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Abstract: In the era of Big Data, entity resolution (ER), i.e., the process of identifying which records
refer to the same entity in the real world, plays a critical role in data-integration tasks, especially in
mission-critical applications where accuracy is mandatory, since we want to avoid integrating differ-
ent entities or missing matches. However, existing approaches struggle with the challenges posed by
rapidly changing data and the presence of dirtiness, which requires an iterative refinement during
the time. We present Detective Gadget, a novel system for iterative ER that seamlessly integrates
data-cleaning into the ER workflow. Detective Gadgetemploys an alias-based hashing mechanism
for fast and scalable matching, check functions to detect and correct mismatches, and a human-in-
the-loop framework to refine results through expert feedback. The system iteratively improves data
quality and matching accuracy by leveraging evidence from both automated and manual decisions.
Extensive experiments across diverse real-world scenarios demonstrate its effectiveness, achieving
high accuracy and efficiency while adapting to evolving datasets.

Keywords: entity resolution; iterative; algorithms; design; performance

1. Introduction

Entity Resolution is the process of identifying which of the records in a data collection
refer to the same entity of the real world, a problem also known under the name of
deduplication, record linkage, or merge–purge.

It is considered a significant research problem with data-cleaning, integration, and
mining applications. In recent years, it has assumed a key role in information-extraction
applications [1], which collect and integrate descriptions of objects of the real world taken
from heterogeneous data sources, typically on the Web.

It can be seen how entity resolution (ER in the following) is a key technical problem in
this process. Given its importance, a wealth of research has been devoted to the problem [2–4].
Previous evaluations (e.g., [5]) have shown that fully automatic approaches often struggle to
reach the level of accuracy required in mission-critical applications and that running times are
typically quite high even for tasks of a few thousand tuples. Mission-critical applications
are the ones where high-quality results of the ER process are required.

This paper stems from several experiences conducted by our group with mission-
critical ER in various domains, including research papers and publication venues (journals,
conferences, and publishers), events, medical records [6,7], and personal data, for public
and private organizations. In these experiences, we have made a few observations that
stand at the core of our approach, as follows.

a Rapid changes: Web data sources and data lakes used in information-extraction appli-
cations typically change very rapidly [8,9], so the ER process needs to be repeated
frequently to obtain fresh information about the real-world entity they represent.
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b Dirty data: a critical problem is that data at the sources are often dirty [10]. Systems
in the literature [3] typically assume that the input records undergo a preliminary
data-cleaning phase before being fed to the ER algorithm. However, we will show in
the paper that it is often impossible to clearly separate the data-cleaning phase from
the ER phase since most of the dirtiness in the data is discovered only after an initial
entity resolution has been produced. For this reason, data architects may need to
iterate data-cleaning, and ER runs until an output of acceptable quality is produced.

c Accuracy Requirements and Cost: ER is notoriously expensive because it may require
running several comparisons that are quadratic in the size of the input records. In
addition, as we mentioned above, automatic approaches often give poor performance
[5]. Experience says that real-life organizations that use ER results for mission-critical
tasks often require accuracy higher than 95% and, therefore, hardly rely solely on
automatic matches based on similarity functions. For example, in research evaluation,
it is crucial to accurately match conference ratings from different sources to assess
a conference’s scientific value. False positives may severely impact the quality of
evaluations and, therefore, cannot be tolerated. False negatives also have a negative
impact on quality. Similarly, in developing integrated systems for e-healthcare, it
is not acceptable to match medical records for different patients. This is why it is
usually necessary to involve humans in the loop [11,12], either by relying on small
groups of experts or on crowdsourcing to perform clerical reviews. However, human
labor is expensive and can considerably slow down the process. Consequently, it is
mandatory to design frameworks that can integrate automatic processing and human
inputs as effectively as possible.

Based on these observations, it is easy to see that the ER process needs to be itera-
tive. Also, the first iteration is usually quite expensive, both in terms of execution times
and money, especially in mission-critical scenarios where humans need to be involved.
Therefore, iterating the process is acceptable only as long as successive iterations can be
computed with minimal additional costs.

Suppose we intend to evaluate the reputation of computer-science conferences, i.e., obtain
the ranking or class and obtain the H-index. To do this, we may integrate some of the various
conference rankings available on the Web, like the Australian CORE ranking 1, which assigns
a class of merit to each conference, and the LiveSHINE ranking, which estimates H-indexes
for conferences based on Google Scholar data. After the integration and the merge of
conferences, we have a global reputation for such conferences. In this ER scenario we might
have a DBLP 2 recordset with attributes confName, acronym, URL, a CORE recordset,
with attributes confName, acronym, class, and one more from LiveSHINE with attributes
confName, acronym, H-index. One example is shown in Figure 1.

Throughout the paper, we shall refer to this example. We name it the conference-ranking
example.

DBLP id confName acronym URL
r1: ACM SIGMOD Conf. on Management of Data ACM SIGMOD http://dblp.uni-trier.de/sigmod
r2: Int. Conf. on Very Large Databases VLDB http://dblp.uni-trier.de/vldb
r3: Int. Conf. on Management of Data COMAD http://dblp.uni-trier.de/comad

CORE id confName acronym class
r4: ACM Int. Conf. on Management of Data SIGMOD A+
r5: Very Large Databases VLDB A+
r6: Int. Conf. on Management of Data COMAD B

SHINE id confName acronym H-index
r7: Int. Conf. on Management of Data SIGMOD 143
r8: Int. Conf. on Very Large Databases VLDB 134

Figure 1. Sample records for the conference-ranking example.

In the example, multiple sources provide information about computer-science con-
ferences. These sources have inconsistencies: (1) The DBLP dataset lists conferences with



Data 2024, 9, 139 3 of 32

their names, acronyms, and URLs. (2) The CORE dataset provides rankings but uses
slightly different names or acronyms. (3) The LiveSHINE dataset includes H-indices for
conferences but may use ambiguous names like “Int. Conf. on Management of Data”,
which could refer to either ACM SIGMOD or COMAD.

The goal is to integrate these datasets to correctly match records that refer to the same
conference, ensuring that ACM SIGMOD and COMAD are not mistakenly grouped while
correctly merging all VLDB entries.

In this paper, we study this important problem, called iterative entity resolution in the
presence of dirty data: we are given an ER task, and we assume that an initial ER has been
derived (using any of the techniques in [2–4]), possibly collecting human decisions during
the process; then, the input records are updated (either at the sources, or as a result to some
data-cleaning activity), and we need to iterate the ER step until no further updates are
needed.

Within such an interactive ER process, we assume that any of the techniques available
in the literature has been used to compute a first approximation of the ER, which we take
as input. Then, our focus is on designing a systematic set of steps for computing successive
iterations in such a way as to obtain the best trade-off between quality and costs (e.g., the
number of manually labeled examples and computational costs).

To do this, we develop fast algorithms and data structures in order to reuse automatic
and human decisions about matches so that the cost of running successive ER steps drops
significantly. Previous approaches have materialized match decisions to avoid recomputing
them. In the paper, we show that this is extremely slow in many cases and makes frequent
iterations completely unfeasible.

In light of this, we develop a novel entity-resolution system called Detective Gadget.

a Detective Gadget adopts a generic approach to entity resolution, i.e., it may incorporate
a variety of match functions in order to establish if two records match each other,
seen largely as black boxes; in this respect, Detective Gadget allows for the maximum
flexibility in incorporating known techniques to speed up the initial ER step; for
example, it may easily incorporate inputs provided by human experts or the crowd
along with automatic match functions, or machine-learning models, in such a way
that users may fine-tune the trade-off between the costs and quality of the ER.

b Differently from previous approaches, Detective Gadget does not assume that a
data-cleaning step has been performed prior to the entity-resolution phase; on the
contrary, it handles data-cleaning and entity resolution in an integrated fashion, using
a greedy-match algorithm that uses both positive and negative evidence about the
matches to refine the entity resolution while at the same time cleaning up the original
datasets;

c At the core of the system stands a very fast match algorithm capable of leveraging past
positive and negative evidence in an extremely efficient way. The algorithm is based
on a novel technique called alias-based hashing, which relies on shadow values—i.e.,
additional values used by the algorithm in addition to the original ones—for the
input records, called aliases. Intuitively, aliases are alternative versions of the value of
an attribute, which may be updated to make two different but matching values or
records identical to each other.

d This aggressive hash-based matching technique allows for the development of a novel
hash-based algorithm to recompute groups of matching records that make the execu-
tion of successive iterations orders of magnitude faster than previous approaches. In
fact, as will be discussed in the following, we introduce a novel blocking technique to
limit the number of pairwise comparisons needed to identify similar values, called
inverted blocking that usually significantly improves performance in highly duplicated
datasets. The interaction between hashing and inverted blocking represents a novel
part of our contribution.

Detective Gadget makes several novel contributions to the solution of the iterative ER
problem:
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i We develop an iterative fixpoint ER algorithm that can handle data-cleaning and
data-deduplication decisions in an integrated fashion. The algorithm uses greedy
matching to quickly generate an initial ER and then runs check functions to detect
potential inconsistencies and suggest repair instructions to clean dirty values. After
the original values have been fixed, the process is iterated until no new matches and
errors are detected.

ii At the core of the ER algorithm stands a two-step match algorithm, which clearly
separates the search for equality-based matches (using a doubly-linked hash data
structure) from the discovery of value similarities. The separation of the two phases
gives opportunities for a number of optimizations. To do this, in analogy with
keys in relational databases, we develop a theory of identifiers for ER purposes; we
propose a taxonomy of identifiers and notice that, due to dirtiness in the original
data sources, identifiers are often weak, in the sense that they do not always provide
definitive evidence about matching records. Stronger IDs, however, may improve
the efficiency of the process.

iii The match-algorithm core component is the use of equivalence classes and value
aliases to restore previous knowledge about matches and mismatches so that the
process can be iterated several times with very little cost; these techniques are
designed to accommodate human inputs efficiently. This reflects our vision that the
three crucial activities in ER—cleaning the data, matching them, and performing
clerical reviews—cannot be handled as separate activities and need to be integrated
within a single process.

iv We introduce a new iterative workflow that enables the integration of human deci-
sions into the ER process. The iterative nature allows the evaluation of the quality
of the ER process and, if needed, to reiterate to further improve the quality of the
results.

v We conduct an ample experimental evaluation and compare our algorithms to
several of the systems in the literature on different ER tasks. We show how Detective
Gadget represents an effective solution to the problem of handling dirty recordsets
that are frequently updated in mission-critical scenarios.

