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ABSTRACT

We find necessary AQ1and sufficient conditions for the Lp-dissipativity of
the Dirichlet problem for systems of partial differential operators of
the first order with complex locally integrable coefficients. As a by-
product we obtain sufficient conditions for a certain class of systems
of the second order.
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1. Introduction

The goal of the present paper AQ2is to find necessary and sufficient conditions for the
Lp-dissipativity for systems of partial differential equations of the first order (1 < p < ∞).

Previously we have considered a scalar second order partial differential operator whose
coefficients are complex-valued measures [1]. For some classes of such operators we
have algebraically characterized the Lp-dissipativity. The main result is that the algebraic
condition

|p − 2| |〈ImA ξ , ξ〉| � 2
√
p − 1 〈ReA ξ , ξ〉

(for any ξ ∈ R
n) is necessary and sufficient for the Lp-dissipativity of theDirichlet problem

for the differential operator ∇t(A ∇), where A is a matrix whose entries are complex5
measures and whose imaginary part is symmetric.

We remark that conditions obtained in [1] characterizes the Lp-dissipativity individu-
ally, for each p. Previous known results in the literature dealt with the Lp-dissipativity for
any p ∈ [1,+∞), simultaneously. In the same spirit we have studied the elasticity system
and some classes of systems of partial differential operators of the second order in [2,3].10

Our results are described and considered in the more general frame of semi-bounded
operators in the monograph [4].

The main result of the present paper concerns the matrix operator

Eu = Bh (x)∂hu + D (x)u ,

whereBh (x) = {bhij(x)} andD (x) = {dij(x)} arematrices with complex locally integrable
entries defined in the domain� of R

n and u = (u1, . . . , um) (1 � i, j � m, 1 � h � n). It
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states that, if p �= 2, E is Lp-dissipative if,AQ3 and only if,

Bh (x) = bh(x)I a.e., (1)

bh(x) being real locally integrable functions, and the inequality

Re〈(p−1∂h Bh (x)− D (x))ζ , ζ 〉 � 0

holds for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ �. If p = 2 condition (1) is replaced

by the more general requirement that the matrices Bh (x) are self-adjoint a.e.
On combining this with the results we have previously obtained, we deduce sufficient5

conditions for the Lp-dissipativity of certain systems of partial differential operators of the
second order.

2. Preliminaries

Let � be a domain of R
n. By C0(�) we denote the space of complex valued continuous

functions having compact support in �. Let C1
0(�) consist of all the functions in C0(�)10

having continuous partial derivatives of the first order. The inner product inC
m is denoted

by 〈·, ·〉 and, as usual, the bar denotes complex conjugation.
In what follows, if G is am × mmatrix function with complex valued entries, then G ∗

is its adjoint matrix, i.e. G ∗ = G
t , G t being the transposed matrix of G .

Let Bh and C h (h = 1, . . . , n) bem×mmatrices with complex-valued entries bhij, c
h
ij ∈15

(C0(�))
∗ (1 � i, j � m). Let D stand for a matrix whose elements dij are complex-valued

distributions in (C1
0(�))

∗.
We adopt the summation convention over repeated indices unless otherwise stated.
We denote by L (u, v) the sesquilinear form

L (u, v) =
∫
�

〈Bh ∂hu, v〉 − 〈C h u, ∂hv〉 + 〈D u, v〉

defined in (C1
0(�))

m × (C1
0(�))

m, where ∂h = ∂/∂xh.
The integrals appearing in this definition have to be understood in a proper way. The

entries bhij being measures, the meaning of the first term is
∫
�

〈Bh ∂hu, v〉 =
∫
�

vi ∂huj dbhij .

Similar meanings have the terms involving C . Finally, the last term is the sum of the20
actions of the distribution dij ∈ (C1

0(�))
∗ on the functions uj vi belonging to C1

0(�).
The form L is related to the system of partial differential operators of the first order:

Eu = Bh ∂hu + ∂h(C
h u)+ D u

Following [4], we say that the form L is Lp-dissipative if

ReL (u, |u|p−2u) � 0 if p � 2; (2)25

ReL (|u|p′−2u, u) � 0 if 1 < p < 2 (3)

Authorquery:
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for all u ∈ (C1
0(�))

m.
In the present paper, saying the Lp-dissipativity of the operator E, we mean the

