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Abstract: This work stems from the idea of improving the capability to measure the atmospheric
boundary layer height (ABLH) in variable or unstable weather conditions or in the presence of turbu-
lence and precipitation events. A new approach based on the use of rotational and roto-vibrational
Raman lidar signals is considered and tested. The traditional gradient approach based on the elastic
signals at wavelength 532 nm is also considered. Lidar data collected by the University of Basilicata
Raman lidar (BASIL) within the Special Observation Period 1 (SOP 1) in Cardillargues (Ceveninnes–
CV supersite) during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) were used.
Our attention was specifically focused on the data collected during the period 16–21 October 2012.
ABLH estimates from the Raman lidar were compared against other innovative methods, such as
the recently established Morphological Image Processing Approach (MIPA) and the temperature
gradient technique applied to potential temperature obtained from radio-sounding data. For each
considered methodology, a statistical analysis was carried out. In general, the results from the different
methodologies are in good agreement. Some deviations have been observed in correspondence with
quite unstable weather conditions.

Keywords: atmospheric boundary layer; water vapor; aerosol; range corrected signals; MIPA;
potential temperature; lidar; remote sensing

1. Introduction

The atmospheric boundary layer (ABL) is the region of the atmosphere directly in
contact with the Earth’s surface. The ABL undergoes complex interactions with the Earth’s
surface, the oceans, and the free troposphere. The timescale of the ABL response to
surface forcing mechanisms is about 1 h [1]. Our limited comprehension and forecast
capability of air pollution and extreme weather events, such as severe storms, are partially
attributable to knowledge gaps in the processes taking place in the ABL. In fact, the ABLH
defines the portion of the atmosphere undergoing strong vertical mixing and affected by
pollutant dispersion, among others [2], and it is highly dependent on sea surface or land
characteristics, atmospheric patterns, and solar heating. The ABLH is also an important
variable in climate change modeling [3].

In the last few years, different approaches have been proposed to measure the ABLH,
relying on the aerosol property of acting as tracers within the ABL [4,5] and considering
that the elastic backscatter lidar signals are strongly dependent on the aerosol loading.
One approach is based on the computation of the derivative of the elastic lidar backscatter
signal [6–10]; alternative approaches consider the elastic backscatter lidar signal variance
or a threshold signal level [11–17]. Another effective approach to estimate the ABLH
relies on the application of a Haar wavelet covariance transform to elastic backscatter
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lidar signals [18–20]. However, the application of the above-mentioned methodologies to
the elastic backscatter lidar signals may produce false ABLH estimates in the presence of
advection and local accumulation processes. This occurs especially if aerosol stratifications
are present within the ABL [21].

ABL height and structure are difficult to characterize in complex and highly variable
meteorological conditions. This issue has been tackled by several authors based on the use
of multi-sensor data. The determination of the ABLH in cloudy conditions is characterized
by possible interferences from cloud layers [22]. Machine learning methods have been
proposed to estimate ABLH from elastic lidar data under complex weather conditions [23],
with results revealing a sensitive reduction in the potential biases affecting ABLH esti-
mates [24]. In general, the combined use of more sensors and approaches is preferred,
especially in unstable weather conditions [25].

Additionally, the morphological image processing approach (MIPA) has been consid-
ered. MIPA is applied to high resolution elastic lidar signal time series and was already
verified and validated in the frame of the European aerosol research lidar network (EAR-
LINET), where the algorithm was applied considering a fully image-based methodology.
One of the strengths of MIPA is its ability to deal with statistically significant time series of
the whole attenuated backscatter profiles without exploiting profile-based processing as
for traditional lidar ABLH retrievals. In this way, lidar data time correlation is considered
to estimate ABLH as an additional parameter. The retrieval consists of applying a morpho-
logical operator and an edge detector to the composite image during the pre-processing
phase. The post-processing phase includes the extraction of the significant edges through
an object-based analysis. This latter has been demonstrated to be particularly suited for the
determination of the ABLH.

