this case the kernel 𝑘(𝑥, 𝑦) = (𝑥2 + 𝑦2) log (3 − 𝑥) is smooth, while the right hand side term

𝑔(𝑦) = |

|

|

𝑦 − 1
2
|

|

|

11
2 belongs to the Sobolev space 𝑊5. Finally, 𝑤(𝑥) = 𝑣2,1∕2(𝑥) is a Jacobi weight. In this case, we expect a slightly

lower convergence due to the nature of the right-hand side term 𝑔. Our expectations are confirmed in Table 3, where we can
bserve that we need denser equally spaced grids to obtain a satisfying approximation of the unknown solution 𝑓 ∗. Hence, we can
educe that the method is convergent and leads to a well-conditioned system.

xample 4.3. Let us consider the following equation

𝑓 (𝑦) − 1
27 ∫

1

−1
𝑓 (𝑥)

sin(50𝑥)

(𝑥2 + 50−2)
11
10

𝑑𝑥 = 𝑦 sin 𝑦,

hose exact solution is unknown. In this case, the kernel 𝑘(𝑥, 𝑦) =
sin(50𝑥)

(𝑥2 + 50−2)
11
10

contains a nearly singular factor and a highly

oscillating one. The right-hand side term 𝑔(𝑦) = 𝑦 sin 𝑦 is smooth, and 𝑤(𝑥) = 𝑣0,0(𝑥) is a Legendre weight. In this example, we
decided to compare the performances of our method based on equispaced nodes with the ones achieved by a fast Nyström method
based on zeros of orthonormal polynomials introduced in [4]. Considering that when the equispaced grid consists of 𝑛 + 1 = 1001
points, we essentially go to solve a linear system of 𝑟+1 = 100 equations, we get a satisfying approximation of the unknown solution,
as reported in Table 4. Nevertheless, the method in [4] shows a faster convergence, but this is due to the use of zeros of orthonormal
polynomials. About the condition numbers, we note that only in this particular example they get higher with the increase of the
density of the grid, although this circumstance does not affect the convergence of the method.

Example 4.4. Let us consider the following equation

𝑓 (𝑦) − 1 1
𝑓 (𝑥)𝑘(𝑥, 𝑦)𝑤(𝑥) 𝑑𝑥 = 𝑔(𝑦),
9

10 ∫−1
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Table 4
Numerical results for Example 4.3 by Method 1.
𝑛 𝑚 𝑝 𝑟 𝜖𝑟,𝑛(𝑓 ) cond

50 15 6 22 1.40e−10 2.91e+02
100 22 9 32 7.06e−11 1.22e+03
250 35 14 50 1.06e−11 7.16e+03
500 49 20 70 1.50e−11 2.02e+04
1000 70 28 99 1.14e−11 3.96e+04

Table 5
Numerical results for Example 4.4 by Method 2.
𝑛 𝑚 𝑝 𝑟 𝜖𝑟,𝑛(𝑓 ) cond

50 15 6 22 2.18e−13 1.44
100 22 9 32 2.11e−13 1.44
250 35 14 50 3.10e−13 1.44
500 49 20 70 1.40e−13 1.44

whose exact solution is unknown. To test the effectiveness of our second method we start from a set of values taken on a grid of
equally spaced nodes 𝐷 =

{

(𝑥𝑖, 𝑦𝑗 ) | 𝑥𝑖 = −1 + 𝑖 2𝑛 , 𝑦𝑗 = −1 + 𝑗 2
𝑛 , 𝑖, 𝑗 = 0,… , 𝑛

}

. In this case the samples of the kernel 𝑘 are in a square
matrix whose entries are 𝑘𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑦𝑗 ), while the samples of the right hand side term 𝑔 are contained in a vector 𝒈 = [𝑔0,… , 𝑔𝑛]𝑇

where 𝑔𝑗 = 𝑔(𝑦𝑗 ). Finally, 𝑤(𝑥) = 𝑣−1∕2,−1∕2(𝑥) is a Chebyshev weight of the first kind. Table 5 displays a fast convergence of the
approximate solution to the exact one, as well as a good condition number of the linear system (38). We point out that Method
2 cannot take into consideration meshes that are too dense, due to the more complicated implementation and the high amount of
CPU-RAM required to construct the bivariate constrained mock-Chebyshev least squares operator.

