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Abstract—This paper focuses on the problem of parameter
estimation for a Fluctuating Two-Ray (FTR) model in the context
of wireless mobile communications. Precisely, the received signal
is assumed to be the superposition of two dominant components
(typically a direct plus a reflected path signal) in addition to
diffusive secondary contributions. The signal componentsmay be
affected by random amplitude shadowing, statistically modeled
by Nakagami-m distribution, multiplied by unknown scaling
factors with random uniform independent phases, whereas the
diffusive component is assumed to follow the complex Gaussian
distribution. Exploiting the method of moments, a4×4 nonlinear
system is herein mathematically derived, which is very hardto
be solved due to the strong nonlinearity. Therefore, a sequential
procedure based on some prior information about the diffusive
component power level is devised to solve it. The effectiveness
of the proposed estimation technique is shown by evaluatingthe
normalized root mean square errors as well as mean errors and
standard deviations in several operating conditions of practical
interest also considering the limit case of only one-ray in order to
compare the proposed approach to simpler estimators, already
presented in the literature. The results show the robustness of
the new estimator even under a multipath model mismatch.
Finally, the effectiveness of the proposed estimation procedure
is confirmed through measured mmWave data.

Keywords—Two-ray model, 5G, Nakagami-m distribution,
method of moments, statistical estimators, mmWave.

I. I NTRODUCTION

Future generation wireless networks are aimed at spread-
ing the available spectrum resources to provide users and
connected objects with an increased speed, bandwidth, and
capacity. In particular, the Internet of Things (IoT) is expected
to massively expand the use of 5G networks, that are contin-
uously evolving to meet the requirements of future applica-
tions related to cellular operations, IoT security, and network
challenges [1]. 5G-based communications will be capable to
connect diverse IoT devices which may be deployed in wide
geographical ranges leading to heterogeneous communication
scenarios. So far, the Nakagami-m fading model [2] is a
prominent candidate to cover all the possible scenarios for
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future broadband wireless communication system, since it is
suitable for the characterization of a class of channels that
is wider than that associated to Rayleigh and Rician fading
[3]. To this end the millimeter wave (mmWave), i.e., between
30 and 300 GHz, and device-to-device (D2D) are regarded
as promising technologies [4]–[9]. As a matter of fact, in
the last years, they experienced a wide growth due to the
increasing demand in cellular channels capacity that requires
new technologies as primary solution to contrast a possible
congestion of the traffic [10]–[12]. Therefore, many researches
have been driven to the design of suitable models for the
communication channels related to these novel devices [13]–
[15].

In practice, the above mentioned model, sometimes re-
ferred to as “Rician shadowed fading” model [16], because
it generalizes the Rician fading one, reflects any amplitude
fluctuation in the specular waves (e.g., variations in the prop-
agation condition or fast moving scatterers) that takes place
over the time period of interest. For completeness, before
proceeding further, it is important to recall that, the received
signals in wireless communications systems rapidly vary due
to the random fluctuations of both phases and amplitudes as
well as time of arrival. These fluctuations generates the so-
called small-scale fading which is typically described through
Rayleigh, Rician, Nakagami-m distributions and others. More
precisely, in the absence of a dominant contribution, i.e.,in
a non-line of sight (NLoS) environment, the widest utilized
approximation for the received I-Q signals is the Gaussian
distribution, that leads to the Rayleigh one for its envelope
(or Exponential for its power). However, in many situations
of practical interest, a line of sight (LoS) component, which
dominates the weak diffusive contributions, is also present and
the received signal envelope for this small-scale fading path
amplitudes must be described by other distributions such as, for
instance, the Rician distribution [17], [18]. A statistical model,
capable of encompassing all the aforementioned situationsas
special cases, is the Nakagami-m distribution, developed in [2].
In fact, by tuning its shape parameter,m say, it is possible to
obtain the Gaussian fading (form = 1, the Nakagami-m distri-
bution approximates the Rayleigh distribution) or to modelthe
no fading channel (form going to infinity) [19]. Moreover, it
has been widely demonstrated through experiments and mea-
surements on field, that in many environments, the Nakagami-
m distribution has good fits with the fading radio channel from
acquired data [19]–[22]. So far, the reviewed fading models
do not consider the possible random variations of the LoS
components, which can be due to partial block of the LoS due
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to the presence of obstacles such as trees, buildings, and soon
between the transmitter and receiver device [16]. In order to
account for this behavior (therefore reducing model mismatch
losses), the shadowed fading model has been introduced. As a
matter of fact, in this situation, also the LoS component is a
stochastic variable, modeled sometimes as a log-Normal [23],
or in most cases with a simpler Nakagami-m random variable
[16].

Recently, the Nakagami-m fading model has evolved in the
so-called fluctuating two-ray (FTR) fading model, which has
been proposed as a versatile model that well characterizes
the small-scale fading effects on the wireless propagation
in mmWave and D2D environments [5], [24]. In fact, FTR
fading model fits well experimental wireless channels, suchas
outdoor millimeter-wave field measurements at 28 GHz where
a bimodality behavior in its empirical probability density
function (pdf) has been experienced [24]. Moreover, it also
encompasses several well known distributions as, for instance,
the Gaussian, Rayleigh, Rician and Nakagami-m ones, as
special or limiting cases [25]. Another important feature that
has contributed to the introduction of the FTR model in these
contexts is that even though it shares a bimodal structure,
it can be also seen as a generalization of unimodal Rician,
Nakagami-m, Rayleigh models and so on [24]–[26]. As a
matter of fact, in the absence of a LoS contribution, the FTR
becomes the Rayleigh model since only the diffusive Gaussian
components are present. On the other hand, if a dominant LoS
term is available at the receiver side, it becomes unimodal,
such as Rician, Nakagami-m distributions and so on, as well as
the corresponding shadowed alternatives in case of amplitude
fluctuations. However, especially for mmWave devices widely
utilized for short distance links, due to the presence of ground
and/or buildings, besides the direct transmitted signal, also the
one reflected by these surfaces often impinges on the receiver
[7], [27]. Therefore, an FTR model represents a suitable tool to
manage the received signal in these contexts. Figure1 shows
a pictorial representation of the above mentioned FTR model
highlighting the two dominant signal components acquired at
the receiver side.

Figure 1. Pictorial representation of the two-ray model.

More precisely, the received signal, when a single ground
reflection dominates the multipath effect [28], can be seen as
the superposition of the following signals:
• a direct term propagating in free space that is the so-

called LoS ray or component1;

1Note that, the two-ray model is still valid if in place of the LoS component
there is a dominant reflected signal.

• a second dominant component that is the transmitted
signal that undergoes a single reflection on a plane or
surface between transmitter and receiver (e.g., reflected
by the ground and/or a building, etc.);

• several contributions arising from random backscattering
by the objects present in the scene (referred to as
diffusive component).

