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Abstract. This work builds on the analyses made within the EUMETSAT ComboCloud project (contract 
EUM/CO/19/4600002352/THH) whose purpose was to develop AI-based solutions to infer key cloud parameters 
exploiting the combination of innovative features offered by upcoming satellite sensors, namely the Next Generation 
Atmospheric Sounding Interferometer (IASI-NG), and the Microwave Sounder (MWS). We present the potential of the 
developed solutions applied to real observations, from the instruments flying onboard the EUMETSAT MetOp satellites 
such as the Atmospheric Sounding Interferometer (IASI), the Advanced Microwave Sounding Unit (AMSU), and the 
Microwave Humidity Sounder (MHS) and validated against cloud products from an independent dataset of real 
observations. The validation demonstrated good agreement between reference and retrieved cloud key parameters, showing 
consistent range and spatial patterns. 

INTRODUCTION 

Over the last three decades using instruments operating in visible, infrared, and microwave bands, a variety of tools 
have been developed to retrieve cloud microphysics properties 1–3. In this work, we show the potential of an AI-based 
regression framework for the estimation of cloud microphysical parameters by the synergic use of observation in the 
microwave and the infrared bands. Here, the addressed key cloud parameters are the vertical profiles of cloud liquid 
water content (CLWC) and cloud ice water content (CIWC), their column-integrated values, cloud liquid water path 
(CLWP) and cloud ice water path (CIWP), and finally the cloud drop effective radius (re). The next sections will 
introduce the database of measurements used in this work. In the following, the architecture of the developed 
framework will be briefly discussed. Finally, the evaluation of the regression performance obtained in validation will 
be shown. 

INFRARED AND MICROWAVE DATA 

A simulated dataset of realistic sea surface observations was produced by processing global data from ERA5, which 
is the fifth generation of the European Center of Medium-range Weather Forecast (ECMWF) reanalysis, with state-
of-the-art radiative transfer models (RTM) codes. Namely, RTTOV-SCATT4 and 𝜎-IASI-as5,6 (with new cloud 
parametrization7) codes were exploited for the simulation of microwave (MW) and infrared (IR) satellite observations. 
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Specifically, sensors of the Meteorological Operational Satellites of the first generation (MetOp-FG) including i) the 
Infrared Atmospheric Sounding Interferometer (IASI), ii) the Advanced Microwave Sounding Unit A (AMSU-A), 
and iii) the Microwave Humidity Sounder (MHS) are the sensors involved. 

 
 

 

FIGURE 1. Processing scheme of 
the simulated dataset of IR (IASI) 
and MW (AMSU and MHS) 
measurements. 

 

FIGURE 2. (a) Simple sketch of the AI 
inversion approach used for the regression 

of cloud microphysical parameters. (b) 
Regression framework implemented 

architecture. 

FIGURE 3. Regression architectures of 
(a) SW1, (b) SW2 and (c)-(d) SW3 

processors. 

The radiation measured by these sensors interacts with cloud particles in such a way that the greatest sensitivity to its 
microphysical details occurs when the wavelength of the radiation is close to the size of the particles and in this way 
more or less sensitive to the amount of ice and liquid water particles in the clouds and their burden. A synergy of 
observed IR and MW measurements needs to be investigated. Global data have been simulated accordingly to what is 
presented in 8–10. Figure 1 shows a summary of the process for the generation of the dataset of satellite measurements. 

METHOD AND REGRESSION FRAMEWORK ARCHITECTURE 

In this work, AI is the core of the inversion framework developed. Specifically, we adopted two types of AI inversion 
approaches, namely the feed-forward Neural Networks (NN)11,12 and the random forests (RF)13 (see Figure 2 (a)). The 
NN inversion approach was adopted for the retrieval of CLWC, CIWC profiles, and their vertical integrated paths 
(CLWP and CIWP). RF algorithm was adopted for the retrieval of drop effective radius of liquid water and ice clouds. 
Thus, three independent processors namely SW1, SW2, and SW3 have been implemented (see Figure 2 (b)). Details 
about data processing and SW regression schemes (see Figure 3) can be found in Mastro et al. 8–10. Finally, in the next 
sections, the evaluation of the regression performance obtained in validation by the implemented SW processors is 
presented using simulated and real observations (e.g., MetOp-FG real observation collocated with the ECMWF 
analysis dataset). 