The paper is organized as follows: the following section introduces several preliminary
notions (Section 2.1) and then provides an overview of entity-resolution concepts (Section 2.2).
We use them to introduce the main challenges of the process and further elaborate on the
contributions made by this paper. We define the data model and the definition of the iterative
ER (Section 2.3), and we present an algorithm to solve the iterative ER (Section 2.7). Section 3
presents the experimental results and the discussion of the results. Finally, Sections 4 and 5
conclude the paper with related works and conclusions.

2. Materials and Methods
2.1. Preliminaries

The input to an entity-resolution process is a set of structured record collections, also
called recordsets. Each collection contains structured records, i.e., sets of attribute-value pairs.

As will be detailed in our experimental evaluation (Section 3), we considered several
ER scenarios, both from real-life recordsets and known benchmarks.

Consider again the conference-ranking example. As is apparent, recordsets may have
different schemas. In addition, they usually lack clear identifiers. In our example, an
acronym might seem a good identifier, but it fails to match ACM SIGMOD and SIGMOD.
The same applies to confName. Recordsets also have widely different levels of quality. It
is typically assumed [3] that the original records have undergone a data-cleaning phase
before entering the ER process, in order to standardize and repair their values in such a
way that the inputs to the actual ER phase are error-free. In this paper, we do not make
this assumption. To simplify the treatment, and without loss of generality, we will only
assume that attribute labels have been normalized in such a way that attributes with the
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same name have the same semantics in all sources and no ambiguous attribute names are
presented in the datasets [13,14].

Generic Entity Resolution

To discuss the ER process, we follow the nice abstraction introduced in the SWOOSH
framework [15] under the name of generic ER. After the initial exploration of the data [16]
and data-cleaning step, which is considered a separate phase with respect to the actual
ER phase, the basic technique consists of comparing records in order to identify matches.
Matching records are then merged to obtain a representation of the entity to which they
refer. Matching and merging records are, therefore, the two main operations of ER. Generic
ER makes limited assumptions about the actual match and merge functions, which are
considered black boxes in order to be able to incorporate approaches of different costs
and quality.

Our main focus in this paper is on the match phase, which is by far the most delicate
and expensive. Speaking of merging, there are different classes of merge functions [17],
but it has been shown [15] that those based on the union operation are “well behaved”, in
the sense that they preserve all the information in the original records, and can be used
subsequently for further elaborations. Therefore, in the following we shall assume that the
merge operation is simply the union of all records that match with one another. Using this
simple form of merge, at the end of the process, each entity will be represented as a set of
records, which we call a group. Consider the conference-ranking example, and assume the
set of input records is the one in Figure 1.

Also assume we match two record conferences if they have equal acronyms or similar
names. Then, the VLDB conference will be represented by the following group of records
(attribute names are omitted for brevity):

{ r2 = [Int. Conf. on Very Large Databases, VLDB, http://...]
r5 = [Very Large Databases, VLDB, A+]
r8 = [Int. Conf. on Very Large Databases, VLDB, 134] }

With this in mind, we concentrate on the match operation. In its essence, a match
function compares the values of attributes in a pair of records to measure their similarity
and ultimately decide if they match. The plenitude of approaches [2–4] that have been
proposed to match records in ER tasks can be classified along several lines.

We concentrate only on match algorithms that are based on pairwise record compar-
isons, as opposed to clustering-based algorithms, where groups of matching records are
identified by partitioning the input records according to algorithms that take into consider-
ation the global space of objects. On the contrary, pairwise-based approaches rely on local
decisions, and are often preferred since they are easier to write and characterize, also for
non-expert users. Moreover, pairwise-based approaches could be easily integrated into a
crowdsourcing environment [11,18,19].

Of the many possible classifications of pairwise comparison techniques that are found
in the literature—supervised, learning-based techniques vs. unsupervised techniques; proba-
bilistic vs. non-probabilistic; confidence-based vs. exact; single-type vs relational [2–4]—we
find it useful to divide match functions into two categories:

• record-level functions compare records by looking at values in their entirety to establish
whether there is a match or not;

• attribute-level functions compare the value of attributes one at a time. In our conference-
ranking example, they might be used to say that two conference records match if they
have similar names or equal acronyms.

Computing matches is by far the most expensive step in the entity-resolution process.
Any algorithm that relies on pairwise record comparisons needs, in the worst case, to
process comparisons in the order of O(n2), where n is the total number of input records.
Even with a few thousand records, this number raises to the millions. In addition, string-
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similarity comparisons may be slow, much slower than numeric comparisons. This explains
why a large fraction of the research work on this subject has been devoted to optimizing
the match phase, either by reducing the number of comparisons, for example, by dividing
records into blocks and comparing records within blocks only, or by parallelizing the
computation of similarities over a distributed cluster [2,3,20].

Regardless of the actual strategy that has been used to compute and optimize the
comparisons, in the end, a typical ER match function would classify record pairs into three
different groups:

• the first group contains pairs of records that are considered to be definitive matches;
these are ready to be merged in order to build groups corresponding to different
entities;

• the second group contains pairs of records that are considered to be nonmatching, i.e.,
they are too different from one another;

• the third group contains pairs of records that are possible matches; typically, they
exhibit some level of similarity, but this is not sufficient to motivate a clear match;
these record pairs require a clerical-review phase, i.e., they need to be inspected by a
human expert that labels them as matches or non-matches.

2.2. Overview of the Approach

Based on the notions introduced above, we are ready to summarize the main ideas
upon which we build our proposal.

2.2.1. Attribute Classification

Web data sources used in information-extraction applications typically change very
rapidly, so the ER process needs to be repeated frequently to generate fresh results. In this
respect, we find it useful to classify attributes into two categories.

We call identifying attributes (or simply IDs) the ones that are used by the functions to
identify matching records. We call descriptive attributes all the others. In our conference-
ranking example, it is natural to pick up as IDs the confName and acronym attributes; all
other attributes—class and H-index—are descriptive.

We notice that IDs (like conference names, publication titles, and event descriptions)
tend to be stable, while descriptive attributes (like H-indexes, citation numbers, check-ins,
or likes) may vary over time. We want to design the ER process in such a way that it may
be efficiently iterated to incorporate new data. We, therefore, need to design an iterative
algorithm that can reuse past knowledge about matching IDs to quickly reconstruct record
groups and analyze new values of descriptive attributes to obtain fresh information about
the real-world entity they represent.

2.2.2. Iteratively Cleaning Dirty Data

The iterative nature of the process is made even more crucial if we think that data at
the original sources usually have very different levels of quality, i.e., while there may be
a few curated sources that provide data of high quality, we expect most data sources to
provide dirty data.

An even more serious problem is that the kind of dirtiness we face often makes it
impossible to clearly separate the data-cleaning phase from the ER phase. To see this,
consider our conference example. Following the traditional two-phase ER process, we
need to inspect the various sources before conducting any ER activity to study their
quality and repair inconsistencies. There is a very rich literature in data-cleaning and data
repairing [10,21,22]. Most of the techniques are based on using constraints defined over the
sources to detect and repair inconsistencies [23,24] or involve humans in the loop to detect
constraints and repair data [25].

These techniques are often of limited use when dealing with ER–oriented recordsets.
There are several reasons for this, the main one being that most of the dirtiness in the data
is discovered only after an initial ER has been produced. Consider our example above;
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by looking at the three recordsets in Figure 1, all of them look clean. However, as soon
as records are matched, we generate a group like the one below (recall that we consider
conference titles as an identifying attribute):

{ r1 = [ACM SIGMOD Conf. ..., ACM SIGMOD, http://...]
r3 = [Int. Conf. on Management of Data, COMAD, http ...]
r4 = [ACM Int. Conf. on Management ..., SIGMOD, A+]
r6 = [Int. Conf. on Management of Data, COMAD, B]
r7 = [Int. Conf. on Management of Data, SIGMOD, 143] }

We are putting together records that refer to two completely different entities, namely
the ACM SIGMOD Conference and the COMAD Conference on Data. This is due to the
name used to refer to the SIGMOD conference in the LiveSHINE dataset (Int. Conf. on
Management of Data). To clean the data, that name should be changed to something more
specific to the ACM SIGMOD Conference, but we can discover this only after we have
brought data together and analyzed the output.

In fact, we see these data-cleaning instructions as another facet of the process of
generating new, updated records for the data sources at hand. In both cases—new, fresh
records at the sources and records updated as a result of data-cleaning modifications—we
need to repeat the ER process. Relying on a very fast match algorithm is mandatory in this
respect.

2.2.3. Integrating Human Inputs

As we mentioned, experience tells us that real-life organizations that use ER results for
mission-critical tasks hardly rely on matches based on fully automatic algorithms. Broadly
speaking, the accuracy of an ER process is usually measured by comparing the set of
matching record pairs it discovers with some gold standard established by a human expert.
In mission-critical applications, it is customary to require precision and recall, for example,
above 95%. Automatic algorithms are often quite far from this threshold [5].

This is why it is often necessary to involve humans in the loop, either by relying on
small groups of experts or on crowdsourcing [12], to perform clerical reviews. However,
human labor is expensive and can considerably slow down the process. Consequently, it
is mandatory to design frameworks that can integrate automatic processing and human
inputs as effectively as possible.

The three novel techniques that stand at the core of our approach are called greedy
matching, check functions and cell changes, and value aliases. These are discussed in the
following paragraphs.

2.2.4. Greedy Matching

It is common to think of ER as the process of matching records by searching for
similarities among their attributes. However, experience tells us that most of the matches
are based on identical values, not similar ones. To see this, consider the table in Figure 2,
in which we summarize some statistics about a number of ER tasks we have studied in
Section 3.

task #records #matches #equality matches #approx. matches % approx. matches
1. Journals 92,756 59,801 59,283 518 <1%
2. Conferences 3667 2059 1904 155 7%
3. Publications 45,648 22,373 17,327 5046 22%
4. Events 9742 3327 3124 203 6%
5. CDs 9760 233 175 58 24%
6. Restaurants 864 112 108 4 4%

Figure 2. Statistics about matches in various ER tasks. See Section 3 for a detailed description.