Although the FTR model was also recently studied for
applications, such as physical layer security [29] and channel
capacity [26], the estimation of FTR model parameters, at least
to best of authors’ knowledge, has received less attention.
For this reason, in this paper, we fill this gap and devise
a novel estimation procedure for FTR model parameters. At
the design stage, we assume that the two rays undergo the
same fluctuation. This assumption naturally raises in differ-
ent wireless scenarios. In fact, if the scattering centers are
located in proximity of the transmitter or receiver, the specular
components will travel alongside most of the way and, hence,
would share almost the same fluctuations [27]. The proposed
algorithm relies on the method of moments [30] which leads to
a system of nonlinear expressions obtained by computing four
high order moments of the received signal amplitude. Finding
closed form expressions for the solution of the considered
system is not an easy task due the high level of nonlinearity.
For this reason, we resort to a sequential procedure that ex-
ploits some a-priori information about the diffusive component.
Specifically, starting from a prior estimate of the power level
of the diffusive component and after some algebraic manipula-
tions, the quoted system is reduced to a2×2 nonlinear system
composed by a second- and fourth-order equations. Solving
this new system of equations enforcing also some physical
constraints on the involved parameters, two unknowns can be
found. Then, accounting for the remaining relationships among
the unknowns, the others are directly obtained from the former
(a point better explained in what follows). The effectiveness
of the devised algorithm is evaluated through simulations,
using as figure of merit the normalized root mean square error
(NRMSE) and the mean estimates of the proposed estimators.
The results demonstrate that the proposed approach is able
to provide good estimation capabilities in several contexts
of practical interest together with a reduced computational
burden. Finally, the effectiveness of the proposed strategy is
also confirmed by exploiting measured mmWave data.

The paper is organized as follows. SectionII formulates
the problem, providing the FTR model together with the
expression of the four considered high-order moments. Section
III describes the proposed parameters estimation procedure
based on the method of moments. In SectionIV the behavior of
the proposed estimation technique is investigated accounting
for different situations of practical interest. Finally, Section
V concludes the paper and outlines possible future research
tracks.

NOTATION

We adopt the notation of usingℜ{·}, | · |, and (·)∗ to
indicate the real part, the modulus and the complex conju-
gate of the argument, respectively. The acronym i.i.d. means
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independent and identical distributed.E[·] stands for statistical
expectation whereas the letterj indicates the imaginary unit,
i.e., j =

√
−1. The gamma function is denoted byΓ(m),

whereasΦ(x, y; a) = 1F1(x; y; a) is the Kummer Confluent
Hypergeometric Function [31]. We write x ∼ CN(µ, σ2) if x
is a circular complex normal random variable with meanµ and
varianceσ2 > 0; Finally, x ∼ U(0, 2π) means thatx obeys
the uniform distribution within the interval[0, 2π].

II. PROBLEM FORMULATION

In this section, the estimation problem for the FTR model
parameters is suitably defined [28]. Precisely, the focus is on a
generic wireless communication channel characterized by the
presence of two dominant components (two-ray) in addition
to diffusive secondary paths. According to this model, the
complex baseband received signal can be written as

z = (v1e
jϕ1 + v2e

jϕ2)r + ε, (1)

where:
• vi ∈ R, i = 1, 2, are unknown deterministic scaling

factors accounting for the specific path propagation
losses. In the following of this paper, without loss of
generality, we are assuming thatv1 and v2 are real
positive (or null) scaling factors withv1 ≥ v2.

• ϕi, i = 1, 2, are the phases of the complex amplitude
of the received component, modeled as independent
uniform random variable in the interval[0, 2π], i.e.,
ϕi ∼ U [0, 2π], i = 1, 2.

• r ∈ R
+ is a random variable representing the shadowing

of both the LoS component and the main reflected signal
(LoS shadow fading), that derives from the relative
motion of the transmitter and receiver pair as well as
the possible variability of the scene (e.g., moving cars,
oscillating trees due to wind conditions, and so on) that
could provide a partial masking of the signal path. It
is worth underlining that, following the lead of [24],
we assume the same fluctuation phenomena for both the
LoS and the reflected component. For instance, when
the reflection arises in proximity of either the transmitter
or the receiver, it can be claimed that the two dominant
components follow approximately the same path, sharing
the same fluctuations.

• ε = εr − jεi ∼ CN(0, σ2) independent ofr and ϕi,
i = 1, 2. This component is given by the superposition of
the thermal noise generated by the electronic devices and
the diffusive NLoS paths. Moreover,εr and εi denotes
its real and imaginary parts, respectively.

As for the shadow fading factor, it is modeled as a
Nakagami-m random variable, since this statistical model
better describes most of the fading channels with respect to
Rayleigh and Rician distributions. Moreover, the latter can be
obtained as special cases of a Nakagami-m distribution [3],
[28], [32]. Generally speaking, the pdf of the Nakagami-m
distribution is given by [28]

pr(r) =
2mmr2m−1

Γ(m)Ωm
exp

[−mr2

Ω

]

, m ≥ 0.5, (2)

with Ω and m the spread and fading (or shape) parameters,
respectively. However, sincev1, v2, andΩ are not known, the
latter is statistically meaningless. As a matter of fact, given
c ∈ R, z can be expressed as

z = c
(

v1e
jϕ1 + v2e

jϕ2
)

r/c+ ε

=
(

v1ce
jϕ1 + v2ce

jϕ2
)

r/c+ ε

=
(

v′1e
jϕ1 + v′2e

jϕ2
)

r1 + ε, (3)

wherev′1 and v′2 are unknown, whereasr1 follows the Nak-
agami distribution with parametersm andΩ/c2. Thus, the like-
lihood function ofz takes on the same value when computed
at (v1, v2,Ω,m) and (v′1, v

′
2,Ω/c

2,m). Otherwise stated, the
considered parameter models forz are not identifiable [33],
[34]. For this reason and without loss of generality, we can set
Ω = 1 (namely,c = Ω) leavingv1 andv2 unaltered. Therefore,
the Nakagami-m moments simplify as



































E[|r|2] = 1

E[|r|4] = m+ 1

m

E[|r|6] = (m+ 1)(m+ 2)

m2

E[|r|8] = (m+ 1)(m+ 2)(m+ 3)

m3

(4)

As already claimed, the aim of this paper is to provide a
procedure towards the estimation of the unknown parameters
v1, v2, m, andσ2. To this end, we compute the expressions
of the first four even noncentral moments ofz.
As a preliminary step, let us first explicitly write the square
modulus of the received signal

|z|2 = zz∗

=
[

v21 + v22 + 2v1v2 cos(ϕ1 − ϕ2)
]

r2 + |ε|2
+ 2(v1 cosϕ1 + v2 cosϕ2)εrr

+ 2(v1 sinϕ1 + v2 sinϕ2)εir.

(5)

Now, exploiting the independence among the involved random
variables, it is possible to derive the first four even moments
of z, viz. |z|2n, n = 1, . . . , 4. Precisely, the second and fourth
moment can be easily derived as

µ2 = E[|z|2] = v21 + v22 + σ2, (6)

and

µ4 = E[|z|4] =
(

v41 + v42 + 4v21v
2
2

) m+ 1

m
+ 2σ4 + 2

(

v21 + v22
)

σ2 + 2
(

v21 + v22
)

σ2

=
[

(v21 + v22)
2 + 2v21v

2
2

] m+ 1

m
+ 4(v21 + v22)σ

2 + 2σ4.

