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Abstract—This paper focuses on the problem of parameter
estimation for a Fluctuating Two-Ray (FTR) model in the conext
of wireless mobile communications. Precisely, the receidesignal
is assumed to be the superposition of two dominant componest
(typically a direct plus a reflected path signal) in addition to
diffusive secondary contributions. The sighal componentsay be
affected by random amplitude shadowing, statistically moeled
by Nakagami-mn distribution, multiplied by unknown scaling
factors with random uniform independent phases, whereas ta
diffusive component is assumed to follow the complex Gaussi
distribution. Exploiting the method of moments, a4 x 4 nonlinear
system is herein mathematically derived, which is very hardto
be solved due to the strong nonlinearity. Therefore, a sequiial
procedure based on some prior information about the diffusie
component power level is devised to solve it. The effectivess
of the proposed estimation technique is shown by evaluatinthe
normalized root mean square errors as well as mean errors and
standard deviations in several operating conditions of pratical
interest also considering the limit case of only one-ray in @ler to
compare the proposed approach to simpler estimators, alredy
presented in the literature. The results show the robustnes of
the new estimator even under a multipath model mismatch.
Finally, the effectiveness of the proposed estimation precure
is confirmed through measured mmWave data.

Keywords—Two-ray model, 5G, Nakagami-m distribution,
method of moments, statistical estimators, mmWave.

I. INTRODUCTION

Future generation wireless networks are aimed at sprea@—
ing the available spectrum resources to provide users a
connected objects with an increased speed, bandwidth, a

capacity. In particular, the Internet of Things (loT) is exfed

to massively expand the use of 5G networks, that are conti
uously evolving to meet the requirements of future applicay

tions related to cellular operations, 10T security, andmoek

challenges I]. 5G-based communications will be capable to

geographical ranges leading to heterogeneous commuaricat

scenarios. So far, the Nakagami-fading model P] is a

prominent candidate to cover all the possible scenarios f
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future broadband wireless communication system, since it i
suitable for the characterization of a class of channels tha
is wider than that associated to Rayleigh and Rician fading
[3]. To this end the millimeter wave (mmWave), i.e., between
30 and 300 GHz, and device-to-device (D2D) are regarded
as promising technologies/]FH[9]. As a matter of fact, in
the last years, they experienced a wide growth due to the
increasing demand in cellular channels capacity that requi
new technologies as primary solution to contrast a possible
congestion of the trafficl[0]-[12]. Therefore, many researches
have been driven to the design of suitable models for the
communication channels related to these novel devités-[

[15.

In practice, the above mentioned model, sometimes re-
ferred to as “Rician shadowed fading” modé€l€], because
it generalizes the Rician fading one, reflects any amplitude
fluctuation in the specular waves (e.g., variations in thappr
agation condition or fast moving scatterers) that takesepla
over the time period of interest. For completeness, before
proceeding further, it is important to recall that, the ieed
signals in wireless communications systems rapidly vary du
to the random fluctuations of both phases and amplitudes as
well as time of arrival. These fluctuations generates the so-
called small-scale fading which is typically describedbtigh
Rayleigh, Rician, Nakagamiz distributions and others. More
precisely, in the absence of a dominant contribution, ire.,
non-line of sight (NLoS) environment, the widest utilized

rmpproximation for the received I-Q signals is the Gaussian
I’(gstribution, that leads to the Rayleigh one for its envelop
r

Exponential for its power). However, in many situations
of practical interest, a line of sight (LoS) component, vhic

"Hominates the weak diffusive contributions, is also preaed

he received signal envelope for this small-scale fadinth pa
amplitudes must be described by other distributions sucloas
instance, the Rician distributiori ]], [1]. A statistical model,

Sapable of encompassing all the aforementioned situatisns

special cases, is the Nakagamidistribution, developed in’].
In fact, by tuning its shape parameter,say, it is possible to

Obbtain the Gaussian fading (for = 1, the Nakagamix distri-

bution approximates the Rayleigh distribution) or to maithel
no fading channel (forn going to infinity) [L9]. Moreover, it
has been widely demonstrated through experiments and mea-
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m distribution has good fits with the fading radio channel from
acquired datal9-[27]. So far, the reviewed fading models

do not consider the possible random variations of the LoS
components, which can be due to partial block of the LoS due
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to the presence of obstacles such as trees, buildings, aml so e a second dominant component that is the transmitted
between the transmitter and receiver devité].[In order to signal that undergoes a single reflection on a plane or
account for this behavior (therefore reducing model mismat surface between transmitter and receiver (e.g., reflected
losses), the shadowed fading model has been introduced. As a by the ground and/or a building, etc.);

matter of fact, in this situation, also the LoS component is a e several contributions arising from random backscattering

stochastic variable, modeled sometimes as a log-Nor#il [ by the objects present in the scene (referred to as
or in most cases with a simpler Nakagamirandom variable diffusive component).
[16]. Although the FTR model was also recently studied for

Recently, the Nakagami fading model has evolved in the gppjications, such as physical layer security][and channel
so-called fluctuating two-ray (FTR) fading model, which hascapacity pe], the estimation of FTR model parameters, at least
been proposed as a versatile model that well characterizeg pest of authors’ knowledge, has received less attention.
the small-scale fading effects on the wireless propagatiofor this reason, in this paper, we fill this gap and devise
in mmWave and D2D environments][ [24]. In fact, FTR 3 novel estimation procedure for FTR model parameters. At
fading moqle_l fits well exp.enmental wireless channels, sagh  the design stage, we assume that the two rays undergo the
outdoor millimeter-wave field measurements at 28 GHz whergame fluctuation. This assumption naturally raises in diffe
a bimodality behavior in its empirical probability density ent wireless scenarios. In fact, if the scattering centees a
function (pdf) has been experiencet]. Moreover, it also |gcated in proximity of the transmitter or receiver, the agar
encompasses several well known distributions as, formesta components will travel alongside most of the way and, hence,
the Gaussian, Rayleigh, Rician and Nakagamienes, as would share almost the same fluctuatiofs][ The proposed
special or limiting cases’[]. Another important feature that z)gorithm relies on the method of moments]which leads to
has Contr!buted to the IntrOdUCt_Ion of the FTR model in thes% System of nonlinear expressions obtained by Computing fou
contexts is that even though it shares a bimodal structureyigh order moments of the received signal amplitude. Figdin
it can be also seen as a generalization of unimodal Riciargosed form expressions for the solution of the considered
Nakagamim, Rayleigh models and so o?{-[26]. As @  system is not an easy task due the high level of nonlinearity.
matter of fact, in the absence of a LoS contribution, the FTR=qr this reason, we resort to a sequential procedure that ex-
becomes the Rayleigh model since only the diffusive Ganssiap|oits some a-priori information about the diffusive compat.
components are present. On the other hand, if a dominant Lo§pecifically, starting from a prior estimate of the powerelev
term is available at the receiver side, it becomes unimodalf the diffusive component and after some algebraic maaipul
such as Rician, Nakagami-distributions and so on, as well as tjons, the quoted system is reduced a2 nonlinear system
the corresponding shadowed alternatives in case of armplitu composed by a second- and fourth-order equations. Solving
fluctuations. However, especially for mmWave devices widel this new system of equations enforcing also some physical
utilized for short distance links, due to the presence otigth  constraints on the involved parameters, two unknowns can be
and/or buildings, besides the direct transmitted sigria e found. Then, accounting for the remaining relationshipsagn
one reflected by these surfaces often impinges on the receivghe unknowns, the others are directly obtained from the ésrm
[7], [27). Therefore, an FTR model represents a suitable tool tqa point better explained in what follows). The effectivese
manage the received signal in these contexts. FigsBows  of the devised algorithm is evaluated through simulations,
a pictorial representation of the above mentioned FTR modalsing as figure of merit the normalized root mean square error
highlighting the two dominant signal components acquired a(NRMSE) and the mean estimates of the proposed estimators.
the receiver side. The results demonstrate that the proposed approach is able
to provide good estimation capabilities in several corgext
of practical interest together with a reduced computationa
burden. Finally, the effectiveness of the proposed styaieg

