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1. Introduction

The (integrated) telegraph process describes an alternating random motion of a particle on the real line with finite
velocity; see e.g. the seminal papers (Goldstein, 1951) and (Kac, 1974), and the quite recent books (Kolesnik and Ratanov,
2013) and (Zacks, 2017). This model has been widely studied, and it is possible to find several non-standard versions
in the literature (generalizations, modifications, etc.). Among the more recent references with some generalizations, we
recall (Crimaldi et al., 2013) for a model driven by certain random trials, Di Crescenzo and Zacks (2015) for a telegraph
process perturbed by a Brownian motion, and Garra and Orsingher (2014) for certain multivariate extensions. Finally, since
in this paper we prove results on large deviations, we also recall (Macci, 2016) (see also some references cited therein).
This kind of processes deserves interest for many possible applications in different fields.

A large class of (possibly non-standard) telegraph processes concern random motions on the real line subject to
barriers; see e.g. Masoliver et al. (1993), Foong and Kanno (1994), Orsingher (1995) (for results and other references the
interested reader can see Chapter 3 in Kolesnik and Ratanov (2013)). There is a wide literature on stochastic processes
subject to the presence of barriers of different kinds. In particular in some references the barriers exhibit a hard reflection,
with random switching to full absorption, and they are called elastic barriers (see e.g. the old paper (Feller, 1954) and
the book (Bharucha-Reid, 1997)); in this paper we use this term even if nowadays it is used for different purposes. In
general the number of visits of an elastic barrier is a geometric distributed random variable M (say), independent of all
the rest. Among the references on stochastic processes subject to elastic barriers, here we recall (Di Crescenzo et al., 2018)

* Corresponding author.
E-mail addresses: antonella.iuliano@unibas.it (A. Iuliano), macci@mat.uniromaZ2.it (C. Macci).

https://doi.org/10.1016/j.spl.2023.109800
0167-7152/© 2023 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.spl.2023.109800
https://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2023.109800&domain=pdf
mailto:antonella.iuliano@unibas.it
mailto:macci@mat.uniroma2.it
https://doi.org/10.1016/j.spl.2023.109800

A. Iuliano and C. Macci Statistics and Probability Letters 196 (2023) 109800

and (Di Crescenzo et al., 2021) (which deal with some versions of telegraph processes), and Giorno et al. (2006), Dominé
(1995, 1996) (which deal with diffusion processes).

In this paper we consider a generalization of the random motion in Di Crescenzo et al. (2018), i.e. a telegraph process
on [0, co), which starts at x > 0, and with an elastic barrier at the origin. The dynamic of this model depends on two
parameters A, u > 0 such that A > . More precisely we consider a non-standard barrier at the origin such that the
number of visits before the absorption is a light-tailed distributed random variable M (thus, in particular, M could be
geometric distributed as happens for the case of elastic barriers); we are not aware of any other work with models
having this kind of barriers. Our aim is to generalize the large (and moderate) deviation results in Macci et al. (2021)
for the model in Di Crescenzo et al. (2018), and more precisely for the absorption time at the origin A,(X, «). The theory
of large deviations provides a collection of techniques which allow to give an asymptotic evaluation of the probabilities
of rare events on an exponential scale (see e.g. Dembo and Zeitouni (1998) as a reference on this topic). The asymptotic
results concern two scalings:

e Scaling 1: x — oo for w;

e Scaling 2: u — oo for Ay(Bu, 1) (for some g > 1).

We conclude with the outline of the paper. We start with Section 2 in which we present some preliminaries on the
model, some examples, some preliminaries on large deviations and a brief description of the results. In Sections 3 and
4 we present the results for scalings 1 and 2, respectively. Finally, in Section 5, we present some numerical estimates
based on an asymptotic Normality result under the scaling 2 when M is a shifted Poisson distributed random variable
(see Example 2.1).

2. Preliminaries

In this section we present the model (with some useful related formulas) and some examples; moreover we present
some preliminaries on large deviations, and a brief description of the results.