(7)

As for the last two considered moments, in AppendixA we
derive their final expressions to come up with the following
system of equations
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













































































































µ2 = v21 + v22 + σ2

µ4 =
[

(v21 + v22)
2 + 2v21v

2
2

] m+ 1

m
+ 4(v21 + v22)σ

2 + 2σ4

µ6 =
[

(v21 + v22)
3 + 6(v21 + v22)v

2
1v

2
2

] (m+ 1)(m+ 2)

m2

+ 9
[

(v21 + v22)
2 + 2v21v

2
2

]

σ2m+ 1

m
+ 18(v21 + v22)σ

4 + 6σ6

µ8 =
[

(v21 + v22)
4 + 6v41v

4
2 + 12(v21 + v22)

2v21v
2
2

]

× (m+ 1)(m+ 2)(m+ 3)

m3

+
[

16(v21 + v22)
2 + 96v21v

2
2

]

(v21 + v22)σ
2 (m+ 1)(m+ 2)

m2

+
[

72(v21 + v22)
2 + 144v21v

2
2

]

σ4m+ 1

m
+ 96(v21 + v22)σ

6 + 24σ8

(8)

In the next section, we devise a procedure to find a solution
of the above system.

III. PARAMETERS ESTIMATION PROCEDURE

This section is aimed at finding a procedure to properly
estimate the model parameters(v1, v2,m, σ2) involved in the
system (8). Precisely, the parameters estimation procedure
devised in this paper is based on the method of moments
[30] and can be synthetically described through the following
guidelines:

1) introducing the change of variablesx1 = v21 + v22 ,
x2 = v21v

2
2 , x3 = 1

m , x4 = σ2, the system of equation
given in (8) can be transformed in a novel system in
the variablesxi, i = 1, . . . , 4;

2) starting from the moments estimates, sayµ̂2, µ̂4, µ̂6, µ̂8,
and exploiting some prior knowledge aboutx4, the
devised system of equations is sequentially solved pro-
viding the corresponding values ofx1, x2, x3, andx4.

3) from the estimates of the unknownx1, x2, x3, and
x4, those of the physical parameters, viz.v1, v2, m,
and σ2, are derived. In all cases, the multiplicity of
the solutions is reduced by the physical constraints
of powers (v21 , v

2
2 , σ

2) and of the parameterm of
Nakagami-m distribution which must be positive (and
integer) as well as exploiting the likelihood of the
received signal reported in AppendixB.

Given the above, the system of equations in the new
variablesxi, i = 1, . . . , 4 is given by















































































µ2 = x1 + x4

µ4 = (x2
1 + 2x2)(1 + x3) + 4x1x4 + 2x2

4

µ6 = (x2
1 + 6x2)x1(1 + x3)(1 + 2x3)

+ (9x2
1 + 18x2)x4(1 + x3)

+ 18x1x
2
4 + 6x3

4

µ8 = (x4
1 + 6x2

2 + 12x2
1x2)

× (1 + x3)(1 + 2x3)(1 + 3x3)

+ (16x2
1 + 96x2)x1x4(1 + x3)(1 + 2x3)

+ (72x2
1 + 144x2)x

2
4(1 + x3)

+ 96x1x
3
4 + 24x4

4

(9)

(10)

(11)

(12)

It is now worth underlining that the system of equations
(9)-(12) is a nonlinear system. As a consequence, a direct
solution of the system with4 unknowns is not possible
because the equation set is highly nonlinear. Of course, a
possible procedure for solving the quoted non-linear sys-
tem of equations could consist in the direct application of
the Levenberg-Marquardt algorithm [35], [36]. Precisely, the
Levenberg-Marquardt algorithm (LMA) solves the generic
problemF (x) = 0 made of non-linear equations and vectorial
unknowns by iterative local linearization of the equations.
However, the LMA converges towards the optimum solution
only if the initial working point of x(0) is in a “close”
neighborhood of that solution. For these reasons, in what
follows we devise a strategy aimed at directly solving the
system at hand.

A. Method of Moments based Procedure

To search for one (or more) solutions for the system (9)-
(12), we can firstly solve (9) for x4, and substitute it in the
remaining equations. However, before doing this, we introduce
the actual estimates of all the considered moments obtainedas
the sample moments, i.e.,































































µ̂2 =
1

N

N
∑

i=1

|zi|2

µ̂4 =
1

N

N
∑

i=1

|zi|4

µ̂6 =
1

N

N
∑

i=1

|zi|6

µ̂8 =
1

N

N
∑

i=1

|zi|8

(13)

with zi, i = 1, . . . , N , denoting samples containing both dom-
inant and diffuse signal components. This choice is motivated
by the fact that exploiting the Kintchine’s Strong Law of
Large Numbers [37] the estimators in (13) are asymptotically
unbiased.

Thus, solving (9) with respect tox4 yields

x4 = µ̂2 − x1. (14)
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Replacing x4 in (10)-(12) with the above expression and
exploiting the sample moments in (13), we come up with the
following 3×3 system of equations in the three unknownsx1,
x2, andx3



















































































µ̂4 = (x2
1 + 2x2)(1 + x3)

+ 4x1 (µ̂2 − x1) + 2 (µ̂2 − x1)
2

µ̂6 = (x2
1 + 6x2)x1(1 + x3)(1 + 2x3)

+ 9(x2
1 + 2x2) (µ̂2 − x1) (1 + x3)

+ 18x1 (µ̂2 − x1)
2
+ 6 (µ̂2 − x1)

3

µ̂8 = (x4
1 + 6x2

2 + 12x2
1x2)

× (1 + x3)(1 + 2x3)(1 + 3x3)

+ (16x2
1 + 96x2)x1 (µ̂2 − x1) (1 + x3)(1 + 2x3)

+ (72x2
1 + 144x2) (µ̂2 − x1)

2
(1 + x3)

+ 96x1 (µ̂2 − x1)
3
+ 24 (µ̂2 − x1)

4
.

(15)

(16)

(17)

Now, (15) can be rearranged as follows

(x2
1+2x2)(1+x3) = µ̂4−4x1(µ̂2−x1)−2(µ̂2−x1)

2, (18)

that is equivalent to

(x2
1 + 2x2) + (x2

1 + 2x2)x3

= µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2,

(19)

and hence

(x2
1 + 2x2)x3

= µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2).
(20)

Following the same approach as for (20), namely, multiplying
(15) by 2 and solving for(x2

1+2x2)(1+2x3) and multiplying
(15) by 3 and solving for(x2

1 + 2x2)(1 + 3x3), it is possible
to write the following two equalities:

(x2
1 + 2x2)(1 + 2x3)

= µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

− 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)

(21)

and

(x2
1 + 2x2)(1 + 3x3)

= µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)

+ µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

− 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2).

(22)

Exploiting (20), (21), and (22), equation(16) can be written
in terms of the two unknownsx1 andx2 i.e.