VALIDATION WITH A DATASET OF SIMULATIONS 

The remaining 15% of the total dataset of simulated measurements has been used for the validation step of the 
developed SWs. For the SW1 processor, here we show some results related to coordinates in the tropics area. 

 

 

FIGURE 4. (a)-(d) Reference vs predicted CLWC and CIWC 
profiles. (e) CLWP scatter plot between reference and predicted 
CLWC. (f) CIWP scatter plot between reference and predicted 

CIWC. 

FIGURE 5. Scatter plots of (a) CLWP and (b) CIWP. 
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TABLE 1. Retrieval performance evaluation of SW 
processors with respect to the WMO OSCAR database 

 
FIGURE 6. Scatter plots of (a) liquid water and (b) ice clouds 

effective radii. 

The results shown in Figures 4 (a)-(d) demonstrate that the prediction of the PCs of CLWC and CIWC from the SW1 
processor allows a reasonable reconstruction of the corresponding profiles. The goodness of SW1 predictions is also 
demonstrated by analyzing values from the CLWP and CIWP scatter plots (see Figure 4 (e)- (f)). Concerning the 
SW2 processor, also the scores are high (see Figures 5 (a) and (b)) demonstrating very good retrieval performances. 
Finally, in Figure 6 we show the scatter plots of SW3 regressions of ice and liquid water cloud drop effective radii. 
Moderate values of are obtained, highlighted by comparing the marginal histograms between reference and 
predicted values which have very similar skewness and median values. Finally, in Table 1 SWs regression 
performance was evaluated using the Numerical Weather Prediction (NWP) requirements of the World 
Meteorological Organization (WMO) OSCAR database. The performances for the integrated liquid and ice paths both 
for SW1 and SW2 are between the threshold and breakthrough levels, more in agreement for SW2. For the retrieval 
of effective radius Re, the achieved performances meet the objective level when limited to liquid clouds. For ice 
clouds, currently, no information is available within the WMO OSCAR database to track the requirements of the drop 
effective radius of ice clouds. Therefore, such measurements may be considered a new result. 

VALIDATION ON A DATASET OF REAL OBSERVATION 

Here we present the validation of our models on real observations. To have a cross-validation dataset covering the 
whole range of latitude we collocated measurements from MetOp-B and MetOp-C platforms with ECMWF analyses 
measurements (MARS system) from 8 September 2021 to 10 September 2021. Among these, we selected the 
measurements within +/- 30 minutes from the ECMWF analysis base time. A subset of about four hundred thousand 
sea surface acquisitions was used for the validation. We made a spatial comparison between SW predictions and 
reference ECMWF values. Specifically, we selected a specific area from low- to mid-latitudes. 

  
FIGURE 7. Spatial comparison between ECMWF and SW1 

CLWP (a)-(c) and CIWP (b)-(d) values. 
FIGURE 8. Spatial comparison between ECMWF and SW2 

CLWP (a)-(c) and CIWP (b)-(d) values. 
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FIGURE 9. Spatial comparison between ECMWF and SW3 liquid water (a)-(c) and ice (b)-(d) cloud drop effective radii 

values. 
Figure 7 shows the comparison between SW1 and ECMWF in terms of CLWP (a)-(b) and CIWP (c)-(d) values where 
good spatial agreement is revealed. Into the same area (see Figure 8), the goodness of the SW2 processor can also be 
appreciated. In this case, the CLWP and CIWP predictions follow the reference ECMWF spatial dynamics closely, 
better than the SW1 processor, as expected. Finally, also for the SW3 processor, a fair agreement of the spatial pattern 
is observed. See Figure 9. 

CONCLUSION 

In this work, we presented the potential of an AI-based inversion framework for the regression of key cloud parameters 
by the synergic use of MW and IR measurements. Validation performance on simulated measurement results in 
agreement with the WMO OSCAR requirements for global NWP applications. Validation with real observations 
shows consistent results in terms of spatial dynamics. 
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