In the present research effort, ABLH estimates obtained through the application of the
MIPA are compared with those obtained through a new methodology based on the applica-
tion of the derivative (gradient) to the pure rotational Raman lidar signals (mainly from
nitrogen and oxygen molecules) and to roto-vibrational Raman lidar signals from water
vapor molecules. Additionally, ABLH estimates from a wind profiler and those obtained
from the application of the gradient approach to the range-corrected elastic backscatter
signals at a wavelength of 532 nm are also considered. Finally, ABLH estimates obtained
through the application of the temperature gradient approach to potential temperature
profiles measured by the on-site radiosondes are taken as a reference.

The different approaches considered in the paper refer to different physical interpreta-
tions and, consequently, different atmospheric processes and variables. More specifically,
the temperature gradient approach [26] applied to the potential temperature profiles from
the on-site radiosondes is taken as a reference. This approach refers to the fact that sensible
heat is transported in the ABL up to its top and, consequently, temperature gradients can
be used to identify the ABLH.

ABLH estimates from the wind profiler rely on the turbulence method, which identi-
fies the ABLH as the depth of the lowest continuous turbulence layer, where the turbulent
region is determined by tracking the fluctuations of the different wind components mea-
sured by the wind profiler. Two additional approaches that have been considered are those
based on the identification of gradients in the Raman lidar measurements, specifically in
the temperature-sensitive rotational Raman signal profiles and in the water vapor mixing
ratio profile measurements. The former of these two approaches relies on the temperature
gradients found at the top of the ABL. The latter is instead based on the analogous water
vapor mixing ratio gradients found at this height. Finally, the MIPA exploits the aerosol
backscatter gradients and, consequently, the aerosol loading gradients found at the top of
the ABL.

Lidar data considered in this paper are those collected by the Raman lidar BASIL.
BASIL operated for a three-month period (September–November 2012) in Cardillargues
(Ceveninnes–CV supersite) during the Hydrological Cycle in the Mediterranean Exper-
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iment (HyMeX-SOP1). The period selected for the present inter-comparison effort was
16–21 October 2012, which was mostly affected by orographic rain.

The campaign HyMeX was conceived with the aim of improving our capability to
predict high-impact weather events in the Mediterranean basin, based on an improved
understanding of the hydrological cycle in this area. The orography surrounding the
Mediterranean Sea favors atmospheric instability conditions in the region, which may
trigger convection and, ultimately, lead to heavy precipitation events. Most of these
events occur during the late summer or autumn, primarily in the western portion of the
Mediterranean basin, with warm water acting as a heat source and humidity feeding
convective systems.

The measurement period considered in this paper is characterized by highly variable
meteorological conditions, which result in both aerosols and water contents visible as layers
at different altitudes in BASIL observations. The characterization of the ABL height and
structure in such complex weather conditions is particularly difficult and, in general, sub-
jected to large uncertainties. On the other hand, the complexity of the measurement period
is particularly suited for testing the performance of different ABLH retrieval algorithms.

The importance of assessing the performance of different ABLH retrieval algorithms
against reference (radiosonde) values is to characterize the ABLH evolution with a finer
temporal resolution. Since radiosonde launches are quite expensive, typically they are
not available with enough time frequency to guarantee the study of the ABLH evolution
on a small time scale. Differently, the alternative (with respect to the radiosondes) ABLH
retrievals considered in this work have the advantage of allowing, in principle, a continuous
monitoring (in time) of the ABLH as they are based on sensors capable of measuring in
a continuous way. In general, advanced Raman lidars and wind profilers are expensive
remote sensors. However, the implementation of one or both sensors in a network counting
on several stations comparable to those present in the upper air network would certainly
lead to a sensitive reduction in the costs.

The paper is organized as follows: Section 2 is dedicated to the illustration of the
different approaches to estimating the ABLH. In Section 3, results obtained through these
different approaches are reported and compared. Finally, conclusions are drawn in Section 4.