We classify matches in two categories: (a) equality matches, i.e., matches that are
discovered based on identical values on one or multiple attributes—for example, equal
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names or ISSN for journals, equal names or acronyms for conferences, equal titles, places,
and dates for events, and so on; (b) approximate matches, i.e., matches that were discovered
based on similar values on one or multiple attributes.

A striking observation is that in all cases, equality matches were by far the most fre-
quent case. This, in turn, leads to another crucial observation: while computing similarities
is typically slow since it has a quadratic cost, matches based on identical values can be
found in nearly-linear time.

For example, given two sets of n1, n2 conferences, we typically need to run O(n1 × n2)
string comparisons to find those with similar names. Blocking [3]—i.e., dividing the
recordset into subsets in order to conduct the search for matches only within subsets—may
indeed help to alleviate the problem, but at the same time, it may also impact the quality of
the results, since it may prevent the ER system from comparing records in different blocks
that correspond to the same entity. For this reason, blocking must be used with great care
in mission-critical scenarios.

On the contrary, matches between identical attributes may be found much more
efficiently using hashing. In fact, several ER algorithms [2,15] have used hash-based data
structures during the computation of similarities to speed up the match process to some
extent.

Detective Gadget pushes this idea to the extreme: differently from previous approaches
that mix similarity computations and hashing, we completely separate the search for equality-
based matches from the one for similarity-based ones. This gives us several advantages.

First, it eliminates the need to compare records for which a match has already been
identified with each other. In fact, we consider record groups obtained during the hash-
based matching phase as blocks and only compute similarities among records belonging to
different blocks. We call this inverted blocking.

Second, it allows us to further prune the number of string comparisons by reasoning
on the properties of the input collections. If, for example, we have additional knowledge
about the properties of records of one of the input collections—for example, that records in
a dataset R have strong IDs, i.e., curated IDs that do not require further cleaning—after the
hash phase, we avoid the search for similarities among groups that contain records of R
with different IDs, because all meaningful matches have already been identified.

2.2.5. Check Functions

This separation alone greatly improves running times.There is, however, a negative
counterpart to this speed improvement. In fact, aggressively matching records based on
value equalities may generate wrong groups as the one about the SIGMOD conference dis-
cussed in our example above. To handle this problem and gather precious information that
will drive our iterative data-cleaning process, we not only rely on positive evidence about
record matches, but we also analyze groups to gather negative evidence about mismatching
records that have been put together by mistake.

In fact, along with matching functions, we introduce check functions, i.e., functions that
are used to compare candidate matching records within one group and suggest which of
them are very different from each other and, therefore, may represent mismatches. In our
conference-ranking example, a check function may detect that there is a strong difference in
ranks between record r4 (the real SIGMOD record, ranked A+) and record r6 (the COMAD
record, ranked B) or also that acronyms (SIGMOD, COMAD) are significantly different
from one another, and therefore suggest that as a mismatch.

Notice that the idea of using negative rules for ER [26] is not new. However, the
assumption that data are dirty forces us to reconsider the way in which negative evidence
is used regarding previous approaches; in fact, we want not only to break the incorrect
group but also to repair the original data so that this problem does not arise in the future.
Therefore, we assume that a check rule also suggests (possibly with the help of a human
expert) a set of updates to the original values that remove the ambiguity.



Data 2024, 9, 139 9 of 32

2.2.6. Value Aliases

In essence, after a first run of the matching algorithm, we have accumulated positive
knowledge about matching values, i.e., that the following values are matches:

m1 : “ACM SIGMOD Conf. on Manag. of Data”
≈ “ACM Int. Conf. on Management of Data”

m2 : “ACM SIGMOD Conf. on Manag. of Data”
≈ “Int. Conf. on Management of Data”

..

We typically also have some negative knowledge. This suggests cell corrections repair
dirty values in order to avoid mismatches. For example:

ch1 : r3.confName = “Int. Conf. on Management of Data”
:= “COMAD Int. Conf. on Management of Data”

ch2 : r6.confName = “Int. Conf. on Management of Data”
:= “COMAD Int. Conf. on Management of Data”

..

Previous approaches [15] have materialized these match results in such a way as to
speed up the computation of successive steps. We notice, however, that storing pairs of
matching strings or record descriptions simply removes the cost of recomputing the string
similarity but does not remove the quadratic cost. Assume, in fact, that we have stored
the results of the initial O(n1 × n2) comparisons of our conference titles and want to reuse
them during the second iteration. This will remove the need to compute those expensive
string comparisons but will still take O(n1 × n2) steps to restore the matches.

We intend to push the idea of using hashing to discover matches to the extreme. In
order to do this, we do the following:

i with each attribute value within the input record sets, we associate an alias; the alias
is initially equal to the original value but can be changed later on for the purpose of
speeding the match phase;

ii before each successive iteration, we analyze the set of matches that we have already
discovered and use them to induce equivalence classes of values. In our example
above, matches m1, m2 induce the following equivalence class of values:

“ACM SIGMOD Conf. on Manag. of Data”
“ACM Int. Conf. on Management of Data”
“Int. Conf. on Management of Data”
..

For each equivalence class C, we pick up a representative vC value (say, the first
value in our example);

iii before restarting the match, we scan the original record sets, and whenever we find
a value v that belongs to an equivalence class C among the ones identified at the
step above, we set its value alias to the representative value vC . This step can be
conducted in linear time using hashing. At the end of the process, the original values
have remained intact, but the value aliases have changed as follows :

r1.confName = “ACM SIGMOD Conf. on Manag. of Data”
alias : “ACM SIGMOD Conf. on Manag. of Data”

r4.confName = “ACM Int. Conf. on Management of Data”
alias : “ACM SIGMOD Conf. on Manag. of Data”

r7.confName = “Int. Conf. on Management of Data”
alias : “ACM SIGMOD Conf. on Manag. of Data”

..



Data 2024, 9, 139 10 of 32

iv Before doing that, we assume that values of the original datasets are repaired by
changing their aliases as suggested by the negative rules, i.e.:

r3..confName = “Int. Conf. on Management of Data”
alias : “COMAD Int. Conf. on Management of Data”

r6..confName = “Int. Conf. on Management of Data”
alias : “COMAD Int. Conf. on Management of Data”

..

v We start the new run of the matching algorithm; in doing that, we hash based on
aliases, not original values. It can be seen as those that were similarities have now
become identities and can be restored in a much faster way during the hash phase
without incurring the quadratic cost.

In fact, following these changes, hashing with respect to equal titles and equal aliases
alone provides us with the right groups, and no more search for similarities is needed
(aliases are omitted for readability):

{ r1 = [ACM SIGMOD Conf. ..., ACM SIGMOD, http://...]
r4 = [ACM Int. Conf. on Management of ..., SIGMOD, A+]
r7 = [Int. Conf. on Management of Data, SIGMOD, 143] }
{ r3 = [Int. Conf. on Management of Data, COMAD, http://...]

r6 = [Int. Conf. on Management of Data, COMAD, B] }
{ r2 = [Int. Conf. on Very Large Databases, VLDB, http://...]

r5 = [Very Large Databases, VLDB, A+]
r8 = [Int. Conf. on Very Large Databases, VLDB, 134] }

2.3. Data Model and Task Definition

We now introduce the data model we use in our setting. Our data model consists
of heterogeneous sets of tuples that are essentially relational tables. However, in ER
terminology, tuples are often called records, and tables record sets. In the following, we shall
use the two terminologies interchangeably.

Each record set R is a set of records, i.e., sets of attribute-value pairs of the form
r = (A0 : v0, . . . , Ak : vk). We assume that each record has a globally unique record ID, rid.
We denote by rid.Ai the value of attribute Ai in record rid, also called a cell in the record set.
Records may contain null values, denoted by null.

With each cell rid.Ai, we associate a value alias, denoted by alias(rid.Ai), i.e., a secondary
cell that will be used during the ER to speed up the computation of matches. Initially,
the value of the alias cell is the same as the one of the main cell, but it may be changed
at a later time. It is important to note that, in the following treatment, unless otherwise
specified, whenever we refer to the value of record r for attribute Ai we shall actually refer
to alias(r.Ai), i.e., to the value of the alias cell. This allows us to leave the original instance
unmodified while updating alias cells in order to carry on the ER process.

Recall that we assume that attribute names within record sets have been normalized,
i.e., attributes with the same semantics have the same name in all record sets. It is fairly
straightforward to extend the framework by introducing explicit attribute mappings to
remove this assumption; we prefer to avoid this since it makes the technical development
more involved without really improving the generality of the framework.

We call an instance, I, a collection of record sets. We assume that an instance I could
contain multiple records that refer to the same entity.

2.3.1. Tuple Groups

In its most basic formulation, an ER task is defined as follows: we are given as inputs
n record sets R1, R2, . . . Rn, n > 0, and a set of matching functions f1, f2, . . . , fm, m > 0.
The goal is to identify which of the input records represent the same entities of the real
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world. We denote the fact that records r1, r2 semantically represent or refer to the same entity
by the symbol r1

.
= r2. More formally, the output of an ER task is a set of tuple groups

G = {g1 . . . gk}, k > 0, where each gi ∈ G is a non-empty set of tuples of R1, R2, . . . Rn
such that:

• each tuple ti in any of the input record sets, R1, R2, . . . Rn, occurs in exactly one group
gj ∈ G;

• all tuples in a group g ∈ G semantically represent the same entity, i.e., for each ti, tj ∈ g,
it is the case that ti

.
= tj;

• tuples in different groups semantically represent different entities, i.e., for each ti ∈
gi, tj ∈ gj, if i ̸= j then ti ̸

.
= tj.

This definition reflects our choice to concentrate on matching functions and assume
that matching records are merged simply by taking their union. More sophisticated merge
functions may be designed to find representative values [2] for tuple groups, but the treatment
of these is outside of the scope of this paper.

2.3.2. Matching Functions

Given a record set R, a matching function f is a Boolean function over R× R. Given
records r1, r2 ∈ R, we write r1 ≈ f r2 to denote that f (r1, r2) = true. As is common [15], we
distinguish matching functions in two classes.