2.1. The model, some formulas and examples

Let A, u > 0 be such that A > u. We consider a random motion of a particle that starts at x > 0, moves on [0, c0),
and we are interested in the absorption time A, = As(A, w) at the origin. We refer to Eq. (2) in Di Crescenzo et al. (2018)
(even if here the distribution of the random variable M could be more general than the one in Di Crescenzo et al. (2018)),
and the absorption time can expressed as follows

M-1
Ay =G+ iy Z Co,i,
i=1
where Gy, M, {Cp; : i > 1} are independent random variables. More precisely Cy is the random time until the first arrival
at the origin, and {Cp; : i > 1} are i.i.d. random variables such that, for every integer i > 1, Cy; is the (possible) ith
interarrival time between two consecutive visits of the origin after the time C,; moreover the particle is absorbed at the

origin after M visits of the origin. In view of what follows it is useful to recall that the moment generating function of G,
is

G () = Gy ()4 (for all s € R), (1)
where

Geogr(s) = A T TP i
> if s > M

is the (common) moment generating function of the random variables {Cy; : i > 1}, and

== +2u — 257 —4hu @)

(see eqs. (25)-(41) in Di Crescenzo et al. (2018); see also Eq. (3) in Macci et al. (2021)). In what follows we use the symbols
A'(s; &, u) and A”(s; A, u) for the first and the second derivative of A(s; A, ) with respect to s.

In this paper M is a quite general light-tailed random variable according to the following Condition 2.1. Such a condition
allows to generalize the case studied in the literature (see Eq. (1) in Di Crescenzo et al. (2018)) where M is a geometric
distributed random variable; for more details on this case see also Example 2.3 presented below.

A(S; A, ) =

Condition 2.1. Let M be a positive and integer valued random variable and assume that there exists s > 0 such that

s e D(Gy) ={r e R:Gy(r) < oo}
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Remark 2.1. Note that in general Gy is an increasing function such that Gy (0) = 1, and therefore we have (—o0, 0] C
D(Gpm ). Then, if Condition 2.1 holds, we have

sy := sup D(Gy) > 0 (possibly with sy = 00).

Moreover we can have D(Gy) = (—o0, sy ), possibly with sy = oo, or D(Gy) = (—o0, sy ] with sy < oo. For the first case
see Example 2.1 (where sy = 00) and Example 2.3 where s, = —log(1 — «) for « € (0, 1] (and therefore sy, = oo if and

only if @ = 1); for the second case see Example 2.2 where sy, = log (1 + %) for some 0, & > 0.

Now we present a formula for the moment generating function Gay ;) of Ax = Ax(A, ).

Proposition 2.1. Assume that Condition 2.1 holds. Then we have

)
Gu(l0g Gy po(s)eH 60 if s < v

Gay()(8) = W
WA—Er

00 ifs >

Proof. Firstly we have

Gaop(s) =E [es(Cx+1(M>1) i CO,i)] = G (S)E [e51(M>1) Dy CO,i]
and, by (1), we get

Gayops) = GCO(A,M)(S)f?XA(S;A'M)]E I:eS](M>1) i CO,i] )

Moreover we have
E I:eﬂuw>1} Mo Co,i] -k [IE I:esluvbu YM T, |M]]

=P(M =1)+ Y (Geyuy(S)™ 'P(M = m) =Y (Geyau(s)™'P(M = m)
m=2 m=1

~ Pome1(Geyr(S)"P(M = m)  Gu(log Gey(,(5))

Geoonw)(S) B Geyn,w)(8)
Then we conclude by combining the above equalities. O

— 2 . . . . .
It is worth noting that we can have G, ,.)(s) = oo for some s € (0, M] This issue is discussed in the next
remark.

Remark 2.2. Assume that Condition 2.1 holds. Then, if we consider the set
D(GAx(LM)) ={reR: GAx(LM(r) < 00},

we have

)

" — 2
(=00, 0] C D(Ga.p)) C (‘OO’ MZM}

and the first inclusion is strict. Moreover logGe,;. ) IS an increasing function; then we can consider its inverse
[log GCO(A,H)]‘l(s). In particular we have

A — i) A A A — i)
Gy (W) _ \/; which yields [10g Ge. )] (log \/;) - M

Then, by Proposition 2.1, we have two cases.

e Case A. If sy > log \/;zl possibly with sy, = oo, we have:

if sy = 108\/5 and D(Gy) = (—00, su), then D(Gpy. u)) = <_oo, M)

otherwise

\— 2
D(Gpyr, ) = <—OO, (‘[2«//7)] .
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e Case B. If sy < log \/,El then we set

$(A, i, sm) = [log Geya 1™ (sm) (3)

and we have
PG ) = {(—oo,f(x,u,sm)) if D(Gu) = (—00. 5u)
o (=00, S(A, p, sm)l i D(Gy) = (=00, sml.