2. Dataset and Methodology
2.1. Raman Lidar BASIL

BASIL is a ground-based Raman lidar system developed around a Nd:YAG laser. The
second and third harmonic generation modules allow the generation of laser pulses at 355,
532, and 1064 nm. The 355 nm wavelength is emitted to stimulate atmospheric Raman
scattering processes. Water vapor and molecular nitrogen roto-vibrational Raman echoes
are collected along with pure-rotational Raman echoes from nitrogen and oxygen molecules.
These lidar echoes allow us to measure water vapor mixing ratios [27,28] and atmospheric
temperature [29,30] profiles. Single-pulse energy at 355 nm is found to be 500 mJ, which
corresponds to 10 W at 20 Hz. The receiver includes a 0.45 m diameter Newtonian telescope
and two small lenses (diameter = 0.05 m) dedicated to collecting the 532 and 1064 nm elastic
backscatter echoes. High-resolution and accurate profile measurements of atmospheric tem-
perature and humidity are carried out by BASIL both during the daytime and at nighttime
through the rotational and roto-vibrational Raman lidar techniques, respectively [31–35].
BASIL also provides particle backscattering coefficient profiles at 355, 532, and 1064 nm,
particle extinction coefficient profiles at 355 and 532 nm, and particle depolarization ratio
profiles at 355 and 532 nm [36–39].

During HyMeX-SOP1, BASIL was at the Ceveninnes–Vivres observational site (Can-
dillargues, Lat: 43◦37′N, Lon: 4◦04′E, Elevation: 1 m) and operated in an almost continuous
way during the period 5 September–5 November 2012.
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2.2. ABLH Estimates Obtained from the Elastic Backscatter, Pure-Rotational, and Roto-Vibrational
Raman Lidar Signal Gradients

ABLH estimates can be obtained through a well-consolidated approach relying on
the sensitivity of elastic backscatter echoes to suspended particles’ concentration and its
variability. Aerosols, being more abundant within the ABL than in the free troposphere,
can act as tracers of atmospheric motions. Specifically, elastic backscatter lidar signals at
532 nm, which are used in the present paper to estimate the ABLH, are strongly dependent
on the atmospheric aerosol loading and its gradients, and consequently, they can be used to
estimate the ABLH as the top of the first (from the surface) detected aerosol layer. To deal
with quantities proportional to the atmospheric aerosol backscatter, the lidar signals have
been expressed in terms of range-corrected signals (RCSs). The use of this quantity also
allows us to remove from the elastic backscatter signals the noise components associated
with solar background and detector noise. RCS at 532 nm, hereafter indicated as RCS532(z),
is defined as:

RCS532(z) =
[
Pλ532(z)− Pbgd

]
z2 (1)

where Pλ532(z) represents the elastic backscatter lidar signal at 532 nm from altitude z and
Pbgd represents the solar background and the detector noise.

According to what has already been mentioned, the ABLH can be determined as the
altitude at which the first significant gradient of the RCS occurs. Such a method is known
as the “derivative approach” and has been used for years within the lidar community. The
novelty we discuss in the present paper is the application of the same methodology to a
pure N2 and O2 rotational Raman signal and to the water vapor mixing ratio measured by
BASIL lidar.

Rotational Raman signals from nitrogen and oxygen molecules are strongly dependent
on atmospheric temperature and its variability. In this respect, it is recalled that ABLH
estimates are traditionally inferred by identifying local maxima in the gradient of potential
temperature profiles. So far, this approach has been primarily applied to meteorological
radiosonde data. In this study, we also evaluate its applicability to the temperature-sensitive
rotational Raman lidar signals in the UV.

The approach can also be applied to the power ratio of two rotational Raman signals
with opposite temperature sensitivity. In this regard, it is specified that rotational Raman
lines from nitrogen and oxygen molecules are present in the proximity of the laser wave-
length, λ0. More specifically, rotational lines closer to λ0, characterized by small values of
the rotational quantum number, J, tend to increase in intensity when temperature decreases,
while the opposite behavior is observed in rotational lines characterized by large values
of J, whose intensity increases when temperature increases. Lidar signals generated by
rotational Raman lines from nitrogen and oxygen molecules with opposite temperature
behavior can be collected within two narrow spectral regions located close to λ0, which
can be indicated as PLoJ(z) and PHiJ(z). BASIL operates with a UV laser wavelength at
λ0 = 354.7 nm and includes two narrow interferential filters centered at λLoJ = 354.3 nm
(low quantum number filter) and at λHiJ = 352.9 nm (high quantum number filter) [40].

