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Abstract: The present study focuses on particular properties of transonic flows through a planar
channel featuring a circular bump on the lower wall. The selected geometry is reminiscent of the
region surrounding the trailing edge of an airfoil at zero angle-of-attack and the resulting flow
pattern is indeed similar to the fishtail shock-pattern that characterizes airfoils flying at nearly
sonic speed. Numerical simulations have been conducted by solving the inviscid Euler equations
using both a commercial and an in-house CFD code; discontinuities are modeled using shock-
capturing in the former and shock-fitting in the latter. Numerical experiments reveal different
shock-patterns obtained by independently varying the pressure ratio defined as the ratio between
the static outlet pressure and the inlet total pressure. When shock-interactions occur, shock-polar
analysis reveals that the branching point can be modeled using either von Neumann’s three-shock-
theory or Guderley’s four-wave-theory, depending on the pressure ratio. Furthermore, for certain
values of the pressure ratio, double solutions have been observed.
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1 Introduction
In previous studies [1, 2], the authors analyzed the so-called “fishtail” shock-pattern that characterizes
the transonic flow past a NACA0012 airfoil at zero incidence and for M∞ ranging between 0.91 to 0.95.
Figure 1 shows a visualization of the fishtail shock-pattern in the upper half of the flow-field. It consists
in two oblique shock waves that originate at the trailing edge (TE) of the airfoil and a nearly normal
shock standing behind the TE; the two oblique shocks (only one is visible in Fig. 1) and the normal shock
merge at two branching points (one of these is denoted with a black circle in Fig. 1) which resemble the

Figure 1: Transonic flow past a NACA0012 airfoil at M∞ = 0.95 and fishtail shock-structure

triple-point that is observed in steady and un-steady Mach reflections. Mach reflections can be modeled
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using either von Neumann’s three-shock theory [3, 4] (3ST) or the four-wave theory (4WT), known in
the literature as Guderley’s model [5].

In the present paper, we study the transonic flow in a two-dimensional planar channel featuring a
lenticular bump on the lower wall. The geometry resembles the region close to the TE of an airfoil and
the shock-pattern that arises is indeed very similar to the fishtail shock-structure we have previously
described. One of the advantages in simulating an internal flow, as we do in this paper, is that it allows
to use a much smaller computational domain than that required to simulate the external flow past an
airfoil.

Numerical computations have been performed using two different CFD codes: the commercial shock-
capturing code CFD++ [6] and the in-house, open-source, shock-fitting code UnDiFi-2D, which has been
developed by the authors [7].

The present study is organized as follows. Sect. 2 recalls both von Neumann’s 3ST and Guderley’s
4WT and also introduces the (M1, σ12) plane which allows to parametrically define the domain of exis-
tence of the 3ST and 4WT. Sect. 2.3 briefly describes the gasdynamic solvers used in the simulations.
Sect. 3 gives the definition of the test-cases and illustrates the properties of the computational meshes.
Numerical results and flow analyses are reported in Sect. 4. Final considerations and remarks will be
given in Sect. 5.

2 Generalities

2.1 Shock-interaction modelling: three-shock theory (3ST) and four-wave
theory (4WT)

von Neumann’s 3ST is used to analytically model the triple-point that occurs in Mach reflections (MR),
see the sketch in Fig. 2a. The shock-pattern in the neighborhood of the branching points of the fishtail
shock-structure of Fig. 1 can also be described by borrowing the nomenclature used for Mach reflections.
This is done in Fig. 2b, where the oblique shock emerging from the trailing edge of the airfoil is the
I-shock, which can be thought of as being “reflected” from the far field, thus giving rise to the nearly
normal shocks (the R-shock). Beyond the branching point where the oblique and nearly normal shocks
interact, the former bends into the M-shock and the dashed line represents the contact-discontinuity or
slip-stream (SS).

The non-linear algebraic equations governing the 3ST can be found in either [8, § 135] or [9, § 1.3.2]
and consist in the Rankine-Hugoniot jump relations for all three shocks, supplemented by the condition
of parallel streams and equal pressure across the contact discontinuity. The number of unknowns matches
that of the available equations once three parameters are given. We assign: i) the adiabatic index, γ, of
the gas (here always set equal to 1.4); ii) the Mach number, M1, ahead of the I-shock and iii) a measure
of the I-shock strength, which we here choose to be the I-shock angle, σ12.