Now we present three examples.

Example 2.1. Assume that M is a shifted Poisson distributed random variable; thus, for some 6 > 0,
m—1
PM=m)=——e? (forall m > 1).
(m—1)!
Then we can easily check that
Gu(s) = €D for all s € R;

thus sy = oo and D(Gy) = R (so this example obviously concerns the Case A in Remark 2.2). Then, by Proposition 2.1,
we can easily check that

_ 2
Gay(au)(S) Gy (s)e” Gt Dgrairm g 5 < oyE
Ax(A, 1) = _ 2
oo} if s > M

Example 2.2. Assume that M is a shifted Poisson inverse Gaussian distributed random variable. Then, for some 6, & > 0,
the moment generating function of M is

et VEED g 1)<, ies<log(1+5)
Gu(s) =

0 ifoe —1)> %, i.e.s>log(l+%);

thus D(Gy) = (—o0, sy] with sy, = log (1 + %) As far as Case A in Remark 2.2 is concerned, we have sy > log\/g if

20 —

. 52 A . . . 52 A ey .
and only if 1+ 35 > & or, equivalently, if and only if 2> > \/; — 1. Then, by Proposition 2.1, we can easily check that
we have the following two cases (which correspond to Cases A and B in Remark 2.2, respectively).

&2 A
olfﬁz % —1, then

"
£— E2-20(Gep(r.0)(S)—1HxA(S; 2, 1) . (Vr— )%
Gey(p)(S)e Colrr) mifs < 72ﬂ

00 otherwise.

&2 A
o If 55 <\/;—1,then
— 2_ _ . R
G p(S) = Gy (s)e” VE 2NCCUuEImDIRAGTI e ¢ <50 11, s)
x (A, L -

00 otherwise.

GAX()L,;L)(S) =

Note that (see Case B in Remark 2.2), since D(Gy) = (—o00, sy] with sy = log (1 + %) we have D(Ga, ) =
(—o0, S(A, i, sm)]. In particular we can check that

2
Ga)(8(hs 14, 5m)) = <1 + i—e) ef AL ) < o0

. N 2
since Gey( (A o sm)) = 1+ 5.

Example 2.3. Assume that M is a geometric distributed random variable; thus, for some « € (0, 1],
PM=m)=(1—a)" 'a (forallm > 1)

as in Eq. (1) in Di Crescenzo et al. (2018). Then we can easily compute the moment generating function of M, and we
have

ae’ . .
GM(S): T—(1—a)e lf(]—a)es< ], l.e.S<—10g(1—Ot)
00 if(1—a)* >1, ie.s > —log(1—a);
4
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thus D(Gy) = (—o0, sy ) with s,y = —log(1 — ), and we have sy = oo if and only if « = 1 (because we consider the rule
log 0 = —o0). As far as Case A in Remark 2.2 is concerned, we have sy > log \/% if and only if ﬁ > \/g or, equivalently,

ifand only if « > 1 — \/g Then, by Proposition 2.1, we can easily check that we have the following two cases (which
correspond to Cases A and B in Remark 2.2, respectively).

o lfa>1— /%, then

Gy () (S)E A1) ifs < (V-

Ga o )(S) = 1=(1=a)Gey(n,p)(5) 2
00 otherwise.

In particular, if o =1 — % we can write down

‘XGCO(A,M)(S)EXA(S:L“) . (ﬁ*\/ﬁ)z
—eeE . jfs < Y

Gy )(S) = 1=(1=a)Gey(n,p)(5) 2
o0 otherwise

_ P — Vi)
because Gy 1) (M) = o0, and therefore D(Gy,(.,)) = (_OO’ M)

o lfaa<1— %,then
OIGCO(A,M)(S)B"A(S;)"”) . R
—mre . jfs < §(A, W, S
GAx(A,M)(S) = 1=(1=)Gcy1,0)(5) < St 5m)

00 otherwise
“GCO(A,M)(S)QXA(S:A’M . n .