Estimates of the ABLH are obtained as the minimum of the derivative of the natural
logarithm of the signal ratio PHiJ(z)/PLoJ(z). Thus, we have:

ABLH = min
{

d
dz

[
ln
(

PHiJ(z)
PLoJ(z)

)]}
. (2)

The availability of a water vapor Raman channel in BASIL allows us to test another
approach to obtain the ABLH. Roto-vibrational Raman lidar signals from water vapor and
nitrogen molecules, PH2O(z) and PN2(z), respectively, can be used to determine the vertical
profile of the atmospheric water vapor mixing ratio, χH2O(z), through the expression:

χH2O(z) = K
PH2O(z)TN2(z)
PN2(z)TH2O(z)

(3)
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where TN2(z) and TH2O(z) are the atmospheric transmissivity at the roto-vibrational Ra-
man shifted wavelength for nitrogen and water vapor molecules, respectively, and K is a
calibration constant that can be determined through an independent measurement typically
carried out by radiosondes, GPS, or microwave radiometers. Water vapor mixing ratio
is an atmospheric quantity preserved in dynamic and thermodynamic processes taking
place within the boundary layer when condensation processes are not taking place (that is
in most cloud-free conditions). Consequently, water vapor can be used as an additional
tracing parameter of atmospheric motion, with the atmospheric water vapor mixing ratio
gradients possibly being used to infer the ABLH. Note that the gradients of the water vapor
mixing ratio are independent from the calibration constant K, which is needed only to
compute the absolute values of the water vapor mixing ratio. In the present paper, we
infer the ABLH from the water vapor signals by applying a derivative approach to the
logarithm of χH2O(z), thus identifying the minimum of the gradient. To reduce signal
statistical fluctuations and to allow the application of the derivative approach, an integra-
tion time of 5 min is considered both during the daytime and night-time measurements.
Moreover, to further improve the signal-to-noise ratio, a vertical smoothing with a vertical
window of 150 m is also applied to the raw data, which has a raw resolution of 30 m. Of
course, an approach similar to this will only work if there is enough water vapor in the
atmosphere to act as an ABL tracer. Consequently, such a methodology is not indicated
for studying the ABL in dry conditions. Typically, lidar signals are characterized by a
quite high signal-to-noise ratio at the altitudes where the ABLH is usually observed. A
provisional evaluation of this uncertainty has been given in [41], with a value comparable
to the raw vertical resolution of the data (i.e., 30 m). Therefore, the ABLH uncertainty due
to lidar-signal statistical fluctuation [42] is negligible. Raman lidar is a very powerful and
straightforward technique to measure water vapor mixing ratio profiles, especially during
nighttime conditions. The performance is somewhat degraded during daytime because
of the small Raman cross-sections, reducing the covered vertical range to 4–5 km [43,44].
However, as will be illustrated below, signal degradation does not seem to affect the correct
applicability of the derivative approach applied to χH2O(z).

2.3. MIPA-WCT Techniques

This section gives an overview of the state-of-the-art morphological image processing
approach (MIPA) [45] used to infer the ABLH from lidar observations. More specifically, in
this study, an image obtained as a sequence of consecutive elastic range-corrected signals
at 532 nm calculated according to (1) is considered. MIPA consists of four main blocks:

(1) A vertical resolution adjustment step to reach a (target) working spatial resolution
(around 20 m).

(2) A pre-processing based on mathematical morphology.
(3) An edge detector i.e., a wavelet covariance transform (WCT).
(4) A post-processing algorithm, which, by relying on both mathematical morphology

and object-based analysis, allows us to obtain the result. It is worth noting that MIPA
is a blind approach and, thus, does not exploit any prior information. Specific details
about the four blocks of the MIPA framework are provided below:

• The vertical spatial resolution adjustment block starts from a matrix I: E ⊆ Z2→ V
⊆ Z, which is the daily sequence of the RCS532(z) profiles forming the columns of I.
The down-sampling with a factor R, aimed to reduce the bins’ spatial resolution, is
implemented by a low-pass filter (i.e., a moving-average filter) along each column
of I plus decimation with a factor R. This latter is a tuning parameter selected to
have a spatial resolution not finer than 20 m (implying that for data with a spatial
resolution coarser than 20 m, this step is skipped). The outcome is denoted as ID.

• A low-pass filter based on half-gradients is used to pre-process ID. A line-
structuring element in the horizontal direction (i.e., the time direction) is ex-
ploited, thus smoothing the lidar image along the horizontal axis (where the
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dynamic of the ABL is expected to be quite slow), reducing noise, and preserving
vertical edges. The result of the preprocessing of ID is denoted as Ipre.

