Intriguing sets of quadrics in PG(5, q)

A. Cossidente F. Pavese

Abstract

In the geometric setting of quadrics commuting with a Hermitian surface of $\operatorname{PG}(3,q^2)$, q odd, [24] a hemisystem on the Hermitian surface $\mathcal{H}(3,q^2)$, $q \geq 7$, admitting a subgroup K of $P\Omega^-(4,q)$ of order $q^2(q+1)$ is constructed. Also, a new family of Cameron–Liebler line classes of $\operatorname{PG}(3,q)$, $q \geq 5$ odd, with parameter $(q^2+1)/2$ is provided.

Mathematics Subject Classification: 05B25, 05E30, 51E12 Keywords: Hermitian surface; hemisystem; Cameron–Liebler line class; strongly regular graph; partial quadrangle, intriguing sets; quadrics.

Running head: Intriguing sets of quadrics in PG(5, q)

1 Introduction and Basics

Let \mathcal{P} be a finite classical polar space of rank $r \geq 2$ over a finite field of order q. We say that a set of points \mathcal{I} of \mathcal{P} is *intriguing* if

$$|P^{\perp} \cap \mathcal{I}| = \begin{cases} h_1 & if \quad P \in \mathcal{I} \\ h_2 & if \quad P \notin \mathcal{I} \end{cases},$$

for some constants h_1 and h_2 (where P ranges over the points of \mathcal{P}). The integers h_1 and h_2 are called the *intersection numbers* of \mathcal{I} . Here \perp is the polarity of \mathcal{P} .

It turns out that an intriguing set of \mathcal{P} is either an *m*-ovoid or an *i*-tight set of \mathcal{P} [2]. An *m*-ovoid \mathcal{O} of \mathcal{P} is a subset of points of \mathcal{P} such that every maximal of \mathcal{P} meets \mathcal{O} in *m* points. If \mathcal{T} is a subset of points of \mathcal{P} , then the average number of points of \mathcal{T} collinear with a given point is bounded

above by $i(q^{r-1}-1)/(q-1) + q^{r-1} - 1$, where *i* is determined by the size of \mathcal{T} . If equality occurs, \mathcal{T} is said to be *i*-tight. A set of points is tight if it is *i*-tight for some *i*. For more results on this topic see [2].

There exist two very nice and important objects in finite geometry admitting the same automorphism group and apparently not related each other. They are a hemisystem of the Hermitian generalized quadrangle $\mathcal{H}(3, q^2)$, q odd [11], and a Cameron–Liebler line class in PG(3, q), q odd, of parameter $(q^2+1)/2$ [5], both admitting the classical group $G := P\Omega^-(4, q)$ stabilizing an elliptic quadric $\mathcal{Q}^-(3, q)$ of PG(3, q). Under duality [19],[22], they are both examples of intriguing sets of quadrics of PG(5, q).

Although we were not able to establish a possible connection between the above mentioned objects, we pose the following question. There does exist a suitable chosen subgroup of G producing new hemisystems of the Hermitian generalized quadrangle and new Cameron–Liebler line classes of PG(3, q)? The answer is affirmative. By considering a suitable subgroup of the stabilizer of a point of $Q^-(3,q)$ in G, we are able to construct for $q \geq 7$ a new infinite family of hemisystems of $\mathcal{H}(3,q^2)$ and a new infinite family of Cameron–Liebler line classes with parameter $(q^2 + 1)/2$ for $q \geq 5$. The paper is divided into two parts.

The first part of the paper deals with the generalized quadrangle $\mathcal{H}(3, q^2)$, the incidence structure of all points and lines (generators) of a non-singular Hermitian surface in PG(3, q^2), a generalized quadrangle of order (q^2, q) , with automorphism group $P\Gamma U(4, q^2)$. The dual of $\mathcal{H}(3, q^2)$ is $\mathcal{Q}^-(5, q)$ [22, Theorem 3.2.3], the elliptic quadric of PG(5, q), a generalized quadrangle of order (q, q^2) with automorphism group $P\Gamma O^-(6, q)$.

In [24], regular systems of $\mathcal{H}(3, q^2)$ were introduced. A regular system of order *m* of $\mathcal{H}(3, q^2)$ is a set \mathcal{R} of lines of $\mathcal{H}(3, q^2)$ with the property that every point lies on exactly *m* lines of \mathcal{R} , 0 < m < q+1. Segre proved that, if *q* is odd, such a system must have m = (q+1)/2, and called a regular system of $\mathcal{H}(3, q^2)$ of order (q+1)/2 a hemisystem of $\mathcal{H}(3, q^2)$. He also constructed a hemisystem of $\mathcal{H}(3, 9)$ admitting the linear group PSL(3, 4). In [6], the nonexistence of regular systems of $\mathcal{H}(3, q^2)$ for *q* even was established.