_ W lfS < S()\., M, S[\/]), 1.e. (] — a)GCO(l.;L)(S) <1
00 otherwise,

where the second equality holds noting that D(Ga,,.)) = (—00, (A, 1, Sm)) because D(Gy ) = (—o0, su) (see Case B
in Remark 2.2) and, moreover, since sy = — log(1— ), we have s < 5(%, u, su) if and only if Gy, .)(s) < €M = %
Finally we remark that the equality Ga,,,.)(S(A, i, Sm)) = oo can be checked noting that «Geyx, ) (S(A, i, Sm)) =
and 1 — (1 — a)GCO(A,#)G()\, M, S]\/[)) =0.

o
1—a
Note that, in both cases o > 1 — \/g andoa <1— % for some values of s we have

_aGeyp(s)er st aGey(a,u)(S)

1= (1= )G 1+ (@ = 1Gey,0(8)

(for the second equality see Eq. (1)). In this way we recover the first displayed formula in the proof of Proposition 9
in Di Crescenzo et al. (2018). Actually one should consider the correct version of Proposition 9 in Di Crescenzo et al.
(2018) discussed in Remark 2.1 in Macci et al. (2021); in particular, for the case @ < 1 — \/g S, w,a) = % in
Remark 2.1 in Macci et al. (2021) corresponds to S(A, u, Sy) in Remark 2.2 (Case B) in this paper.

Gay,0)(S)

2.2. Preliminaries on large deviations, and a brief description of the results

We start with some basic definitions (see e.g. Dembo and Zeitouni (1998), pages 4-5). Let Z be a topological space
equipped with its completed Borel o-field. A family of Z-valued random variables {Z, : r > 0} (defined on the same
probability space (2, F, P)) satisfies the large deviation principle (LDP for short) with speed function v, and rate function
I if: lim,_, o v; = 00; the function I : 2 — [0, oo] is lower semi-continuous;

1
limsup — log P(Z. € F) < — infI(z) for all closed sets F (4)
n—oo Ur zeF
and
1
liminf — log P(Z. € G) > — infI(z) for all open sets G. (5)
r—00 U zeG

A rate function I is said to be good if its level sets {{z € Z : I(z) < n} : n > 0} are compact.
Throughout this paper we prove LDPs with Z = R. In view of what follows we recall a well-known result (specified
for real-valued random variables) which provides (4) and a weak form of (5) with I = A*,

5
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Theorem 2.2 (Gdrtner Ellis Theorem (on R)). Let {Z. : r > 0} be a family of real valued random variables (defined on the same
probability space (§2, F, P)). Assume that the function A : R — (—o0, oo] defined by

1
A(s) == rlirglo - logE [e**] (for all s € R)
r

exists, and it is finite in a neighbourhood of the origin s = 0. Moreover let A* : R — [0, oo] defined by

A*(z) := sup{sz — A(s)} (6)

seR

(it is the Legendre transform of A). Then: (4) holds with I = A*;

1
liminf — logP(Z, € G) > — inf A*(z) for all open sets G
r—>oo Uy zeGNE
where £ is the set of exposed points of I (namely the points in which I is finite and strictly convex); if A is essentially smooth
and lower semi-continuous, then the LDP holds with good rate function I = A*.

We also recall that A in the above statement is essentially smooth (see e.g. Definition 2.3.5 in Dembo and Zeitouni
(1998)) if:

o the interior of the set D4 := {s € R : A(S) < oo} is non-empty;

e the function A is differentiable throughout the interior of D,;

o the function A is a steep (namely | A'(s)| tends to infinity when s in the interior of D, approaches any finite point
of its boundary).

2
M (this can be

For instance the function A(-; A, u) in (2) is essentially smooth because A’(s; A, ) 1 oo as s 1
checked with some computations and we omit the details).

Now, in view of what follows, we present some formulas for Legendre transforms (see (6)). This is the analogue of
Lemma 2.1 in Macci et al. (2021) (in some parts we have exactly the same formulas, in other cases some notation are
suitably changed) and we omit the proof. Note that the two cases presented in the following lemma correspond to Cases

A and B in Remark 2.2, respectively.