tx

LoS signal

rx also confirmed by exploiting measured mmWave data.
The paper is organized as follows. Sectibnformulates
reflected signal Y the problem, providing the FTR model together with the
expression of the four considered high-order momentsi@ect

ground [l describes the proposed parameters estimation procedure
based on the method of moments. In Sectidnhe behavior of
Figure 1. Pictorial representation of the two-ray model. the proposed estimation technique is investigated acoaunt

for different situations of practical interest. Finallye@&ion
More precisely, the received signal, when a single ground/ concludes the paper and outlines possible future research
reflection dominates the multipath effe¢td], can be seen as tracks.
the superposition of the following signals:
e a direct term propagating in free space that is the so- NOTATION

called LoS ray or componeft We adopt the notation of using&{-}, | - |, and (-)* to
INote that, the two-ray model is still valid if in place of thes component  indicate the real part, the modulus and the complex conju-
there is a dominant reflected signal. gate of the argument, respectively. The acronym i.i.d. rmean
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independent and identical distributé]:] stands for statistical with 2 and m the spread and fading (or shape) parameters,
expectation whereas the lettgrindicates the imaginary unit, respectively. However, sincg, v2, andf) are not known, the
i.e., 7 = v/—1. The gamma function is denoted by(m), latter is statistically meaningless. As a matter of facvegi
whereas®(z,y;a) = 1Fi(x;y;a) is the Kummer Confluent ¢ € R, z can be expressed as

Hypergeometric Function3[l]. We write = ~ CN(u, 0?) if =

. . . \ — Je1 Je2
is a circular complex normal random variable with meaand z=c(v1e’? +ve’??)r/c+e

variances? > 0; Finally, z ~ U(0,27) means that: obeys = (vice?®" +vace??) r/c+ e
the uniform distribution within the intervdD, 2x]. = (V)% + vhe?) 1y + ¢, 3)
Il PROBLEM FORMULATION wherev] and v} are unknown, whereas follows the Nak-

In this section, the estimation problem for the FTR modelagami distribution with parametens and(2/c?. Thus, the like-
parameters is suitably defined. Precisely, the focus is on a lihood function ofz takes on the same value when computed
generic wireless communication channel characterizechby t at (v1,v2,,m) and (v}, v5, Q/c?, m). Otherwise stated, the
presence of two dominant components (two-ray) in additiorconsidered parameter models forare not identifiable 3],
to diffusive secondary paths. According to this model, the[34]. For this reason and without loss of generality, we can set
complex baseband received signal can be written as Q =1 (namely,c = Q) leavingv; andvs unaltered. Therefore,

the Nakagamim moments simplify as

2z = (v1€7P! +v2e7P2)r f ¢, 1)
Eflr’] =1
where: m1
e v, € R, 7 = 1,2, are unknown deterministic scaling E[lr|] = —
factors accounting for the specific path propagation
losses. In the following of this paper, without loss of E[|r|®] = w (4)
generality, we are assuming that and v, are real m
positive (or null) scaling factors with; > vs. E[|r[*] = (m +1)(m +2)(m + 3)
e ;, 1 = 1,2, are the phases of the complex amplitude m?3

of the received component, modeled as independent as gjready claimed, the aim of this paper is to provide a

uniform random variable in the intervdD, 2n], i.e., procedure towards the estimation of the unknown parameters

@i ~U0,27], i =1,2. , w1, va, m, ando?. To this end, we compute the expressions
e r < R isarandom variable representing the shadowingys the first four even noncentral moments of

of both the LoS component and t_he main reflected S'gna,b\s a preliminary step, let us first explicitly write the sqear

(LoS shadow fading), that derives from the relative ,oqulus of the received signal

motion of the transmitter and receiver pair as well as

the possible variability of the scene (e.g., moving cars,

oscillating trees due to wind conditions, and so on) that |2|? = 22"

could provide a partial masking of the signal path. It — [Uf + v2 4 20105 cos(p — @2)} r? + |e|?

is worth underlining that, following the lead of4],

we assume the same fluctuation phenomena for both the ) ;

LoS and the reflected component. For instance, when + 2(v1 sin g1 + v sin o )e;7.

the reflection arises in proximity of either the transmitter Now, exploiting the independence among the involved random
or the receiver, it can be claimed that the two dominan{ ariables, it is possible to derive the first four even morsent

()

+ 2(v1 cos 1 + v cOS 2)E,T

components follow approximately the same path, sharingf -, viz. |22, n = 1,..., 4. Precisely, the second and fourth
the same fluctuations. moment can be easily derived as

e ¢ =¢, —jg; ~ CN(0,0?) independent of- and ;,
1 = 1,2. This component is given by the superposition of po = E[|2]] = 02 + v2 + 02 (6)

the thermal noise generated by the electronic devices and
the diffusive NLoS paths. Moreover, ande; denotes and
its real and imaginary parts, respectively.
As for the shadow fading factor, it is modeled as a 4 4 4 5 o
Nakagamim random variable, since this statistical model pa = E[|2|*] = (vf + vy + dvjv3)
better describes most of the fading channels with respect to 125419 (v% i v%) o219 (v% i v%) o2

m—+ 1

Rayleigh and Rician distributions. Moreover, the latten te ] (7)
obtained as special cases of a Nakagamdistribution [3], = [(v2 +v2)? + 20202] m+