Thas conjectured that there are no hemisystems of $\mathcal{H}(3, q^2)$ for q > 3 [26], but in [11] the conjecture was disproved by constructing hemisystems of $\mathcal{H}(3, q^2)$, for all odd prime powers $q \geq 3$, and giving Segre's example for q = 3. For other results, see [3]. Other sporadic examples can be found in [1],[4],[12]. By duality, a hemisystem of $\mathcal{H}(3, q^2)$ is a (q + 1)/2-ovoid

of the quadric $\mathcal{Q}^{-}(5,q)$. Here, we will construct a new infinite family of hemisystems of $\mathcal{H}(3,q^2)$, $q \geq 7$ odd, admitting a subgroup of the stabilizer of a point of $\mathcal{Q}^{-}(3,q)$ in the group G.

In the second part of the paper we deal with Cameron–Liebler line classes of PG(3,q). A Cameron-Liebler line class \mathcal{L} with parameter x in PG(3,q)is a set of lines of PG(3,q) such that every spread of PG(3,q) contains exactly x lines of \mathcal{L} [9]. There exist classical examples of Cameron–Liebler line classes \mathcal{L} with parameters x = 1, 2 and $x = q^2, q^2 - 1$. Namely, the set of lines through a point P and, analogously, the set of lines in a plane π form a Cameron-Liebler line class with parameter x = 1. The union of these two sets for $P \notin \pi$ forms a Cameron–Liebler line class with parameter x = 2. In general, the complement of a Cameron-Liebler line class with parameter x is a Cameron-Liebler line class with parameter $q^2 + 1 - x$. It was conjectured that no other examples of Cameron–Liebler line classes exist [9], but Bruen and Drudge [5] provided an example of Cameron–Liebler line classes in PG(3,q), q odd, with $x = (q^2 + 1)/2$, and Govaerts and Penttila [17] found a Cameron–Liebler line class in PG(3, 4) with parameter x = 7, and so also with parameter x = 10. Very recently, a new infinite family of Cameron–Liebler line class was found for $q \equiv 9 \pmod{12}$ in [15],[20]. For further results on this topic see also [21], [16]. A Cameron–Liebler line class of PG(3,q) with parameter x corresponds to an x-tight set of $Q^+(5,q)$, the hyperbolic quadric of PG(5, q). Here, we will construct a new infinite family of Cameron-Liebler line classes of PG(3,q), with parameter $(q^2+1)/2, q \geq 5$ odd, admitting the stabilizer of a point of $\mathcal{Q}^{-}(3,q)$ in the group G.

From [2, Theorems 11,12] the intriguing sets considered here are also instances of two-character sets of PG(5,q): they have two intersection numbers with respect to hyperplanes and so they give rise to strongly regular graphs (via linear representation) and two-weight codes [7].

From now on, we assume that q is a power of an odd prime.

2 A new family of hemisystems of the Hermitian surface

Let $\mathcal{H}(3, q^2)$ be a Hermitian surface of $\mathrm{PG}(3, q^2)$ and let \mathcal{U} be the Hermitian polarity of $\mathrm{PG}(3, q^2)$ associated with $\mathcal{H}(3, q^2)$. Let \mathcal{B} be an orthogonal polarity commuting with the Hermitian polarity \mathcal{U} . Set $\mathcal{V} = \mathcal{B}\mathcal{U} = \mathcal{U}\mathcal{B}$. Then \mathcal{V} is a non–linear collineation and from [24], the fixed points of \mathcal{V} on $\mathcal{H}(3, q^2)$

form a non-degenerate quadric \mathcal{Q} which is either elliptic or hyperbolic. In particular, $\mathcal{Q} = \mathcal{H}(3,q^2) \cap \Sigma$, where Σ is a suitable subgeometry of PG(3, q^2) isomorphic to PG(3, q) [24]. Assume that \mathcal{Q} is elliptic. Let \overline{G} denote the stabilizer of \mathcal{Q} in $PSU(4,q^2)$. From [11], $\overline{G} = PGO^-(4,q) \cap PSU(4,q^2) =$ $PSO^-(4,q) \cdot 2$. The following results have been proved in [11].

Proposition 2.1. The group \overline{G} has three orbits on points of $\mathcal{H}(3,q^2)$.