• Every edge detector can generally be exploited to extract a first estimation of
the ABLH starting from Ipre (e.g., the WCT, Canny’s edge detector, or a gradient-
based approach). In this work, we make use of a WCT to obtain a first estimate
of the edge map, E. The detected edges in E are indicated with 1, while the rest
of the map (background) is labeled as 0. All bins labeled as 1 in the edge map are
potential candidates to represent the ABLH.

• The edge map, E, is further analyzed through post-processing procedures. More
specifically, morphological filters are exploited first to remove unrealistic edges
(i.e., edges that are too fast with respect to the dynamics of the ABL). Hence, a
series of directional low-pass morphological filters [46] are applied, varying the
related angles and combining the outputs with a maximum operator. Finally,
object-based processing is applied to the result obtained by the application of
the morphological filtering. The main idea behind this latter approach is the
use of the connectivity (i.e., the way in which the bins labeled as “edge”, which
assume value 1, are spatially-related to their neighbors) in the edge map to form
objects. An analysis of the spatial variability of these objects is then performed.
Indeed, if the absolute Euclidean distance between the means of the heights
for each extracted object and the related means calculated on the objects in its
neighborhood exceeds a predefined threshold value, this object is removed from
the solution. The estimated ABLH, denoted as Eout, is obtained by linearly
interpolating the remaining objects in the edge map (for further details, see
Algorithm 1).

Algorithm 1 The steps of the MIPA framework

1 Vertical spatial resolution adjustment of I by a factor R to obtain ID

2 Pre-process ID by low-pass filtering using half-gradients to obtain Ipre

3 Detection of the edges of Ipre using the WCT to obtain the edge map E

4 Post-process E using directional morphological filters and an object-based analysis to obtain Eout

2.4. WIND Profiler Radar (WPR)

A detailed description of the WPR and its main working parameters, data processing
methodologies, and delivered geophysical products is given in [47]. The methodology to
determine the ABLH is based on the identification of a strong, distinctive peak in the WPR
time-height reflectivity plot. However, a strong uncertainty in the ABLH measurement
derives from the false peaks associated with temperature and humidity gradients and with
the presence of insect swarms [48].

2.5. Temperature Gradient Method

The temperature gradient method identifies inversions in the potential temperature
profile, which are often present at the ABL top. The potential temperature, θ(z), is given by
the expression:

θ(z) = T(z)
(

P0

P(z)

)γ

(4)

where P0 is the surface normal pressure (1013 hPa), T(z) and P(z) are the atmospheric
pressure and temperature profiles, respectively, and γ is equal to 0.286 for air.

The potential temperature is nearly constant within a well-mixed layer. Maximum
values of the potential temperature vertical gradient identify the transition from a convec-
tively unstable to a stable vertical region. Stable layers may inhibit turbulent eddies and
the development of deep convection.
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In this work, the temperature gradient method is applied to the data measured by
radiosondes launched from the lidar site, and the corresponding ABLH estimates are
considered a reference.

A radiosonde launching facility was installed in early September 2012 in the proximity
of the lidar station in the frame of HyMeX-SOP1. Launched radiosondes, manufactured by
Vaisala (model: RS92), rely on a thin-wire temperature sensor characterized by a very fast
response time and equipped with a hydrophobic coating for protection to reduce the effects
of evaporative cooling after emerging from clouds. About twenty radiosonde launches
were made within the selected measurement period (generally every 6 h starting from
16 October at 23:00). All available radiosonde data on site (about twenty) was linearly
interpolated with a time resolution of 5 min and used as references for the calculation of
the absolute and relative bias affecting the other techniques [49,50]. Table 1 summarizes all
the instruments and also the techniques used to determine ABLH, with the corresponding
pros and cons.

Table 1. Summary of the considered instruments/approaches used to determine the ABLH.

Instruments Techniques Details Approaches

Radiosondes
RS

Pros: Input: Potential temperature profile obtained
by measured atmospheric pressure and temperature.
High accuracy and high spatial resolution of the data.
Launch time was generally every 6 h (starting from
16 October at 00:00) on the 16–21 October dataset.
Cons: Low time resolution; expensive.