(x2
1 + 2x2)(x

2
1 + 2x2)µ̂6

= (x2
1 + 6x2)x1

[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2
]

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

−4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)
]

+ (x2
1 + 2x2)9(x

2
1 + 2x2)(µ̂2 − x1)

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2
]

+ (x2
1 + 2x2)(x

2
1 + 2x2)18x1(µ̂2 − x1)

2

+ (x2
1 + 2x2)(x

2
1 + 2x2)6(µ̂2 − x1)

3.
(23)

After some algebraic manipulations (i.e., performing all the
multiplications in (23) and ordering the resulting terms in
decreasing powers ofx1), the latter can be recast as

[

4µ̂2
2 − 2µ̂4 + 8x2

]

x5
1

+
[

−12µ̂3
2 + 9µ̂4µ̂2 − µ̂6

]

x4
1

+
[

8µ̂4
2 − 8µ̂2

2µ̂4 − 8µ̂2
2x2 + 2µ̂2

4 + 4µ̂4x2 − 48x2
2

]

x3
1

+
[

−48x2µ̂
3
2 + 36µ̂4x2µ̂2 − 4µ̂6x2

]

x2
1

+
[

48µ̂4
2x2 − 48µ̂2

2µ̂4x2 + 96µ̂2
2x

2
2 + 12µ̂2

4x2 − 48µ̂4x
2
2

]

x1

− 48µ̂3
2x

2
2 + 36µ̂4µ̂2x

2
2 − 4µ̂6x

2
2 = 0

(24)

that is a fifth-order equation inx1. Nevertheless, (24) can
be also seen as a second-order equation with respect to the
unknownx2. Therefore, reorganizing (24) in decreasing order
with respect to the powers ofx2, it becomes

[

−48µ̂3
2 + 96µ̂2

2x1 + 36µ̂4µ̂2 − 48x3
1 − 48µ̂4x1 − 4µ̂6

]

x2
2

+
[

48µ̂4
2x1 − 48µ̂3

2x
2
1 − 48µ̂2

2µ̂4x1 − 8µ̂2
2x

3
1 + 36µ̂2µ̂4x

2
1

+12µ̂2
4x1 + 4µ̂4x

3
1 + 8x5

1 − 4µ̂6x
2
1

]

x2 + 8µ̂4
2x

3
1

− 12µ̂3
2x

4
1 − 8µ̂2

2µ̂4x
3
1 + 4µ̂2

2x
5
1 + 9µ̂2µ̂4x

4
1

+ 2µ̂2
4x

3
1 − 2µ̂4x

5
1 − µ̂6x

4
1 = 0

(25)

Exploiting (20), (21), and (22), equation (17) can be also
written in terms of only the two unknownsx1 andx2, i.e.,
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(x2
1 + 2x2)(x

2
1 + 2x2)(x

2
1 + 2x2)µ̂8

= (x4
1 + 6x2

2 + 12x2
1x2)

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2
]

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

−4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)
]

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)

+ µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

−4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)
]

+ (x2
1 + 2x2)(16x

2
1 + 96x2)x1(µ̂2 − x1)

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2
]

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 + µ̂4

−4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2 − (x2

1 + 2x2)
]

+ (x2
1 + 2x2)(x

2
1 + 2x2)(72x

2
1 + 144x2)(µ̂2 − x1)

2

×
[

µ̂4 − 4x1(µ̂2 − x1)− 2(µ̂2 − x1)
2
]

+ (x2
1 + 2x2)(x

2
1 + 2x2)(x

2
1 + 2x2)96x1

× (µ̂2 − x1)
3 + (x2

1 + 2x2)(x
2
1 + 2x2)(x

2
1 + 2x2)

× 24(µ̂2 − x1)
4.

(26)

Equation (26) can be suitably recast following the same line
of reasoning as (23). Thus, it becomes

[

−96µ̂2
2 + 96x2

1 + 48µ̂4

]

x4
2

+
[

−1296µ̂4
2 + 3072µ̂3

2x1 + 912µ̂2
2µ̂4 − 1536µ̂2

2x
2
1

− 1536µ̂2µ̂4x1 − 1536µ̂2x
3
1 − 84µ̂2

4 + 768µ̂4x
2
1

+1296x4
1 − 8µ̂8

]

x3
2

+
[

−288µ̂6
2 + 1536µ̂5

2x1 + 432µ̂4
2µ̂4 − 2952µ̂4

2x
2
1

− 1536µ̂3
2µ̂4x1 + 1280µ̂3

2x
3
1 − 216µ̂2

2µ̂
2
4 + 2376µ̂2

2µ̂4x
2
1

+ 1032µ̂2
2x

4
1 + 384µ̂2µ̂

2
4x1 − 640µ̂2µ̂4x

3
1 − 512µ̂2x

5
1

+36µ̂3
4 − 378µ̂2

4x
2
1 − 516µ̂4x

4
1 − 96x6

1 − 12µ̂8x
2
1

]

x2
2

+
[

−576µ̂6
2x

2
1 + 1024µ̂5

2x
3
1 + 864µ̂4

2µ̂4x
2
1 − 408µ̂4

2x
4
1

− 1024µ̂3
2µ̂4x

3
1 − 432µ̂2

2µ̂
2
4x

2
1 + 120µ̂2

2µ̂4x
4
1 − 144µ̂2

2x
6
1

+ 256µ̂2µ̂
2
4x

3
1 + 128µ̂2x

7
1 + 72µ̂3

4x
2
1 + 78µ̂2

4x
4
1

+72µ̂4x
6
1 − 24x8

1 − 6µ̂8x
4
1

]

x2

− 48µ̂6
2x

4
1 + 128µ̂5

2x
5
1 + 72µ̂4

2µ̂4x
4
1 − 132µ̂4

2x
6
1

− 128µ̂3
2µ̂4x

5
1 + 64µ̂3

2x
7
1 − 36µ̂2

2µ̂
2
4x

4
1 + 84µ̂2

2µ̂4x
6
1

− 12µ̂2
2x

8
1 + 32µ̂2µ̂

2
4x

5
1 − 32µ̂2µ̂4x

7
1 + 6µ̂3

4x
4
1

− 3µ̂2
4x

6
1 + 6µ̂4x

8
1 − µ̂8x

6
1 = 0

(27)

Now, focus on the two-equation system consisting of (25)
and (27), and assume that a-priori information aboutx4 is
somehow available at the receiver (for instance, past estimates
of the same channel and/or off-line estimation of diffuse

component)2. Then, an estimate ofx1 can be obtained as

x̂1 = µ̂2 − x̂
(0)
4 , (28)

wherex̂(0)
4 is an existing estimate ofx4.

Now, for the considered value ofx1, both equations (25)
and (27) can be solved to obtain at most 2 solutions from the
former, sayx̂(a,1)

2 and x̂
(a,2)
2 , and 4 solutions from the latter,

say x̂(b,1)
2 , x̂(b,2)

2 , x̂(b,3)
2 and x̂(b,4)

2 . Discarding those solutions
which are not real and positive, the remaining are selected as
candidates to estimate the model parameters. Since both (25)
and (27) must be simultaneously valid, among the possible
candidate solutions

(

x̂
(a,1)
2 , x̂

(a,2)
2 , x̂

(b,1)
2 , x̂

(b,2)
2 , x̂

(b,3)
2 , x̂

(b,4)
2

)

,
we must choose a pair of candidates that are ideally identical
or, at least, very close each other (in fact, both equations must
be satisfied at the same time). To this end, a selection criterion
can be the following

(

x̂
(a)
2 , x̂

(b)
2

)

= arg min
{

x̂
(a,i)
2 ,x̂

(b,k)
2

}

(

x̂
(a,i)
2 − x̂

(b,k)
2

)2

,

i = 1, 2, k = 1, . . . , 4.