Lemma 2.1. Let A(-; A, u) be the function in (2).
(i) Let Ha(z; A, j0) be defined by

Ha(z; &, u) = sup  {sz — A(s; A, w)},
Sf(ﬁ—zﬁﬂ
or equivalently
Ha(z; 2, n) = sup {sz — A(s; A, u)}.
S<<ﬁ—2ﬂ)2

Then we have

2
HA(z;k,M)={Czl)o(\/(z_l))v—x/(z-i-l)u) ifz>1

otherwise.

(ii) For sy < log \/g let S(\, 1, sy) be defined by (3) (see Case B in Remark 2.2), and set

2,y sm) = AT, p, sm); A, ).
Moreover let Hg(z; A, ., Sm) be defined by
Hg(z; A, sm) == sup  {sz — A(s; A, u)},

S<S(A,t,5m)
or equivalently
Hp(z; A, p,sm) = sup {sz — A(s; A, w)}
s<S(A,1,8m)

Then we have

Halz: ) Ha(z; A, ) ifz <Z(A, . Sm)
ZoA, U, SM) = 4 A .
B Mo Sm S(A, u, Sm)z — A(S(A, w, Sm); A, ) otherwise
o0 ifz<1
2 . -
=11 (VE=Dr - Vz+Dn) if1<2 <20 1, 5m)

S(A, iy sm)z — AGS(A, py Sm)s A, 1) if z > Z(h, p, Sm).
6
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Remark 2.3. One can check with some computations that
- A4 —25(R, u, Sm)
zZ(h, i, Sym) = = ,
VOt = 2800, . s))> — 4ap
which is the analogue of Z(A, u, «) in Lemma 2.1 in Macci et al. (2021).

Our aim is to present a generalization of some large and moderate deviation results in Macci et al. (2021). These
asymptotic results concern the random variables {W 1X > O} as the initial position x go to infinity (scaling 1), and
the random variables {A,(Bu, i) : u > 0} as the switching rates A = S and w go to infinity simultaneously (scaling 2).

Lemma 2.1 will be used in Proposition 3.1 and Remark 3.1 for scaling 1 (Cases A and B respectively) with speed
x, and in Proposition 4.1 and Remark 4.1 for scaling 2 (Cases A and B respectively) with speed x. Some other results
concern moderate deviations for which we do not have to distinguish between Cases A and B: Proposition 3.2 for scaling
1, and Proposition 4.2 for scaling 2. Actually, for scaling 2, we also present a non-central moderate deviation result,
i.e. Proposition 4.3 together with Lemma 4.1.

The moderate deviation results in Propositions 3.2 and 4.2 fill the gap between a convergence to a constant (governed
by a suitable LDP) and a weak convergence to a Normal distribution; for more details see Remarks 3.1 and 4.2 in Macci
et al. (2021), respectively. We can also say that the non-central moderate deviation result in Proposition 4.3 fill the gap
between a convergence to a constant (governed by a suitable LDP) and the weak convergence of Ay, (B, ) to A(B, 1)
as (4 — oo, which is a consequence of Lemma 4.1.

3. Large and moderate deviation results under the scaling 1
We start with the analogue of Proposition 3.1 and Remark 3.2 in Macci et al. (2021); in the first case we have a full

LDP, in the second case we have a weak formulation of the lower bound for open sets in term of the exposed points (as
illustrated in Theorem 2.2).

Proposition 3.1. Assume that sy, > log \/g Then the family {W X > 0} satisfies the LDP with speed x, and good rate
function I defined by I1(z) := Ha(z; A, ), where Ha(z; A, ) is the function in Lemma 2.1(i).

Proof. We consider Proposition 2.1, Remark 2.2 (Case A) and Lemma 2.1(i). If sy = log\/g and D(Gy) is open, then

A i (VAi— i)
! S; )"7 ifs « X2 VP
lim — logE [esAx(A,u)] ( "m) .

X—>00 X 00 lfS > (ﬁ—zﬁ)z;
otherwise

_ 2

1 ] | Al k) ifs < L0

lim — logE [e**"*)] = g

X0 X ) ifs > WAV _zﬁ) )

Then the desired LDP holds by a straightforward application of Theorem 2.2. O

Remark 3.1. If sy < log\/g, then we have to consider Remark 2.2 (Case B) and the function Hp(z; A, i, sy) in
Lemma 2.1(ii). Then, by Theorem 2.2, we have

1 Ax(X, .
lim sup — log P (M € F) < —infHg(z; A, u, sy ) for all closed sets F
x—oo0 X X zeF

and

x—00 X zeGNE

1 Ay(A, .
liminf — log P (% € G) > — inf Hp(z; A, u, sy) for all open sets G

where £ = (Z(A, i, sp), 00) is the set of exposed points of Hg(-; A, i, Su).