Feature-level functions (also called attribute-level) are based on attribute-value compar-
isons; they are used to state that two records match each other if the values of some of their
attributes are similar, according to some similarity notion. We intend to keep matching
functions as general as possible, and therefore, we allow for notions of similarity that can
be based, for example, on attribute equality or value distance. To give an example, a first
matching function facronym for the conference-ranking example may state that two confer-
ences match if they have equal acronyms. A second one, fnames, may state that they also
match if they have similar names according to a string-similarity function. Feature-level
functions may involve more than one attribute to state, for example, that two events match
if they have similar descriptions, the same city, and close dates.

Record-level functions are not restricted to attribute-value similarities and may employ
more complex strategies to decide matches. They may employ complex statistical compu-
tations or machine learning to decide matches that go beyond simple value comparisons.
For example, one might train a machine-learning model to predict the level of similarity
between two records and use the output of the model to decide whether records match
each other.

In the following, we shall denote by fa and fr feature-level and record-level functions,
respectively.

2.3.3. Identifiers and Fingerprints

A crucial feature of our approach is the distinction between attributes that are used
for matching purposes and those that are not. To formalize this, we denote by X =
⟨A0, A1, . . . , Ak⟩ an (ordered) list of one or more attributes. Given a record r and attributes
X, the value r[X] is the projection of r on (the alias cells of) attributes in X. Recall that when
referring to values within records for the ER, we always consider the value of alias cells.
Given a conference record:

r1 = ⟨confName:VLDB Conf., acronym:VLDB, URL:http://dblp...⟩

the value r1[acronym] is ⟨acronym:VLDB⟩. Given an event record:

r2 = ⟨title:Music Party, place:Bolton Str., NY, date:May, 2014, likes:256⟩
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and Xcomposite = ⟨title, place, date⟩, the value for r[Xcomposite] is the tuple:

⟨title:Music Party, place:Bolton Str., NY, date:May, 2014⟩

We assume that a list of attributes X f is associated with each function f —regardless
of the class f belongs to—with the property that the value of f over records r1, r2 only
depends on r1[X f ], r2[X f ]. In addition, we require that when r1[X f ] = r2[X f ] then r1 ≈ r2.
More precisely, we call the identifying attributes of function f (or, simply, id of f ) the list of
attributes X f = ⟨A0, A1, . . . , Ak⟩ such that:

• for each pair of records r1, r2 such that r1[X f ] = r2[X f ], it is the case that f (r1, r2) =
true;

• for each combination of records r1, r2, r3, r4 such that r1[X f ] = r3[X f ] and r2[X f ] =
r4[X f ], it is the case that f (r1, r2) = f (r3, r4).

A feature-level function fa with ID X fa = ⟨A0, A1, . . . , Ak⟩ can be therefore rephrased
as follows: records r1, r2 match according to fa if, for each i = 0, 1, . . . k it is the case that
r1[Ai] is “similar” to r2[Ai] (according to a notion of similarity that depends on fa, but
must be such that it preserves identity). This definition does not necessarily hold for
record-level functions since they are not based on pairwise attribute comparisons, except
for the equality-preserving requirement that must be true for all functions.

Given an instance I with attributes A0, Ai, . . . Ak, and a set of matching functions
f1, f2, . . . fm, we call an identifying attribute, or simply id of I each Ai such that Ai ∈ X f j

, for
some matching function f j. Any other attribute is called a descriptive attribute. The set of
IDs of I is denoted by Xid.

An important tool used in our approach is record fingerprints. These are essentially the
subsets of all ID values within a record. More formally, given a record r, and a set of IDs
Xid, we call the fingerprint of r the value of r[Xid]. In the following, we will use fingerprints
to store known matches and mismatches between records.

2.4. Weak Identifiers

Identifiers and their equality are at the core of our approach. Our idea is that we
want to avoid the computation of a function f with ID X f over r1, r2 in all cases in which
r1[X f ] = r2[X f ].

In essence, we want identifiers to be such that equal values for them guarantee that
the two records match each other. This is what we call a functional identifier, in analogy with
keys in the relational model. In symbols, we write:

functional id X : ∀r1, r2 : r1[X] = r2[X]⇒ r1
.
= r2

Examples of functional identifiers are email addresses for people and ISSN codes for
journals.

Functional identifiers state that records with equal values over X are matches. Nothing
can be said when their values are different. There are, however, cases in which identifiers
are total, i.e., two records match if and only if they agree on them. Formally, X is called a
total identifier if:

total id X : ∀r1, r2 : r1[X] = r2[X]⇔ r1
.
= r2

The DOI of a scientific publication and the social security number of a person are
examples of total identifiers.

We know, however, that our input data may be dirty. This may cause violations of
the rules above and make our identifiers become weak ones. Intuitively, we say that X is
weak functional identifier (in turn, weak total identifier) if the formula above holds up to some
probability p:

weak functional id X : ∀r1, r2 : r1[X] = r2[X]⇒ r1

p.
= r2
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weak total id X : ∀r1, r2 : r1[X] = r2[X]⇔ r1

p.
= r2

In essence, we are stating that “usually” equal values over X imply a match, although
this is not necessarily true in all cases.

As we have mentioned, we do not assume that record sets are clean, i.e., they may
contain errors and inconsistencies. Consequently, in our approach, identifiers are usually
considered to be weak, unless it is explicitly stated otherwise as part of the input. Obviously,
to make weak IDs of some interest for entity resolution, the value of p must be very high,
usually above 0.9.

2.5. Checking Functions

Weak IDs may generate wrong tuple groups. In our conference-ranking example,
this was due to the wrong value Int. Conf. on Management of Data associated with the
COMAD conference.

Our goal in these cases is to identify the mistake using a set check functions, fc1 , fc2 , . . . fch

provided as part of the ER task specification. A check function fc is a Boolean function over
pairs of records. We use check functions to inspect the groups generated by the match
process and accept or refuse them. More specifically, given functions fc1 , fc2 , . . . fch :

• we accept a group g if for each pair of records r1, r2 ∈ g and each i it is the case that
fci (r1, r2) = true;

• we refuse g as soon, for some r1, r2 and some i, it is the case that fci (r1, r2) = false.

In practice, check functions are the opposite of matching functions. While matching
functions intuitively look for strong similarities among record values, check functions
typically look for strong dissimilarities among record values. Each strong dissimilarity, in
fact, can be considered to be a signal that the match of the two records is a false positive.

2.6. Cell Changes and Human Involvement

Recall that our purpose is to conduct the data-cleaning phase in parallel with the
ER phase. Whenever we identify that a wrong group has been generated using some
check function, we assume that this is due to a weak ID, i.e., to dirty values in some of the
input records.

To change this, we also assume that the check function also suggests a set of cell changes,
i.e., repair instructions for the dirty values that change them in such a way that the ER
may be corrected. A cell change is an instruction of the form rid.A := v, where v is a value
different from the original value of cell rid.A, possibly null.

Notice that, in many cases, finding the correct set of cell changes requires the interven-
tion of a human expert.

In our approach, also finding matches may involve users or crowdsourcing. For
example, a match function might preliminarily use automatically computed similarities to
partition record comparisons in certain matches, possible matches, and non-matches and
then require that humans be used to conduct a clerical review of possible matches to return
the final set of matches.

The framework has been designed to be flexible in this respect. We consider match
and check functions as black boxes. This leaves ample freedom to rely on human inputs in
mission-critical tasks, where experience [5] tells that human decisions are the only way to
achieve acceptable levels of accuracy. On the contrary, in tasks in which results of lower
quality are acceptable automatic functions may be used as well.

2.7. The Match and Merge Algorithm

In this section, we present the algorithm used by Detective Gadget to implement
its fast iterative entity-resolution process. The process is iterative and intuitively goes as
follows (see also Figure 3):

• Phase 1—Hash-Based Matching: At each iteration, a candidate ER is generated by
matching tuples via our fast hashing algorithm that reuses available knowledge about
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matches, typically in the form of clerical-review decisions, which we also call user
inputs. Then, this candidate ER is subjected to further verification checks to identify
false positives and false negatives.

• Phase 2—Checking for False Positives: We first look for false positives. To do this, we
run check functions on matching records, looking for dissimilarities that might suggest
a mismatch. Whenever these are found, we ask for additional user inputs in order to
decide whether these are real mismatches or not and how to clean the input records
to remove these mismatches from the next iteration. After the input data have been
changed, we restart the process moving to the next iteration. It is important to note that,
also in this phase, we minimize comparison by keeping track of all decisions taken so far
in order to avoid the burden of re-analyzing pairs of records that are actual matches.

• Phase 3—Checking for False Negatives: As soon as phase 2 completes with no candidate
false positives, we begin our search for false negatives. To identify false negatives, we run
matching functions on nonmatching records, looking for similarities that might suggest
a match. Whenever these are found, we ask for additional user inputs in order to decide
whether these are real matches or not and move to the next iteration. Previous decisions
are considered during this phase to minimize comparisons.

Both phases 2 and 3 may require interaction with expert users. The algorithm ter-
minates as soon as both phase 2 and phase 3 return no further candidates that require
inspection by human experts. It can be seen that the algorithm has refined the quality of
the input datasets while performing the ER.

Inputs Hash-Based
Matching

Group
Checks

Candidate
Groups

Suspicious
Groups ?

Similarity
Search

Candidate 
Matches ?

Human
Inputs

Output

Final
Groups

NO NO

YES YES
Matching

Pairs

Figure 3. Detective Gadget’s Workflow

Pseudocode is reported in Algorithm 1. Additional functions are in Algorithms 2–6.
We can divide the pseudocode in Algorithm 1 into four main blocks, as follows.