[2€], [37]. Generally speaking, the pdf of the Nakagami- m

distribution is given by 7¢] +4(v} +v3)o? + 204

As for the last two considered moments, in Appendixve
—mr derive their final expressions to come up with the following

2mmr2m71 2
- T'(m)Qm eXp{ Q ]’ mz05 () system of equations

pr(r) =
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pi2 = vf +v3 + 0
1
pa = [(v] 4 v3)? + 207 3] mt + 4(v} + v3)o? + 201
m+41)(m+ 2
o = (6% +13)" + 60 +eeeg) TN+
1
+9 [(v] +v3)? + 20703 i i
+ 18(v? +v2)o* + 60°

1
ps = [(vF +v3)* + 6vivy + 12(vf + v3) vivs]
(m4+1)(m+2)(m+3)

m3

+ [16(v] +v3)? + 960703 ] (v +v3)o

X

m2

1
+ [72(vF +v3)? + 144003 ] Al

+96(vi +v3)o® + 2408
(8)

In the next section, we devise a procedure to find a solutio

of the above system.

IIl. PARAMETERS ESTIMATION PROCEDURE

This section is aimed at finding a procedure to properlyA

estimate the model parametds , v2, m, o2) involved in the

5 (m+1)(m+2)

p2 = T1+ T4 9)
pa = (7 + 222) (1 + 23) + 4o 24 + 225 (10)
pe = (22 + 6x2)z1 (1 + 23)(1 + 223)

+ (927 + 1822) x4 (1 + x3)

+ 18x122 + 63
ps = (z] + 623 + 1227x,)

X (14 x3)(1 + 2x3)(1 + 3x3)

+ (1622 + 9622) 124 (1 + 23)(1 4 223)

+ (7227 + 14420)23 (1 + 23)

+ 962125 + 242

(11)

(12)

It is now worth underlining that the system of equations
(9)-(12) is a nonlinear system. As a consequence, a direct
solution of the system withd unknowns is not possible
because the equation set is highly nonlinear. Of course, a
possible procedure for solving the quoted non-linear sys-

m of equations could consist in the direct application of
the Levenberg-Marquardt algorithm3], [36]. Precisely, the
Levenberg-Marquardt algorithm (LMA) solves the generic
problemF(x) = 0 made of non-linear equations and vectorial
unknowns by iterative local linearization of the equations
However, the LMA converges towards the optimum solution
only if the initial working point of (¥ is in a “close”
neighborhood of that solution. For these reasons, in what
follows we devise a strategy aimed at directly solving the
system at hand.

. Method of Moments based Procedure
To search for one (or more) solutions for the systeéf (

system 8). Precisely, the parameters estimation procedurél?), we can firstly solveq) for z,, and substitute it in the
devised in this paper is based on the method of moment&maining equations. However, before doing this, we intoed
[30] and can be synthetically described through the followingthe actual estimates of all the considered moments obtaised

guidelines:

1) introducing the change of variables = v? + v3,

zy = vv3, x5 = L, x4 = o, the system of equation
given in 8) can be transformed in a novel system in

the variablesr;, i = 1,...,4;
2) starting from the moments estimates, gayji4, fi, fis,

the sample moments, i.e.,
1 N
flo = N 2|z¢|2
=

L X
flg = N 2|z¢|4

and exploiting some prior knowledge about, the 1 (13)
devised system of equations is sequentially solved pro- e = — Z|zi|6
viding the corresponding values of, x5, x3, andxy,. N i=1
3) from the estimates of the unknown, z», z3, and . 1 & g
x4, those of the physical parameters, vig., v, m, Hs =% Z|Zi|
and o2, are derived. In all cases, the multiplicity of i=1
the solutions is reduced by the physical constraintsyith z;, i = 1,..., N, denoting samples containing both dom-

of powers (vZ,v3,0%) and of the parametern of

inant and diffuse signal components. This choice is maiyat

Nakagamirm distribution which must be positive (and by the fact that exploiting the Kintchine’s Strong Law of
integer) as well as exploiting the likelihood of the | arge Numbers{7] the estimators in13) are asymptotically

received signal reported in Appendix

unbiased.
Thus, solving §) with respect tar, yields

Given the above, the system of equations in the new

variablesz;, it = 1,...,4 is given by

(14)

Zq :[LQ—Il.
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Replacing x4 in (10)-(12) with the above expression and
exploiting the sample moments id3), we come up with the 29 2490 \4
following 3 x 3 system of equations in the three unknowns (21 + Iz)(xl * xz)f% ) X )
2o, andz; = (2 + 6x2)71 [j1a — 421 (fiz — x1) — 2(f12 — 21)?]
X [fus — 4wy (fia — 1) — 2(fiz — 1) + fla
—4$1 (ﬂg — LL‘l) — Q(ﬂg — $1)2 — (JJ% + 2,@2)}

fu = (22 + 222) (1 + x3) + (27 + 222)9(af + 222) (12 — 1)
- N N 2
+4ay (fiz — 01) +2 (i — 21)? (15) <ty = o) =200~ )]
fig = (22 + 622)x1 (1 + 23)(1 + 223) + (2] + 2x2) (2] + 222)18x1 (12 — x1)
2 2 ~ 3
+9(a? + 229) (12 — 1) (1 + 3) + (21 + 222) (27 + 222)6(f12 — 21)" 3
+ 1811 (fiz — 71)° + 6 (fir — 71)° (16)

fis = (27 + 622 + 1222x,)
+ (1622 4 9622)x1 (fia — x1) (1 + 23)(1 + 2z
(163 2)1 (B2 1) ) ») After some algebraic manipulations (i.e., performing hé t

2 ~ 2
+ (7221 + 1442) (A2 — 21)” (1 + x3) multiplications in @3) and ordering the resulting terms in
+ 9621 (fie — x1)3 + 24 (g — w1)4. (17)  decreasing powers af;), the latter can be recast as

Now, (15 can be rearranged as follows

($%+2I2)(1+I3) = [L4—4x1(ﬂ2—x1)—2(ﬂ2—:171)2, (18) [4ﬂ§ _ 2ﬂ4+8(b2} .’II?
that is equivalent to + [~1243 + Yfuafin — fis] 21
(2% + 2x2) + (27 + 22)23 + [8fi5 — 81314 — 8fi3w2 + 203 + 4fiaxs — 4823

X R X (19) X T R
= fug — a1 (fiz — 1) — 2(fi — 21)?, + [—48:@/@ + 36142212 — 4u6x2] 2
and hence + [48[13z0 — 483 uazs + 960525 + 12fi5ws — 48f1423] 21
(22 + 2223 — 48325 + 36fiafiows — Aficrs = 0