(29)

Clearly, as a particular case, if no acceptable pair of solu-
tions satisfies the constraints’ check, the procedure is aborted,
and it should restart with new acquired data. Once the best
couple of solutions has been found, its numerical average is
utilized as final estimate ofx2, i.e.,

x̂2 =
x̂
(a)
2 + x̂

(b)
2

2
. (30)

It is worth noticing thatx̂2 can be also selected among
(

x̂
(a)
2 , x̂

(b)
2

)

as the one that maximizes the likelihood function
of the received signalz, whose expression is derived in
AppendixB (in particular, the considered solutions are used to
compute the parameter values used in the likelihood function
given z, then it is selected the solution returning the highest
likelihood value). However, in the simulation conducted inthis
paper the first approach has been utilized to obtain the final
estimate ofx2, since several tests have shown the same results
in applying the two selection approaches. As the last step,
exploiting x̂1, an estimate ofx4 can be easily derived from
(14), whereas, an estimate ofx3 can be estimated from both
x̂1 and x̂2 in conjunction with (18), i.e.,

x̂3 =
µ̂4 − 4x̂1(µ̂2 − x̂1)− 2(µ̂2 − x̂1)

2

x̂2
1 + 2x̂2

− 1. (31)

2Note that, we can reasonably assume that the diffusive component (that
includes thermal noise effects) powerσ2, namelyx4, can be a-priori known.
If thermal noise is dominant, it can be evaluated characterizing the power level
related to the single device components or, at least, using signal free samples
acquired from adjacent bandwidths. Conversely, when the noise power level is
negligible, the diffusive component can be effectively estimated from previous
data blocks in the same bandwidth of interest (also making use of dynamic
predictive models). In addition, in a D2D context, close devices could share
such information about the channel estimate as well as cooperate to jointly
estimate the channel model.
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Now, an important remark is given in the following. Pre-
cisely, the proposed solution starts with a first knowledge of x4,
namely x̂(0)

4 , whose accuracy directly impact on the estimate
of x1 and consequentlyx2. It is obvious that errors in the
estimation ofx4 propagates into the other variables estimates,
which in some cases could compromise the entire estimation
process. To overcome this limitation, a possible solution could
consist in defining a reasonable range of search ofx1 values,
say [x1,min, x1,max] centered onx̂1. Then, for each value of
x1 belonging to the interval (sampled with a reasonable step)
[x1,min, x1,max], all the solutions of (25) and (27) are computed.
The procedure is applied for each value ofx1 and the final pair
of x2 estimates, together with the correspondingx̂1 that has
generated it, is chosen as the one minimizing (29).

Finally, it is worth to underline that the initial estimate of x4,
x̂
(0)
4 , can be obtained resorting to signal free sample acquired

before the communication, through the following equation

x̂
(0)
4 = µ̂

(0)
2 =

1

N0

N0
∑

n=1

|z0n|2. (32)

wherez0n denotes then-th signal free sample. Algorithm1
summarizes the main steps of the proposed procedure to find
the solution of the problem described by (9)-(12).

Algorithm 1 Method of Moments based Procedure
1: Input: Gaussian samplesz0n, n = 1, . . . , N0, and signal

plus diffuse component sampleszi, i = 1, . . . , N ;
2: Output: Unknown estimates of the system (9)-(12), x̂1,

x̂2, x̂3, and x̂4;
3: Initialization of x4 estimate, i.e.,x̂(0)

4 = µ̂
(0)
2 , from

Gaussian samplesz0n with (32);
4: Moments estimation̂µ2, µ̂4, µ̂6, µ̂8 from dominant and

diffuse signal components sampleszi with (13);
5: x̂1 estimation through (28);
6: Get the roots of (25) and (27),
(

x̂
(a,1)
2 , x̂

(a,2)
2 , x̂

(b,1)
2 , x̂

(b,2)
2 , x̂

(b,3)
2 , x̂

(b,4)
2

)

;
7: Verify the constraints on the obtained solutions;
8: Select the best couple ofx2 estimates,

(

x̂
(a)
2 , x̂

(b)
2

)

,
through (29);

9: Obtain the final estimate ofx2, i.e., x̂2 through (30) or
maximizing the received signal likelihood;

10: x̂3 and x̂4 evaluation starting from̂x1 and x̂2 exploiting
(14) and (31).

B. Parameter Estimation of Fluctuating Two-Ray Model

Once the system of equations described in (9)-(12) is solved
by means of the proposed procedure, the parameter estimation
of fluctuating two-ray model can be accomplished. Precisely,
starting from the final estimateŝx1, x̂2, x̂3, and x̂4, the
parametersv1, v2, m, andσ2 can be obtained as follows:
• Diffuse signal componentσ2

σ̂2 = x̂4, (33)

• Nakagami-m shape parameterm

m̂ =
1

x̂3
, (34)

• scaling factorv1 as the solution of the following2-nd
order equation

(

v21
)2 − x̂1v

2
1 + x̂2 = 0, (35)

namely,

v̂21 =
x̂1 ±

√

x̂2
1 − 4x̂2

2
(36)

• scaling factorv2

v̂22 =
x̂2

v̂21
. (37)

It is important to observe that, according to (35), there are
up to four real solutions for̂v1, say v̂a, −v̂a, v̂b, and−v̂b. It
can be easy proven that, due to (37), the (up to) four solutions
v̂2 are numerically the same as forv̂1, but switched in their
order, viz: v̂b, −v̂b, v̂a, and−v̂a. For sake of simplicity, we
have assumedv1 ≥ v2 in the model definition (1) without loss
of generality, after taking only the positive (or null) solutions
into account. As a consequence, we can consider only one
solution for v̂1 and v̂2, with the constraint̂v1 ≥ v̂2 ≥ 0, for
each pair of values of̂x1 and x̂2.

IV. PERFORMANCEASSESSMENT

This section is aimed at analyzing the performance of the
proposed method-of-moments-based procedure for the consid-
ered FTR model. To this end, the performance metrics are the
NRMSE and the mean estimate (ME) of the parameters.

Specifically, indicating withŷ the generic estimate of the
generic parametery (viz. v1, v2, σ2, andm), the NRMSE and
ME are given by

NRMSE=

√

√

√

√E

[

∣

∣

∣

∣

1− ŷ

y

∣

∣

∣

∣

2
]

(38)

and
ME = E [ŷ] , (39)

respectively. Now, due to the lack of closed-form expressions
for the above metrics, we estimate them resorting toMC =
1000 independent Monte Carlo trials, namely

NRMSE=

√

√

√

√

1

MC

MC
∑

i=1

∣

∣

∣

∣

1− ŷi
y

∣

∣

∣

∣

2

(40)

and

ME =
1

MC

MC
∑

i=1

ŷi, (41)

whereŷi is the related estimate obtained at thei-th trial.
This section comprises two parts. In the first part, the

performance of the proposed approach is assessed by resorting
to simulated data and under the design assumptions. On the
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other hand, the second part is devoted to the analysis on
measured mmWave data.