Algorithm 1 Main Algorithm
Require: a set I of records, matching functions [Fa, Fr], checking functions Fc, precomputed matches/mismatches

[Pa, Pr , P′a, P′r ], cell changes C;
Ensure: a set G = ER(I) of groups of records
1: stop = false
2: while (!stop) do
3: // Pre-processing step
4: applyCellChanges(I, C)
5: aliasValues(I, [Pa, Pr])
6: // Hash-Based Matching step
7: G ← fastHashMapping(I)
8: // Checking for False Positives
9: suspiciousGroupsFound = checkGroups(G, Fc, [Pa, Pr , P′a, P′r ])

10: if (suspiciousGroupsFound) then
11: continue
12: end if
13: // Checking for False Negatives
14: newUserInputs = findSimilarities(G, Fc, [Pa, Pr , P′a, P′r ])
15: if (newUserInputs) then
16: continue
17: end if
18: if (!suspiciousGroupsFound and !newUserInputs) then
19: stop = true
20: end if
21: end while
22: return G
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2.7.1. Initialization

The initialization block declares input parameters to the algorithm. The initial input is
given by:

• a collection of record sets, I, also called an instance;
• a set of feature-level matching functions, Fa, and a set of record-level matching func-

tions, Fr; either of the two sets may be empty;
• a set of checking functions, Fc;
• a possibly empty set of precomputed feature-level value matches, Pa, i.e., a collection

of pairs of id values ⟨v0, v1⟩ that are considered to match each other;
• a possibly empty set of precomputed feature-level value mismatches, P′a, i.e., a collec-

tion of pairs of ID values ⟨v′0, v′1⟩ that are considered not to match each other;
• a possibly empty set of precomputed record-level matches, Pr, i.e., a collection of pairs

of fingerprints ⟨fp0, fp1⟩ that identify records that match each other;
• a possibly empty set of precomputed record-level mismatches, P′r , i.e., a collection of

pairs of fingerprints ⟨fp0, fp1⟩ that identify records that do not match each other;
• a possibly empty set of cell changes C over I.

Pa, P′a, Pr, P′r , and C are empty at the first iteration but could not be empty in the next
iterations.

After initialization, the main loop starts (lines 1–2). This will iterate operations until
no new inputs are generated and no additional iterations are required.

As a first step, the algorithm applies cell changes in C to I (line 4). This will perform
the value edits necessary for cleaning the input instance. Please note that whenever we
edit a cell, we also edit the corresponding alias cell.

As a subsequent step, the algorithm assigns aliases to input records (Algorithm 2) to
speed up the subsequent matching phase. This is based on the set of precomputed matches
Pa, Pr in the input. The process is quite straightforward for attribute-level matches, and we
describe it in the following. A similar yet slightly more involved technique can be used for
record-level matches, i.e., fingerprints.

Algorithm 2 aliasValues

Require: a set I of records, precomputed matches [Pa, Pr]
Ensure: a set I with normalized alias according to [Pa, Pr]

1: valueEqvClasses = buildEquivalenceClasses([Pa, Pr])
2: for all record in I do
3: for all id in record do
4: eqvClass = findClass(valueEqvClasses, r.id)
5: if (eqvClass ̸= null) then
6: representativeValue← getRepresentativeValue(eqvClass)
7: alias(r.id) = representativeValue
8: end if
9: end for

10: end for

Based on the set of precomputed ID matches Pa, we identify equivalence classes of
ID values using a hashMap for each ID attribute(findClass). Then, a representative value is
identified for each class. For each record r in I and each ID Ai of r, we find the representative
value for r[Ai] and assign that as the alias of r[Ai]. In this way, all IDs within records are
aliased by the corresponding representative value. Returning to our example, assume we
have established the following match pa ∈ Pa:

m1 : “ACM SIGMOD Conf. on Manag. of Data”
≈ “ACM Int. Conf. on Management of Data”
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From this match, we can infer that the two IDs belong to the same equivalence class,
elect one representative for the class, and ensure that they obtain this representative value
as a common alias.

2.7.2. Phase 1: Hash-Based Matching

Once aliasing has been completed, we are ready to reconstruct matches using our fast
hash-based technique (line 7 of Algorithm 1). This is described in Algorithm 3.

Algorithm 3 fastHashMapping

Require: a set I of records
Ensure: a map M of records and groups

1: M = Empty double linked hash map
2: OM = Empty object map
3: for all record in I do
4: OM(record) = groupWithKey(record, {record})
5: end for
6: for all record in I do
7: for all (id) in record do
8: keyValue = aliasOf(id)
9: obk = OM(record)

10: if M[keyValue] == null then
11: obk.addKey(keyValue)
12: M[keyValue] = obk
13: else
14: mergeGroups(M, OM, keyValue, obk)
15: end if
16: end for
17: end for
18: return M

Recall that for each matching function, f , we call X f the set of identifying attributes of
f . Recall also that, regardless of the original values in I, we have pre-processed records in
order to normalize ID values by assigning the corresponding representative value as an
alias. Therefore, we have the property that for any two records ri, rj such that there is a
verified match in Pa according to ID X, the values of ri[X], rj[X] are identical. Similarly, for
any verified record match in Pr among rk, rl , rk and rl have identical fingerprints.

We leverage this property in our match phase. To do this, we use a doubly-linked
hashmap that allows us to map records to the groups to which they are assigned and groups
to which they need to belong to new records via their IDs. This allows us to perform the
construction of candidate groups in linear time.

More precisely:

• the hash map is initialized by assigning each record r in I to the corresponding
singleton group group(r) = {r};

• then, for each matching function f in Fa or Fr, we consider the identifying attributes
X f and scan the records in I;

• for each record r, we compute r[X f ], the ID of r according to X f , and use that as a key
to search the map for the corresponding group of records;

• if no group is present, we store in the map the value group(r) for key r[X f ];
• on the contrary, if a group group(r[X f ]) exists, and r does not belong to it, then we

merge groups group(r[X f ]) and group(r).

The pseudocode for the merge algorithm is in Algorithm 4. Although the actual
merged group can be obtained by simply taking the union of records of the source groups,
additional care needs to be put into maintaining the doubly-linked map in order to reflect
the merge.
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Algorithm 4 mergeGroups

Require: M, OM, keyValue, obk
Ensure: M, OM

1: obk′ ← GroupOf(M[keyValue]) + GroupOf(obk)
2: for all key of M[keyValue] + obk do
3: obk′.addKey(key)
4: M[key]← obk′

5: end for
6: for all (i) of obk′ do
7: OM(i)← obk′

8: end for
9: return M, OM

It is important to note that the match produced at this step correctly reflects the
knowledge accumulated so far in terms of matching ID values in Pa and matching record
fingerprints in Pr. In addition to being fast—even on many thousands of records, this step
usually requires not more than a few seconds (as shown in Section 3)—another crucial
property of the algorithm is that the match is completely reproducible based on the inputs
only. Consequently, we can restart the process at each new iteration by recreating candidate
matches from the start in order to incorporate any new inputs accumulated during the
workflow in Figure 3.

2.7.3. Phase 2: Group Checks

Phase 1 outputs several groups that are candidates to represent the output of the ER
process. These groups need to be carefully checked to identify false positives, though. In
fact, in phase 1, we deliberately trade accuracy for performance: in order to have a linear-
time match, we aggressively match records to each other based on IDs. Recall, however,
that we assume that IDs are weak, i.e., due to dirtiness in the source data, not necessarily
two records with identical IDs represent the same entity.

For this reason, in this second phase, we apply checking functions in Fc in order to
verify the output of phase one and identify false positives, as follows (Algorithm 5):

• for each checking function fc in Fc
• for each candidate group g, we check if fc(g) is true; in this case, the group is accepted

and no further processing is required;
• otherwise, in case fc(g) is false, we have identified a group with potential false

positives; fc(g) also returns the set of suspicious ID pairs ⟨vi, vj⟩ that triggered the
alarm, call them suspicious(g);

• in mission-critical applications, the only way to handle these potential errors is to
involve a human expert that needs to inspect suspicious(g) and either confirm the
match or revoke it; more specifically, for each pair ⟨vi, vj⟩ in suspicious(g):

• if the expert confirms that the corresponding records do, in fact, match, and therefore,
this is a false alarm, the value pair ⟨vi, vj⟩ is added to Pa; in this way, this specific
problem will not be raised again during subsequent checks;

• if, on the contrary, those values do actually identify a false positive, the expert is
supposed to generate the necessary cell change, c, in such a way that the two IDs will
not match in subsequent iterations.

Please note that we always consider suspicious a group in which we have mismatching
IDs, as contained in our input sets of nonmatching values, i.e., P′a, P′r . We assume an implicit
check function devoted explicitly to this check.

If, at the end of this phase, any suspicious group is identified, additional inputs are
collected from experts, inputs are updated accordingly, and the process restarts.

If, on the contrary, no suspicious group is found, we move to phase three.
In our conference example, a reasonable checking function compares the rankings

of conferences in the same group. Whenever there is a significant difference, like the one
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between the SIGMOD and the COMAD conferences (A++ regarding B), the pair is reported
as a suspicious pair. This helps to identify the incorrect match of the conference names “Int.
Conf. on Management of Data”. The user needs to edit one of the conference names so that
this match is no longer performed.

Algorithm 5 checkGroups

Require: a set G of groups of records, checking functions Fc, precomputed
matches/mismatches [Pa, Pr, P′a, P′r], cell changes C;

Ensure: true if suspicious groups found, false otherwise
1: suspiciousGroups = ∅
2: for all group in G do
3: for all fc in Fc do
4: if fc(group) = f alse then
5: suspiciousGroups.add(group) // Check failed
6: end if
7: end for
8: end for
9: if (!suspiciousGroups.isEmpty()) then

10: askUserForInput(suspiciousGroups, [Pa, Pr], C)
11: return true
12: end if
13: return false

2.7.4. Phase 3: Similarity Search

After phase two, we have a collection of candidate groups that are not supposed to con-
tain false positives but might still contain false negatives. In fact, matches so far have been
based exclusively on identical ID values or on knowledge previously accumulated in the
process. Still, there might be records that represent the same entity but have different IDs.

In this phase (line 14 of Algorithm 1), we run our similarity functions in order to search
for additional matches (Algorithm 6). This phase may seem similar to what is carried out in
other ER approaches, but we would like to emphasize two crucial differences that typically
allow us to improve the performance of this step, which is by far the most expensive one in
the process.

We never perform comparisons among all possible pairs of records. On the contrary,
we only compare records belonging to different groups. It can be seen that this inverted
blocking technique, in which groups are blocks that are used to prevent comparisons
among their members, may in some cases significantly reduce the number of comparisons,
especially in cases in which datasets contain on average a high number of duplicates and
therefore groups tend to be larger.