= ﬂ4 — 4$1 (ﬂg — .’L‘l) — Q(ﬂz — $1)2 - (ZC% + 2$2). ] ) ) ) (24)

(20) that is a fifth-order equation ;. Nevertheless, 24) can
be also seen as a second-order equation with respect to the
unknownz,. Therefore, reorganizind) in decreasing order
with respect to the powers af;, it becomes

Following the same approach as f@Q), namely, multiplying
(15) by 2 and solving for(z? + 2z2)(1 +2z3) and multiplying
(15) by 3 and solving for(z? + 2z2)(1 + 3x3), it is possible
to write the following two equalities:

(22 4 229)(1 4 223)
= iy — 421 (fiz — 21) — 2(f12 — x1)* + fia (21)
—da1(fiz — 1) = 2(fiz — 1)” — (] + 212)

[—487i3 + 961321 + 36/1afi2 — 4875 — 48j1az1 — 4fis] 73
+ [48i521 — 48i5aT — A8fisfiax1 — 8fi5x] + 36fiofiaz?
+12f1521 + 4fiaxd + 82F — 4figai] xo + 85T

and ) o R o
— 120327 — 8fisf1aa? + 40527 + iofiaz’

(z3 + 222)(1 + 3x3)
= g — 4x1 (fiz — x1) — 2(A2 — 21)* — (27 + 22)
+ fig — 4x1 (g — 1) — 2(fiz — 1) + fla
— 4z (g — 1) — 2(fiz — 21)* — (2] + 232).

+ 2fda] — 2} — iz} =0

Exploiting (20), (21), and @2), equation{6) can be written Exploiting (20), (21), and @2), equation {7) can be also
in terms of the two unknownsg; andzx i.e. written in terms of only the two unknowns, andz,, i.e.,
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component). Then, an estimate af; can be obtained as
(2 + 2w2) (2] + 2a2) (27 + 222) /1

(0
= (2 + 622 + 12222, SR (28)
X [fua — 4@ (i — 1) — 2(fia — :c1)2] Where:c(o) is an existing estimate of;. _
. Now, for the considered value af;, both equations25)
X [fra = 41 (fi2 — 1) = 2(f12 — 21)° + fua and @7) can be solved to obtain at most 2 solutions from the
—4x1(fig — x1) = 2(fiz — 21)? — (27 + 222)] former, sayz{") and#{?, and 4 solutions from the latter,
X [fia — 421 (12 — 1) — 2(fi2 — 21)* — (2} + 222) sayi:(b D :céb D 4 (b % and :z:(b 2 . Discarding those solutions

which are not real and posmve the remaining are selected a

+ fia — 41 (fio — 21) — 2(fiz — 21)* + [ . , .
fia = dz1(fiz = 71) iz = 1)” + i candidates to estimate the model parameters. Since BB}h (

—da1(fiz — 1) = 2(jiz — 21)* — (27 + 222)] and @7) must be simultaneously valid, among the possible
+ (2] 4 222) (162 + 9622)21 (12 — 1) candidate solution (™" #{*? 21 g2 308 a0
X [fia — 41 (fiz — 1) — 2(fiz — xl)z] we must choose a palr of cand|dates that are ideally iddntica

or, at least, very close each other (in fact, both equatiomst m

—4x — 1) —2(f1ie — x1)? + [
[M 1(f2 ) (2 )5t be satisfied at the same time). To this end, a selectionioriter

—4x1(fiz — 21) = 2(fiz — 21)? — (27 + 222)] can be the following
+ (@7 + 229) (23 + 222) (7227 + 14432) (fiz — x1)?
X [fia — 421 (2 — 21) — 2(fi2 — 21)?] (jéco’jgb)) —arg  min ( - (ai) Agb,m)?
+ (23 4 222) (27 + 222) (27 + 222)9671 { gl 20 ’“)} (29)
x (fiz — x1)* + (2] + 222) (27 + 222) (25 + 222) i=1,2, k=1,...,4.
N 4
x 24(fi2 — 1) (26) Clearly, as a particular case, if no acceptable pair of solu-

tions satisfies the constraints’ check, the procedure istatho
and it should restart with new acquired data. Once the best
Equation 26) can be suitably recast following the same line couple of solutions has been found, its numerical average is

of reasoning as23). Thus, it becomes utilized as final estimate of, i.e.,
5y ) (30)
[—96/3 + 9623 + 48}i4] 25 T
+ [—129675 + 30721321 + 9121314 — 15361527 It is worth noticing thati, can be also selected among
— 1536i9/141 — 1536102 — 84/i2 + 7681422 (;eé“%:eé“) as the one that maximizes the likelihood function
1129622 — 8is] 23 of the _recei_ved s@gnalz, whose _expression _ is derived in
1 HS] IQA AppendixB (in particular, the considered solutions are used to
+[- 288713 + 15361321 + 432fi3f1a — 2952137} compute the parameter values used in the likelihood functio
— 153613 u4:v1 + 1280ﬂ§x§ 216413413 + 2376uzu4x§ given z, then it is selected the solution returning the highest

likelihood value). However, in the simulation conductedtiis

1032/ 3841 — 640/ — 512/ - . . .
* A5 + 384finflia fiafiay fia paper the first approach has been utilized to obtain the final

2 X ¢

+36/15 — 378/13xT — 5167 — 9625 — 12/igz]] 23 estimate ofr», since several tests have shown the same results

+ [-576/527 + 10244527 + 864/3/1427 — 408757 in applying the two selection approaches. As the last step,

_ A2 0 - 6 exploiting z;, an estimate ofr, can be easily derived from
10240140} — 432130527 +é2(2)/i2/i4i{12 4144M2x1 (14), whereas, an estimate af can be estimated from both

+ 256201305 + 128ipa] + T20i3aT + 83" #; and i in conjunction with (.8), i.e.,

+ 721428 — 2427 — 6/)81"‘11] T2

—487Sxt 4 1280525 + 7204 x| — 1320525 By = fia — 481 (o — &1) — 2(fiz — 21)? . 1)

— 12803140} + 6443] — 36/i5 5] + 84ji5fua] &% + 282

— 12152 + 321201307 — 32u2u4x1 + 6,u4:E1 2Note that, we can reasonably assume that the diffusive coempq(that

_ 3/142@(13 4 6ﬂ4x§ _ [ng? =0 includes thermal noise effects) powef, namelyz,, can be a-priori known.