The \bar{G} -orbits have sizes: $q^2 + 1$, $q^2(q^2 + 1)(q + 1)/2$, $q^2(q^2 + 1)(q - 1)/2$: they are points on Q, points on generators tangent to Q but not on Q, and the complements of these in $\mathcal{H}(3, q^2)$, respectively.

Proposition 2.2. \overline{G} has two orbits on lines of $\mathcal{H}(3, q^2)$.

The quadric \mathcal{Q} is a partial ovoid of $\mathcal{H}(3, q^2)$ and so each generator of $\mathcal{H}(3, q^2)$ is either disjoint from \mathcal{Q} or meets \mathcal{Q} in exactly one point. The quadric \mathcal{Q} is a *special set* of $\mathcal{H}(3, q^2)$, i.e., it is a subset of $q^2 + 1$ points of $\mathcal{H}(3, q^2)$ such that each point of $\mathcal{H}(3, q^2) \setminus \mathcal{Q}$ is conjugate to 0 or 2 points of \mathcal{Q} , or equivalently, any three points of \mathcal{Q} generate a non-tangent plane to $\mathcal{H}(3, q^2)$, see [11] and references therein. Through each point P on \mathcal{Q} there are q+1 generators of $\mathcal{H}(3, q^2)$, which are permuted by the stabilizer of P in \overline{G} . Since \mathcal{Q} has q^2+1 points and \overline{G} acts transitively on \mathcal{Q} , there are $(q+1)(q^2+1)$ generators of $\mathcal{H}(3, q^2)$ permuted in a single orbit under the action of \overline{G} . The second orbit consists of all generators of $\mathcal{H}(3, q^2)$ disjoint from \mathcal{Q} .

Now, we recall the construction given in [11] of a class of hemisystems of $\mathcal{H}(3, q^2)$, admitting the group $G = P\Omega^-(4, q) \leq \overline{G}$.

The group G has the same orbits on points of $\mathcal{H}(3, q^2)$ as \overline{G} . Under the action of G the two \overline{G} -line orbits given in Proposition 2.2 split into four orbits, two of size $(q^2+1)(q+1)/2$, say \mathcal{O}_1 and \mathcal{O}_2 , and two of size $q^2(q^2-1)/2$, say \mathcal{O}_3 and \mathcal{O}_4 . Since G acts transitively on \mathcal{Q} , each orbit of size $(q^2+1)(q+1)/2$ represents a partial hemisystem. The block-tactical decomposition matrix for this orbit decomposition is

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & \frac{q^2+1}{2} & \frac{q^2+1}{2} \\ q^2 & q^2 & \frac{q^2+1}{2} & \frac{q^2+1}{2} \end{bmatrix},$$

and hence the point-tactical decomposition matrix is

$$\begin{bmatrix} \frac{q+1}{2} & \frac{q+1}{2} & 0 & 0\\ 0 & 0 & \frac{q+1}{2} & \frac{q+1}{2}\\ 1 & 1 & \frac{q-1}{2} & \frac{q-1}{2} \end{bmatrix}$$

It follows that amalgamation of an orbit of size $(q^2 + 1)(q + 1)/2$ and an orbit of size $q^2(q^2 - 1)/2$ yields a *G*-invariant hemisystem of $\mathcal{H}(3, q^2)$.

From the point-tactical decomposition it also follows that through any point on a generator tangent to Q there pass a unique line of \mathcal{O}_1 and a unique line of \mathcal{O}_2 .