In addition, by clearly separating the search for equality-based matches from the one
for similarity-based ones, we may leverage knowledge about the collections to further
speed up this step. Assume, for example, that we know that one of the recordset R has a
strong identifier—for example, the DOI for research papers. In this case, we can avoid all
comparisons among records of groups gi, gj such that gi and gj contain different records in
R. Any possible match among records in R and their groups, in fact, has been discovered
by phase 1, and no false negatives are possible.

In practice, this phase is conducted as follows:

• for each matching function f in Fa (similarly for Fr)
• we consider all pairs of distinct groups gi, gj in G, and all pairs of records rk ∈ gi,

rl ∈ gj for which there is no negative evidence in P′a, P′r
• if f states that rk, rl are similar, then for each attribute A ∈ X[F] we generate a user-

input request for the pair ⟨rk[A], rl [A]⟩; all requests are fed to human experts, which
examine them
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• in case an expert considers ⟨rk[A], rl [A]⟩ a match, then the pair is added to the collec-
tion of matching ID pairs, Pa

• on the contrary, ⟨rk[A], rl [A]⟩ is added to the collection of nonmatching ID pairs
• in both cases, the same comparison will be avoided in future iterations of the process.

Algorithm 6 searchSimilarities

Require: a set G of groups of records, checking functions Fc, precomputed
matches/mismatches [Pa, Pr, P′a, P′r], cell changes C;

Ensure: true if suspicious groups found, false otherwise
1: similarities = ∅
2: for all g1 in G do
3: for all g2 in G do
4: if g1 = g2 then
5: continue
6: end if
7: similarity = findSimilarity(g1, g2, [Fa; Fr])
8: if (similarity ̸= null) then
9: similarities.append(similarity)

10: end if
11: end for
12: end for
13: if (!similarities.isEmpty()) then
14: askUserForInput(similarities, [Pa, Pr, P′a, P′r])
15: return true
16: end if
17: return false

If user-input requests are generated, inputs are updated, and a new iteration starts
(see Figure 3). As soon as no additional user-input requests are generated by this phase,
the process is concluded and the final set of groups is returned as output.

To conclude our running example, assume we are using a matching function that
considers as possible matches record such that the Jaro distance [27] of confNames is above
0.75, and the edit distance between the acronyms is less than or equal to 4. The matching
function would identify as possible matches record r1 and r4 from Figure 1 (distance of the
confNames is 0.76 and the edit distance between acronyms ACM SIGMOD and SIGMOD
is 4). This generates a request for user input, either on the confName or on the acronym
values. In fact, similarities do not generate automatic matches in our approach. They need
to be validated by users and explicitly marked as true or false positives.

3. Results and Discussion

We implemented Detective Gadget in Java. All experiments were conducted on a
MacBook with an Apple M1 Max CPU@3.2Ghz and 32GB of memory.

Datasets. We used six real-world datasets representing six Dirty-ER [4] scenarios
for which a golden standard is available. Some of these are classical benchmarks for
entity-resolution systems. Others are based on real-life data.

1. RESTAURANTS 3 contains 864 records representing restaurants from the Fodor’s and
Zagat’s restaurant guides that contain 112 duplicates. The attributes are name, address,
city, phone, type, and class. In this context, there are no strong IDs (nor telephone and
address are strong since there are records with the same telephone and address but
with different names). We define two weak IDs ⟨name, city⟩, ⟨phone⟩;

2. The CDS Dataset: it contains approximately 10K CDs randomly extracted from
GnuDB 4, maintained in a single file, with 299 duplicates. Attributes are pk (unique
for each record), ID (unique for each record), artist, title, category, genre, year, and
tracks. No strong IDs are available. We define a weak ID ⟨artist, title, track⟩;
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3. The EVENTS Dataset: using an ad-hoc wrapper, we crawled events held in Italy from
different sources like Facebook, Eventbrite, TicketOne, EventiESagre and TuttoCitta.
Attributes are title, city, event location (address, city, facility, . . . ), start date, end
date, category, description, link to the web resource, poster URL, price, publisher
information (name, email address, phone number, link, . . . ), geographical indications
(latitude and longitude). Attributes ⟨title, location, date⟩ represent a weak ID.

4. The CONFERENCES Dataset: such dataset contains classification that refers to the
computer-science conferences area. We have considered 3 different rankings: (a)
CORE 5 (b) Microsoft Academic Search 6, limited to the first 1000 conferences. (c)
LiveSHINE. The total number of records is approximately 6K, also the gold standard
contains approximately 3K groups. We are interested in four main attributes: Title,
Acronym, Source, and Rank. We define two weak IDs ⟨title⟩ and ⟨acronym⟩;

5. JOURNALS Dataset: it consists of classifications of journals made by three organiza-
tions (Scopus, WOS, and ERA). Input records are approximately 70K, while the gold
standard contains about 28K groups. The common information coming from the
different classifications are Title (Journal name), Rank, and ISSN. We define a strong
ID ⟨ISSN⟩ and a weak ID ⟨title⟩;

6. PUBLICATIONS dataset contains records from DBLP, WOS, and Scopus websites. Iden-
tified records are approximately 40K. In addition, the gold standard for publications
contains about 20K groups. The common information from the different classifications
are Title, Authors, DOI (optional), Venue, Year, and Citations. While the DOI is a
strong ID, it is not always available. However, we define the strong ID ⟨doi⟩ and the
weak ID ⟨year, title, venue⟩;
Figure 2 summarizes statistics about the size and the number of matches for each

presented dataset.
Baselines and Metrics. To the best of our knowledge, there is no other entity-resolution

system that is directly comparable to Detective Gadget. Therefore, our goal is to consider
different approaches that may enable us to draw some comparisons, namely:

• Swoosh-based approaches, which arise from a common base;
• supervised machine-learning approaches since labels provided during the training

phase can be considered similar to user inputs requested by Detective Gadget;
• non-supervised machine-learning approaches, for which it is interesting to compare

the quality of results.

Based on this, we selected five baselines:

• Oyster [28], which implements the SWOOSH algorithm;
• Dedupe [29] that uses labeled examples, i.e., pairs of match or not match records, to

reduce the number of inputs requested to users;
• Febrl [30] and ZeroER [31], which both use non-supervised machine learning;
• as a final baseline, we select JedAI [32], for its flexibility and variety of approaches. We

tested several configurations and ultimately selected the default configuration since it
is the one with the best overall results in our scenarios.

The matching functions used with Detective Gadgetare reported for each dataset in
Table 1. We use attribute-level functions. We match two records based on their defined
IDs and, more specifically, on the values of the attributes involved in the IDs. We use the
following similarity functions:

• JaroWinkler [33], this metrics is useful to compare names. It privileges similarity
among the prefixes of the compared strings. We use it in the direct and reverse modes
to also consider similarities among the suffixes of the strings;

• SmithWaterman [34], represent the edit distance among string. This is useful to
consider similarities with a small number of different characters;

• Soundex [35] uses the similarities among phonemes. It returns a high similarity when
two strings have similar phonemes. This is useful for managing similarities for strings
that are in languages different from English.
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We match two values of the corresponding attribute if their similarity is above the
reported threshold. For Equality, we check if the values are the same. For example, in the
CDs dataset, we match two records if the values for artist, title, and track are similar, i.e., if, at
least for each of the used similarity functions, the similarity is above the reported threshold.
Considering the attributed artist, we match the values of the artist if the JaroWinkler, the
SmithWaterma, or the Soundex computed similarities are greater than 0.8.

Table 1. The matching functions configuration for each dataset. For each similarity metric, we report
the threshold. If two values have their similarity above the threshold are matched. - indicates that
the corresponding similarity function is not defined. For Equality, we simply check if the values are
the same.

Matching Functions

Dataset Attribute
Name Equality JaroWinkler SmithWaterman Soundex

CDs

artist - 0.8 0.8 0.8

title - 0.8 0.8 0.8

track - 0.6 0.6 -

Conferences
title - 0.76 0.8 0.66

acronym yes - - -

Events

title - 0.76 0.8 0.66

city - 0.76 0.8 0.66

place - 0.76 0.8 0.66

Journals
issn yes - - -

title - 0.8 0.9 0.6

Publications

doi yes - - -

year yes - - -

title - 0.76 0.8 0.66

venue - 0.8 0.9 0.6

Restaurants

name - 0.66 - -

city - 0.7 0.6 0.6

phone - 0.6 0.6 0.6

We evaluate all systems according to various aspects: (i) quality results (precision,
recall, and F-measure), (ii) execution times, (iii) user effort, and (iv) improvements of the
results regarding the number of iterations. The last two points will be calculated only for
the Detective Gadget system since other systems do not implement iterative ER.

To compute the precision and recall of an ER output regarding the given golden standard,
we compute the two sets of pairs of matching records and compute the precision and recall of
these two sets.

To measure how much Detective Gadget reduces the number of value comparisons
with respect to the naive all-pairwise, quadratic approach, for each of the scenarios, we
create different configurations, as follows: (i) we progressively increase the number of IDs,
starting from 1 up to the maximum usable number of IDs; (ii) we start with sources that are
not locally consistent, and progressively make them consistent one at a time. It should be
noted that to say that a source is locally consistent is equivalent to saying that the IDs are
strong in that source.

Finally, we want to emphasize that the different systems have been configured to use
the same types of similarity functions and the same acceptance threshold.
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Experiments

i Experiment-1 compares accuracy metrics using different systems.
ii Experiment-2 compares the execution times of the different systems.
iii Experiment-3 shows how iterations in the ER process improve the quality of

the results.
iv Experiment-4 shows how previous knowledge is reused in successive iterations

when the input data changes over time.

Experiment-1: Accuracy. For each dataset, we report precision (P), recall (R), and
F-measure (F1) regarding the available golden standard. To make a fair comparison, all
the systems were configured in order to use the same IDs. We use JedAI with the default
configuration since it returns the best results.

Oyster and Febrl do not require user inputs, while Detective Gadget and Dedupe do.
We limited the number of training examples for Dedupe as follows: we used the same
number of user inputs as the one required by Detective Gadget when the number was lower
than 1500 examples (the maximum default number for active learning in Dedupe). Since
increasing the number of training examples in Dedupe above 1500 sometimes lowered
quality, when the number of Detective Gadget user inputs was higher than 1500 examples,
for Dedupe, we used the number of examples that gave the best quality results.