(27) If thermal noise is dominant, it can be evaluated charatteyithe power level

related to the single device components or, at least, usgmalsfree samples
acquired from adjacent bandwidths. Conversely, when tlienmower level is
Now, focus on the two-equation system Consisting ZB) ( negligible, the diffusive component can be effectivelyimated from previous

P . . data blocks in the same bandwidth of interest (also makirgaisdynamic
and Q7)’ and assume that a-priori information abaut is predictive models). In addition, in a D2D context, closeides could share

somehow available at the receiver (for instance, past @&8n sych information about the channel estimate as well as catzpéo jointly
of the same channel and/or off-line estimation of diffuseestimate the channel model.
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Now, an important remark is given in the following. Pre- e Nakagamim shape parameten
cisely, the proposed solution starts with a first knowledge,0 1
namelyfcflo), whose accuracy directly impact on the estimate m=—, (34)
of x; and consequently,. It is obvious that errors in the T3
estimation ofr, propagates into the other variables estimates, ¢ scaling factorv; as the solution of the following-nd
which in some cases could compromise the entire estimation order equation
process. To overcome this limitation, a possible solutionld
consist in defining a reasonable range of search;ofalues,
say [z1,min, T1,max] Centered onz,. Then, for each value of namely,
21 belonging to the interval (sampled with a reasonable step) £+ \/m
[21,min, #1.max» all the solutions ofZ5) and @7) are computed. 0=y e
The procedure is applied for each valuerefand the final pair .
of z, estimates, together with the correspondingthat has e scaling factorv, R
generated it, is chosen as the one minimiziag).( 82 =22, (37)
Finally, it is worth to underline that the initial estimatéa,, U1
2, can be obtained resorting to signal free sample acquired |t is important to observe that, according &5), there are
before the communication, through the following equation  yp to four real solutions fofy, sayi,, —0q4, 05, and —i. It
can be easy proven that, due 8), the (up to) four solutions
( ) _ (0) Z lzom|2. (32) o, are numerically the same as for, but switched in their
On order, viz: oy, —0p, 04, and —0,. For sake of simplicity, we
have assumed; > v, in the model definition) without loss
where zj,, denotes the:-th signal free sample. Algorithrh  of generality, after taking only the positive (or null) sthns
summarizes the main steps of the proposed procedure to findto account. As a consequence, we can consider only one
the solution of the problem described B)(12). solution for¢; and®,, with the constraint;, > 9, > 0, for
each pair of values aof; and .

(03)° = #103 + &2 = 0, (35)

(36)

Algorithm 1 Method of Moments based Procedure
1: Input: Gaussian samples,, n = 1,..., Ny, and signal IV. PERFORMANCEASSESSMENT

plus diffuse component samples i = 1 ,N; This section is aimed at analvzi
. yzing the performance of the
2 Output Unknown estimates of the systerﬁ)((lZ) 1, proposed method-of-moments-based procedure for thedzonsi

&y, &3, ANAy; . L (0) _(©0) ered FTR model. To this end, the performance metrics are the
3: Initialization of z, estimate, i.e.,i;” = f,", from  NRMSE and the mean estimate (ME) of the parameters.
Gaussian samples,, with (32); _ Specifically, indicating withj the generic estimate of the
4: Moments estimationiz, i, fig, fis from dominant and  generic parametey (viz. v1, v2, 02, andm), the NRMSE and
diffuse signal components sampleswith (13); ME are given by'

5. &, estimation throughZ4g);

6: Get the roots of 15 and e,
R i S NRMSE =

7: Verify the constraints on the obtained solutions;

8: Select the best couple of, estimates, (:vg"),:zéb)), and

through @9); ME =E [g], (39)
9: Obtain the final estimate afs, i.e., &5 through G0) or
maximizing the received signal likelihood;
10: &3 and &4 evaluation starting front; and z, exploiting

(38)

respectively. Now, due to the lack of closed-form exprassio
for the above metrics, we estimate them resorting\fe =

(14) and @1). 1000 independent Monte Carlo trials, namely
1 Mc ~ 2
NRMSE= , | 7 = (40)
B. Parameter Estimation of Fluctuating Two-Ray Model ¢ im
Once the system of equations described®r((2) is solved and Me
by means of the proposed procedure, the parameter estimatio Z (41)
of fluctuating two-ray model can be accomplished. Precisely Mc Yir

starting from the final estimate$,, @2, #3, and &4, the
parameters, v, m, ando? can be obtained as follows: Wher_e;gi is the related .estlmate obtained at thm_trial.
« Diffuse signal component? This section comprises two parts. In the first part, the_
performance of the proposed approach is assessed by ngsorti
62 = iy, (33) to simulated data and under the design assumptions. On the
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other hand, the second part is devoted to the analysis omean value. In the figure, the true value of the parameterrunde
measured mmWave data. investigation is indicated with a black dashed curve.

A. Smulated Data 26

The NRMSE and the ME are investigated with respect to ;5

all the involved parameters, namely: 04

1) number of samples utilized for the moments estimate; %23

2) ratio between the average power of the dominant wave
and that of the diffuse multipath;

3) ratio between the dominant waves powers; 21 18

2.2

4 5 6 4 5 6
4) shape parameter of the Nakagamidistribution. 0 lﬁ 0 v 18 ?
Finally, a comparison with the parameter estimator devised (@) i1 (b) B2

[37] for the one-ray Nakagami» shadowing is also conducted.
In the first analysis, the following simulating scenario is
considered. The power of the LoS component is assumed equ
to v? = 5 whereas that of the reflected rayi§ = 4, the
diffusive component power is instead set equabto= 1 and =08

1.2

the fading parameter is set as = 5. Figure 2 shows the 06
RMSE values of the four involved parameter estimates versu
the number of sampled’ utilized to compute the moments, %45 e o 9 e 106
K2, fa, pe, and ps. N N
(c) 62 (d) 1
10°

Figure 3. ME with confidence interval versus the number of glamN.
The considered simulating scenario assumigs= 5, v = 4, 02 = 1, and
m = 5. A total of Mo = 1000 Monte Carlo trials are performed. Subplots
refers to the estimates @), b) 02, ¢) 62, and d)7. Black dashed lines
indicate the true parameter values.

