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Abstract

Several applications, such as text-to-SQL and computational fact checking, exploit the relationship

between relational data and natural language text. However, state of the art solutions simply fail in

managing “data-ambiguity", i.e., the case when there are multiple interpretations of the relationship

between text and data. Given the ambiguity in language, text can be mapped to different subsets of

data, but existing training corpora only have examples in which every sentence/question is annotated

precisely w.r.t. the relation. This unrealistic assumption leaves the target applications unable to handle

ambiguous cases. To tackle this problem, we present a deep learning method that identifies every pair of

data ambiguous attributes and a label that describes both columns. Such metadata can then be used to

generate examples with data ambiguities for any input table.
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1. Introduction

Ambiguity in natural language comes in many forms [1]. Factual sentences or questions can

be “data-ambiguous” w.r.t the data available in a table. A simple example is the question “Is

Curry the best shooter in NBA history?”. Based on the NBA official data, the answer changes

depending on the interpretation of shooting in terms of table attributes [2]. Indeed, in the context

of querying relational databases using natural language (text-to-SQL), “ambiguity of natural

language queries is one of the most difficult challenges” [3]. The problem of data ambiguities in

text is also relevant for many natural language processing (NLP) applications that use relational

data. These span from computational fact checking, i.e., verify if a given claim holds w.r.t. a

table [4, 5], to question answering in general [6, 7], and document classification [8, 9].

Consider a fact checking application that verifies a textual claim, such as “Carter LA has

higher shooting than Smith SF”, against a relational 𝐷 as in Table 1. Even as humans, it is hard

to state if the sentence is true or false w.r.t. the data in 𝐷. The challenge is due to the two
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Player Team FG% 3FG% fouls apps
𝑡1 Carter LA 56 47 4 5
𝑡2 Smith SF 55 50 4 7

Table 1
A data-ambiguous example contains the sentence “Carter LA has higher shooting than Smith SF” and
the evidence underlined.

Figure 1: Overview of the solution for ambiguity metadata discovery. In the training phase, a model is
fine-tuned for the prediction task. Given a table 𝑡, the model generates the metadata that is then used
to generate examples.

different meanings that can be matched to shooting: the claim can refer to attribute Field Goal
(FG%) or to 3-point Field Goal (3FG%). The same challenge applies with a SQL query expressed

in natural language such as “Did Carter LA has higher shooting than Smith SF?”. We refer to

this issue as data ambiguity, i.e., the existence of more than one interpretation of a text w.r.t. the

data for a human reader.

While existing corpora of examples come from extensive and expensive manual efforts, they

do not contain examples with ambiguous text. Existing applications fail in these scenarios: the

two examples above would lead to a single interpretation, which is incorrect in 50% of the cases.

In this work, we focus on the discovery of ambiguities over a relational schema, i.e., on attribute
ambiguities. Ambiguities over data, and the combination of attributes and data ambiguities are

explored in the full paper [10, 11].

Given a relation, the key idea is to identify the set of attributes involved in ambiguity over

the data. To handle these challenges we introduce deep learning models that predict if two

attributes are ambiguous and if so, it also predicts a text or “label” that makes them ambiguous.

Such information can be used to generate a large corpus of ambiguous claims [10, 12].

Ambiguity Discovery is presented in Section 2 and the Experimental Evaluation in Section 3.

2. Ambiguity Discovery

From our analysis of an online fact-checking application’s log, we estimate that 40% of the

user-submitted sentences present attribute ambiguity.

We describe the overview of the Attribute Discovery (Figure 1) to obtain the ambiguity

metadata for a given relational table.

1) In the training phase, a transformer pre-trained model is fine-tuned with examples of pairs



Table 2
Examples of the aliases for two input attributes from five annotators: synonyms (Syn), related to (RelTo),
derived (der), subtypes (isA), and Wikipedia results (Wiki).

Input syn relTo der isA Wiki
silver medal silver runner up medal trophy medal

earnings wage profit earn giving income

of ambiguous attributes
1
. As training data does not exist for this task, we use six unsupervised,

noisy annotator functions. Given a pair of attributes for a table, the annotators produce a

label for them if they are ambiguous. For example, given the attributes ‘length’ and ‘width’, an

annotator function should produce labels such as ‘dimension’ or ‘magnitude’ that yield some

ambiguity w.r.t. the input attributes. We run these noisy annotators on a large collection of

tables, such as the WebTables corpus [13]. The unsupervised functions are detailed in Section 2.1.