Results are reported in Table 2. The best values are in bold. It is possible to note that Febrl,
Dedupe, and JedAI, in most cases, favor precision w.r.t recall, while Oyster and ZeroER favor
recall regarding precision. Detective Gadget always obtains the highest F-measure. In the
EVENTS scenario, Febrl reaches an accuracy close to 0, even applying different configurations.
This behavior is due to the language of the dataset, which prevents the blocking algorithm
employed by Febrl from working correctly. We also tried a configuration without blocking, but
after 20 h, the system had not yet produced any results. Thus, the empty row in Table 2. Notice
that ZeroER freezes on datasets with a high number of rows like CONFERENCES, JOURNALS,
and PUBLICATIONS. Therefore, we do not report quality results for those.

Table 2. Experiment-1. Quality results. In bold the best results.

Restaurants CDs Events

P R F1 P R F1 P R F1
Oyster 0.451 0.777 0.570 0.243 0.763 0.368 0.976 0.911 0.942
Gadget 0.966 1.000 0.982 1.000 0.759 0.863 1.000 0.999 1.000
Febrl 0.611 0.491 0.545 0.935 0.629 0.752 - - -

Dedupe 0.924 0.866 0.894 0.941 0.690 0.796 0.999 0.978 0.988
ZeroER 0.490 0.930 0.650 0.320 0.920 0.470 0.030 0.020 0.024
JedAI 0.949 0.830 0.886 0.879 0.820 0.848 0.770 0.931 0.843

Conferences Journals Publications

P R F1 P R F1 P R F1
Oyster 0.906 0.522 0.570 0.142 0.575 0.228 0.995 0.646 0.783
Gadget 0.873 0.849 0.861 0.998 0.999 0.999 0.989 0.939 0.963
Febrl 0.979 0.359 0.525 1.000 0.701 0.824 0.921 0.867 0.893

Dedupe 0.941 0.687 0.794 1.000 0.930 0.964 0.911 0.892 0.901
ZeroER - - - - - - - - -
JedAI 0.896 0.694 0.782 0.977 0.753 0.851 0.683 0.977 0.804

Experiment-2: Execution Time. Results in seconds are shown in Figure 4. For Detec-
tive Gadget, we also report the breakdown of the total time over iterations. We did not
consider user think time in Dedupe and Detective Gadget.
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Figure 4. Execution time (in seconds) for each system. The total execution time is reported on top of
each bar. N.A. indicates execution without results. The right axis reports the F-measure obtained.
The * indicates the best results obtained with 1500 examples instead of the full dataset.

The first thing to note is that while Oyster, Febrl, and Dedupe use blocking, Detective
Gadget does not. The second piece of evidence is that systems achieved mixed results over
the various scenarios. In the Restaurant scenario, Febrl spent one order of magnitude more
time than the others. Oyster is the slowest on the Events scenario. In the CDs scenario,
Dedupe spent most of the time (about 800 s.) in the training phase. Conferences and
Publication scenarios are the ones where Detective Gadget is the slowest system because
of the high number of similar IDs that require comparisons. Notice, however, that this
increased time generated better-quality results, in some cases with F-measure significantly
higher than other systems. Indeed, Detective Gadget has the highest F-measures in all the
scenarios.

Experiment-3: Impact of Iterations. The goal of Detective Gadget is to maximize the
overall quality (F-measure) using more iterations. A drawback of the other systems is the
higher number of false negatives. As we discussed in the paper, this is typically due to
aggressive blocking to lower computation times.

This experiment shows how iterations in Detective Gadget help to increase the final
quality by progressively removing both false positives and false negatives. Quality results
are shown in Figure 5. In all six scenarios, the F-measures improved after each iteration.
The major contributor is the improvement of the recall, while precision remains basically
constant. Notice also that after a single iteration, Detective Gadget already has a better
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F-measure regarding the baselines in four datasets (Restaurants, Conferences, Journals, and
Publications).

Table 3 also reports in detail the inputs and outputs of each iteration for every scenario.
At the first iteration, Detective Gadget performs the initial matches based on identical

IDs and outputs suspicious pairs of records in the same group. As can be seen from the
table, the number of suspicious pairs is small at the beginning. For each of these, the
user needs to inspect the data, and either mark the suspicious pair as the correct match or
introduce edit rules to prevent it from further iterations. This process must be iterated for
a few steps until no more suspicious pairs are generated. See, for example, Restaurants
iterations 2–4 and Publications iterations 3–6.

When no more suspicious groups are found, Detective Gadget uses checking functions
to find further candidate matches. The number of candidate matches depends on the
thresholds used in configuring the checking functions. In real-life scenarios, we tend to
use low similarity thresholds to minimize the probability of having false negatives. Thus,
the number of requested user inputs may be very high. These, however, as shown in our
next experiment, are typically inspected very quickly by a human expert since the vast
majority—typically over 90%—represent true negatives.
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Figure 5. Quality of Detective Gadget regarding the iterations. The overall quality (F-Measure)
improves at each iteration.
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Table 3. Experiment-3. User Effort and Quality Details. The User Efforts is measured using the
number of Verified Matches Ver. M, Edit Rules Edit R. and User Inputs User In. provided by the
user. The outputs report the number of Suspicious Susp or Requested User-Input Req pairs to verify.
Quality results are reported in terms of pair of false positive FP, false negative FN, and matching
pairs from the gold standard and the ones calculated by Detective Gadget.

Scenario Inputs Outputs Quality

Name Iter. Ver. M. Edit R. User In. Susp. Req. FP FN Gold Gadget

Restaurants 1 - - - 13 0 21 3 112 130
Restaurants 2 6 9 0 2 0 8 3 112 117
Restaurants 3 2 0 0 1 0 7 3 112 116
Restaurants 4 0 1 0 0 2355 8 4 112 116
Restaurants 5 0 0 2355 3 0 7 2 112 117
Restaurants 6 2 1 0 0 0 4 0 112 116

CDs 1 - - - 0 51 0 138 299 161
CDs 2 0 0 51 0 0 0 72 299 227

Events 1 - - - 2 0 0 14,528 261,831 247,303
Events 2 2 0 0 0 9291 0 14,528 261,831 247,303
Events 3 0 0 9291 67 0 1 176 261,831 261,656
Events 4 63 4 0 0 45 1 296 261,831 261,536
Events 5 0 0 45 8 0 3 153 261,831 261,683
Events 6 8 0 0 0 0 5 153 261,831 261,683

Conferences 1 - - - 153 0 423 769 3469 3123
Conferences 2 46 116 0 6 0 148 825 3469 2729
Conferences 3 4 2 0 0 7245 133 824 3469 2778
Conferences 4 0 0 7245 8 0 436 522 3469 3383
Conferences 5 4 6 0 0 49 428 524 3469 3373
Conferences 6 0 0 59 0 0 148 825 3469 2792

Journals 1 - - - 194 0 130 239 86,145 83,036
Journals 2 180 0 0 0 1756 130 239 86,145 86,036
Journals 3 0 0 1756 1 0 144 84 86,145 86,205
Journals 4 1 0 0 0 0 144 84 86,145 86,025

Publications 1 - - - 1903 0 1 3772 31,532 27,761
Publications 2 1903 0 0 0 277 1 3772 31,532 27,761
Publications 3 0 0 277 275 0 330 1938 31,532 29,924
Publications 4 275 0 0 0 0 330 1938 31,532 29,924
Publications 5 0 0 3 7 0 330 1927 31,532 29,935
Publications 6 7 0 0 0 0 330 1927 31,532 29,935

In all scenarios, we can see that further iterations reduce errors (FP and FN) and
increase accuracy so that Detective Gadget comes very close to the gold standard.

Experiment-4: Data changes over time. In this last experiment, we used a different
dataset from the previous experiment. Data come from a real dataset about academic
Journals, obtained by matching three databases:

• the one provided by ANVUR 7, the Italian Agency for the Evaluation of Research in
Universities and Research Institutions, that rates journals in the humanities in several
classes;

• the Scopus dataset of journals and indicators;
• the corresponding dataset from WOS.

All databases change every year, and the matching task can be considered a mission-
critical one since it is used for research evaluation.

In this experiment, we do not report accuracy metrics since there is no clear gold
standard: the dataset is too large to compute it manually. However, we can report that the
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resulting ER was used for 5 years in an actual system to support over 50 institutions in
their research-evaluation activities, and only three errors were reported by users.

Table 4 reports the user effort in solving the ER. Each row represents an iteration.
We report the date of each version of the sources and the total number of records. We
also report the number of User Inputs, Edit Rules, and Verified Matches, with differences
regarding the previous iteration.

Table 4. Experiment-4. User effort in solving iterative ER. Each row represents an iteration. Data
sources change over time. We report the number of user inputs, edit rules and verified matches
provided by the user and the time to solve them at each iteration. Most of the user effort is spent at
the first iteration.

Sources User Inputs Edit Rules Verified Matches
Data Records Pairs Time (s) Diff. Rules Time (s) Diff. Pairs Time (s) Diff.

03-2017 42,756 - - - 8 960 +8 201 11,440 +201
03-2017 42,756 5107 6750 +5107 8 0 0 201 0 0

10-2017 43,561 5289 223 +182 8 0 0 201 0 0

02-2018 77,314 5289 0 0 6 250 −2 207 440 +6
02-2018 77,314 5353 35 +64 6 0 0 207 0 0

10-2018 36,347 5714 537 +361 6 0 0 207 0 0

03-2019 36,804 5714 0 0 6 0 0 207 0 0

05-2019 38,054 5714 0 0 6 0 0 207 0 0

09-2019 39,614 5714 0 0 6 0 0 207 0 0

11-2019 41,218 5714 0 0 6 0 0 207 0 0

04-2020 41,252 5714 0 0 10 480 +4 212 420 +5
04-2020 41,252 6284 935 +770 10 0 0 212 0 0

08-2020 44,260 6284 0 0 10 0 0 212 0 0

11-2020 41,599 6284 0 0 10 0 0 212 0 0

05-2022 41,032 6413 200 +129 10 0 0 212 0 0

We can make a few observations: (i) in some cases, multiple iterations are needed,
for example, 03-2017, 02-2018 and 04-2020; (ii) most of the user effort is required in the
first round of the ER (with the first version of the data of 03-2017, we solved 201 verified
matches and provided 5107 user inputs). In successive iterations, even if the data changes
(iii), the total time needed to solve User Inputs and Suspicious Groups is relatively low,
thus confirming the effectiveness of our approach.