Again, from the curves it is clear that an increment in
the number of data produces a performance improvement in
terms of estimator bias and/or accuracy. From this results,
the effectiveness of the proposed algorithm is evident,iand
can be claimed that a good trade-off between the quality of
estimate and the computational complexity can be trartslate
in a number of samples equal t16°, that is the value set for
all the subsequent tests. This choice is also motivated &y th

N fact that 5G - mmWave (e.g., at 28 GHz with a bandwidth
- > NRMSE N ber of s Th dered 500 MHz) devices moving at 50 km/h require channel
silr?lL:JrIZtin.g scenario as\éirr?% t:e 5r,]uvn§1 ir Z ;2am:p 1,S andemC 025'5.9:’5 eStimatio.n Upda.tes every 835. [34]. This latter _iS guaranteed
total of M¢ — 1000 Monte Carlo trials are performed. by the wide available bandwidth, corresponding to more than
80000 samples which matches with the value assumed in the

The curves show that, as expected, the RMSE reduces &gnducted tests.
the amount of data utilized to evaluate the sample moments The second study case refers to the assessment of the
increases. In addition, it can be observed from the figure theperformance of the proposed procedure in terms of both
m exhibits the worst error value. This is mainly due to the factNRMSE and ME as functions of the ratio between the average
that the parameter. is obtained from the unknowsns which  power of the dominant waves and the average power of the
in turn depends on the estimates of the remaining parametengmaining diffuse multipathd], defined as
therefore it is affected by the error propagation. Howetres,
proposed algorithm is able to reach satisfactory perfonman

for a number of data greater than* for all the considered E Urvleﬂ"l + rugel¥? ﬂ E [r?] E [v? + 03]
parameters. K= 5 = 5

Figure 3 reports the ME values of the quoted parameter E {|€| } 7 (42)
estimates versus the number of sampleassuming the same 0 (UQ i UQ) 9, 9
parameter setting as in Figuge In the figure, the confidence = 1 2) _uit UQ,
intervals (i.e., ME+ standard deviation) are plotted too to o? o?

draw a picture of the dispersion of the estimates around theivhere we have exploited the fact that= 1. The considered
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simulation setting is the same as the previous scehavio. 2.6
v} = 5, v3 = 4, andm = 5, whereas the total number of
data to estimate the sample moments\Vis= 10°. Figure 4

shows the NRMSE versus parametefor all the considered £24
estimates, whereas FiguBecontains the ME with the corre-
sponding confidence interval for each estimate. Again, rilne t
value of the parameter under investigation is indicatechwit 5,
a black dashed curve. The interesting results show that as
grows, the estimation errors and the confidence intervald te
to get smaller and smaller thanks to the increasingly redluce
impact of the diffusive component on the received signal.

2.3

7 8 9 10 11 12 7 8 9 10 11 12
% (dB) % (dB)

(a) 01 (b) D2

10°

7 8 9 10 11 12 7 8 9 10 11 12
% (dB) # (dB)

Oka (d)

Figure 5. ME with confidence interval versus The considered simulating
scenario assumes? = 5, v3 = 4, m = 5, and N = 10°. A total of
M = 1000 Monte Carlo trials are performed. Subplots refers to theneses

a) 01, b) 02, €) 62, and d)7. Black dashed lines indicate the true parameter
values.

102

7 8 9 10 11 12 : .

« (dB) constant, an_d conseque_ntly is always underestimated when
po = 0. This behavior is perfectly reflected by the results

Figure 4. NRMSE versus. The considered simulating scenario assumes'€ported in subplots a) and b) of Figuie On the other

v?2 = 5,02 =4, m =5, and N = 10°. A total of M = 1000 Monte  hand, forp, > 0.8 it could be observed that when the two

Carlo trials are performed. dominant waves have approximately the same power levels,

) . _ some estimation errors could occur, due to the difficulties i
To corroborate the above results, in the following analysisdiscern the two rays.
the estimation errors are observed with respect to theti@ria

of the ratio between the powers of the two dominant waves,

namely 10°
U% ; 2 2
Po = v_f’ with v5 < v} (43) \
\

This analysis is aimed at understanding the behavior of the 101 \
proposed procedure when the two dominant paths share almost 2 NS e =
the same power as well as when a strong mismatch among £ I e e -
their levels is observed. In fact, hereiry varies from 0 to N T v,
1 to characterize the discrepancy between the powers of two TN v ————V
dominant LoS waves. Precisely, Figuseand Figure7 report 102+ k s i
respectively the results associated with this test in teomns _;
NRMSE and ME with respect tp,, leaving unaltered the | ‘ | ‘
parameters. Note that, the estimation errors are close to 0 0 0.2 0.4 0.6 0.8 1
for many p, values, except fop, = 0 andp, > 0.8. As a r,

matter of fact, wherp, = 0, the residual estimation error is
evidently due to the fact that the considered model is basegigure 6. NRMSE versus,,. The considered simulating scenario assumes
on the assumption tha]z% > 0 (i.e., vo > 0). Precisely, o¢%>=1,m=5N=10° andx = 9. A total of Mc = 1000 Monte Carlo
whenwv, = 0, it is always overestimated since negative valuegrals are performed.

are automatically discarded by the estimation proceduse. A

a consequence of the fact thatis constanty? + v2 is also The next analysis is aimed at testing the robustness of

the proposed technique with respect to the variation in the
3Note that, the variation of; is realized keeping fixed? and v2 and ~ Parametern of the Nakagami distribution. As before, Figures
varying o2. 8 and 9 represent the NRMSE and ME with respectito
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0

10° [ =

0 02 04 06 08 1

102

Figure 8. NRMSE versusn. The considered simulating scenario assumes
v =503 =4,0% =1, and N = 10°. A total of Mc = 1000 Monte

02 04 06 08 1

Py Py .
Carlo trials are performed.
(© 2 (d) m
Figure 7. ME with confidence interval versps. The considered simulating 3 35

scenario assumes®> = 1, m = 5, N = 10°, andx = 9. A total of
M = 1000 Monte Carlo trials are performed. Subplots refers to thieneses

a) 01, b) 02, €) 62, and d)h. Black dashed lines indicate the true parameter
values.

for all the considered parameter estimates assumfng 5, 0 s 10 15 2
v3 = 4, ando? = 1. Again, N = 10° samples data are m
utilized to obtain the moments estimates. Interestindhg t (@) 9

curves emphasize the capabilities of the proposed proeedur
effectively estimate the parameter, vo, ands? in almost all
the operating scenarios. Obviously, the errorgioincreases
with respect ton. This essentially derives from the fact that the
Nakagami random variable can be generated as the square r¢= *
of the sum of2m squared i.i.d. Gaussian random variables, °38
and consequently the estimateafbecomes more and more 06
difficult when m increases as a consequence of the Centra 04—~ -
Limit's Theorem. m m

To conclude the performance assessment on simulated data, (© 2 (d)
the proposed algorithm is compared with the one devised in

; _act _ igure 9. ME with confidence interval versus. The considered simulating
[37), referred to as Nakagami Based-estimator (NB-E), for thés:cenario assumes? — 5, v — 4, 0> — 1, and N = 10°. A total of

parameter estimates in the presence of Nakagarsitadowing 7. — 1000 Monte Carlo trials are performed. Subplots refers to thieneges
for the LoS component immersed in a diffusive scenario withof a) v, b) v, ¢) 02, and dym. Black dashed lines indicate the true parameter

no reflected paths for that model. In order to match the signalalues.

