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Abstract: This study investigates long-term landscape transformations (1949–2016) in urban Rome,
Central Italy, through a spatial distribution of seven metrics (core, islet, perforation, edge, loop,
bridge, branch) derived from a Morphological Spatial Pattern Analysis (MSPA) analyzed separately
for seven land-use classes (built-up areas, arable land, crop mosaic, vineyards, olive groves, forests,
pastures). A Principal Component Analysis (PCA) has been finally adopted to characterize landscape
structure at 1949 and 2016. Results of the MSPA demonstrate how both natural and agricultural
land-uses have decreased following urban expansion. Moreover, the percent ‘core’ area of each class
declined substantially, although with different intensity. These results clearly indicate ‘winners’ and
‘losers’ after long-term landscape transformations: urban settlements and forests belong to the former
category, the remaining land-use classes (mostly agricultural) belong to the latter category. Descrip-
tive statistics and multivariate exploratory techniques finally documented the intrinsic complexity
characteristic of actual landscapes. The findings of this study also demonstrate how settlements have
expanded chaotically over the study area, reflecting a progressive ‘fractalization’ and inhomogeneity
of fringe landscapes, with negative implications for metropolitan sustainability at large. These
transformations were unable to leverage processes of settlement and economic re-agglomeration
around sub-centers typical of polycentric development in the most advanced socioeconomic contexts.

Keywords: urban growth; landscape metrics; mathematical morphology; metropolization; south-
ern Europe

1. Introduction

Moving further away from inner cities, vastly different landscapes have been more
intensively shaped by settlement expansion. Urban growth and the intimate interrelations
with land-use represents a complex issue involving multiple planning and ecological di-
mensions [1–3]. Landscape transformations in metropolitan regions are often the result
of interactions between (apparent and latent) socioeconomic factors of change [4–6]. The
linkage between land-use changes and demographic dynamics in economically advanced
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countries is becoming increasingly multifaceted because of the mutual interplay of envi-
ronmental and planning spheres that influence the sustainable development of regions and
local communities [7–9]. In this sense, exurban development has been strongly influenced
by land prices’ variations, altering the equilibrium of forces, which has profoundly shaped
the actual organization of economic activities within cities [1,10–12]. The monocentric
model, intended as a characteristic and simplified urban spatial structure, has for a long
time represented the basis for economic analysis and evaluation [13–16]. According to
the monocentric model, central cities hold a core area concentrating upper socioeconomic
functions (e.g., population density, land value, house prices, dwelling characteristics, and
capital-land ratio) reflected in a specific land-use profile [5,17,18]. As we move outward,
these functions gradually decrease in intensity and/or spatial extent [19]. However, given
the progressive and irregular expansion of cities with different sizes (from large to small
extent), the monocentric model does not provide an accurate and realistic depiction of
the land use structure [20–23]. Recently, the polycentric model has been considered more
appropriate in capturing the current spatial structure of urban areas [24–27]. The third,
even more frequent way of urban growth is now the exurban development (i.e., the charac-
teristic pattern of urban expansion following low-density settlements scattered on a natural
or agricultural matrix [1,28,29] resulting in urban morphologies very different from the
traditional monocentric and polycentric structures [30–32]).

Exurban expansion usually tends to produce fragmented landscapes without dis-
tinctive features of the polycentric model (such as production poles or sub-centers [33]).
Land-use changes in peri-urban areas have been the subject of a series of studies indicating
also possible knock-on effects on environmental matrices [34–41]; on the contrary, the
relationship between landscape changes and the three different ways of urban enlargement
(monocentric, polycentric and dispersed, see Figure 1) has not yet been adequately studied,
especially in areas where anthropogenic pressure has increased more rapidly in recent
years [42–44]. Fortunately, land use databases are increasing in size and populate the web
more frequently with respect to a recent past, involving all the geographic scales [45–47].
Therefore, the most suitable tools to validate working assumptions on the different urban
development modalities and to verify the reliability of various indicators rely on land-use
datasets [48]. In this context, exploratory analysis is a possible approach to shed light on the
complex links between structures, functions and change dynamics of (rapidly expanding)
urban settlements [49].
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Figure 1. Main forms of urban structure.