Gradient method applied on θ(z)
These values are used as reference

Lidar

Pros: High spatial and temporal resolution of pure
rotational Raman profiles
Cons: In some cases, low signal-to-noise ratio (SNR)
may reduce sensitivity; require smoothing; no
measurement with rain.

Rotational (Rot)
Derivative of Ratio
[Hij(z)/Loj(z)]

Pros: High spatial and temporal resolution of
roto-vibrational Raman profiles (water
vapour, nitrogen)
Cons: In some cases, low signal-to-noise ratio (SNR)
may reduce sensitivity; require smoothing; no
measurement with rain. Not accurate in
dry conditions.

Water Vapor (WV)
Derivative of
Ratio [H2O(z)/N2(z)]

Pros: High resolution time series (in both space and
time) of elastic lidar RCS 532 nm
Cons: No measurement with rain.

MIPA
ABLH determination by using WCT
edge detection

WPR

Pros: High temporal sampling, all weather
condition measurements
Cons: UHF signals sensitivity to birds and clutter,
reducing the detectability of atmospheric signals on
one or more of the off-vertical beams; multiple peaks
in SNR with a consequent attribution problem;
precipitations can influence the accuracy of wind
measurements depending on intensity and duration
of precipitation.

UHF band with a
primary frequency at 1.274 GHz
ABLH determination relies on the
identification of a distinctive strong
peak in the WPR time-height
reflectivity plot

3. Results

Figure 1a reports the time series of the RCS at 532 nm as measured by BASIL with a
time resolution of 5 min and a vertical resolution of 30 m. The evolution of the water vapor
mixing ratio over the same period considered in Figure 1a is shown in Figure 1b.
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Figure 1. Time-height cross-section of the RCS at 532 nm (a) measured by Raman lidar BASIL and
(b) water vapor mixing ratio over Cardillargues during 16–21 October 2012.

Both the figures reveal the complex aerosol and cloud structure occurring during the
period under consideration (16–21 October 2022), which is characterized by highly vari-
able meteorological conditions. More specifically, several aerosol and humidity layers are
present at different altitudes, as well as water and mixed-phase clouds. The characterization
of the ABL height in such complex weather conditions is particularly challenging and, in
general, is affected by large uncertainties. In previous studies from the same and other au-
thors, it was demonstrated that the characterization of the ABLH can be effectively pursued
by combining observations made by different sensors and different methodological re-
trieval approaches. The weather conditions occurring during the considered measurement
period result from the deepening of a large low-pressure system over Spain and Portugal
and the associated cold front. A low-altitude flow is present over the Mediterranean Sea,
which brings warm, humid air and persistent orographic rainfall events to the CV area.
On 19 October, the isolated low-pressure system in the southern part of the elongated
depression area near Portugal began moving northeast from Morocco to Murcia. An event
of high rainfall hit eastern Spain on that day [51].

RCS measurements on 17 October (Figure 1a) indicate the presence of a mesoscale
convective system, with convective clouds visible between 0.5 and 2 km. Precipitations
beneath these clouds are observed at 11:00 UTC and from 17:00 to 19:00 UTC. The shading
effect of the clouds prevented the onset of convection during the daylight portion of the
day, which ultimately translated into a limited ABL growth clearly visible in Figure 1a.
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On 18 October, lidar observations show the presence of broken clouds at about
1.2–1.5 km during nighttime and more stable weather conditions starting from 12:00
UTC with an ABLH gradually decreasing below 0.5 km due to the reduced solar activity.
Above the ABL, other aerosol layers and mixed-phase clouds are observed at about 4.5 km.
Moreover, Figure 1b reveals the coexistence of an aerosol and a humid layer both in the
ABL and above, one extending from the ground up to about 2 km and another one from
2 km up to the cloud base at 4.5 km. The separation of two layers at 2 km is visible in both
the RCS (Figure 1a) and water vapor (Figure 1b) plots. Stratiform clouds on 19 October
show a descending cloud base from 1.4 to 0.8 km.

The measurements corresponding to the last observational period (starting from
20 October 12:00 UTC) show a well-developed ABL in the first part, with convective clouds
forming at its top. During the following hours, both the RCS and water vapor plots indicate
the formation of two layers: one below 600–700 m (presumably the ABL) and another one
above, just below the cloud bottom.