Lp-dissipativity of the corresponding form L , just to simplify the terminology.
Let us start with a technical lemma which is a particular case of a result in [4, p.94]. The

proof is mainly included here to keep the exposition as self-contained as possible.5
Lemma 1: The operator E is Lp-dissipative in� if, and only if,∫

�

(
(1 − 2/p)|v|−2

Re〈Bh v, v〉 Re〈v, ∂hv〉 − Re〈Bh ∂hv, v〉

+ (1 − 2/p)|v|−2
Re〈C h v, v〉 Re〈v, ∂hv〉 + Re〈C h v, ∂hv〉 − Re〈D v, v〉

)
� 0 (4)

for any v ∈ (C1
0(�))

m. Here and in the sequel the integrand is extended by zero on the set10
where v vanishes.

Proof:
Sufficiency. First suppose p � 2. Let u ∈ (C1

0(�))
m and set v = |u|(p−2)/2u. We have

v ∈ (C1
0(�))

m and u = |v|(2−p)/pv, |u|p−2u = |v|(p−2)/pv. From the identities

〈Bh ∂hu, |u|p−2u〉 = −(1 − 2/p)|v|−1〈Bh v, v〉∂h|v| + 〈Bh ∂hv, v〉,15

〈C h u, ∂h(|u|p−2u)〉 = (1 − 2/p)|v|−1〈C h v, v〉∂h|v| + 〈C h v, ∂hv〉,
〈D u, |u|p−2u〉 = 〈D v, v〉, ∂h|v| = |v|−1

Re〈v, ∂hv〉

we see that the left hand side in (4) is equal to−L (u, |u|p−2). Then (2) is satisfied for any
u ∈ (C1

0(�))
m.20

If 1 < p < 2 we may write (3) as

Re
∫
�

(〈(Bh )∗u, ∂h(|u|p′−2u)〉 − 〈(C h )∗∂hu, |u|p′−2u〉 + 〈D∗ u, |u|p′−2u〉) � 0

for any u ∈ (C1
0(�))

m. The first part of the proof shows that∫
�

(− (1 − 2/p′)|v|−2
Re〈(Bh )∗v, v〉 Re〈v, ∂hv〉 − Re〈(Bh )∗v, ∂hv〉

− (1 − 2/p′)|v|−2
Re〈(C h )∗v, v〉 Re〈v, ∂hv〉 + Re〈(C h )∗∂hv, v〉 − Re〈D∗ v, v〉) � 0

(5)

for any v ∈ (C1
0(�))

m. Since 1− 2/p′ = −(1− 2/p), the last inequality coincides with (4).25
Necessity. Let p � 2 and set

gε = (|v|2 + ε2)1/2, uε = g2/p−1
ε v ,

where v ∈ (C1
0(�))

m. We have

〈Bh ∂huε , |uε|p−2uε〉 = −(1 − 2/p)g−p
ε |v|p−2〈Bh v, v〉 Re〈v, ∂hv〉

+ g−p+2
ε |v|p−2〈Bh ∂hv, v〉,

〈C h uε , ∂h(|uε|p−2uε)〉 = g−p
ε |v|p−4((1 − 2/p)(1 − p)|v|2
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+ (p − 2)g2ε )〈C h v, v〉 Re〈v, ∂hv〉 + g2−p
ε |v|p−2〈C h v, ∂hv〉,

〈D uε , |uε|p−2uε〉 = g−p+2
ε |v|p−2〈D v, v〉,

on the set F = {x ∈ � | |v(x)| > 0}. The inequality gaε � |v|a for a � 0, shows that the
right hand sides are majorized by L1 functions. Since gε → |v| pointwise as ε → 0+, an5
application of dominated convergence theorem gives

lim
ε→0+

∫
�

〈Bh ∂huε , |uε|p−2uε〉dx

=
∫
�

(− (1 − 2/p)|v|−2〈Bh v, v〉 Re〈v, ∂hv〉 + 〈Bh ∂hv, v〉)dx,

lim
ε→0+

∫
�

〈C h uε , ∂h(|uε|p−2uε)〉dx

=
∫
�

((1 − 2/p)|v|−2〈C h v, v〉 Re〈v, ∂hv〉 + 〈C h v, ∂hv〉)dx,10

lim
ε→0+

∫
�

〈D uε , |uε|p−2uε〉dx =
∫
�

〈D v, v〉dx. (6)

These formulas show that the limit

lim
ε→0+ (− ReL (uε , |uε|p−2uε))

is equal to the left-hand side of (4). The functions uε being in (C1
0(�))

m, (2) implies (4).
If 1 < p < 2, from (6) it follows that the limit

lim
ε→0+ (− ReL (|uε|p′−2uε , uε))

coincides with the left-hand side of (5). This shows that (3) implies (5) and the proof is
complete.15

3. A result for a system of ordinary differential equations of the first order

The aim of this section is to obtain an auxiliary result (see Theorem 1 below) concerning
a particular system of ordinary differential equations of the first order.