5. The proofs

Proof of Theorem 3.1. Start from

‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖𝑊𝑠

= ‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖𝑊𝑠

= ‖𝑓 − 𝑃𝐶
𝑟,𝑛(𝑓 )‖∞ + ‖(𝑓 − 𝑃𝐶

𝑟,𝑛(𝑓 ))
(𝑠)𝜑𝑠

‖∞

=∶ 𝐴 + 𝐵. (41)

Taking into account Theorem 2.2, estimate (2) we get

𝐴 ≤  𝐵𝑛

‖𝑓‖𝑊𝑞

𝑟𝑞
. (42)

To estimate 𝐵 we recall the following result holding for any polynomial 𝑃𝑛 ∈ P𝑛, (see e.g. [17, p. 276]),

‖(𝑓 − 𝑃𝑛)(𝑠)𝜑𝑠
‖∞ ≤ 

[

𝑛𝑠‖(𝑓 − 𝑃𝑛)‖∞ + 𝐸𝑛−𝑠(𝑓 (𝑠))𝜑𝑠
]

, (43)

where

𝐸𝑛−𝑠(𝑓 (𝑠))𝜑𝑠 ∶= inf
𝑃∈P𝑛−𝑠

‖(𝑃 − 𝑓 (𝑠))𝜑𝑠
‖∞, 𝐸𝑛−𝑠(𝑓 (𝑠))𝜑𝑠 ≤

‖𝑓‖𝑊𝑞

𝑛𝑞−𝑠
, ∀𝑓 ∈ 𝑊𝑞 , 𝑞 ≥ 𝑠, (44)

and taking into account (2) we have

𝐵 ≤  𝐵𝑛

‖𝑓‖𝑊𝑞

𝑟𝑞−𝑠
. (45)

The theorem follows combining estimates (42), (45) with (41). ■

roof of Theorem 3.4. Start from

‖̂𝑟+1𝑓 −𝑓‖𝑊𝑠
≤ ‖̂𝑟+1𝑓 −𝑟+1𝑓‖𝑊𝑠

+ ‖𝑟+1𝑓 −𝑓‖𝑊𝑠
=∶ 𝐽1 + 𝐽2. (46)

o estimate 𝐽1, first, we observe that the assumption (23) implies 𝑟+1𝑓 ∈ 𝑊𝑞 , and by Theorem 2.1, we have

𝐽1 = ‖𝑟(𝜎,𝑟+1𝑓 ) −𝑟+1𝑓‖𝑊𝑠
≤ 𝑞

log 𝑟
𝑟𝑞−𝑠

‖𝑟+1𝑓‖𝑊𝑞
(47)

ith

‖𝑟+1𝑓‖𝑊𝑞
= ‖𝑟+1𝑓‖∞ + ‖(𝑟+1𝑓 )(𝑞)𝜑𝑞

‖∞ =∶ 𝐴1 + 𝐴2. (48)

e have

𝐴1 ≤ 𝜇(‖𝑃𝐶 (𝑓 ) − 𝑓‖∞ + ‖𝑓‖∞) max
1
|𝑘(𝑥, 𝑦)|𝑤(𝑥)𝑑𝑥 ≤ 𝑞 𝐵𝑛 ‖𝑓‖∞,
10

𝑟,𝑛 𝑦∈[−1,1]∫−1
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𝐴2 ≤ 𝜇𝑞 ∫

1

−1
|𝑃𝐶

𝑟,𝑛(𝑓, 𝑥)|𝑤(𝑥)𝑑𝑥 ≤ 𝑞 𝐵𝑛 ‖𝑓‖∞,

and combining last two estimates with (47), we can conclude

𝐽1 ≤ 𝑞 𝐵𝑛
log 𝑟
𝑟𝑞−𝑠

‖𝑓‖𝑊𝑞
. (49)

To estimate 𝐽2 we note that

|𝑟+1𝑓 (𝑦) −𝑓 (𝑦)| ≤ 𝜇 ∫

1

−1
|𝑓 (𝑥) − 𝑃𝐶

𝑟,𝑛(𝑓, 𝑥)||𝑘(𝑥, 𝑦)|𝑤(𝑥)𝑑𝑥 (50)

and by estimate (9) it follows

‖𝑟+1𝑓 −𝑓‖∞ ≤  𝐵𝑛

‖𝑓‖𝑊𝑞

𝑟𝑞
sup

(𝑥,𝑦)∈[−1,1]2
|𝑘(𝑥, 𝑦)|.