Let \mathcal{R} be the *G*-invariant hemisystem of $\mathcal{H}(3, q^2)$ obtained by glueing together the orbits \mathcal{O}_1 and \mathcal{O}_3 . Let us fix a point $P \in \mathcal{Q}$. The q+1 generators on P lie on the tangent plane π to $\mathcal{H}(3,q^2)$ at P and are such that (q+1)/2of them are in \mathcal{O}_1 (and so belong to \mathcal{R}) and (q+1)/2 are in \mathcal{O}_2 . Let us denote by π_i , the points of π on the generators of \mathcal{O}_i on P, i = 1, 2. The stabilizer of P in G contains a subgroup K of order $q^2(q+1)$ fixing P and acting transitively on $\mathcal{Q} \setminus \{P\}$. Also, it fixes other q-1 permutable Baer elliptic quadrics, say $\mathcal{Q}_1, \ldots, \mathcal{Q}_{q-1}$, pairwise intersecting just in P, all embedded in $\mathcal{H}(3,q^2)$ and obtained by intersecting $\mathcal{H}(3,q^2)$ with suitable Baer subgeometries. Moreover, the union $\mathcal{O} = \mathcal{Q} \cup \mathcal{Q}_1 \cup \ldots \cup \mathcal{Q}_{q-1}$ is an ovoid of $\mathcal{H}(3,q^2)$, the so called *semiclassical ovoid*, [10], [11]. Since K fixes \mathcal{R} , the set of generators tangent to an elliptic quadric Q_i not on P, splits into two orbits, say \mathcal{L}_{i_1} and \mathcal{L}_{i_2} of size $q^2(q+1)/2$ according as a generator meets π_1 or π_2 , respectively, $i = 1, \ldots, q-1$. Analogously, the generators tangent to \mathcal{Q} not at P split into two orbits, say \mathcal{L}_1 and \mathcal{L}_2 , of size $q^2(q+1)/2$, according as a generator meets π_1 or π_2 . In particular, \mathcal{L}_2 belongs to \mathcal{R} . A generator of \mathcal{R} not tangent to \mathcal{Q} is necessarily tangent to a unique quadric \mathcal{Q}_i due to the fact that \mathcal{O} is an ovoid. Moreover, we can always assume that for $i = 1, \ldots, (q-1)/2$, \mathcal{L}_{i_1} belongs to \mathcal{R} and hence \mathcal{L}_{i_2} belongs to \mathcal{R} , for $i = (q+1)/2, \ldots, q-1$. Let $X := \{\mathcal{Q}_{(q+1)/2}, \ldots, \mathcal{Q}_{(q-1)}, \mathcal{Q}\}$ and let $Y := \{\mathcal{Q}_1, \ldots, \mathcal{Q}_{(q-1)/2}\}$. Let us consider a set Y' consisting of (q-1)/2quadrics arbitrarily chosen among those in \mathcal{O} . It follows that if $|X \cap Y'| = x$ then $|Y \setminus Y'| = x$. Let us denote by $\mathcal{Q}_j, j = 1, \ldots, x$ the quadrics in $X \cap Y'$ and by $\mathcal{Q}_k, k = 1, \ldots, x$ the quadrics in $Y \setminus Y'$. We claim that the set

$$\mathcal{R}' := igcup_{j=1}^x \left((\mathcal{R} \setminus \mathcal{L}_{j_2}) \cup \mathcal{L}_{j_1}
ight) \cup igcup_{k=1}^x \left((\mathcal{R} \setminus \mathcal{L}_{k_1}) \cup \mathcal{L}_{k_2}
ight),$$

is a hemisystem of $\mathcal{H}(3, q^2)$.

Assume that x = 1. Let us start from the hemisystem \mathcal{R} . Then $\mathcal{R}' := (\mathcal{R} \setminus \mathcal{L}_{j_2}) \cup \mathcal{L}_{j_1} \cup (\mathcal{R} \setminus \mathcal{L}_{k_1}) \cup \mathcal{L}_{k_2}$. Let T be a point of $\mathcal{H}(3, q^2)$. Assume that $T \in \pi_1$. Through T there pass a unique generator of \mathcal{O}_1 , (q-1)/2 generators of $\mathcal{R} \setminus \{\mathcal{O}_1\}$ of which exactly one belongs to \mathcal{L}_{k_1} . This is due to

the fact that \mathcal{Q}_k is a special set of $\mathcal{H}(3,q^2)$. Substituting the unique line of \mathcal{R} in \mathcal{L}_{k_1} with the unique line of \mathcal{L}_{j_1} passing through T it follows that there exist (q+1)/2 generators of \mathcal{R}' on T. Assume $T \in \pi_2$. Through Tthere exists a unique line ℓ of \mathcal{L}_{j_2} contained in \mathcal{R} and a unique line m of \mathcal{L}_{k_1} . Substituting ℓ with the unique line of \mathcal{L}_{j_1} on T and m with the unique line of \mathcal{L}_{k_2} on T, it follows that there are (q+1)/2 generators of \mathcal{R}' on T. Assume that T is a point on a generator tangent to Q_j not at P. Through T there pass a unique generator of \mathcal{L}_{j_2} belonging to \mathcal{R} . Substituting such a generator with the unique generator of \mathcal{L}_{j_1} on T we have again (q+1)/2generators of \mathcal{R}' on T. Analogously if T is a point on a generator tangent to \mathcal{Q}_k not at P. We call such a procedure *derivation* of \mathcal{R} with respect to the quadrics $\mathcal{Q}_j, \mathcal{Q}_k$. This procedure can be iterated and at each step a hemisystem arises. In the general case \mathcal{R} is obtained from \mathcal{R} by applying x times the derivation procedure (*multiple derivation*). It turns out that the multiple procedure described above produces $\binom{q}{(q-1)/2}$ hemisystems of $\mathcal{H}(3,q^2)$. We have proved the following result.