We start with an elementary result, which we prove for the sake of completeness.
Lemma 2: Let α,β , γ and δ be real constants such that20 ∫

I
(α cos2 x + β cos x sin x + γ sin2 x)(ϕ2(x))′dx =

∫
I
δ cos2 x ϕ2(x)dx (7)

for any real valued ϕ ∈ C1
0(I). Then α = γ and β = δ = 0.

Proof: Setting

A = α cos2 x + β cos x sin x + γ sin2 x, B = δ cos2 x
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we may write (7) as ∫
I
A(ϕ2)′dx =

∫
I
Bϕ2dx, ∀ϕ ∈ C1

0(I).

By an integration by parts we get∫
I
(B + A′)ϕ2dx = 0, ∀ϕ ∈ C1

0(I).

Thanks to the arbitrariness of ϕ, we find A′ = −B, i.e.

(γ − α) sin (2x)+ (β + δ/2) cos (2x) = −δ/2
for any x ∈ I . This implies γ − α = β + δ/2 = −δ/2 = 0 and this gives the result.

The next theorem provides a criterion for the Lp-dissipativity of one-dimensional
operators with complex constant coefficients and no lower order terms.
Theorem 1: Let I ⊂ R be an open interval and B a constant complex matrix. We have
that the operator Eu = B u′ is Lp-dissipative if, and only if,5

B = b I , b ∈ R, if p �= 2 (8)

B = B∗, if p = 2. (9)

Proof:
Sufficiency. Let p = 2. We have to show that

− Re
∫
I
〈B v′, v〉 dx � 0

for any v ∈ (C1(I))m. The left hand side vanishes because∫
I
〈B v′, v〉 dx =

∫
I
〈v′,B v〉 dx = −

∫
I
〈v,B v′〉 dx = −

∫
I
〈B v′, v〉 dx .

If p �= 2, in view of Lemma 1 we have to show that10 ∫
I

(
(1 − 2/p)|v|−2

Re〈B v, v〉 Re〈v, v′〉 − Re〈B v′, v〉) dx � 0 (10)

for any v ∈ (C1(I))m. Condition (8) implies 〈B v, v〉 = b |v|2 and 〈B v′, v〉 = b 〈v′, v〉, the
constant b being real. Therefore the left hand side of (10) is equal to

−2b/p Re
∫
I
〈v, v′〉dx = b/p

∫
I
(|v|2)′dx = 0

and the sufficiency is proved.
Necessity. In view of Lemma 1 we have that E is Lp-dissipative if, and only if,∫

I
(1 − 2/p)|v|−2

Re〈B v, v〉 Re〈v, v′〉 dx −
∫
I
Re〈B v′, v〉 dx � 0 (11)
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for any v ∈ (C1
0(I))

m.
Writing the condition (11) for the function v(− x) we find

∫
I
(1 − 2/p)|v|−2

Re〈B v, v〉 Re〈v, v′〉 dx −
∫
I
Re〈B v′, v〉 dx � 0

and then

∫
I
(1 − 2/p)|v|−2

Re〈B v, v〉 Re〈v, v′〉 dx −
∫
I
Re〈B v′, v〉 dx = 0 (12)

for any v ∈ (C1
0(I))

m.
Suppose now p �= 2. Fix 1 � j � m and consider the vector v = (v1, . . . , vm) in which

vk = 0 for k �= j. Equality (12) reduces to

(1/2 − 1/p)Re bjj
∫
I
(|vj|2)′dx −

∫
I
Re (bjjv′

jvj)dx = 0,

(without summation convention) and since the first integral vanishes, we get

Im bjj
∫
I
Im (v′

jvj)dx = 0.