Our work introduces an original perspective summarizing today’s knowledge and
scientific directions in the field of long-term urban expansion in light of different mod-
els of urban growth. To our knowledge, we present here the first study documenting
(and quantitatively analyzing) long-term (nearly 70 years) landscape transformations in
a Mediterranean peri-urban landscape, bringing substantial implications for diachronic
analysis of urban expansion in developed (but peripheral) countries in Europe. As a novel
contribution to landscape studies, the present work focuses on the prevalent modes of
urban expansion occurred in Rome over a relatively long-time span (1949–2016) by per-
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forming a comprehensive, spatially explicit analysis of landscape transformations based
on a mathematical spatial morphology approach. In the last half century, the metropolitan
area of Rome, a typical semi-compact and dense Mediterranean city, has undergone differ-
ent, sometimes conflicting, waves of settlement expansion, representing a paradigmatic
example of urban transformations in the whole southern Europe [42,50–52]. The empirical
results of this study allow discussing the (supposed) unsustainability of current urban
expansion compared with the past settlement structures as far as land fragmentation and
loss of relict habitats and traditional crops at the fringe are concerned. At the same time,
our study presents polycentric urban growth as a candidate for a feasible and more sus-
tainable means of metropolitan development and, possibly, urban containment, in compact
Mediterranean cities.

2. Materials and Methods.
2.1. Study Area

The investigated area covers a part of Rome’s province including the local municipali-
ties of Rome and Fiumicino, for a total surface area of 1500 km2 (Figure 2). The lowlands
(the so called ‘Agro Romano’, a cultivated area with traditional rural landmarks, biodi-
versity and cultural heritage) surrounded the inner city of Rome expanded through the
alluvial plain of the Tiber river [53]. Although the increasing human pressure threatened
the original forest vegetation, relict forests are preserved along the coastal rim. Industrial
areas are located in the eastern part of the city while traditional cropland intermixed with
pasture and shrub land still occur in the western part of the study area. Rome’s climate
is typically Mediterranean with rainfalls concentrated in autumn and spring and rela-
tively mild temperatures in winter. The average long-term (1961–1990) annual rainfall
and mean daily temperature in Rome were 700 mm and 16 ◦C respectively. However,
decreased precipitation rate and increasing average temperatures have been recorded in
recent decades.

ISPRS Int. J. Geo-Inf. 2021, 10, 231 3 of 13 
 

our study presents polycentric urban growth as a candidate for a feasible and more sus-
tainable means of metropolitan development and, possibly, urban containment, in com-
pact Mediterranean cities. 

 
Figure 1. Main forms of urban structure. 

2. Materials and Methods. 
2.1. Study Area 

The investigated area covers a part of Rome’s province including the local munici-
palities of Rome and Fiumicino, for a total surface area of 1500 km2 (Figure 2). The low-
lands (the so called ‘Agro Romano’, a cultivated area with traditional rural landmarks, 
biodiversity and cultural heritage) surrounded the inner city of Rome expanded through 
the alluvial plain of the Tiber river [53]. Although the increasing human pressure threat-
ened the original forest vegetation, relict forests are preserved along the coastal rim. In-
dustrial areas are located in the eastern part of the city while traditional cropland inter-
mixed with pasture and shrub land still occur in the western part of the study area. Rome’s 
climate is typically Mediterranean with rainfalls concentrated in autumn and spring and 
relatively mild temperatures in winter. The average long-term (1961-1990) annual rainfall 
and mean daily temperature in Rome were 700 mm and 16°C respectively. However, de-
creased precipitation rate and increasing average temperatures have been recorded in re-
cent decades. 

  
Figure 2. (a) Italy subdivided into 20 regions (NUTS Level 2, Nomenclature of territorial units for 
statistics – regions level) and the study area including the municipalities of Rome and Fiumicino 
within the Latium region (in purple); (b) Land cover map of the study area derived from the 
Corine Land Cover 2012 – Level 1. 