Theorem 2.3. There exists a hemisystem of $\mathcal{H}(3, q^2)$ admitting a group K of order $q^2(q+1)$ for all odd prime powers $q \geq 7$. Dually, there exists a K-invariant (q+1)/2-ovoid of $\mathcal{Q}^-(5,q), q \geq 7$.

Proof. From the discussion above the group G produces exactly four G-invariant hemisystems. Since in our construction a G-orbit of generators tangent to Q is fixed, the number of G-invariant hemisystems is 2q. It follows that if $q \geq 7$ then there exist hemisystems of $\mathcal{H}(3, q^2)$ that are K-invariant but not G-invariant.

Remark 2.4. It is plausible that for q = 7, 9, 11 our hemisystems coincide with certain examples in [4] found by computer.

Remark 2.5. A partial quadrangle $PQ(s, t, \mu)$ [8] is an incidence structure of points and lines with the properties that any two points are incident with at most one line, every point is incident with t + 1 lines, every line is incident with s + 1 points, any two non-collinear points are jointly collinear with exactly μ points, and for any point P and line l which are not incident, there is at most one point Q on l collinear with P. There are not many constructions of partial quadrangles known, see [11] and references therein. A hemisystem of a generalized quadrangle of order (s, s^2) gives a partial quadrangle $PQ((s-1)/2, s^2, (s-1)^2/2)$ (the points of the partial quadrangle

being the points of the hemisystem and the lines of the partial quadrangle being the lines of the generalized quadrangle) [25]. From our construction a new $PQ((q-1)/2, q^2, (q-1)^2/2)$ arises.

Remark 2.6. From [13, Theorem 3.5] the strongly regular graphs arising via the linear representation of the two-character set obtained from non-equivalent hemisystems are not isomorphic. Also, each hemisystem of $\mathcal{H}(3,q^2)$ yields a strongly regular decomposition of the collinearity graph of $\mathcal{Q}^-(5,q)$, in the sense of [18].

Remark 2.7. Hemisystems give rise to 4–class imprimitive cometric Q–antipodal association schemes that are not metric, see [14], which are indeed rare in the literature.

3 A new family of Cameron–Liebler line classes

A Cameron-Liebler line class \mathcal{L} is a set of lines in PG(3,q) such that for any line ℓ of PG(3,q),

$$|\{m \in \mathcal{L} : |m \cap \ell| = 1\}| = \begin{cases} (q+1)x + (q^2 - 1) & if \quad \ell \in \mathcal{L} \\ (q+1)x & if \quad \ell \notin \mathcal{L} \end{cases}$$

for some fixed integer x, called the *parameter* of \mathcal{L} . There are many equivalent characterizations of Cameron–Liebler line classes, see [23]. Under the Klein correspondence between the lines of PG(3, q) and points of a Klein quadric $\mathcal{Q}^+(5,q)$, a Cameron–Liebler line class of parameter x produces an x-tight set of $\mathcal{Q}^+(5,q)$.

Definition 3.1. A set of points \mathcal{T} in $\mathcal{Q}^+(5,q)$ is said to be *i*-tight if

$$|P^{\perp} \cap \mathcal{T}| = \begin{cases} i(q+1) + q^2 & if \quad P \in \mathcal{T} \\ i(q+1) & if \quad P \notin \mathcal{T} \end{cases},$$

where \perp denotes the polarity of PG(5,q) associated with $Q^+(5,q)$.

Let q be odd. Let $Q^{-}(3,q)$ be an elliptic quadric of PG(3,q). Each point of $Q^{-}(3,q)$ lies on q^{2} secants to $Q^{-}(3,q)$, and so lies on q+1 tangent lines. Let $G = P\Omega^{-}(4,q)$ be the commutator subgroup of the full stabilizer of $Q^{-}(3,q)$ in PGL(4,q). The group G has three orbits on points of PG(3,q), i.e., the

points of $\mathcal{Q}^{-}(3,q)$ and other two orbits \mathcal{O}_s and \mathcal{O}_n of size $q^2(q^2+1)/2$. The two orbits \mathcal{O}_s , \mathcal{O}_n correspond to points of PG(3, q) such that the evaluation of the quadratic form associated to $\mathcal{Q}^{-}(3,q)$ is a square or a non–square in GF(q), respectively. In its action on lines of PG(3,q), the group G has four orbits: two orbits, say \mathcal{L}_1 and \mathcal{L}_2 , both of size $(q+1)(q^2+1)/2$, consisting of lines tangent to $\mathcal{Q}^{-}(3,q)$ and two orbits, say \mathcal{L}_3 and \mathcal{L}_4 , both of size $q^2(q^2+1)/2$ consisting of lines secant and external to $\mathcal{Q}^{-}(3,q)$, respectively. The block–tactical decomposition matrix for this orbit decomposition is