We conclude with moderate deviations, i.e. with the analogue of Proposition 3.2 in Macci et al. (2021).

Proposition 3.2. For every family of positive numbers {ey : X > 0} such that

&y — 0 and xey — 00, (7)
the family [’W TX > O] satisfies the LDP with speed 1/, and good rate function 71 defined by T1(z) = szm
where A”(0; A, ) = (Ag_kl’jp.
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Proof. We follow the lines of the proof of Proposition 3.2 in Macci et al. (2021) and we have to prove that

5 ACu) -G A”(0; A,
lim logE | e® Vfex = us2 (for all s € R).
x—00 1/ex 2

Firstly we note that

1 | iAx(x,/t)—E/le(m)J log G S Al N
ogE | e* Valex = 0 )\ _E ,
1/éx g [ :| Ex ( 8 GAy(r, 1) <«/E> [Ax( MH\/E)
N 1 log G s E[A«(A, )] s
= X¢& - _ s
ARG JXEx X XEx
where \/)S(TX is close to zero if x is large enough. Moreover
E[A(%, )] = [10g Gay.0] (0) = Gy(0)Gy s y(0) + XA'(0; ., 1) 8)

(the second equality can be checked with some computations). Then, by Proposition 2.1, Eq. (8) and the Taylor formula
of order 2 for the function A(s; A, ), for x large enough we have

5 Ax(hpt)"ElAx(hp)]
logE | e Vxfex

1/ex
_ 1ogGy (oG - +a(—=2
= X&y 2 0g Gy 0g Co(A ) m ms » K

G,,(0)G, (0)
( w0000 o5 M)> s }
X XEx
s , s A”(0; A, 1) §° 1
= & (10g Gum (10g Gy (\/)?X>> - Gm(O)G/cO()\,M)(O)\/E> + Xxex <fa +o0 a

and we conclude by taking the limit as x — co. O

4. Large and moderate deviation results under the scaling 2

We start with the analogue of Proposition 4.1 and Remark 4.1 in Macci et al. (2021); in the first case we have a full
LDP, in the second case we have a weak formulation of the lower bound for open sets in term of the exposed points (as
illustrated in Theorem 2.2).

Proposition 4.1. Assume that sy > log /B, for B > 1. Then the family {A(Bu, 1) : u > 0} satisfies the LDP with speed .,
and good rate function I, defined by I,(z) := xHa(z/x; B, 1), where Ha(z; A, ) is the function in Lemma 2.1(i).

Proof. We consider Proposition 2.1 (note that Gegy, ) (1S) = Geyp,1)(s) and A(us; B, u) = pA(s; B, 1)), Remark 2.2
(Case A) and Lemma 2.1(i). If sy = log /B and D(Gy,) is open, then

XA(s; B, 1) ifs < WEZ2

1
lim — logE [eMSAx(ﬁHYM)] — 2 s
n=>0 (L 00 ifs > (ﬂ;” :
otherwise

XA(s; B, 1) ifs < @

(VB=17
=

Then the desired LDP holds by a straightforward application of Theorem 2.2. O

lim l logE [eusAx(ﬂu,u)] —

H—>00 [

oo} if s >

Remark 4.1. If sy < log./B for B > 1, then we have to consider Remark 2.2 (Case B) and the function Hp(z; B, 1, sy) in
Lemma 2.1(ii). Then, by Theorem 2.2, we have

1
lim sup — log P(uAx(Bu, n) € F) < — ianxHB(z/x; B, 1, sy) for all closed sets F
M ze

JL1—>00

and
1
liminf — log P (uA«(Bu, n) € G) > — inf xHg(z/x; B, 1, s\y) for all open sets G
n—>00 L zeGNE
where £ = (xZ(B, 1, sy ), 00) is the set of exposed points of xHg(-/x; B, 1, Sy ).