2) The noisy output of the annotator functions is used as training examples for a fine-tuning

task on an encoder-decoder language model [14]. This text-to-text architecture achieves state-

of-the-art results on several NLP tasks. We introduce the novel task of predicting (1) if two

attributes are ambiguous and (2) the label for such ambiguity. We design two variants that take

into consideration different levels of access to the tables. One considers as input the schema

only, while the second assumes that a sample of the data can be fed to the model. We discuss

this component in Section 2.2.

3) Once the model has been trained, we use it at test time with any unseen input table 𝑡. We

test all the possible pairs of non-key attributes in 𝑡 and, if a label is predicted, we consider the

input attribute pair in question as ambiguous.

4) Such ambiguous metadata can be used in a generic Text-Generator for the target applica-

tion [10].

2.1. Annotator Functions

Our goal is to create training data for a model that, given two attributes alongside table schema

(or table schema with a data sample), either produces a label if both attributes are ambiguous or

abstains otherwise. Unfortunately, we cannot count on a large amount of manually annotated

examples. To obtain such data in an unsupervised fashion, we start the process with a set of

basic annotator functions that exploit external resources and heuristics to find candidates for

ambiguity.

The first set of our weak supervision annotators [15] are designed in a two-step approach.

First, an alias function automatically finds possible aliases for a given word. For example, a

set of possible aliases for the word length are {measurement, measure, range}. Then the alias

for two candidate attributes are compared and eventually selected. We design alias functions

that use different external datasets. Four alias functions use the ConceptNet graph [16]. Given

the input word (attribute label), we look for its relationships in the graph that are alternative

1

We focus on pair of attributes as we found it effective for example generation in our target application. The

method can be extended with a post-processing step that analyzes pairs to compute larger sets, e.g., 1pt%, 2pt%,

3pt%.



representations of the input: 𝑎) 𝑠𝑦𝑛 synonyms; 𝑏) 𝑟𝑒𝑙𝑇𝑜 related words; 𝑐) 𝑑𝑒𝑟 words it derived

from; and 𝑑) 𝑖𝑠𝐴 subtypes. For a second external resource, we use the Wikipedia API to search

top page titles as other possible aliases with the wiki function. Table 2 shows examples of the

generated aliases.

Once the aliases have been collected, given a pair of attributes represented by their names,

we say that two attributes are ambiguous if the intersection of their aliases values is non-empty.

The ambiguous labels are the intersection. If the intersection is empty, then the two pairs of

attributes are not ambiguous. An annotation function makes use of the intersection for every

external resource. If the attribute names are not meaningful, the annotator functions output

empty results, e.g., attribute with name “A12” has empty results for all annotator functions.

As a sixth function, we find the Longest Common Substring (LCS) between two attribute

names. Since the result may contain sequences of characters without meaning, we filter the

generated word with a dictionary.

2.2. Fine-Tuning the Language Model

Pre-trained transformer based language models (LMs) such as BERT [17] or T5 [14] have

shown to perform well in different NLP tasks such as question answering and text classification.

Typically, these models are pre-trained on large text corpora such as articles from Wikipedia,

news articles, or Common Crawl. The model is pre-trained in an unsupervised manner, for

example by predicting a missing token or the next-sentence in a paragraph. Unlike conventional

word embedding techniques, pre-trained transformer-based LMs learn better the semantics

of words and provide different representations for the same word when utilized in different

contexts. LMs can then be further fine-tuned for supervised, specific tasks. Tuning with task

specific data is one of the advantages of pre-trained LMs, thanks to the advances in transfer

learning. Fine-tuning is performed in a supervised manner by providing the LM the labeled

input. Fine-tuning allows to generate tasks with new prompts while effectively exploiting

transfer-learning for natural language understanding.

We define two variants of the same fine-tuning task with the objective of identifying a pair of

ambiguous attributes and their common label, in case such label exists. We consider a sequence

generation task where the goal is to learn a function 𝑓 : 𝑥 → 𝑦, where 𝑥 is a sequence of text

containing the pair of attributes and 𝑦 is a sequence of text corresponding to the label (where

none means no ambiguity). The training data comes from the annotator functions discussed

above. The difference between the two tasks lies in the prompt provided to the LM.