$$\left[\begin{array}{rrrrr} 1 & 1 & 2 & 0 \\ q & 0 & \frac{q-1}{2} & \frac{q+1}{2} \\ 0 & q & \frac{q-1}{2} & \frac{q+1}{2} \end{array}\right],$$

and hence the point-tactical decomposition matrix is

$$\begin{bmatrix} \frac{q+1}{2} & \frac{q+1}{2} & q^2 & 0\\ q+1 & 0 & \frac{q(q-1)}{2} & \frac{q(q+1)}{2}\\ 0 & q+1 & \frac{q(q-1)}{2} & \frac{q(q+1)}{2} \end{bmatrix}.$$

Indeed, simple group-theoretic arguments show that a line of \mathcal{L}_1 (\mathcal{L}_2) contains q points of \mathcal{O}_s (\mathcal{O}_n), that a secant line to $\mathcal{Q}^-(3,q)$ always contains (q-1)/2 points of \mathcal{O}_s and (q-1)/2 points of \mathcal{O}_n and that a line external to $\mathcal{Q}^-(3,q)$ contains (q+1)/2 points of \mathcal{O}_s and (q+1)/2 points of \mathcal{O}_n . Let $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_3$. From the orbit-decompositions above it is an easy matter to prove that \mathcal{L} is the Cameron-Liebler line class constructed in [5]. In particular, \mathcal{L} has the following characters with respect to line-stars of PG(3,q):

$$q^{2} + (q+1)/2, (q^{2}-q)/2, (q^{2}+q+2)/2,$$

and with respect to the line sets of planes of PG(3, q):

$$(q+1)/2, (q^2+q)/2, (q^2+3q+2)/2.$$

Let $P \in \mathcal{Q}^{-}(3,q)$ and let π be the tangent plane to $\mathcal{Q}^{-}(3,q)$ at P. We can distinguish the following sets of lines of PG(3,q):

- $t_1: (q+1)/2$ lines in \mathcal{L}_1 through P;
- $t_2: (q+1)/2$ lines in \mathcal{L}_2 through P;
- $s_1: q^2$ secants on P;

- $s_2: q^2(q^2-1)/2$ lines in $\mathcal{L}_3 \setminus s_1;$
- $u_1: q^2(q+1)/2$ lines in $\mathcal{L}_1 \setminus t_1;$
- $u_2: q^2(q+1)/2$ lines in $\mathcal{L}_2 \setminus t_2;$
- $e_1: q^2$ external line lying in π ;
- $e_2: q^2(q^2-1)/2$ external lines not in π .

Let $\mathcal{L}' := t_1 \cup s_1 \cup u_1 \cup e_2$. We claim that \mathcal{L}' is a Cameron–Liebler line class with parameter $(q^2 + 1)/2$.

First of all notice that \mathcal{L}' has size $(q+1)/2 + q^2 + q^2(q+1)/2 + q^2(q^2-1)/2 = (q^2+1)(q^2+q+1)/2$. Set $a := (q+1)(q^2+1)/2$. We distinguish several cases.

Assume that $\ell \in t_1$. Then, through a point of ℓ distinct from P, there pass q(q+1)/2 - q lines of e_2 and q lines of u_1 . Through P there pass q^2 lines of s_1 and (q-1)/2 lines of t_1 distinct from ℓ . Summing up there are $a + q^2$ lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in s_1$ and $\ell \cap \mathcal{Q}^-(3,q) = \{P, P'\}$. Through P there pass $q^2 - 1$ lines of s_1 distinct from ℓ and (q+1)/2 lines of t_1 . Through P' there pass (q+1)/2 lines of u_1 . Through a point $R \in \ell \setminus \{P, P'\}$ there pass q(q+1)/2lines of e_2 , if $R \in \mathcal{O}_n$, and q(q+1)/2 lines of e_2 and q+1 lines of u_1 , if $R \in \mathcal{O}_s$. Summing up there are $a + q^2$ lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in u_1$ and $T = \ell \cap Q^-(3, q)$. Through T there pass (q-1)/2lines of u_1 distinct from ℓ and a line of s_1 . Through a point $R \in \ell \setminus \pi$ with $R \neq T$ there pass q lines of u_1 distinct from ℓ , a line of s_1 and q(q+1)/2lines of e_2 . Through the point $\ell \cap \pi$ there pass one line of t_1 , q-1 lines of u_1 distinct from ℓ and q(q-1)/2 - q lines of e_2 . Summing up there are $a + q^2$ lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in e_2$ and $\ell \cap \pi \in \mathcal{O}_s$. Through a point R of ℓ there pass q+1 lines of u_1 , a line of s_1 and q(q+1)/2 - 1 lines of e_2 distinct from ℓ , if $R \in \mathcal{O}_s$ and $R \notin \pi$, whereas there pass a line of s_1 and q(q+1)/2 - 1 lines of e_2 distinct from ℓ , if $R \in \mathcal{O}_n$. Through $\ell \cap \pi$ there pass a line of t_1 , q(q+1)/2 - q - 1 lines of e_2 distinct from ℓ and q lines of u_1 . Summing up there are $a + q^2$ lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in e_2$ and $\ell \cap \pi \in \mathcal{O}_n$. Through a point R of ℓ there pass q+1 lines of u_1 , a line of s_1 and q(q+1)/2 - 1 lines of e_2 distinct from ℓ , if $R \in \mathcal{O}_s$, whereas there pass a line of s_1 and q(q+1)/2 - 1 lines of e_2 distinct