The arbitrariness of vj leads to5

Im bjj = 0 (j = 1, . . . ,m). (13)

Fix 1 � h, j � m with h �= j and consider the vector v = (v1, . . . , vm) in which vk = 0
for k �= h, j. In view of (12) we have (without summation convention)

(1/2 − 1/p)
∫
I
(|vh|2 + |vj|2)−1

Re (bhh|vh|2 + bhjvjvh + bjhvhvj + bjj|vj|2)
× (|vh|2 + |vj|2)′dx10

+ −
∫
I
Re (bhhv′

hvh + bhjv′
jvh + bjhv′

hvj + bjjv′
jvj)dx = 0. (14)

In particular, taking vh = α and vj = β , with α and β real valued functions, integrating
by parts in the last integral and taking into account (13), we find

(1/2 − 1/p)
∫
I
(α2 + β2)−1(bhhα2 + Re (bhj + bjh)αβ + bjjβ2)(α2 + β2)′dx15

− Re (bhj − bjh)
∫
I
αβ ′dx = 0

symbol
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Taking now α(x) = ϕ(x) cos x, β(x) = ϕ(x) sin x, ϕ ∈ C1
0(I), we obtain

(1/2 − 1/p)
∫
I
(bhh cos2 x + bjj sin2 x

+ (Re (bhj + bjh)− p/(p − 2)Re (bhj − bjh)) sin x cos x)(ϕ2(x))′dx

= Re (bhj − bjh)
∫
I
cos2 x ϕ2(x)dx.

5

By Lemma 2 we get
bjj = bhh, Re bhj = 0 (h �= j). (15)

Take now vh = α, vj = iβ in (14). On account of (13), we have

(1/2 − 1/p)Re (i(bhj − bjh))
∫
I
(α2 + β2)−1αβ(α2 + β2)′dx

− Re (i(bhj + bjh))
∫
I
αβ ′dx = 0.10

The same reasoning as before leads to

Im bhj = 0 (h �= j).

Together with (13) and (15), this implies the result for p �= 2.
An inspection of the proof just given, shows that, if p = 2, we have only:

Im bjj = 0, (j = 1, . . . ,m);
Re (bhj − bjh) = 0, Im (bhj + bjh) = 0 (j �= h),15

and (9) is proved.

4. Lp-dissipativity of systemsof partial differential operators of the first order

Let us consider the system of partial differential operators of the first order

Eu = Bh (x)∂hu + D (x)u . (16)20

From now onBh (x) = {bhij(x)} andD (x) = {dij(x)} arematrices with complex locally
integrable entries defined in the domain� of R

n (1 � i, j � m, 1 � h � n). Moreover we
suppose that also ∂h Bh (where the derivatives are in the sense of distributions) is a matrix
with complex locally integrable entries.
Theorem 2: The operator (16) is Lp-dissipative if, and only if, the following conditions are25
satisfied:

(1)

Bh (x) = bh(x) I , if p �= 2, (17)

Bh (x) = (Bh )∗(x), if p = 2, (18)
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for almost any x ∈ � and h = 1, . . . , n. Here bh are real locally integrable functions
(1 � h � n).

(2)

Re〈(p−1∂h Bh (x)− D (x))ζ , ζ 〉 � 0 (19)

for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ �.5

Proof:
Sufficiency. In view of Lemma 1 we have to show that∫

�

(
(1 − 2/p)|v|−2

Re〈Bh v, v〉 Re〈v, ∂hv〉

− Re〈Bh ∂hv, v〉 − Re〈D v, v〉
)
dx � 0 (20)

10

holds for any v ∈ (C1
0(�))

m.
Let p = 2. In view of the self-adjointness of B, we have

Re
∫
�

〈Bh ∂hv, v〉dx = − Re
∫
�

〈(∂h Bh )v, v〉dx − Re
∫
�

〈Bh ∂hv, v〉dx

and then

2Re
∫
�

〈Bh ∂hv, v〉dx = − Re
∫
�

〈(∂h Bh )v, v〉dx .