A. Simulated Data

The NRMSE and the ME are investigated with respect to
all the involved parameters, namely:

1) number of samples utilized for the moments estimate;
2) ratio between the average power of the dominant waves

and that of the diffuse multipath;
3) ratio between the dominant waves powers;
4) shape parameter of the Nakagami-m distribution.

Finally, a comparison with the parameter estimator devisedin
[32] for the one-ray Nakagami-m shadowing is also conducted.

In the first analysis, the following simulating scenario is
considered. The power of the LoS component is assumed equal
to v21 = 5 whereas that of the reflected ray isv22 = 4, the
diffusive component power is instead set equal toσ2 = 1 and
the fading parameter is set asm = 5. Figure 2 shows the
RMSE values of the four involved parameter estimates versus
the number of samplesN utilized to compute the moments,
µ2, µ4, µ6, andµ8.

104 105 106

N

10-2

10-1

100

N
R

M
S

E

v
1

v
2
2

m

Figure 2. NRMSE versus the number of samplesN . The considered
simulating scenario assumesv2

1
= 5, v2

2
= 4, σ2 = 1, and m = 5. A

total of MC = 1000 Monte Carlo trials are performed.

The curves show that, as expected, the RMSE reduces as
the amount of data utilized to evaluate the sample moments
increases. In addition, it can be observed from the figure that
m̂ exhibits the worst error value. This is mainly due to the fact
that the parameterm is obtained from the unknownx3 which
in turn depends on the estimates of the remaining parameters,
therefore it is affected by the error propagation. However,the
proposed algorithm is able to reach satisfactory performance
for a number of data greater than104 for all the considered
parameters.

Figure 3 reports the ME values of the quoted parameter
estimates versus the number of samplesN assuming the same
parameter setting as in Figure2. In the figure, the confidence
intervals (i.e., ME± standard deviation) are plotted too to
draw a picture of the dispersion of the estimates around their

mean value. In the figure, the true value of the parameter under
investigation is indicated with a black dashed curve.
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(a) v̂1
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Figure 3. ME with confidence interval versus the number of samples N .
The considered simulating scenario assumesv2

1
= 5, v2

2
= 4, σ2 = 1, and

m = 5. A total of MC = 1000 Monte Carlo trials are performed. Subplots
refers to the estimates a)̂v1, b) v̂2, c) σ̂2, and d) m̂. Black dashed lines
indicate the true parameter values.

Again, from the curves it is clear that an increment in
the number of data produces a performance improvement in
terms of estimator bias and/or accuracy. From this results,
the effectiveness of the proposed algorithm is evident, andit
can be claimed that a good trade-off between the quality of
estimate and the computational complexity can be translated
in a number of samples equal to105, that is the value set for
all the subsequent tests. This choice is also motivated by the
fact that 5G - mmWave (e.g., at 28 GHz with a bandwidth
> 500 MHz) devices moving at 50 km/h require channel
estimation updates every 80µs [38]. This latter is guaranteed
by the wide available bandwidth, corresponding to more than
80000 samples which matches with the value assumed in the
conducted tests.

The second study case refers to the assessment of the
performance of the proposed procedure in terms of both
NRMSE and ME as functions of the ratio between the average
power of the dominant waves and the average power of the
remaining diffuse multipath [5], defined as

κ =
E

[

∣

∣rv1e
jϕ1 + rv2e

jϕ2
∣

∣

2
]

E

[

|ε|2
] =

E
[

r2
]

E
[

v21 + v22
]

σ2

=
Ω
(

v21 + v22
)

σ2
=

v21 + v22
σ2

,

(42)

where we have exploited the fact thatΩ = 1. The considered
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simulation setting is the same as the previous scenario3, viz.
v21 = 5, v22 = 4, andm = 5, whereas the total number of
data to estimate the sample moments isN = 105. Figure 4
shows the NRMSE versus parameterκ for all the considered
estimates, whereas Figure5 contains the ME with the corre-
sponding confidence interval for each estimate. Again, the true
value of the parameter under investigation is indicated with
a black dashed curve. The interesting results show that asκ
grows, the estimation errors and the confidence intervals tend
to get smaller and smaller thanks to the increasingly reduced
impact of the diffusive component on the received signal.
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Figure 4. NRMSE versusκ. The considered simulating scenario assumes
v2
1
= 5, v2

2
= 4, m = 5, andN = 10

5. A total of MC = 1000 Monte
Carlo trials are performed.

To corroborate the above results, in the following analysis,
the estimation errors are observed with respect to the variation
of the ratio between the powers of the two dominant waves,
namely

ρv =
v22
v21

, with v22 ≤ v21 (43)

This analysis is aimed at understanding the behavior of the
proposed procedure when the two dominant paths share almost
the same power as well as when a strong mismatch among
their levels is observed. In fact, hereinρv varies from 0 to
1 to characterize the discrepancy between the powers of two
dominant LoS waves. Precisely, Figure6 and Figure7 report
respectively the results associated with this test in termsof
NRMSE and ME with respect toρv, leaving unaltered the
parameterκ. Note that, the estimation errors are close to 0
for many ρv values, except forρv = 0 and ρv > 0.8. As a
matter of fact, whenρv = 0, the residual estimation error is
evidently due to the fact that the considered model is based
on the assumption thatv22 > 0 (i.e., v2 > 0). Precisely,
whenv2 = 0, it is always overestimated since negative values
are automatically discarded by the estimation procedure. As
a consequence of the fact thatκ is constant,v21 + v22 is also

3Note that, the variation ofκ is realized keeping fixedv2
1

and v2
2

and
varying σ2 .
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Figure 5. ME with confidence interval versusκ. The considered simulating
scenario assumesv2

1
= 5, v2

2
= 4, m = 5, and N = 105. A total of

MC = 1000 Monte Carlo trials are performed. Subplots refers to the estimates
a) v̂1, b) v̂2, c) σ̂2 , and d)m̂. Black dashed lines indicate the true parameter
values.

constant, and consequentlyv1 is always underestimated when
ρv = 0. This behavior is perfectly reflected by the results
reported in subplots a) and b) of Figure7. On the other
hand, forρv > 0.8 it could be observed that when the two
dominant waves have approximately the same power levels,
some estimation errors could occur, due to the difficulties in
discern the two rays.
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Figure 6. NRMSE versusρv . The considered simulating scenario assumes
σ2 = 1, m = 5, N = 105, andκ = 9. A total of MC = 1000 Monte Carlo
trials are performed.