In the schema-task, function 𝑓 takes a table schema 𝑇𝑠 and a pair of its attribute with labels 𝑃𝑎

as input, the goal is to predict a text label 𝑙 in case a similarity exists between the two attributes

or None. Hence 𝑥 = (𝑇𝑠, 𝑃𝑎); 𝑦 ∈ (𝑙, 𝑁𝑜𝑛𝑒).
In the data-task, the table header and randomly selected rows are concatenated with the

attributes along with the corresponding label. In this case, 𝑓 ′
assumes as input a sample of the

table data cells 𝑇𝑑, in addition to 𝑇𝑠 and 𝑃𝑎. We denote the schema and the data together as

𝑇𝑠𝑑. Hence, 𝑥′ = (𝑇𝑠𝑑, 𝑃𝑎); 𝑦 ∈ (𝑙, 𝑁𝑜𝑛𝑒). For this task, we discuss alternative representations

of the table cells, namely a row serialization and a column serialization. Our decision of the two

alternatives is based on the typical serialization in the literature to create neural representations

for database tables [18]. While other contextual features are sometimes encoded, we keep our



Schema-task prompt: concatenate 𝑇𝑠, 𝑃𝑎, 𝑙
Player | Team | FG% | 3FG% | fouls | apps, attr1: FG% attr2: 3FG%, [y : shooting]

Data-task prompt (Row): concatenate 𝑇𝑠𝑑, 𝑃𝑎, 𝑙
Player | Team | FG% | 3FG% | fouls | apps || Carter | LA | 56 |47 | 4 | 5 || Smith | SF | ... | 7 || Carter|
..., attr1: FG% attr2: 3FG%, [y : shooting]

Data-task prompt (Column): concatenate 𝑇𝑠𝑑, 𝑃𝑎, 𝑙
Player | Carter | Smith | Carter || Team | LA | SF | SF || FG%| 56 | 55 | 60 || 3FG% | ... || fouls | 4| ...,
attr1: FG% attr2: 3FG%, [y : field goal]

Figure 2: Examples of input prompts for fine-tuning T5 model for the two tasks. “|” represents a cell
separator token and “||” represents row separator.

model simple and generic.

Figure 2 shows a sample of the prompt for the fine tuning of the model based on the basket

data in Table 1. The special tokens are used to help the model distinguish the start and the end

of a cell, of a row, and of a column depending on the configuration.

3. Experiments

We now analyze in detail the solution proposed to identify attributes with ambiguities and their

corresponding labels. In the following, we refer to our methods described in Section 2.2 as

Schema and Data.

Datasets. For the training, we take a sample of 500k tables from the Web Tables corpus [13].

We use relational tables with a header as first row and horizontal orientation. For the test, we

use a crowd-annotated corpus of 13 tables from the popular UCI Dataset. We asked the crowd

to annotate ambiguities for two tasks where (i) the schema or (ii) the schema and the data were

provided. We presented pair of attributes with possible ambiguous labels generated from us.

We asked to mark the ambiguous pairs, moreover, for all the ambiguous pairs, we asked also to

report more ambiguous words if possible.

Metrics. We do not report accuracy, defined as the fraction of correct predictions. As the

number of pairs of attributes defined as ambiguous is much smaller than the number of attribute

combinations, the label distribution is skewed (output is dominated by true negative). We

therefore report precision (P), recall (R), and their combination in the f-measure (F1) for the

prediction of the models, where a prediction for a label is a true positive if such label is in the

ground truth.

Baselines. The annotator functions introduced in Section 2.1 perform very poorly when

naively applied to the test dataset. We therefore introduce two baseline methods. The first, is an

unsupervised labeling heuristic function, uLabel, that uses both ConceptNet and Wikipedia to

find possible common words for the attributes with intersection. If the result is still empty, then

it returns the output of the LCS function. The second is a supervised labeling solution (sLabel),

that also makes use of the pre-trained LM. This fine tuning task takes a single attribute as input

and produces a list of possible labels. It starts with the examples from the same annotators,

i.e., synonyms of the attribute, ConceptNet labels, Wikipedia page titles, and the least common

sub-string between the attribute and every other attribute in the table. The resulting list of



Table 3
Results in % for all methods on the test dataset. Quality of predicting ambiguity and a label for a given
pair of attributes. Our methods reported at the bottom.

Ambiguity Labeling

P R F1 P R F1
uLabel 89.7 10.3 18.5 84.2 6.4 6.35
sLabel 85.6 86.1 85.9 74.1 41.5 53.3

Schema 88.8 84.9 86.8 87.8 77.4 82.3
Data 80.4 91.3 85.5 79.2 84.5 81.8

possible labels is then used as training data. For testing, each attribute is submitted to the model

and the pairs of attribute with non-empty intersection of their outputs are added to the results.