4. Related Work

Most proposals in the ER literature share the same basic workflow [4]: (i) A Blocking
step, where the goal is to reduce the number of comparisons by grouping similar records
into clusters to compare only records that belong to the same group; (ii) A Matching step,
where records in the same cluster are compared using matching functions; (iii) A Clustering
step, typically optional, which searches for additional, less probable matches.

The main differences between this typical workflow and the Detective Gadget work-
flow are in the workflow itself and the pre-processing step. First, the Detective Gadget
workflow is iterative, as depicted in Figure 3. In addition, while in all previous works, the
data-cleaning process [22] is carried out before the ER starts and, therefore, it is considered
to be a pre-processing step, using either automatic approaches [24] or human-in-the-
loop [25,36], in Detective Gadget data-cleaning and ER activities are intertwined.

JedAI [32,37] is a tool that implements three different workflows:
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• Blocking-based: that uses blocking to merge similar entities and reduce the search
space using different blocking functions. Then, records in the same block are com-
pared using string-similarity functions to partition and split the data into equivalence
clusters, i.e., records that refer to the same entity. The workflow also contains optional
steps that can be used to improve the performance. For example, schema clustering
improves the precision by grouping similar attributes exploiting the similarity between
the names or the values. Instead, block cleaning reduces the number of comparisons
discarding blocks with a high number of records. Intuitively, the bigger the group, the
higher the probability that such a group contains different entities.

• Join-based: it uses matching rules to find similar records. A matching rule contains
similarity metrics, the attributes to which such metrics are applied, and a threshold to
define the similarity.

• Progressive: is an extension of the blocking-based pipeline that introduces a limit in
the comparisons. To achieve good results and reduce the number of comparisons
a prioritization step is introduced to the processing order such that the matching
records are detected sooner. The prioritization step is introduced before the blocking
comparisons.

Compared with Detective Gadget, the most similar workflow is the blocking-based
that corresponds to the default configuration used in our experiments.

Depending on the settings of the ER problem there are a plethora of ER systems already
developed. These systems can be classified as Learning-Based and Not-Learning-Based [4],
i.e., systems that accept external information like human intervention and systems that use
data only. Detective Gadget is meant to work in a Learning-based mode and typically relies
on human interactions, but it can also be used in a Not-Learning mode by appropriately
choosing the matching and checking functions and by properly implementing the cell-
change generation module.

In the remainder of this section, we consider a few proposals in the literature and
discuss their comparison to Detective Gadget.

SWOOSH [15] introduced an abstract framework for the study of ER algorithms and
two algorithms, called R-SWOOSH and F-SWOOSH, for record-level and attribute-level
comparisons, respectively. SWOOSH is abstract in the sense that it makes very limited
assumptions about the actual match and merge functions, which are considered black
boxes. Assuming the functions have a number of natural properties, it was proven that
R-SWOOSH is optimal in the number of record comparisons it performs. Experimental
evaluations have shown [5,15] that, while record-level functions may, in some cases, give
outputs of higher quality, they are considerably slower than attribute-level approaches. In
fact, experiments show that F-SWOOSH is significantly faster than R-SWOOSH. Oyster [38]
system uses the R-SWOOSH algorithm. It also uses blocking, offering classical techniques
like Scan, Soundex, and DMSoundex, but it also offers the possibility to specify a composite
index for blocking.

Is it possible to reduce the number of comparisons by reducing the set of candidate
records, speeding up a factor up to 2.6×–5× over previous algorithms [39]? This algorithm,
unlike our approach, is based only on reducing the number of comparisons, adopting
a technique based on the ordering of the tokens in the record and combining it with
techniques based on prefixes. In our case, we rely on a hierarchy of ID and on an iterative
process that allows us to clean the data as they are grouped with references to the same
entity.

Other systems [20,40] try to manage the problem of the comparisons of a very large
number of records by distributing the problem. However, these approaches rely heavily
on the use of multiple processors to solve the problem but do not deviate much from the
classic approach of SWOOSH.

From the point of view of the human user involvement in the process of ER, Crow-
dER [11] is an approach in this direction. The idea is to give the possibility to present to
the user requests for the records that are over a certain similarity threshold. The previous
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work has proposed batching verification tasks for presentation to human workers, but even
with batching, a human-only approach is infeasible for data sets of even moderate size
due to the large numbers of matches to be tested. In this approach, the intuition is that
crowdsourcing platforms are increasingly used but, although useful, are expensive. So, it is
presented as a system capable of producing user requests as efficiently as possible in order
to spend the least amount of resources (money), minimizing the use of different workers.
Magellan [41] allows users to explore and clean the data before the ER process. The user is
guided through a how-to guide to develop an ER pipeline. Magellan differs from Detective
Gadgetdue to the fact that the cleaning and ER process is not iterative. Corleone [42] uses
the crowd to solve the complete ER. Dedupe [29] is a system that uses machine learning. It
also makes use of clustering using a hierarchical method. To reduce the number of labeled
examples it uses active learning. A training example is composed of a pair of records
identified with the declared variables, and the possible labels are yes, no, or not sure.

Febrl [30] can be used in learning and not-learning mode. In the learning mode, a
classifier extracts weights from a highly similar record and uses those weights as features
for training an SVM classifier. In the not-learning mode, Febrl makes use of clustering
algorithms to find similar records.

ZeroER [31] uses generative models to calculate if two records match or not. The
parameters of the model are estimated using the EM algorithm [43] from some generated
features without training data, i.e., without human intervention. Such features are calcu-
lated using various functions (e.g., similarity, exact match, . . . ). The main idea is that two
records that are similar share similar feature vectors.

SystemER [44] generates Boolean features from the attributes. Then, it uses active
learning to propose that the user manually annotate the likely false positives and the likely
false negatives. We do not compare SystemER with Detective Gadget since the source code
is not available.

Recently, some proposals have used Deep Learning (DL). Ditto [45] is an ER solution
that leverages pre-trained language models (PLMs) based on transformer architecture.
It models the ER task as a classification task on pairs on record. It allows the inclusion
of domain knowledge at the blocking level, where the user can specify attributes that
are equivalent to our “id attributes” or replace similar values like our “alias”. It also
uses summarization on long strings to compare similarity and augmenting techniques to
learn from difficult examples. Essentially, Ditto uses DL at the matching level. DL could
also be used at blocking level [46] with different solutions. While previous DL solutions
are domain-specific, i.e., they are dataset-specific and to be used on a new dataset, they
should be finetuned with at least hundreds of examples, Unicorn [47] is a novel system
that removes domain limitations and works in a setting with zero-shot prediction using
a prompt provided to the PLMs. The prompt provided to the PLM is a question, “Does x
match with y?”, where x and y are linearizations or the two records.

Finally, there are new approaches based on the so-called Progressive ER, where the
goal is to produce a partial solution of the ER [48,49]. These approaches have in common
the need to reiterate the ER process whenever the sources are updated, but while Detective
Gadget generates a complete solution, their goal is to give the best solution with a limited
budget (time or computation).

5. Conclusions

To the best of our knowledge, Detective Gadget represents the first proposal of a
structured workflow to handle mission-critical ER tasks where human experts are involved.

The main idea behind the system is to structure the process iteratively by clearly
separating the search for matches based on identical values from verification steps that
spot potential false positives and false negatives while systematically involving humans.

We believe that this paper makes two main contributions to the field of semi-
automatic ER:
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• on the one side, it shows that our workflow can actually achieve the level of quality
typically requested in mission-critical ER tasks;

• on the other side, it proves that our separation of concerns often guarantees the best
trade-off between quality and computation times.

We believe that these are important advancements toward the goal of adopting ER
algorithms in practical, mission-critical tasks. In these tasks, automatic systems in the
literature—which represent a good solution to scenarios of a different kind, where quality
is less critical—have so far performed poorly. On the one side, they are typically unable to
guarantee the desired level of accuracy. On the other side, they provide clear guidance on
how to involve human experts and perform clerical reviews of results.

Detective Gadgethas been used to handle real-life, mission-critical ER scenarios, all in
the context of the development of an information system for research evaluation in Italy.
We mention a few of these and report some stats:

• a large ER task about journal classifications has been handled; the task involves 22
different journal classifications, for a total of over 48,000 records; records are matched
to roughly 20,000 journals; the task was developed incrementally over several months
by progressively adding new classifications; we do not have precise worktime logs,
but we estimate that the total worktime to complete the task has been approximately
10 work hours;

• an ER task about computer-science conference ratings has been performed in order to
develop the GGS International Computer-Science Conference Rating
(https://scie.lcc.uma.es/ (accessed on 18 November 2024)); the task involves three
major computer-science conference ratings for a total of over 4000 records; records
are matched to roughly 1600 conferences; the task was developed incrementally over
several months by progressively adding new classifications;

• an ER task about “author IDs” in the main bibliometric databases, Scopus and WOS,
is ongoing for approximately 35,000 Italian researchers; the goal is to identify their
unique identifiers within the Scopus and WOS database in order to properly compute
self-citations, one of the criteria in the Italian national evaluation procedures. Interest-
ingly, Scopus and WOS also use (semi-)automatic ER techniques to match author IDs
to researchers, and experience tells that the quality of results varies greatly from one
scientific field to the other, and inconsistencies are very common.

In all these approaches, Detective Gadgethas guaranteed an excellent trade-off between
the quality of results—a crucial requirement in research evaluation—and effort.

As future work, we envision three main research directions. First, we believe that
additional optimizations in the similarity-search phase can be introduced by developing
forms of reasoning that automatically characterize IDs in recordsets, even when a priori
knowledge about these is available. On the other side, we believe that a more sophisticated
user interface supporting the ER task configuration through the definition of the data
sources and the matching and checking function but also to allow collaborative work
and control of the phases of the process by administrators and human experts might
further improve the effectiveness of the system. As a final research direction, we believe
that we can leverage Large Language Models [50] to reduce the number of both user
interventions and the number of human experts using the In-Context Learning approach to
avoid hallucination problems.
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