Consequently

− Re
∫
�

〈Bh ∂hv, v〉dx − Re
∫
�

〈D v, v〉dx

=
∫
�

(2−1
Re〈(∂h Bh )v, v〉 − Re〈D v, v〉)dx

15

and the last integral is greater than or equal to zero because of (19).
Let now p �= 2. Keeping in mind (17) we get

(1 − 2/p)
∫
�

|v|−2
Re〈Bh v, v〉 Re〈v, ∂hv〉dx

−
∫
�

Re〈Bh ∂hv, v〉dx −
∫
�

Re〈D v, v〉dx

= p−1
∫
�

(∂hbh) |v|2dx −
∫
�

Re〈D v, v〉dx .20

Condition (19) gives the result.
Necessity.Denote by B1 the open ball {y ∈ R

n | |y| < 1}, takeψ ∈ (C1
0(B1))

m and define

v(x) = ψ((x − x0)/ε)

where x0 is a fixed point in� and 0 < ε < dist(x0, ∂�).
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Putting this particular v in (20) and making a change of variables, we obtain∫
B1
(1 − 2/p)|ψ |−2

Re〈Bh (x0 + εy)ψ ,ψ〉 Re〈ψ , ∂hψ〉dy

−
∫
B1

Re〈Bh (x0 + εy)∂hψ ,ψ〉dy − ε

∫
B1

Re〈D (x0 + εy)ψ ,ψ〉dy � 0.

Letting ε → 0+ we find5 ∫
B1
(1 − 2/p)|ψ |−2

Re〈Bh (x0)ψ ,ψ〉 Re〈ψ , ∂hψ〉dy

−
∫
B1

Re〈Bh (x0)∂hψ ,ψ〉dy � 0 (21)

for almost any x0 ∈ � and for any ψ ∈ (C1
0(B1))

m.
Fix now 1 � k � n. Take α ∈ (C1

0(R))
m and β ∈ C1

0(R
n−1). Consider

ψε(x) = α((xk − (x0)k)/ε) β(yk),

where yk denotes the (n− 1)-dimensional vector (x1, . . . , xk−1, xk+1, . . . , xn). Choose ε, α10
and β in such a way sptψε ⊂ �.

We have

n∑
h=1

∫
�

|ψε|−2
Re〈Bh (x0)ψε ,ψε〉 Re〈ψε , ∂hψε〉dx

=
∫

R

|α(t)|−2
Re〈Bk (x0) α(t),α(t)〉 Re〈α(t),α′(t)〉dt

∫
Rn−1

|β(yk)|2dyk

+ ε

n∑
h=1
h�=k

∫
R

Re〈Bh (x0) α(t),α(t)〉dt
∫

Rn−1
Re (β(yk)∂hβ(yk))dyk ,15

∫
�

Re〈Bh (x0)∂hψε ,ψε〉dx

=
∫

R

Re〈Bk (x0)α′(t),α(t)〉dt
∫

Rn−1
|β(yk)|2dyk

+ ε

n∑
h=1
h�=k

∫
R

Re〈Bh (x0) α(t),α(t)〉dt
∫

Rn−1
Re (β(yk) ∂hβ(yk)) dyk .

Therefore20

lim
ε→0+

( ∫
�

(1 − 2/p)|ψε|−2
Re〈Bh (x0)ψε ,ψε〉 Re〈ψε , ∂hψε〉dx

−
∫
�

Re〈Bh (x0)∂hψε ,ψε〉dx
)

=
∫

R

(
(1 − 2/p)|α(t)|−2

Re〈Bh (x0) α(t),α(t)〉 Re〈α(t),α′(t)〉dt
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− Re〈Bk (x0)α′(t),α(t)〉
)
dt
∫

Rn−1
|β(yk)|2dyk

and from (21) it follows

(1 − 2/p)
∫

R

|α(t)|−2
Re〈Bk (x0) α(t),α(t)〉 Re〈α(t),α′(t)〉dt

−
∫

R

Re〈Bk (x0)α′(t),α(t)〉dt � 0.5

The arbitrariness of α shows that the operator with constant coefficients Bk (x0)u′ is
Lp-dissipative. Theorem 1 applies and (17)–(18) is satisfied.

As we already proved in the sufficiency part, (17) and (18) implies that inequality (20)
can be written as10 ∫

�

(p−1
Re〈(∂h Bh )v, v〉 − Re〈D v, v〉)dx � 0, (22)

for any v ∈ (C1
0(�))

m. Take

vε(x) = ε−n/2ζ ϕ((x − x0)/ε)

where x0 ∈ �, ζ ∈ C
m, |ζ | = 1, ϕ is a real scalar function in C1

0(R
n), sptϕ is contained in

the unit ball, ε is sufficiently small and∫
Rn
ϕ2(x)dx = 1 .

Putting vε in (22) and letting ε → 0+ we obtain (19) for almost any x0 ∈ �.