model of [37], we setv3 = 0, 02 = 1, andm = 5. The analysis

is conducted evaluating the NRMSE for the estimatexof

consideringv? = 5, and the corresponding result is depictedincrease (a floor on the NRMSE is observed) as a consequence
in Figure 10. The figure emphasizes that both the algorithmsof the fact that the FTR-E is actually working in a scenaritth
are able to estimate the parametewith low estimation errors  does not adhere to its design assumption. It turns out theat ev
when the number of sample data is sufficiently high. Howeverthough the FTR-E experiences a performance degradatibn wit
in general, the NB-E outperforms our algorithm, indicatedrespect to the NB-E, it can be exploited for much complicated
in the figure as FTR-estimator (FTR-E), which experiencescenarios. In fact, the model considered in this paper iemor
some performance losses due to the mismatch between tlgeneral, because it is able to estimate a possible reflezydd r
nominal and actual data model. We recall that, this scenariaddition to the direct one. Such a capability can be pasityl
corresponds to the above-mentioned case= 0, where the useful under vehicular scenarios, where a relevant secpnda
simulations have shown non zero errors. In fact, its estonat path may suddenly arise due to mobile equipment’s motion.
performances do not tend to zero as the number of dat®loreover, it is important to stress here that the NB-E maly fai

1.6

14
12
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when applied to a scenario comprising two rays (which does
not correspond to its design assumptions). As a matter &f fac
in this case, no real solutichsome from the straightforward
application of the NB-E; this has been also humerically ptbv
through simulations and typically happens when the secayd r
is not so small to be confused with noise. This behavior can
be observed in Figurél where the NRMSE of the parameter
vy is plotted as a function of the second ray scaling factor
vq. Precisely, the evaluation has been conductedyfor= 5,

N = 10°, 02 = 1, andm = 5, with v, taking on values in
[0,v1]. As expected, when, is close to 0 the NB-E represents
the best solution, but as, increases, the FTR-E overcomes
the former in estimation performance. More importantlye th
curve associated with the NB-E is limited to a certain ind¢rv
because for higher values of the NB-E fails in computing v
its solutions providing complex values as claimed above. To

definitely demonstrate the superiority of the FTR-E over therigure 11.  NRMSE ofi; versusvs. The considered simulating scenario
NB-E, in Figure12, the NRMSE of the parameter estimatesassumes? = 5, N = 10%, 02 = 1, andm = 5. A total of Mc = 1000
01, m, andé? is shown versusv for the following simulation ~ Monte Carlo trials are performed.

setting:v; = /5, v2 = 0.8,02 = 1, andm = 5. As clearly
highlighted by the curves, the FTR-E is able to outperfolm it

25
2

competitor in spite of the used number of sample and for each . clalied Bl s : il Sutisd) 1
considered parameter under investigation. 0 &
) -
¢
<L})J ——FTREv, —p- NBEv,
z x . o—FTR.E —9—FTR-E 0> =9~ NB-E ¢? >
zZ | e - B -NB.E 103 T®—FTR-Em —0- NB-Em
20 K., , ‘
10 e, % FTR-E o2 known 4 5 6
i, 10 10 10
e, N
...,
103¢ ‘ L K., Figure 12. NRMSE versus the number of samplgs The considered
simulating scenario assumes = /5, vo = 0.8, 02 = 1, andm = 5.
10° 10* 10° 10° :
A total of M~ = 1000 Monte Carlo trials are performed.
N
) N . . 10° e 10° +
Figure 10. NRMSE of% versusN for a one-ray scenario. The considered besal
simulating scenario assume$ = 5, v = 0, 02 = 1, andm = 5. A total <l
of Mc = 1000 Monte Carlo trials are performed. " i w
++
0 10? o 8102
w o w
4 + ECDF + ECDF

+ —FTR-E —FTR-E
B. Measured Data N> FTR of (24] . FTR of [24]
) 10° 10
-25 -15 -5 5 -25 -15 -5 5
In this last subsection the proposed algorithm is assesse || values (dB) |z] values (dB)
over measured mmWave data. Precisely, the focus is on the 28 (a) LoS (b) NLoS

GHz data used inZ9); in [ 24], the authors show that such data

follow the FTR fading model. Figur&3 shows the empirical Figure 13.  ECDFs of the received signal amplitude for LoS aHaS
cumulative density function (ECDF) of the above mentionedscenario of measured data obtained fra, [Fig. 6] and P4, Figs. 8-9].
data extracted from2p, Fig. 6] and P4, Figs. 8-9]. The two

subplots refer to the LoS and NLoS cases, respectively. The tests have been conducted running the proposed FTR-E

7 — — with the four moments computed directly from the available
The discriminant of the second order equation in (8) ©f][can be
negative, even when the true moments are used as startimgs dai the ECDF of the mmWave data. The resujts of the proposed FTR-
estimation procedure. E are expressed in terms &f 11, and A = 20,0, /(07 + 03)
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and are reported in Tabletogether with those given in2f]. a diffusive component. Finally, the proposed technique has
From the table, it can be observed that the estimated valudseen also applied to measured mmWave data to assess its
of the quoted parameters are close to those provided4h [ behavior in practical environments confirming what obsérve
where the authors have shown that FTR represents a betten simulated data.

approximation of data than the one-ray model. As observed possible future works might concern additional tests of
from the table, in the challenging NLoS scenario the estthat the proposed algorithm on real recorded data as well as the
parameters describing the power contributions, vizandA,  extension of the proposed framework to more complicated
are quite close to those empirically found iv]. Differently,  signal models, as for instance an FTR model with different
the estimate of parameter obtained with the FTR-E is lower flyctuations experienced by the two rays. Finally, it coutd b
than the provided in44]. To have a better overview of the desirable to have a preliminary stage for the estimation of
behavior of the proposed approach, the ECDF taken ftof) [ the number of dominant LoS rays which, in principle, would
together with the theoretical CDFs obtained by the two setgllow to select the best estimator. This study is actualigeun

of distribution parameters of the two ray model of Table jnvestigation and will be presented in future works.
are also plotted in Figuré3. From a visual inspection, it is

evident that the two CDFs are almost overlapped for the LoS
scenario, whereas in the NLoS case the CDF computed with
the parameters obtained from the proposed FTR-E even shows ACKNOWLEDGMENTS
a better match to the measured CDF data for low values of