Solutions to the 3ST can be graphically found by seeking intersections between the I- and R-shock
polar in the pressure-deflection (θ, ξ) plane, shown in the central frame of Figure 2; for given values of γ
and M1, an unique shock polar can be drawn.

Whenever the I- and R-shock polar do not intersect, as in Fig. 3a, von Neumann’s 3ST has no
solution and a different analytical model must be used. In [5, 10] Guderley proposed the addition of a
centred, isentropic expansion fan (EF) or Prandtl-Mayer (PM) wave that accelerates the flow from sonic
conditions behind the R-shock to supersonic flow in region 5 of Fig. 3b. Guderley’s model is commonly
known as the four waves theory (4WT), the PM wave being the fourth wave; the 4WT was further
modified by Khalghatgi and Hunt [11] by including a slip-stream, shown using a dashed line in Fig. 3b.
Kalghatgi and Hunt [11] noticed that in region 4 of Fig. 3b, the flow can be either subsonic or supersonic;
in the former case the flow pattern is referred to by [9] as a Vasil’ev reflection (VR), whereas in the latter
as a Guderley reflection (GR).

2.2 The (M1, σ12) plane
A powerful graphical tool for looking at the existence and features of the solutions to both von Neumann’s
and Guderley’s models consists in using a plane where the Mach number, M1, upstream of the I-shock
is on the x-axis and the I-shock local slope, σ12, on the y-axis. The (M1, σ12) plane is drawn in Fig. 4,
where we restrict the abscissas to the M1-range that is relevant to the applications in Sect. 3 and we
only plot the curves which will be referred to throughout the paper. Using the same labeling as in [12],
we draw:
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(a) Mach reflection schematic and corresponding shocks poplars (b) 3ST sketch

Figure 2: von Neumann’s model (3ST)

(a) Shock polar (b) 4WT sketch

Figure 3: Guderley’s model (4WT)
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• Line 1: where the incident shock (I-shock) is a Mach wave;

• Line 2: where the flow is sonic behind I-shock;

• Line 7a: marks the transition between the 3ST and 4WT and is characterized by sonic flow behind
the R-shock in the 3ST;

• VR ⇔ GR: marks the transition between the VR and GR and corresponds to sonic flow behind
the M-shock in the 4WT.

The equations required to draw the aforementioned curves can be found in [1]. However, this is only
a small subset of the numerous lines that bound regions of the (M1, σ12) plane where different shock-
interaction patterns are observed. The interested reader is referred to [13, 12, 14, 15] for a far more
extensive discussion.
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Figure 4: The (M1, σ12) plane

2.3 CFD solvers
The numerical simulations presented in this study have been carried out using two different CFD solvers.
One is the commercial, shock-capturing code CFD++ [6], which is widely used for simulating flows of
aeronautical interest [16, 17] on both structured and unstructured grids. The other is the in-house, shock-
fitting code UnDiFi-2D which was developed by the authors [7] and is publicly accessible on the GitHub
repository https://github.com/UnDiFi/UnDiFi-2D. UnDiFi-2D is capable of simulating shock/shock
and shock/wall interactions in both steady and unsteady flows using 2D unstructured triangular grids;
references [18, 19, 20, 21] give examples of inviscid and viscous flow computations performed using
UnDiFi-2D which highlight the main features of this shock-fitting technique as well as the advantages
it offers over state-of-the-art shock-capturing codes when computing high-speed shocked-flows. In all
numerical simulations performed using UnDiFi-2D in Sect. 4 all shocks and slip-streams are fitted, i.e.
treated as true mathematical discontinuities of zero thickness that bound regions of the flow-field where
a smooth solution to the governing PDEs exists; see [22, 23, 7] for algorithmic details. In addition,
also those branching points where different discontinuities meet are treated as geometrical points (0-
dimensional) and modeled as described in [24, 18]. The available interaction models include the 3ST and
4WT, the latter being recently used to model the fishtail shock-pattern around the NACA0012 airfoil [1].

All numerical simulations included in this paper, performed either using CFD++ or UnDiFi-2D, rely
on second-order-accurate spatial discretization schemes.