Let us consider now instead of (16), the operator

Bh (x)∂hu + ∂h(C
h (x)u)+ D (x)u, (23)15

where Bh, C h, D , ∂h Bh and ∂h C h are matrices with complex locally integrable entries.
Theorem 3: The operator (23) is Lp-dissipative if, and only if, the following conditions are
satisfied

(1)

Bh (x)+ C h (x) = bh(x) I , if p �= 2, (24)

Bh (x)+ C h (x) = (Bh )∗(x)+ (C h )∗(x), if p = 2, (25)20

for almost any x ∈ � and h = 1, . . . , n. Here bh are real locally integrable functions
(1 � h � n).

(2)
Re〈(p−1∂h Bh (x)− p′−1∂h C h (x)− D (x))ζ , ζ 〉 � 0 (26)

for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ �.25
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Proof: It is sufficient to write the operator (23) as

(Bh (x)+ C h (x))∂hu + ∂h(C
h (x)) u + D (x)u

and apply Theorem 2, observing that

p−1∂h(B
h +C h )− ∂h C h = p−1∂h Bh −p′−1∂h C h .

5. Sufficient conditions for the Lp-dissipativity of certain systems of partial
differential operators of the second order

As a by-product of the results obtained in the previous section, we obtain now sufficient
conditions for the Lp-dissipativity of a class of systems of partial differential equations of5
the second order.
Theorem 4: Let E be the operator

Eu = ∂h(A
h (x)∂hu)+ Bh (x)∂hu + D (x)u, (27)

where A h (x) = {ahij(x)} are m × m matrices with complex locally integrable entries and
the matrices Bh (x), D (x) satisfy the hypothesis of Theorem 2. If10

Re〈A h (x)λ, λ〉 − (1 − 2/p)2 Re〈A h (x)ω,ω〉(Re〈λ,ω〉)2
− (1 − 2/p)Re (〈A h (x)ω, λ〉 − 〈A h (x)λ,ω〉)Re〈λ,ω〉 � 0 (28)

for almost every x ∈ � and for every λ,ω ∈ C
m, |ω| = 1, h = 1, . . . , n, and conditions

(17)–(18) and (19) are satisfied, the operator E is Lp-dissipative.15

Proof: Theorem 2 shows that the operator of the first order

E1 = Bh (x)∂hu + D (x)u

isLp-dissipative.Moreover, inequality (28) is necessary and sufficient for theLp-dissipativity
of the second order operator

E0 = ∂h(A
h (x)∂hu) (29)

(see [4, Theorem 4.20, p.115]). Since E = E0 + E1, the result follows at once.
20

Consider now the operator (27) in the scalar case (i.e.m = 1)

∂h(ah(x)∂hu)+ bh(x)∂hu + d(x)u

(ah, bh and d being scalar functions). In this case such an operator can be written in the
form

Eu = div (A (x)∇u)+ B (x)∇u + d(x) u (30)
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where A = {chk}, chh = ah, chk = 0 if h �= k and B = {bh}. For such an operator one can
show that (28) is equivalent to

4
pp′ 〈ReA (x)ξ , ξ〉 + 〈ReA (x)η, η〉 − 2(1 − 2/p)〈ImA (x)ξ , η〉 � 0 (31)

for almost any x ∈ � and for any ξ , η ∈ R
n (see [4, Remark 4.21, p.115]). Condition (31)

is in turn equivalent to the inequality:5

|p − 2| |〈ImA (x)ξ , ξ〉| � 2
√
p − 1 〈ReA (x)ξ , ξ〉 (32)

for almost any x ∈ � and for any ξ ∈ R
n (see [4, Remark 2.8, p.42]). We have then

Theorem 5: Let E be the scalar operator (30) where A is a diagonal matrix. If inequality
(32) and conditions (17)–(18) and (19) are satisfied, the operator E is Lp-dissipative.

More generally, consider the scalar operator (30) with a matrix A = {ahk} not10
necessarily diagonal. The following result holds true.
Theorem 6: Let the matrix ImA be symmetric, i.e. ImA t = ImA . The operator

div (A (x)∇u)

is Lp-dissipative if and only if inequality (32) holds for almost any x ∈ � and for any ξ ∈ R
n.

For the proof we refer to [4, Theorem 2.7, p.40], where the result is proved under the
more general assumption that the entries of A are complex measures.