The next analysis is aimed at testing the robustness of
the proposed technique with respect to the variation in the
parameterm of the Nakagami distribution. As before, Figures
8 and 9 represent the NRMSE and ME with respect tom
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Figure 7. ME with confidence interval versusρv . The considered simulating
scenario assumesσ2

= 1, m = 5, N = 10
5, and κ = 9. A total of

MC = 1000 Monte Carlo trials are performed. Subplots refers to the estimates
a) v̂1, b) v̂2, c) σ̂2, and d)m̂. Black dashed lines indicate the true parameter
values.

for all the considered parameter estimates assumingv21 = 5,
v22 = 4, and σ2 = 1. Again, N = 105 samples data are
utilized to obtain the moments estimates. Interestingly, the
curves emphasize the capabilities of the proposed procedure to
effectively estimate the parameterv1, v2, andσ2 in almost all
the operating scenarios. Obviously, the errors ofm̂ increases
with respect tom. This essentially derives from the fact that the
Nakagami random variable can be generated as the square root
of the sum of2m squared i.i.d. Gaussian random variables,
and consequently the estimate ofm becomes more and more
difficult when m increases as a consequence of the Central
Limit’s Theorem.

To conclude the performance assessment on simulated data,
the proposed algorithm is compared with the one devised in
[32], referred to as Nakagami Based-estimator (NB-E), for the
parameter estimates in the presence of Nakagami-m shadowing
for the LoS component immersed in a diffusive scenario with
no reflected paths for that model. In order to match the signal
model of [32], we setv22 = 0, σ2 = 1, andm = 5. The analysis
is conducted evaluating the NRMSE for the estimate ofκ
consideringv21 = 5, and the corresponding result is depicted
in Figure 10. The figure emphasizes that both the algorithms
are able to estimate the parameterκ with low estimation errors
when the number of sample data is sufficiently high. However,
in general, the NB-E outperforms our algorithm, indicated
in the figure as FTR-estimator (FTR-E), which experiences
some performance losses due to the mismatch between the
nominal and actual data model. We recall that, this scenario
corresponds to the above-mentioned caseρv = 0, where the
simulations have shown non zero errors. In fact, its estimation
performances do not tend to zero as the number of data
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1
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2
= 4, σ2 = 1, andN = 105. A total of MC = 1000 Monte

Carlo trials are performed.
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Figure 9. ME with confidence interval versusm. The considered simulating
scenario assumesv2

1
= 5, v2

2
= 4, σ2 = 1, and N = 105. A total of

MC = 1000 Monte Carlo trials are performed. Subplots refers to the estimates
of a) v1, b) v2, c)σ2 , and d)m. Black dashed lines indicate the true parameter
values.

increase (a floor on the NRMSE is observed) as a consequence
of the fact that the FTR-E is actually working in a scenario that
does not adhere to its design assumption. It turns out that even
though the FTR-E experiences a performance degradation with
respect to the NB-E, it can be exploited for much complicated
scenarios. In fact, the model considered in this paper is more
general, because it is able to estimate a possible reflected ray in
addition to the direct one. Such a capability can be particularly
useful under vehicular scenarios, where a relevant secondary
path may suddenly arise due to mobile equipment’s motion.
Moreover, it is important to stress here that the NB-E may fail
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when applied to a scenario comprising two rays (which does
not correspond to its design assumptions). As a matter of fact,
in this case, no real solutions4 come from the straightforward
application of the NB-E; this has been also numerically proved
through simulations and typically happens when the second ray
is not so small to be confused with noise. This behavior can
be observed in Figure11 where the NRMSE of the parameter
v1 is plotted as a function of the second ray scaling factor
v2. Precisely, the evaluation has been conducted forv21 = 5,
N = 105, σ2 = 1, andm = 5, with v2 taking on values in
[0, v1]. As expected, whenv2 is close to 0 the NB-E represents
the best solution, but asv2 increases, the FTR-E overcomes
the former in estimation performance. More importantly, the
curve associated with the NB-E is limited to a certain interval
because for higher values ofv2 the NB-E fails in computing
its solutions providing complex values as claimed above. To
definitely demonstrate the superiority of the FTR-E over the
NB-E, in Figure12, the NRMSE of the parameter estimates
v̂1, m̂, andσ̂2 is shown versusN for the following simulation
setting:v1 =

√
5, v2 = 0.8,σ2 = 1, andm = 5. As clearly

highlighted by the curves, the FTR-E is able to outperform its
competitor in spite of the used number of sample and for each
considered parameter under investigation.
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Figure 10. NRMSE of̂κ versusN for a one-ray scenario. The considered
simulating scenario assumesv2

1
= 5, v2

2
= 0, σ2

= 1, andm = 5. A total
of MC = 1000 Monte Carlo trials are performed.

B. Measured Data

In this last subsection the proposed algorithm is assessed
over measured mmWave data. Precisely, the focus is on the 28
GHz data used in [25]; in [24], the authors show that such data
follow the FTR fading model. Figure13 shows the empirical
cumulative density function (ECDF) of the above mentioned
data extracted from [25, Fig. 6] and [24, Figs. 8-9]. The two
subplots refer to the LoS and NLoS cases, respectively.

4The discriminant of the second order equation in (8) of [32] can be
negative, even when the true moments are used as starting points in the
estimation procedure.
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A total of MC = 1000 Monte Carlo trials are performed.
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Figure 13. ECDFs of the received signal amplitude for LoS andNLoS
scenario of measured data obtained from [25, Fig. 6] and [24, Figs. 8-9].

The tests have been conducted running the proposed FTR-E
with the four moments computed directly from the available
ECDF of the mmWave data. The results of the proposed FTR-
E are expressed in terms ofκ̂, m̂, and∆̂ = 2v̂1v̂2/(v̂

2
1 + v̂22)
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and are reported in TableI together with those given in [24].
From the table, it can be observed that the estimated values
of the quoted parameters are close to those provided in [24]
where the authors have shown that FTR represents a better
approximation of data than the one-ray model. As observed
from the table, in the challenging NLoS scenario the estimated
parameters describing the power contributions, viz.,κ and∆,
are quite close to those empirically found in [24]. Differently,
the estimate of parameterm obtained with the FTR-E is lower
than the provided in [24]. To have a better overview of the
behavior of the proposed approach, the ECDF taken from [24],
together with the theoretical CDFs obtained by the two sets
of distribution parameters of the two ray model of TableI,
are also plotted in Figure13. From a visual inspection, it is
evident that the two CDFs are almost overlapped for the LoS
scenario, whereas in the NLoS case the CDF computed with
the parameters obtained from the proposed FTR-E even shows
a better match to the measured CDF data for low values of
|z|, in comparison with the CDF curve computed by the best
fitting parameters in [24] also reported in TableI.

Table I. FTRMODEL PARAMETERS PROVIDED IN[24] AND ESTIMATED
WITH THE PROPOSEDFTR-E.

values from [24] FTR-E

LoS
κ 80 81.0853
∆ 0.5873 0.5892
m 2 2.1816

NLoS
κ 32.7 29.6258
∆ 0.8331 0.7814
m 10 4.7206

V. CONCLUSIONS

In this paper the problem of parameter estimation for a FTR
model in the context of wireless mobile communications has
been considered. Precisely, the received signal has modeled as
the sum of two dominant components plus diffusive secondary
contributions. The first dominant component is associated with
a direct path and the second dominant component arises from
a reflection on terrain. In addition, it has also been assumed
that the signals of interest are affected by random amplitude
shadowing, statistically distributed as Nakagami-m, multiplied
by unknown scaling factors with random uniform independent
phases. Moreover, the diffusive component is assumed to be
complex Gaussian distributed.