3 Test-case definition
To investigate the properties of the fishtail shock-structure, we simulated the inviscid transonic flow
through the channel shown in Fig. 5a. A subsonic flow with constant total pressure and temperature
and horizontal velocity is prescribed along the inlet section of the duct, whereas a subsonic flow with
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(a) Computational domain and boundary conditions (b) Computational grids.

Figure 5: Computational domain, boundary conditions and grids

Table 1: Boundary conditions defining the various test-cases and features of the grids

(a) Labeling of the test-cases

Test-case label pe

p0

D5-1 0.64536
D5-2 0.64355
D5-3 0.64330
D5-4 0.64289
D5-5 0.64247
D5-6 0.64206

(b) Computational grids details

Structured grid Unstructured grid
Nodes Cells Nodes Cells
58201 57600 40600 79998

prescribed static pressure is set along the outflow section. The lower wall of the channel has the shape of
a circular arc of radius R = 10 which subtends an angle equal to α = 30◦, see Fig. 5a. Two discontinuities
in the slope of the lower wall are located where the circular arc joins the straight horizontal wall of the
wider sections of the channel. Transonic flow takes place in the duct provided that the pressure ratio
(pe/p0), defined as the ratio between the static pressure along the exit section and the total pressure
along the inlet section, is varied within a suitable range. When operating in the transonic regime, the
incoming subsonic flow decelerates and compresses along the lower wall up to the stagnation point located
at the leading edge (LE) of the profile, then it expands and accelerates to supersonic conditions along
the profile. An oblique shock takes place at the trailing edge (TE) of the profile, because of the slope
discontinuity. In these flow conditions a fishtail shock-pattern, similar to the one shown in Fig. 1, may
develop. Compared to the external flow past the NACA0012 profile which we studied in [1], the chosen
internal flow test-case offers a significant advantage. Indeed, numerical simulations of transonic external
flows require a large computational domain owing to the relatively large size of the supersonic bubbles,
see Fig. 1, but also because the distance (Xs in Fig. 1) between the nearly normal shock and the TE
is very sensitive to the location of the far-field boundary [25]. The chosen internal flow test-case can
instead be computed using a small domain, thus reducing the computational cost.

Table 1a lists the various flow configurations analyzed in this study: each test-case is characterized
by a different value of the pe/p0 ratio. It is important to note that the pe/p0 ratio spans a very small
interval. Despite of this, the transonic flow undergoes important and significant topological changes that
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will be analyzed in the next sections.
Running test-cases featuring pe/p0 values which only differ in the fourth digit poses serious repeata-

bility issues, which become even more severe when different CFD solvers are used. Indeed, unless due
care is exercised when running the test-cases listed in Tab. 1a with two different solvers, two very dif-
ferent solutions might be obtained. Differences may be caused by numerical errors, insufficient iterative
convergence and differences in the way boundary conditions are prescribed in the two codes, e.g. weak
versus strong boundary conditions. For theses reasons, it is necessary to use very fine meshes, accurately
verify that the numerical solutions are converged to steady state and that the same pe/p0 ratio is indeed
prescribed by both CFD solvers.

Two meshes have been used to discretize the computational domain shown in Fig. 5a. The first one
is a structured quadrilateral grid and it was used to compute the S-C solution with the CFD++ code; the
second one is an unstructured, triangular mesh, which has been used by UnDiFi-2D to compute the S-F
solutions. Table 1b reports the number of grid-points and cells for each mesh. Since the meshes are too
fine to be displayed, Figs. 5b only shows an enlargement of both in the neighborhood of the TE, i.e. the
region bounded by a red box in Fig. 5a. It is worth noting that, even if the structured and unstructured
grids are characterized by a different number of grid-points and cells, see Tab. 1b, they share the same
number and geometrical location of the grid-points along the domain boundaries.

4 Numerical results

4.1 Shock-capturing results
We here examine the six test-cases listed in Tab. 1a with pe/p0 ranging between 0.64536 and 0.64206.
Figure 6 collects the pressure contours computed for all six test-cases using CFD++ on the structured
grid. Solutions on the left column were computed starting from the D5-1 case, then decreasing the pe/p0
ratio to obtain the solutions of the remaining five test-cases. The sequence of frames on the left of
Fig. 6 highlights how tiny variations in the pressure ratio, often of the order of one thousandth, cause
remarkable changes in the flow topology. For example, the D5-1 and D5-2 solutions feature a single
strong curved shock originating at the TE, whereas all other test-cases exhibit the fishtail shock-pattern.
It is also seen that the shock interaction point moves downstream when gradually decreasing the pressure
ratio from D5-3 to D5-6.