from ℓ , if $R \in \mathcal{O}_n$ and $R \notin \pi$. Through $\ell \cap \pi$ there pass q(q+1)/2 - q - 1lines of e_2 distinct from ℓ . Summing up there are $a + q^2$ lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in t_2$. Through *P* there pass q^2 lines of s_1 and (q+1)/2 lines of t_1 . Through a point on ℓ distinct from *P* there pass q(q+1)/2 - q lines of e_2 . Summing up there are *a* lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in s_2$ and $\ell \cap \pi \in \mathcal{O}_n$. Through a point of $\ell \cap \mathcal{Q}^-(3,q)$ there pass one line of s_1 and (q+1)/2 lines of u_1 . Through a point of $\ell \cap \mathcal{O}_s$ there pass q+1 lines of u_1 , a line of s_1 and q(q+1)/2 lines of e_2 . Through a point of $\ell \cap \mathcal{O}_n$ that is not in π there pass one line of s_1 and q(q+1)/2 lines of e_2 . Through $\ell \cap \pi$ there pass q(q+1)/2 - q lines of e_2 . Summing up there are a lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in s_2$ and $\ell \cap \pi \in \mathcal{O}_s$. Through a point of $\ell \cap \mathcal{Q}^-(3,q)$ there pass one line of s_1 and (q+1)/2 lines of u_1 . Through a point of $\ell \cap \mathcal{O}_s$ that is not in π there pass q+1 lines of u_1 , a line of s_1 and q(q+1)/2 lines of e_2 . Through a point of $\ell \cap \mathcal{O}_n$ there pass one line of s_1 and q(q+1)/2 lines of e_2 . Through $\ell \cap \pi$ there pass a line of t_1 , q lines of u_1 and q(q+1)/2 - qlines of e_2 . Summing up there are a lines of \mathcal{L}' meeting ℓ .

Assume that $\ell \in u_2$. Through $\ell \cap \mathcal{Q}^-(3,q)$ there pass a line of s_1 and (q+1)/2 lines of u_1 . Through a point $R \in \ell \setminus \mathcal{Q}^-(3,q)$, $R \notin \pi$ there pass a line of s_1 and q(q+1)/2 lines of e_2 . Through $\ell \cap \pi$ there pass q(q+1)/2 - q lines of e_2 . Summing up there are a lines of \mathcal{L}' meeting ℓ .

Finally, assume that $\ell \in e_1$. Through a point $R \in \ell$ there pass a line of t_1 , q lines of u_1 and q(q+1)/2 - q lines of e_2 , if $R \in \mathcal{O}_s$, and q(q+1)/2 - q lines of e_2 , if $R \in \mathcal{O}_s$. Summing up there are a lines of \mathcal{L}' meeting ℓ .

We have proved that \mathcal{L}' is a Cameron–Liebler line class with parameter $(q^2 + 1)/2$. In particular, \mathcal{L}' has the following characters with respect to line–stars of PG(3, q):

$$(q+3)/2, (q^2-q)/2, (q^2+q+2)/2, (q^2+3q+4)/2, q^2+(q+1)/2,$$

and with respect to the line sets of planes of PG(3, q):

$$(q+1)/2, (q^2-q-2)/2, (q^2+q)/2, (q^2+3q+2)/2, q^2+(q-1)/2.$$

It turns out that, if q > 3, these characters are distinct from those of a Bruen–Drudge Cameron–Liebler line class.