2|, in comparison with the CDF curve computed by the best g work was supported in part by the National Science

fitting parameters in] also reported in Tablé. Fund of China under Grant Nos. 61631016 and 61701490.
Table I. FTRMODEL PARAMETERS PROVIDED |N[24] AND ESTIMATED The authors W0u|d I|ke to thank the Ed|t0r and the Referees
WITH THE PROPOSEDFTR-E. for the interesting questions and comments that have helped
values from p7]  FTRE to improve this paper. .
p 30 81.0853 The authors would also like to thank Prof. Theodore S.
LoS A 05873 05892 Rappaport of the New Yorl_< University Po_Iytechnic _Scho_ol of
m > 51816 Engineering anc_i Dr. F. Javier Lopez-Martinez of University
P 357 59.6758 Malaga for the interesting discussions.
NLoS A 0.8331 0.7814
m 10 4.7206
APPENDIX
V. CONCLUSIONS A. Derivation of the Sixth and Eighth Moment of FTR Re-

In this paper the problem of parameter estimation for a FTReived Sgnal
model in the context of wireless mobile communications has
been considered. Precisely, the received signal has nibesle  As observed for the second and fourth moment, exploiting
the sum of two dominant components plus diffusive secondar{he independence among the involved random variables, the
contributions. The first dominant component is associatiéldl w sixth and eighth moments af can be obtained as
a direct path and the second dominant component arises from
a reflection on terrain. In addition, it has also been assumed 6 6 6 4 2 2 4 9 2y 9 9
that the signals of interest are affected by random amitud”¢ ~ E[|2]°] = [vf + v3 + 3vyvg + 3vivy + 6(vf + v3)vivs]
shadowing, statistically distributed as Nakagamimultiplied % (m +1)(m +2)
by unknown scaling factors with random uniform independent m? )
phases. Moreover, the diffusive component is assumed to be 4, .4 2,2 2 2y 2M+ 6
complex Gaussian distributed. 3 (v + v + 20705 + 20iv) 0 m bo

To estimate the involved parameters, the method of moments
has been applied, leading to the derivation of a sophisticat
and strongly nonlinead x 4 system of equations, whose
solution is hard to recover. Therefore, an efficient procedao
solve it has been developed exploiting some a-priori infprm 5 9.3 5 9. 99
tion on the diffusive component power level. The effectiwss = [(v] +v3)° + 6(vf + v3)vivs]
of the proposed estimation technique has been shown by s 9w 5 91 omA+1
evaluating the NRMSEs as well as the MEs and standard + 9 [(U1 +v3) +2U1U2} o e
deviations in several operating conditions of practic&tiiest. +18(0% + 02)ot + 60°
In addition, the proposed procedure has been compared with 1 2 ’
an existing algorithm developed for the particular case of
only one-ray, in a scenario comprising one dominant ray plusnd

+6 (v% —i—v%) ol

)202m—|—1

+12(vf—|—v§)a4+6(v%+v§ -

1
+ 121}%1}%02&

(m4+1)(m+2)
m2

(44)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

s = E[|2[%] = [0} + v3 + 2v1v3 cos (p1 — 902)}4
" (m—+1)(m+2)(m+ 3)

8
e +le
+1
+ 165? (v1 cos 1 + va cos <p2)4 mr-
m
m+1

+ 1652l (v1 cos p1 + v2 cOS <p2)4

m+1
+6 [U1 + UQ + 2v1v3 cos (@1 — )} le |4

+ 24 [v] + v3 + 20103 cos (1 — %02)}2

1 2
X (01 o8 01 + 2 €08 (5p)? Eiw
m
2
+24 [0} + v3 + 20102 cos (01 — 2)]

1 2
x (vrsinior + vysin g)? 2 DM E2)

m
+ 24 (v cos p1 + v cOs <P2)2 €3|5|4

+ 24 (v sin 1 + vasin py)? e2[e|* + 96262

] . m+1
X (01 o5 01 + 3 c0592)? (11 5in 1 + v 5in ) T
m-+1)(m+ 2
A 48+ 2010 cos i — )] e L ED)
+4 [0 + v3 + 20105 cos (p1 — ¢2)] [e]®
+48 [v} + v3 + 20102 cos (01 — 2)]
1
X (v1 oS @1 + v2 COS 2)” 53|5|2ﬂ
+ 48 [0f + V5 + 20102 cos (91 — ¢2)]
1
X (v1 8in ¢y + v sin 902)2 5?|5|2&
m
(45)

or equivalently

Hs = [(U% +v3)* + 6vivs + 12(vf + v3) Ulvg]

DO EDOED) | (16003 1 03)2 + 060703]

5 (m+1)(m+2)

X (vf + v3)o -

1
+ [72(v] +v3)? + 1440703 Al

+96(v 4+ v3)o® + 240°.
(46)

B. Probability Density Function of the Two-Ray Model Re-
ceived Sgnal

13
I (z 02 m
27 27 “+o0
o
X Dy (7’, m, 1) dr dp; des,
(47)

wheref. ;. o, o, (z 7,1, ¢2,0%) is the conditional pdf of the
received signat givenr, ¢1, s, ando?, whereap,. (r;m, 1)
is the pdf ofr whose expression is reported i7).(

Now, observe that, givenr, ¢i, and ¢z, 2z ~
EN ((v1e7%1 + v2e9%2) r, 02), then @7) can be recast as

fzam

27 2 —+o00
— C/ / / exp{—6r2 —77‘} dr dpy dps,
(48)
where C' = [m™exp {—|z|?/0?}] / [2n%02T(m)], B =

’Ule”’l—i-vge”’?’ Jo2 +m > 0, v = (p1,02) =
—23‘%{2 (vle IP1 4 vge™ JW)}/U andu = 2m > 0.

The integral with respect to can be solved resorting t6 ],
Sec. 3.462] to obtain

o (v(p1, 2))°
I (z;oQ,m) = Aexp <7
/0 0 83 (49)

x D_y <L%2)) dp1 dpa,

where A = C(23)~*/?T (1), and

Dy(€) = 21/2e=¢ /1
x [VE/TI0 = /2@ (~0/2,1/2:3%/2)  (50)
—m</r<—u/2><1> (1= )/2,3/2:¢%/2)]

is the Parabolic Cylinder Functio []. Finally, the expression
of the pdf ofz is

m™exp { —|z|?/ o>
2#20{21—](7”'11)/ }F(M)

R2 {z (vlewl 4 UQGJsaz)}
20_4 vy ed®1 +U2€J<P2| T )

‘2 ) *#/2 (51)

f:(z70%,m) =
/27r /271’

(2 ’vlewl + voede2
X

o2

In this Appendix, the expression of the pdf for the received 2R {Z (vlea‘m + 028j@2)}
signal z is provided. Precisely, it is derived resorting to the X D_gm | —
so-called Law of Total Probability, namely 02\/
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