Now we study moderate deviations, i.e. with the analogue of Proposition 4.2 in Macci et al. (2021).
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Proposition 4.2. For every family of positive numbers {e, : u > 0} such that
&, — 0and pe, — oo, 9)

the family { /I (A B, ) — E[A(Bu, w)]) : 0 > 0} satisfies the LDP with speed 1/¢,,, and good rate function A defined

- . 22 , 88
by I)(z) :== W' where A”(0; 8,1) = BT

Proof. We follow the lines of the proof of Proposition 4.2 in Macci et al. (2021) and we have to prove that

lim
X—00 ]/gﬂ

[ o VIR Bl 1) E[Ax(ﬁﬂ,ﬂ)])] _ x40 8, 1)

5 s% (for all s € R).

logE

Firstly we note that

Ax Ax s 2 M
logE[ & AER(Ax( Bt )~ EL (/Suu)])] = e, (10g Gaypu (5. ) — ElALBR. w)Is. | —
1/e, & Ep

e (1 i) :
= [y (MlogGAx(ﬁu,u)(m> E[Ax(ﬂu,u)lm)
E[A = [logG (O — ] 10
[Ax(B, w)] = [10g Gay(ppu. )] ( )_M(ﬂ_])—"—X B—1 (10)
——
=A/(0:.1)

(the second equality can be checked with some computations). Then, by Proposition 2.1, Eq. (10) and the Taylor formula
of order 2 for the function A(s; 8, 1), for u large enough we have

logE | e [ o 4/Tsﬂ(ﬂx(ﬂu,u)—JE[Ax(/Su,M)])]

l/su

(1 log G, (logG (MS )) + X A (7MS B )
= MUE — M C s - SPM,
Iz n o(Bu.p) e, P e,

—(;—i-xA/(O-ﬂl)) S )
wp—1) ) SR

1
= ey (;10gGM (lOcho(ﬁ,n( )) ( ,u,gu;ﬂ’l)
2
— ——— +xA'(0; 8,1
(u(ﬂ—1)+x (©:7 )) )
— o (1oece (100 s A'(0; B, 1) s 1
RN C"“‘”(m )_ —wm e\ e ;wu))

and we conclude by taking the limit as © — oo. O

In the final part we present a non-central moderate deviation result. We start with the analogue of Lemma 4.1 in Macci
et al. (2021).

Lemma 4.1. For 8 > 1, the random variables {qu/ﬂ(ﬂu, w): > 0} are equally distributed.
Proof. The result can be easily proved by taking the moment generating functions of the involved random variables,

and by referring to the formulas presented in Proposition 2.1 (note that Geygy, ) (1) = Geyp,1)(S) and A(us; B, u) =
A(s; B, 1)). In fact these moment generating functions do not depend on x. We omit the details. O

Now we prove the analogue of Proposition 4.3 in Macci et al. (2021).

9
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Proposition 4.3. Assume that sy > log /B, for B > 1. Then, for every family of positive numbers {, : pn > 0} such
that (9) holds, the family {MeMAx/(m)(ﬂu, n) > 0} satisfies the LDP with speed 1/¢,, and good rate function I, (see
Proposition 4.1).

Proof. We follow the lines of the proof of Proposition 4.3 in Macci et al. (2021). We consider Proposition 2.1 (again
we note that Geygu,u)(1s) = Geyp,1)(s) and A(us; Bu, u) = pA(s; B, 1)), Remark 2.2 (Case A) and Lemma 2.1(i). We
distinguish two cases.

In the first case, i.e. if s,y = log /B and D(Gy) is open, then

logE [eqﬂsltAX/(us“)(ﬂ/t,lt):l =&, logE I:esMAx/(ugu)(ﬂﬂ,H):I

1/¢e,
_ 2
_ [ eutlog Gutlog Geygpyu (s + 72 Alsias B, )} for sy < P2
00 otherwise
132
_ ] eulog Gulog Geyp 1(9)) + xA(s; B, 1) fors < (ﬁ‘%
00 otherwise,
and therefore
. : (WB=1?
lim logE[ MMAX/W#)(;;M,M)] _ xA(s; B, 1) ifs < f
H—>00 /EM 00 lfS > (ﬁ;l) .