Theorem 3.2. There exists a Cameron–Liebler line class with parameter $(q^2 + 1)/2$ not equivalent to the Bruen–Drudge's example.

References

- J. Bamberg, F. De Clerck, N. Durante, A hemisystem of a nonclassical generalised quadrangle, Des. Codes Cryptogr. 51 (2009), no. 2, 157-165.
- [2] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, J. Combin. Theory Ser. A 114 (2007), no. 7, 1293-1314.
- [3] J. Bamberg, M. Giudici, G. Royle, Every flock generalized quadrangle has a hemisystem, Bull. Lond. Math. Soc. 42 (2010), no. 5, 795-810.
- [4] J. Bamberg, M. Giudici, G. Royle, Hemisystems of small flock generalized quadrangles, Des. Codes Cryptogr. 67 (2013), no. 1, 137-157.
- [5] A. A. Bruen, K. Drudge, The construction of Cameron-Liebler line classes in PG(3, q), Finite Fields Appl. 5 (1999), no. 1, 35-45.
- [6] A. A. Bruen, J. W. P. Hirschfeld, Applications of line geometry over finite fields. II. The Hermitian surface, Geom. Dedicata 7 (1978) (3), 333-353.
- [7] R. Calderbank, W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), (2), 97-122.
- [8] P. J. Cameron, Partial quadrangles. Quart. J. Math. Oxford Ser. (2) 26 (1975), 61-73.
- [9] P. J. Cameron, R. A. Liebler, Tactical decompositions and orbits of projective groups, Linear Algebra Appl. 46 (1982), 91-102.
- [10] A. Cossidente, G. L. Ebert, G. Marino, A. Siciliano, Shult sets and translation ovoids of the Hermitian surface, Adv. Geom. 6 (2006), no. 4, 523-542.
- [11] A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface, J. London Math. Soc. (2) 72 (2005), no. 3, 731-741.
- [12] A. Cossidente, T. Penttila, A new hemisystem of $\mathcal{H}(3, 49)$, Ars Combin. (to appear).
 - 11

- [13] P. Cara, S. Rottey, G. Van de Voorde, The isomorphism problem for linear representations and their graphs, Adv. Geom. 14 (2014), no. 2, 353-367.
- [14] E. R. van Dam, W. J. Martin, M. Muzychuk, Uniformity in association schemes and coherent configurations: cometric *Q*-antipodal schemes and linked systems, arXiv:1001.4928.
- [15] J. De Beule, J. Demeyer, K. Metsch, M. Rodgers, A new family of tight sets of $\mathcal{Q}^+(5,q)$, Des. Codes Cryptogr. (to appear).
- [16] A. L. Gavrilyuk, K. Metsch, A modular equality for Cameron–Liebler line classes, J. Combin. Theory Ser. A 127 (2014), 224-242.
- [17] P. Govaerts, T. Penttila, Cameron-Liebler line classes in PG(3,4), Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 5, 793-804.
- [18] W.H. Haemers, D.G. Higman, Strongly regular graphs with strongly regular decomposition, Linear Algebra Appl. 114/115 (1989), 379-398.
- [19] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1991.
- [20] T. Feng, K. Momihara, Q. Xiang, Cameron–Liebler line classes with parameter $x = (q^2 1)/2$, arXiv:1406.6526.
- [21] K. Metsch, The non-existence of Cameron-Liebler line classes with parameter $2 < x \leq q$, Bull. Lond. Math. Soc. 42 (2010), no. 6, 991-996.
- [22] S. E. Payne, J. A. Thas, *Finite generalized quadrangles*, Research Notes in Mathematics, 104, Pitman, Boston-London-Melbourne, 1984.
- [23] T. Penttila, Cameron–Liebler line classes in PG(3, q), Geom. Ded., 37 (1991), 245-252.
- [24] B. Segre, Forme e geometrie Hermitiane con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965), 1-201.
- [25] J. A. Thas, Ovoids and spreads of finite classical polar spaces, Geom. Dedicata 10 (1981) 1-4, 135-143.

[26] J. A. Thas, Projective geometry over a finite field, Handbook of incidence geometry (Buekenhout, F., ed.), 295-347, North-Holland, Amsterdam, 1995.

A. Cossidente Dipartimento di Matematica Informatica ed Economia Università della Basilicata Contrada Macchia Romana 85100 Potenza (ITALY), antonio.cossidente@unibas.it

F. Pavese

Dipartimento di Matematica Informatica ed Economia Università della Basilicata Contrada Macchia Romana 85100 Potenza (ITALY), francesco.pavese@unibas.it