These complex weather conditions are well suited to test the different sensors/models/
approaches and their performance. As already specified above, different approaches have
been considered for the determination of the ABLH. In all the cases, ABLH estimates come
from signal profiles with a vertical and time resolution of 30 m and 5 min, respectively.
Figure 2 illustrates the evolution of the ABLH estimated through the different approaches.
In general, the overall agreement is good, with an increasing trend of the ABLH until the
central part of the day on 18 October, an abrupt decrease during the second part of the
same day and the morning of 19 October, an abrupt new increase during the central part of
the day on 19 October, and a final progressive decrease late on 20–21 October. The abrupt
increase revealed through all the compared approaches on 19 October is most probably due
to a sudden increase in the main motor friction coefficient of the ABL [52–54].
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Figure 2. Comparison of ABLH estimated using different methods with reference values obtained
from the temperature gradient technique applied to on-site radiosonde data (green stars) during the
period from 16–21 October 2012.

Table 2 reports the relative biases between the ABLH estimates from the different
approaches and those obtained with the reference approach. Relative biases with respect
to reference are expressed in terms of minima (i.e., min), maxima (i.e., max), average, and
standard deviation (i.e., σ). Moreover, a linear fitting of the different approaches versus
reference is also provided. These statistical parameters have been calculated for the whole
dataset (i.e., from 16 to 21 October). Moreover, four different sub-intervals have been
considered for calculating the average of the relative biases for each sub-interval. These
subintervals have been selected to highlight differences in terms of ABLH retrieval perfor-
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mance under stable and unstable conditions. More specifically, we selected two strongly
unstable periods (16–17 October and 20–21 October) characterized by very low (and po-
tentially precipitating) clouds and two more stable periods (18 October and 19 October) in
which the clouds are located at higher altitudes.

Table 2. Statistical analysis, considering relative biases, of the ABLH estimates obtained with the
different approaches/sensors. The linear fitting (Y = A · X) of the compared approaches versus
radiosondes (on site) is also reported.

Approaches MIPA (%) Rot (%) WPR (%) WV(%) Mean of
Approaches (%)

Average −2.28 −7.99 −4.57 −4.60 −4.79

Max 39.10 23.08 21.29 30.23 13.74

Min −38.06 −38.60 −31.94 −38.09 −25.57

σ 15.98 14.05 12.73 12.29 9.66

Linear Fitting
(Y = A·X)

A 0.87 0.90 0.85 0.90 0.89

s(A) 0.036 0.032 0.04 0.032 0.024

R2 0.94 0.95 0.92 0.95 0.97

Days Weather
Conditions

16–17 Oct −11.24 −6.70 −8.06 −7.24 −4.31 Unstable

18 Oct −7.86 −8.09 −7.76 −3.71 −6.61 Stable

19 Oct 4.08 3.70 −4.55 2.30 −1.35 Stable

20–21 Oct 12.89 7.72 −9.98 4.52 1.42 Unstable

Values reported in Table 2 are also illustrated in Figures 3 and 4, where the relative
bias (%) and scatter plot of all the compared approaches against radiosondes are reported.
These figures clearly reveal that MIPA, which is the only approach based uniquely on RCSs,
provides effective ABLH estimates in the time interval 18–20 October 2012, with a mutual
bias with respect to the reference of 4–8% in correspondence of the two selected stable
sub-intervals, while larger deviations are found on 16–17 and 21 October 2012 (unstable
conditions), with values as large as −11.24% and +12.89%, respectively. The approaches
that seem to be more accurate during stable conditions are those based on the application
of the derivative algorithm to χH2O(z) and to the logarithm of the rotational signal ratio
PHiJ(z)/PLoJ(z), with relative bias values smaller than 7.24% and 7.72%, respectively. A
possible explanation for such behavior could be the enhanced aerosol deposition (within
the ABL) occurring under unstable weather conditions. The lower aerosol concentration in
the ABL could explain the larger deviations produced by MIPA, which is the only algorithm
working on the elastic RCS. The water vapor content is expected to be less affected by
deposition processes, while the methodology based on the pure rotational Raman signals is
not affected at all because it works on molecular targets.