As in the proof of Theorem 4, the last result implies the following theorem.15
Theorem 7: Let the matrix ImA be symmetric. If inequality (32) and conditions (17)–
(18) and (19) are satisfied, the operator (30) is Lp-dissipative.

Coming back to system (27), in case the main part of the operator (27) has real
coefficients, i.e. the matrices A h have real locally integrable entries, we have also
Theorem 8: Let E be the operator (27) where A h are real matrices. Let us suppose A h =20
(A h )t and A h � 0 (h = 1, . . . , n). If conditions (17)–(18) and (19) are satisfied and

(
1
2

− 1
p

)2
(μh

1(x)+ μh
m(x))

2 � μh
1(x) μ

h
m(x) (33)

for almost every x ∈ �, h = 1, . . . , n, where μh
1(x) and μ

h
m(x) are the smallest and the

largest eigenvalues of the matrix A h (x) respectively, the operator E is Lp-dissipative. In the
particular case m = 2 condition (33) is equivalent to

(
1
2

− 1
p

)2
( trA h (x))2 � detA h (x)

for almost every x ∈ �, h = 1, . . . , n.

Proof: Theorem 4.22 in [4, p.116] shows that (33) holds if and only if the operator (29) is
Lp-dissipative. Combining this with Theorem 2 gives the result.25



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 13

GCOV 1321638
21-4-2017

Initial
CE:PM

Results similar to Theorems 4–8 hold for the operator

∂h(A
h (x)∂hu)+ Bh (x)∂hu + ∂h(C

h (x)u)+ D (x)u .

We have just to replace conditions (17), (18) and (19) by (24), (25) and (26) respectively.

6. The Lp-quasi-dissipativity

The operator E is said to be Lp-quasi-dissipative if the operator E − ωI is Lp-dissipative
for a suitable ω � 0. This means that there exists ω � 0 such that

Re
∫
�

〈Eu, |u|p−2u〉dx � ω‖u‖pp

for any u in the domain of E.
The aim of this section is to provide necessary and sufficient conditions for the Lp-

quasi-dissipativity of a partial differential operator of the first order.5
Lemma 3: The operator (16) is Lp-quasi-dissipative if, and only if, there exists ω � 0 such
that

(1 − 2/p)
∫
�

|v|−2
Re〈Bh v, v〉 Re〈v, ∂hv〉dx − Re

∫
�

〈Bh ∂hv, v〉dx

− Re
∫
�

〈D v, v〉dx � −ω
∫
�

|v|2dx (34)
10

for any v ∈ (C1
0(�))

m.

Proof: The result follows immediately from Lemma 1.

Theorem 9: Let E be the operator (16), in which the entries of D and the entries of ∂h Bh

belong to L∞(�). The operator E is Lp-quasi-dissipative if, and only if, condition (17) and
(18) is satisfied.15

Proof:
Necessity.Arguing as in the first part of the proof of Theorem 2, we find that (34) implies

that the ordinary differential operator Bk (x0)u′ is Lp-dissipative, for almost any x0 ∈ �,
k = 1, . . . ,m. As we know, this in turn implies that (17) and (18) is satisfied.

Sufficiency. As in the proof of Theorem 2, condition (17) and (18) gives20

(1 − 2/p)
∫
�

|v|−2
Re〈Bh v, v〉 Re〈v, ∂hv〉dx − Re

∫
�

〈Bh ∂hv, v〉dx

= p−1
Re
∫
�

〈(∂h Bh )v, v〉dx .

We define ω by setting

ω = max

⎧⎨
⎩0, ess sup

x∈�
ζ∈Cm ,|ζ |=1

Re〈(D (x)− p−1∂h Bh (x))ζ , ζ 〉
⎫⎬
⎭ . (35)25
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The left hand side of (34) being equal to

Re
∫
�

〈(p−1∂h Bh (x)− D (x))v, v〉dx ,

inequality (34) follows from (35).

Remark: It is clear from the proof of Theorem 9 that, if

λ = ess sup
x∈�

ζ∈Cm ,|ζ |=1

Re〈(D (x)− p−1∂h Bh (x))ζ , ζ 〉 < 0,

we have not only the Lp-dissipativity of the operator E, but also the stronger inequality

Re
∫
�

〈Eu, |u|p−2u〉dx � λ‖u‖pp

with λ < 0.
The next result follows from similar arguments to those above.