To estimate the involved parameters, the method of moments
has been applied, leading to the derivation of a sophisticated
and strongly nonlinear4 × 4 system of equations, whose
solution is hard to recover. Therefore, an efficient procedure to
solve it has been developed exploiting some a-priori informa-
tion on the diffusive component power level. The effectiveness
of the proposed estimation technique has been shown by
evaluating the NRMSEs as well as the MEs and standard
deviations in several operating conditions of practical interest.
In addition, the proposed procedure has been compared with
an existing algorithm developed for the particular case of
only one-ray, in a scenario comprising one dominant ray plus

a diffusive component. Finally, the proposed technique has
been also applied to measured mmWave data to assess its
behavior in practical environments confirming what observed
on simulated data.

Possible future works might concern additional tests of
the proposed algorithm on real recorded data as well as the
extension of the proposed framework to more complicated
signal models, as for instance an FTR model with different
fluctuations experienced by the two rays. Finally, it could be
desirable to have a preliminary stage for the estimation of
the number of dominant LoS rays which, in principle, would
allow to select the best estimator. This study is actually under
investigation and will be presented in future works.
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APPENDIX

A. Derivation of the Sixth and Eighth Moment of FTR Re-
ceived Signal

As observed for the second and fourth moment, exploiting
the independence among the involved random variables, the
sixth and eighth moments ofz can be obtained as

µ6 = E[|z|6] =
[

v61 + v62 + 3v41v
2
2 + 3v21v

4
2 + 6(v21 + v22)v

2
1v

2
2

]

× (m+ 1)(m+ 2)

m2
+ 6

(

v21 + v22
)

σ4

+ 3
(

v41 + v42 + 2v21v
2
2 + 2v21v

2
2

)

σ2m+ 1

m
+ 6σ6

+ 12
(

v21 + v22
)

σ4 + 6
(

v21 + v22
)2

σ2m+ 1

m

+ 12v21v
2
2σ

2m+ 1

m

=
[

(v21 + v22)
3 + 6(v21 + v22)v

2
1v

2
2

] (m+ 1)(m+ 2)

m2

+ 9
[

(v21 + v22)
2 + 2v21v

2
2

]

σ2m+ 1

m
+ 18(v21 + v22)σ

4 + 6σ6,
(44)

and



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

µ8 = E[|z|8] =
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]4

× (m+ 1)(m+ 2)(m+ 3)

m3
+ |ε|8

+ 16ε4r (v1 cosϕ1 + v2 cosϕ2)
4 m+ 1

m

+ 16ε4i (v1 cosϕ1 + v2 cosϕ2)
4 m+ 1

m

+ 6
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]2 |ε|4m+ 1

m

+ 24
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]2

× (v1 cosϕ1 + v2 cosϕ2)
2 ε2r

(m+ 1)(m+ 2)

m2

+ 24
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]2

× (v1 sinϕ1 + v2 sinϕ2)
2
ε2i

(m+ 1)(m+ 2)

m2

+ 24 (v1 cosϕ1 + v2 cosϕ2)
2
ε2r|ε|4

+ 24 (v1 sinϕ1 + v2 sinϕ2)
2 ε2i |ε|4 + 96ε2rε

2
i

× (v1 cosϕ1 + v2 cosϕ2)
2 (v1 sinϕ1 + v2 sinϕ2)

2 m+ 1

m

+ 4
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]3 |ε|2 (m+ 1)(m+ 2)

m2

+ 4
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]

|ε|6

+ 48
[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]

× (v1 cosϕ1 + v2 cosϕ2)
2
ε2r|ε|2

m+ 1

m
+ 48

[

v21 + v22 + 2v1v2 cos (ϕ1 − ϕ2)
]

× (v1 sinϕ1 + v2 sinϕ2)
2 ε2i |ε|2

m+ 1

m
(45)

or equivalently

µ8 =
[

(v21 + v22)
4 + 6v41v

4
2 + 12(v21 + v22)

2v21v
2
2

]

× (m+ 1)(m+ 2)(m+ 3)

m3
+
[

16(v21 + v22)
2 + 96v21v

2
2

]

× (v21 + v22)σ
2 (m+ 1)(m+ 2)

m2

+
[

72(v21 + v22)
2 + 144v21v

2
2

]

σ4m+ 1

m
+ 96(v21 + v22)σ

6 + 24σ8.
(46)

B. Probability Density Function of the Two-Ray Model Re-
ceived Signal

In this Appendix, the expression of the pdf for the received
signal z is provided. Precisely, it is derived resorting to the
so-called Law of Total Probability, namely

fz
(

z;σ2,m
)

=
1

(2π)2

∫ 2π

0

∫ 2π

0

∫ +∞

0

fz|r,ϕ1,ϕ2

(

z; r, ϕ1, ϕ2, σ
2
)

× pr (r;m, 1) dr dϕ1 dϕ2,
(47)

wherefz|r,ϕ1,ϕ2

(

z; r, ϕ1, ϕ2, σ
2
)

is the conditional pdf of the
received signalz givenr, ϕ1, ϕ2, andσ2, whereaspr (r;m, 1)
is the pdf ofr whose expression is reported in (2).

Now, observe that, givenr, ϕ1, and ϕ2, z ∼
CN
((

v1e
jϕ1 + v2e

jϕ2
)

r, σ2
)

, then (47) can be recast as

fz
(

z;σ2,m
)

= C

∫ 2π

0

∫ 2π

0

∫ +∞

0

rµ−1 exp
{

−βr2 − γr
}

dr dϕ1 dϕ2,

(48)

where C =
[

mm exp
{

−|z|2/σ2
}]

/
[

2π3σ2Γ(m)
]

, β =
∣

∣v1e
jϕ1 + v2e

jϕ2
∣

∣

2
/σ2 + m > 0, γ = γ(ϕ1, ϕ2) =

−2ℜ
{

z
(

v1e
−jϕ1 + v2e

−jϕ2
)}

/σ2, andµ = 2m > 0.

The integral with respect tor can be solved resorting to [31,
Sec. 3.462] to obtain

fz
(

z;σ2,m
)

=

∫ 2π

0

∫ 2π

0

A exp

(

(γ(ϕ1, ϕ2))
2

8β

)

×D−µ

(

γ(ϕ1, ϕ2)√
2β

)

dϕ1 dϕ2,

(49)

whereA = C(2β)−µ/2Γ(µ), and

Dµ(ζ) = 2µ/2e−ζ2/4

×
[

√

ζ/Γ[(1− µ)/2]Φ
(

−µ/2, 1/2; ζ2/2
)

−
√
2πζ/Γ(−µ/2)Φ

(

(1− µ)/2, 3/2; ζ2/2
)

]

(50)

is the Parabolic Cylinder Function [31]. Finally, the expression
of the pdf ofz is

fz
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z;σ2,m
)

=
mm exp
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−|z|2/σ2
}

2π3σ2Γ(m)
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