Under the assumption that the kernel 𝑘𝑥 satisfies

|(𝑟+1𝑓 (𝑦) −𝑓 (𝑦))(𝑠)𝜑𝑠(𝑦)| ≤ 𝑞 ∫

1

−1
|𝑃𝐶

𝑟,𝑛(𝑓, 𝑥) − 𝑓 (𝑥)|𝑤(𝑥)𝑑𝑥 ≤  𝐵𝑛 𝑞

‖𝑓‖𝑊𝑞

𝑟𝑞
. (51)

By (50), (51), we get

𝐽2 ≤  𝐵𝑛 𝑞

‖𝑓‖𝑊𝑞

𝑟𝑞
. (52)

ombining (47) and (52) with (46), and taking into account (8), under the assumption 𝑞 − 𝑠 > 4 Theorem 3.4 follows. ■

roof of Theorem 3.5. The first part follows by [2, p. 55]. To estimate the error, start from

𝑓 − 𝑓 ∗
𝑟+1 = (𝐼 −)−1

[

(𝑔 − �̂�𝑟+1) + ( −𝑟+1)((𝐼 −𝑟+1)−1�̂�𝑟+1)
]

.

y standard arguments we get

‖𝑓 − 𝑓 ∗
𝑟+1‖𝑊𝑠

≤ 
(

‖( − ̂𝑟+1)𝑓‖𝑊𝑠
+ ‖𝑔 − �̂�𝑟+1‖𝑊𝑠

)

,

nd the thesis follows taking into account Theorems 3.1 and 3.4. ■

roof of Theorem 3.8. We start from

‖̃𝑟+1𝑓 −𝑓‖𝑊𝑠
≤ ‖̃𝑟+1𝑓 −∗

𝑟+1𝑓‖𝑊𝑠
+ ‖∗

𝑟+1𝑓 −𝑓‖𝑊𝑠
=∶ 𝐽1 + 𝐽2. (53)

irst we estimate 𝐽2. Consider

|∗
𝑟+1𝑓 (𝑦) −𝑓 (𝑦)| ≤ ∫

1

−1
|𝑃𝐶

𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘(𝑥, 𝑦)|𝑓 (𝑥)𝑤(𝑥)𝑑𝑥

≤  𝐵𝑛 ‖𝑓‖∞𝐸𝑟(𝑘𝑦) ≤  𝐵𝑛 ‖𝑓‖∞ sup
𝑦∈[−1,1]

𝐸𝑟(𝑘𝑦)

and taking the supremum on 𝑦 ∈ [−1, 1] in the left hand side, we get

‖∗
𝑟+1𝑓 −𝑓‖∞ ≤  𝐵𝑛 ‖𝑓‖∞ sup

𝑦∈[−1,1]
𝐸𝑟(𝑘𝑦).

Then, under the assumption about the kernel 𝑘(𝑥, 𝑦) we have

‖∗
𝑟+1𝑓 −𝑓‖∞ ≤  𝐵𝑛 𝑞

‖𝑓‖∞
𝑟𝑞

. (54)

Consider now

|(∗
𝑟+1𝑓 (𝑦) −𝑓 (𝑦))(𝑠)|𝜑𝑠(𝑦) =

|

|

|

|

|

𝜑𝑠(𝑦)∫

1

−1

𝑑𝑠

𝑑𝑦𝑠
[𝑃𝐶

𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘(𝑥, 𝑦)]𝑓 (𝑥)𝑤(𝑥)𝑑𝑥
|

|

|

|

|

≤ ‖𝑓‖∞ ∫

1

−1
𝜑𝑠(𝑦)

|

|

|

|

𝑑𝑠

𝑑𝑦𝑠
[𝑃𝐶

𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘(𝑥, 𝑦)]
|

|

|

|

𝑤(𝑥)𝑑𝑥

≤ ‖𝑓‖∞ ∫

1

−1
max

𝑦∈[−1,1]
|𝜑𝑠(𝑦)(𝑃𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘𝑦(𝑥))(𝑠)|𝑤(𝑥)𝑑𝑥

and by using inequality (43), we get

|(∗
𝑟+1𝑓 (𝑦) −𝑓 )(𝑠)(𝑦)|𝜑𝑠(𝑦) ≤ ‖𝑓‖∞

×
1 {

𝑟𝑠 max |𝑃𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘𝑦(𝑥)| + 𝐸𝑟−𝑠(𝑘(𝑠)𝑦 (𝑥))𝜑𝑠

}

𝑤(𝑥)𝑑𝑥
11

∫−1 𝑦∈[−1,1]
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≤ ‖𝑓‖∞ sup
𝑥∈[−1,1]

{

𝑟𝑠‖𝑃𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘𝑦(𝑥)‖∞ + 𝐸𝑟−𝑠(𝑘(𝑠)𝑦 (𝑥))𝜑𝑠

}

=∶ ‖𝑓‖∞
(

𝐻1 +𝐻2
)

. (55)