Theorem 10: Let E be the operator (23), in which the entries of D , ∂h Bh and ∂h C h

belong to L∞(�). The operator E is Lp-quasi-dissipative if, and only if, condition (24) and5
(25) is satisfied.

7. The angle of dissipativity

Let E be the operator (16) and assume it is Lp-dissipative. The aim of this Section is to
determine the angle of dissipativity of E. This means to find the set of complex values z
such that zE is still Lp-dissipative.10

What comes out is that the angle of dissipativity of E is always a zero-sided angle, unless
E degenerates to the operator D u.

We start recalling the following lemma
Lemma 4: Let P and Q two real measurable functions defined on a set � ⊂ R

n. Let us
suppose that P(x) � 0 almost everywhere. The inequality15

P(x) cosϑ − Q(x) sinϑ � 0 (ϑ ∈ [−π ,π])

holds for almost every x ∈ � if and only if

arccot
[
ess inf
x∈� (Q(x)/P(x))

]
− π � ϑ � arccot

[
ess sup
x∈�

(Q(x)/P(x))
]

where � = {x ∈ � | P2(x)+ Q2(x) > 0} and we set

Q(x)/P(x) =
{

+∞ if P(x) = 0, Q(x) > 0
−∞ if P(x) = 0, Q(x) < 0.
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Here 0 < arccot y < π , arccot (+ ∞) = 0, arccot (− ∞) = π and

ess inf
x∈� (Q(x)/P(x)) = +∞, ess sup

x∈�
(Q(x)/P(x)) = −∞

if � has zero measure.
For a proof we refer to [2, p.236] (see also [4, p.138]).

Theorem 11: Let E be the operator (16) and suppose it is Lp-dissipative. Set

P(x, ζ ) = − Re〈D (x)ζ , ζ 〉,
Q(x, ζ ) = − Im〈D (x))ζ , ζ 〉,5

� = {(x, ζ ) ∈ �× C
m | |ζ | = 1, P2(x, ζ )+ Q2(x, ζ ) > 0}.

If
Bh (x) = 0 a.e. (h = 1, . . . , n), (36)

the operator zE is Lp-dissipative if, and only if,10

ϑ− � arg z � ϑ+ , (37)

where

ϑ− = arccot
(
ess inf
(x,ζ )∈�Q(x, ζ )/P(x, ζ )

)
− π

ϑ+ = arccot

(
ess sup
(x,ζ )∈�

Q(x, ζ )/P(x, ζ )

)
.

15

If condition (36) is not satisfied and there exist ζ ∈ C
m and x ∈ � such that

Re〈(p−1∂h Bh (x)− D (x))ζ , ζ 〉 > 0, (38)

the angle of dissipativity of E is zero, i.e. zE is dissipative if, and only if, Im z = 0, Re z � 0.
Finally, if condition (36) is not satisfied and

Re〈(p−1∂h Bh (x)− D (x))ζ , ζ 〉 = 0, (39)20

for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ �, the operator zE is Lp-dissipative if, and

only if, Re z = 0.

Proof: Suppose (36) holds. It is obvious that zE satisfies condition (17) and (18) for any
z ∈ C. Since E is Lp-dissipative, P(x, ζ ) � 0 for any ζ ∈ C

m, |ζ | = 1 and for almost any
x ∈ � (see (19)). In view of Lemma 4 we have

Re〈−z D (x))ζ , ζ 〉 � 0

if, and only if, (37) holds.
Assumenow that (36) is not satisfied. Condition (17) and (18) is valid for all thematrices

z Bh if, and only if, Im z = 0. Moreover, suppose that there exist ζ ∈ C
m and x ∈ � such25
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that (39) holds; therefore

Re
(
Re z〈(p−1∂h Bh (x)− D (x))ζ , ζ 〉

)
� 0 (40)

for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ � if, and only if, Re z � 0.

Assume instead (39) for any ζ ∈ C
m, |ζ | = 1 and for almost any x ∈ �; then condition

(40) holds for any z ∈ C. This means that zE is Lp-dissipative if, and only if, Im z = 0.5

Remark: Suppose (36) is not satisfied and that (39) holds for any ζ ∈ C
m, |ζ | = 1 and

for almost any x ∈ �. In this case we have ‘two’ zero sided angles of dissipativity and not
only one. This should not surprise. Indeed for such operators we have the Lp-dissipativity
of both E and ( − E). This is evident, e.g. for the operators with constant coefficients
considered in Theorem 1.10
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