Frames in the right column of Fig. 6 are the numerical solutions of the same test-cases, but they
were computed starting from the D5-6 case (which corresponds to pe/p0 = 0.64206) and then increasing
the pe/p0 ratio to obtain the remaining five solutions. All corresponding solutions of the left and right
columns of Fig. 6 can be superimposed, except the solutions of the D5-2 test-case. More precisely,
the solution on the right column exhibits a fishtail pattern, whereas the solution on the left features a
single strong curved shock. To determine which kind of interaction, whether a von Neumann (vNR),
Guderley (GR) or Vasil’ev (VR) reflection characterizes each test-case, we extracted from the CFD++
calculations the (M1, σ12) pairs close to the branching point and plotted them in the (M1, σ12) plane.
More precisely, the Mach number, M1, ahead of the I-shock is probed from the CFD solutions, whereas
the I-shock local slope, σ12, is obtained from the computed pressure ratio across the I-shock. There
clearly is some uncertainty in the extraction process, because in the S-C calculation the branching point
is not a geometrical point, but rather a region whose size is of the order of the numerical shock thickness.
The D5-1 solution has not been included in the analysis (the same is true for the D5-2 solution shown
on the left column of Fig. 6) because no interaction takes place. The D5-2 solution shown on the right
column of Fig. 6 was instead included in the analysis.

Figure 7 shows the corresponding points on the (M1,σ12) plane of the five solutions which exhibit the
fishtail pattern. The situation on the M1,σ12 plane is quite complex and reveals unexpected topological
differences. From the position of the points observed in Fig. 7, we conclude that the interaction of the
D5-2 solution is a GR and, therefore, should be analytically modeled using the 4WT. In the D5-6 solution,
however, the interaction is a vNR which should be modeled instead using the 3ST. The interaction of the
D5-5 case could also be a vNR, like the D5-6 case. However, we use the conditional because this point is
very close to the boundary separating the domain of existence of the 3ST and 4WT and the uncertainty
that affects the extraction process does not guarantee the correctness of this finding. The interactions
of the D5-3 and D5-4 cases appear to be in region of the VR.

It is worth underlining that this change in the nature of the fishtail interaction point occurs over a
very narrow range of pressure ratios. Furthermore, the S-C numerical solutions, even if calculated on
fine grids, do not allow to precisely identify the characteristics of the interaction point, i.e. whether it
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Figure 6: Pressure contour lines of the S-C numerical solutions of the D5-X cases; solution on the left
are computed decreasing the pe/p0 ratio, solution on the left are computed increasing the pe/p0 ratio

is a vNR, GR or VR. This is because the numerical thickness of the shocks and the interaction point
does not allow to distinguishing the R-shock from the PM wave, because these waves are tightly packed
together, see Fig. 3b, and, furthermore, the PM wave disappears very close to the interaction point. A
direct verification of these findings will be possible only by means of S-F simulations where the thickness
of the shock waves and the interaction point is reduced to zero and the interaction point is modeled
using either the 3ST or the 4WT.

4.2 Shock-fitting results
Results obtained with the S-F approach will be presented in the talk.

5 Conclusions
Transonic flows in a duct with a 30◦ circular bump on the lower wall have been computed using both the
shock-capturing technique implemented in the commercial CFD++ code and the shock-fitting technique
implemented by the authors in the UnDiFi-2D open-source code. The analysis of the results showed that:
i) within a narrow range of pressure ratios the flow exhibits a shock interaction pattern known as the
“fishtail”; ii) within this range of pressure ratios there exists a sub-interval in which two distinct solutions
are observed: one characterized by the presence of the fishtail and the other by a strong curved shock;
iii) as the pressure ratio pe/p0 changes, the interaction point of the fishtail changes nature, taking either
the form of a von Neumann, Vasil’ev or Guderley interaction.
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Figure 7: Location of interactions of the D5-X cases in the (M1, σ12) plane
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