In the second case, i.e. if s; > log /B and/or D(Gy) is closed, then

logIE[ ueﬂAx/(w)(ﬂu.m] _ [8# l0g Gu(10g Geygp,1(s)) + XA(s; B, 1) for s < 217
1/eu 00 otherwise,
and therefore

lim logE [6$#6Mx/(um>(ﬁu-“)] N :XA(S; ol s = (ﬁgl)z

u—oo 1/g, 00 ifs > (ﬁz_l)z

Finally, in both cases, the desired LDP (for every choice of positive numbers {e,, : u > 0} such that (9) holds) can be
obtained as a straightforward application of Theorem 2.2. O

5. Numerical estimates by simulations

In this section we follow the same lines of Section 5 in Macci et al. (2021). We refer to an asymptotic Normality result
under the scaling 2, i.e. the weak convergence of ,/u(A«(Bu, ) — E[A«(Bu, n)]) to the centred Normal distribution with
variance xA”(0; 8, 1). The aim is to present some numerlcal values obtained by simulations to estimate §; actually we
assume that 8 > By for some known Sy > 1.

Now we recall some formulas presented in Section 5 in Macci et al. (2021). Let @ be the standard Normal distribution
function. We denote the simulated sample mean of A,(Su, u) for chosen values 8 = B, > Bo > 1 by Ay(B«u, 1) and,
when p is large, we have:

o 1( 1L
e the confidence interval for g, at the level £, when x < Ay(Bwit, i) 8fox ( 2 )

(Bo-1>

(ﬂ 8Bpx H[ -|-X A(,B ) Sﬁox o~ 1(12j +x

x(Batt, 1) (Bo—103 M « U U Bo— 1)3 N/ (1)

Ap s " U8) g ) 2 i0E)

s I F N G v APults K o— 1)3 TR
e the point estimation of 8,

A , X
(Bt 1) + (12)

Ax(Butt, i) — X

Now we are ready to present some numerical values for Example 2.1 (instead of Example 2.3 as in Macci et al. (2021)).
In all cases we perform simulations by setting x = 1 and By = 1.50; furthermore, the size of simulated sample paths is
103 and the confidence level is £ = 0.95. For each table we vary one parameter (among 6, u and B,) and the other two
are fixed.

10
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Table 1
Numerical approximations for the confidence interval for 8 varying 6.
0 “w B x% Ax(Brit, 1t) Confidence interval (11) Point estimation (12)
15 1000 1.75 3.666667 3.672570 (1.657130,1.868960) 1.748343
1000 1.75 3.666667 3.661619 (1.65950,1.873114) 1.751422
1000 1.75 3.666667 3.672501 (1.657145,1.868985) 1.748363
10 1000 1.75 3.666667 3.698365 (1.651608,1.859329) 1.741190
Table 2
Numerical approximations for the confidence interval for 8 varying u.
0 " B xg’;f} Ax(Biit, 1) Confidence interval (11) Point estimation (12)
3 1000 2 3 3.00749 (1.840883,2.222106) 1.996271
3 5000 2 3 2.999793 (1.9234911,2.09058) 2.000104
3 10000 2 3 2.999903 (1.944638,2.062365) 2.000048
3 50000 2 3 2.999883 (1.974494,2.026999) 2.000058
Table 3
Numerical approximations for the confidence interval for g varying B..
0 m B. x% AdBatt, 1) Confidence interval (11) Point estimation (12)
5 1000 15 5 5.018858 (1.455599,1.548262) 1.497654
5 1000 2 3 3.010646 (1.839767,2.21971) 1.994705
5 1000 2.5 2.3 2.338547 (2.169924,3.067012) 2.494158
5 1000 3 2 2.000227 (2.458583,4.178333) 2.999545

In Table 1 we consider some values of 6 (u and 8, are constant). The point estimates and the length of the confidence
intervals are stable for & = 1.5, 6 = 3 and 6 = 5; on the contrary, for § = 10, the point estimate is slightly less accurate,
and the confidence interval is slightly narrower.

In Table 2 we consider some large values of i (6 and B, are constant). Then, as one can expect, the accuracy of point
estimates and confidence intervals generally improves when u increases; indeed our formulas (11) and (12) concern the
scaling 2 where yu — oo.

In Table 3 we consider some values of 8, (6 and u are constant). In this case, as B, increases, we have more accurate
point estimates and wider confidence intervals.
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