The wind profiler is found to generally underestimate the ABLH. However, estimates
from different sensors/approaches are in good agreement, with the correlation coefficient
always in the range of 0.92 to 0.97. The mean ABLH estimate obtained by averaging
estimates from all the sensors/approaches is characterized by a smaller relative bias (values
not exceeding 4.3%). This outcome highlights the benefit of combining ABLH estimates
obtained through different sensors and methodologies.
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Remote Sens. 2023, 15, 1381 11 of 15 
 

 

 
Figure 3. Relative biases (%) of the ABLH estimates obtained by the compared methods with respect 
to reference data during the period 16–21 October 2012. 

 
Figure 4. Comparison of different ABLH estimates expressed in terms of linear fitting for each ap-
proach. The 𝑥-axis shows the ABLH reference values obtained by applying the potential tempera-
ture approach to in-situ radiosondes, while the 𝑦-axis refers to the estimates provided by the com-
pared approaches. 

The wind profiler is found to generally underestimate the ABLH. However, estimates 
from different sensors/approaches are in good agreement, with the correlation coefficient 
always in the range of 0.92 to 0.97. The mean ABLH estimate obtained by averaging esti-
mates from all the sensors/approaches is characterized by a smaller relative bias (values 
not exceeding 4.3%). This outcome highlights the benefit of combining ABLH estimates 
obtained through different sensors and methodologies. 

-80

-60

-40

-20

0

20

40

60

80

Re
la

tiv
e 

Bi
as

 [%
]

 [%] MIPA
 [%] WPR
 [%] WV
 [%] Rot
 [%] Mean 

Relative Bias during October 16-21  2012  [%] 

            17 Oct                   18 Oct                   19 Oct                        20 Oct                21 Oct

600 900 1200 1500 1800

600

900

1200

1500

1800
 MIPA
 WPR
 WV
 Rot
 Mean
 Fit MIPA
 Fit WPR
 Fit WV
 Fit Rot
 Fit Mean

A
BL

H
  a

pp
ro

ac
he

s [
m

]

ABLH   RS (on site) [m]

Scatter plot  approaches vs RS (on site)

Figure 4. Comparison of different ABLH estimates expressed in terms of linear fitting for each
approach. The x-axis shows the ABLH reference values obtained by applying the potential tem-
perature approach to in-situ radiosondes, while the y-axis refers to the estimates provided by the
compared approaches.



Remote Sens. 2023, 15, 1381 12 of 15

4. Conclusions

Different approaches to estimating the ABLH have been applied to the measurements
collected by BASIL Raman Lidar during the period 16–21 October 2012, in the frame of
HyMeX-SOP 1. This measurement period is characterized by highly variable meteorological
conditions, which result in the presence of stratified aerosol and water vapor features
at different altitudes. Several approaches have been considered, including some very
innovative ones, such as the temperature-dependent pure rotational signals collected by
the Raman lidar systems BASIL and MIPA. Additionally, a novel methodology to obtain an
estimation of the ABLH from the lidar-retrieved water vapor mixing ratio profile has been
investigated. Moreover, other approaches have been considered, such as the one based
on the identification of a peak in the WPR time-height reflectivity plot and the gradient
methodology applied to potential temperature profiles measured by radiosondes.

Even though the ABLH retrieved from radiosondes is considered accurate, the limited
number of launches typically available, even during intensive observation periods, often
does not allow an accurate characterization of the ABLH time evolution. However, different
sensors/approaches, probing the atmosphere continuously, can fill this gap by providing
high-resolution ABLH estimates in both time and space. Some of these approaches were
proposed and tested in the present research effort, where lidar data with a vertical resolution
of 30 m and a time resolution of 5 min have been used as input to obtain the ABLH.
Results reveal a generally good agreement among the ABLH estimates from the different
sensors/approaches (relative bias always smaller than 12.89%). The ABLH estimate based
on the application of the gradient approach to the potential temperature profiles from
the on-site radiosondes was used as a reference. Under unstable weather conditions
(high relative humidity and low clouds), the approaches that appear to be more accurate
are those based on the derivative technique applied to the logarithms of χH2O(z) and
PHiJ(z)/PLoJ(z), with relative biases with respect to the reference smaller than −7.24%
and −8.09%, respectively. Results also reveal that the mean ABLH estimate obtained by
averaging ABLH retrievals from all the approaches is characterized by the smallest relative
bias with respect to the reference (values not exceeding 4.3%), which underlines the benefit
of combining different sensors/approaches, especially in complex weather conditions.
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