By Theorem 2.2

‖𝑃𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘𝑦(𝑥)‖∞ ≤  𝐵𝑛 𝐸𝑟(𝑘𝑦(𝑥))

and by estimate (2), under the assumption 𝑘𝑦 ∈ 𝑊𝑞 ∀𝑥 ∈ [−1, 1], it follows

sup
𝑥∈[−1,1]

‖𝑃𝑟,𝑛(𝑘𝑦, 𝑥) − 𝑘𝑦(𝑥)‖∞ ≤  𝐵𝑛
𝑞

𝑟𝑞

nd hence

𝐻1 ≤  𝐵𝑛
𝑞

𝑟𝑞−𝑠
. (56)

To estimate 𝐻2 we use (44) to obtain

𝐸𝑟−𝑠(𝑘(𝑠)𝑦 (𝑥))𝜑𝑠 ≤ 
‖𝑘(𝑠)𝑦 (𝑥)‖𝑊𝑞

𝑟𝑞−𝑠
,

and taking the supremum on 𝑥 ∈ [−1, 1], in view of the assumptions (33), we can conclude

𝐻2 ≤ 
𝑞

𝑟𝑞−𝑠
. (57)

By (56), (55) and (57) it follows

‖(∗
𝑟+1𝑓 −𝑓 )(𝑠)𝜑𝑠

‖∞ ≤  𝐵𝑛 ‖𝑓‖𝑊𝑠

𝑞

𝑟𝑞−𝑠
(58)

and by the last estimate combined with (54) it follows

‖∗
𝑟+1𝑓 −𝑓‖𝑊𝑠

≤  𝐵𝑛 ‖𝑓‖𝑊𝑠

𝑞 +𝑞

𝑟𝑞−𝑠
. (59)

and hence, under the assumption 𝑞 − 𝑠 > 4, we can conclude

lim
𝑟
‖∗

𝑟+1 −‖𝑊𝑠→𝑊𝑠
= 0. (60)

Now we estimate 𝐽1. Under the assumption (33) it is ∗
𝑟+1𝑓 ∈ 𝑊𝑞 , and by Theorem 3.1 it follows

𝐽1 = ‖̃𝑟+1𝑓 −∗
𝑟+1𝑓‖𝑊𝑠

≤  𝐵𝑛

‖∗
𝑟+1𝑓‖𝑊𝑞

𝑟𝑞−𝑠
(61)

On the other hand, by

‖∗
𝑟+1𝑓‖𝑊𝑞

≤ ‖∗
𝑟+1𝑓 −𝑓‖𝑊𝑞

+ ‖𝑓‖𝑊𝑞

and by (59) for 𝑞 = 𝑠, for any 𝑓 ∈ 𝑊𝑞 it follows, under the assumption (33),

‖∗
𝑟+1𝑓‖𝑊𝑞

≤  𝐵𝑛 (𝑞 +𝑞)‖𝑓‖𝑊𝑞
.

Combining the last estimate with (61) it follows

𝐽1 ≤  𝐵2
𝑛

‖𝑓‖𝑊𝑞

𝑟𝑞−𝑠

As a consequence, taking into account estimate (8), it follows that

lim
𝑟
‖(∗

𝑟+1 − ̃)‖𝑊𝑠→𝑊𝑠
= 0,

nder the assumption 𝑞 − 𝑠 > 8. The thesis is proved by combining the last estimate and (60) with (53). ■

. Conclusions

In this paper, we proposed two projection methods for approximating the solutions of second-kind Fredholm integral equations.
he methods are based on the constrained mock-Chebyshev least squares operator, which for its nature, allows to treating the case of
unctions 𝑔 and 𝑘, known on a discrete set of equally spaced points. Such a situation arises in the experimental field, and numerical
ethods over equispaced grids are not so common in literature. In this context, our methods contribute from both a numerical and

heoretical point of view. Indeed, we have determined conditions assuring the convergence and stability of the proposed methods,
epending on the smoothness of the known functions 𝑔, 𝑘. However, such theoretical estimates are useful when dealing with integral
quations for which analytical properties of 𝑔 and 𝑘 are known in the experimental context they live in. From the numerical point
12
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of view, the numerical experimentation has given good results, which is a good starting point, encouraging us to investigate further.
In particular, we aim to find better estimates for the norm of the operator 𝑃𝐶

𝑟,𝑛 ∶ 𝐶[−1, 1] → P𝑟, which breaks the theoretical rate of
onvergence, even though the numerical results are definitively better. The second aspect we want to focus on is the study of the
onditioning of the final linear systems of our methods. Finally, we are planning to extend such methods in the solution of other
inds of integral equations, also frequently arising in applications [20–22].
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