For the evaluation, we start by comparing the different methods. We then show how different

parameters have an impact on our solution. All results are reported for the binary task of

stating if two attributes are ambiguous (Ambiguity) and the task of predicting the correct label

(Labeling).

Resultsw.r.t. the baselines. Table 3 shows the results for the four methods on the test corpus.

We observe that the unsupervised baselines obtains good precision in both tasks, but very low

recall. The other methods perform all well in terms of detecting ambiguous pairs (Ambiguity),

with sLabel close to our methods in terms of f-measure thanks to very high precision and

recall. However, in the task of predicting the label, both our models clearly outperform both

baselines with an f-measure of 82%, while sLabel achieves only 53%. Interestingly, both models

not using data (sLabel and Schema) achieve high precision, while the model that uses schema

and data (Data) achieves much higher recall. This is because the comparison of data values

may lead to ambiguities that are not captured by looking at attribute label only. However, this

may be misleading in some cases, such as those with numerical values with similar domains

but different value distributions. For example, for attributes FG_PCT and FG3M, the human

annotators agree on ‘FG’ as ambiguous label, but Data returns none as they have different value

distributions. For Data, we found experimentally that the best quality results are achieved

with the maximum number of rows to consider in the 𝑇𝑠𝑑 equals to five and that the row

representation outperforms the column representation.

Results w.r.t. the number of training steps. Figure 3 (on the left) shows that both methods

improve the quality of the results with an increasing number of training steps. Results nearly

converge after 3k steps. Training Schema and Data models requires 1.5 hours.

Results w.r.t. the number of T5 parameters (model size). Figure 3 (on the right) reports

the impact of the number of training parameter on the quality of the results. Increasing the

size of the model parameters (sizes: Small < Base < Large < 3B) increases the quality of the

predictions in the final model. LMs with a small number of parameters after 2000 training steps

start to converge to low-quality results. The number of parameters also influences the inference

time. The biggest model (3B) takes on average two seconds per prediction on our machine.
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Figure 3: On the left the impact of the number of training steps and on the right the impact of the
number of T5 parameters on prediction quality.

3.1. End-To-End User Evaluation

We conduct a second user study to evaluate the text generated by an end-to-end system [10]

over 11 datasets. The system is configured to use our ambiguity discovery module. We generate

at least four ambiguous sentences and two not ambiguous ones for each table. We ask eleven

participants to manually annotate the generated text in two ways. First, ambiguity detection:

state if the text is ambiguous w.r.t. the associated schema and a sample of data. Second, attribute
ambiguity detection: if the text is ambiguous, mark the ambiguous attributes. We instruct the

participants with data ambiguity definitions and examples. We give each participant three

datasets to annotate, so that every dataset has three annotations. Then, for every annotator

and dataset, we measure P, R and F1 for both ambiguity and attribute ambiguity detection. For

ambiguity, we count a match if the annotation agrees with the binary label for the text in the

ground truth. For the attribute ambiguity, we count a match if at least one of the annotated

attributes is in the ground truth of the text. Results per dataset (averaged over three participants)

Table 4
Quality Results of the End-To-End experiment.

Dataset Ambiguity Attr. Ambiguity
P R F1 P R F1

Abalone 1.000 0.807 0.893 1.000 0.807 0.893
Adults 0.923 0.889 0,906 0.885 0.885 0.885
Basket Acronyms 0.750 0.813 0.780 0.731 0.809 0.768
Basket 1.000 0.619 0.765 1.000 0.619 0.765
Heart Diseases 0.875 0.656 0.750 0.833 0.645 0.727
Iris 1.000 0.963 0.981 0.981 0.962 0.971
Superstore 0.950 0.679 0.792 0.900 0.667 0.766
Wine Quality 0.950 0.792 0.864 0.950 0.792 0.864
Laptop 0.923 0.667 0.774 0.846 0.647 0.733
Mushroom 1.000 0.905 0.950 1.000 0.905 0.950
Soccer 0.762 0.800 0.780 0.714 0.789 0.750

AVG 0.921 0.781 0.840 0.895 0.775 0.825



are shown in Table 4. We observe an average F1 (over all datasets) of 84% and 82.5% for ambiguity

and attribute ambiguity detection, respectively. Such results show that (1) humans recognize

text with and without data ambiguity, (2) they also recognize the right attributes when there is

ambiguity. As expected, the second action has lower F1 as it is an harder task.
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