Figure 2. (a) Italy subdivided into 20 regions (NUTS Level 2, Nomenclature of territorial units for
statistics—regions level) and the study area including the municipalities of Rome and Fiumicino
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Land Cover 2012—Level 1.

2.2. Land-Use Maps

Land-use data were obtained from the elaboration of two compatible spatial geo-
databases with a digital land classification based on a simplified Corine Land Cover
classification nomenclature [50–54]: (i) the Italian Istituto Geografico Militare topographic
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map (1:25,000 scale) produced in 1949, and (ii) a land-use map (1:25,000) produced by the
Cartographical Service of the Latium regional authority derived from photo-interpretation
of digital ortho-images released from the Italian National Geoportal (this map was origi-
nally produced in 1999–2000 and completely updated in 2016 with new images referring to
the same year). They were processed and reprojected to the common WGS84 UTM zone
32 in GIS environment (QGIS 3.14.1, see http://qgis.osgeo.org (accessed on 5 April 2021)).
Seven homogeneous classes with a minimum mapping unit of 1 hectare were selected as
follows: (i) arable land, (ii) mixed cropland, (iii) vineyards, (iv) olive groves, (v) forests,
(vi) pastures, (vii) built-up areas, and (viii) wetlands and other (minor) use of land (e.g.,
beaches, dunes, rocks). The related figures were qualitatively checked for consistency with
independent official data derived from statistical sources, e.g., agricultural and building
censuses, rural surveys, land price maps, cadastral maps. These comparisons were pre-
liminary to further analysis and were carried out with the purpose only of verifying that
different data sources were coherent in addressing the same landscape transformations (i.e.,
expansion of urban settlements, decline of arable land, moderate increase of forestland)
over such a time interval (1949–2016).

2.3. Landscape Analysis

Landscape composition (1949 and 2016) and annual per cent rate of change were
been calculated by land-use class. Additionally, we used Guidos software [55] to classify
landscapes based on Mathematical Spatial Pattern Analysis (MSPA), a technique investi-
gating shape and form of objects [56–58]. MSPA is a customized sequence of mathematical
morphological operators aimed at describing geometry and connectivity of the image
components. As it is based on geometric principles, MSPA can cover different kinds of
applications independently of scale and type of digital images in any application field
(for further details, see https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/ (accessed
on 5 April 2021)). This methodology implements image processing routines to identify
hubs, corridors and other spatial elements relevant to landscape analysis [57]. Seven basic
elements were identified here: (i) ‘core’, (ii) ‘islet’, (iii) ‘bridge’, (iv) ‘loop’, (v) ‘branch’,
(vi) ‘edge’, and (vii) ‘perforation’ (Figure 3). ‘Core’ areas are the inner part beyond a
certain distance to the boundary, ‘islets’ are those portions of land that are too small and
isolated to contain a core area. Each core area is surrounded by ‘edges’ and ‘perforations’.
Perforated areas were defined as transition zones between ‘cores’ and a different land-use
class, while ‘edges’ represent the transition between ‘core’ and ‘non-core’ areas within
the same class. Loops, bridges and branches connect “core” areas. Loop areas represent
corridors which connect to the same core, bridges connect two (or more) cores and branches
connect a core area with a non-core area within the same land-use class. A Principal Com-
ponent Analysis was run on a matrix composed of the relative proportion of the seven
morphological classes (see above) by land-use category and year. The data matrix was
constituted of seven columns (morphological classes) and seven land-use classes (rows)
and contains the respective value (see above) by column and row as a proxy of landscape
structure and composition together. To delineate similarities in the spatial configuration
of the studied landscape, a biplot illustrating the statistical distribution of component
loadings (morphological categories) and scores (land-use classes) was used. This plot
contributed to representing the latent relationships in the composition and structure of the
investigated landscape, providing a new perspective (and operational tools) in land-use
analysis. Components were extracted on the base of the absolute eigenvalue; components
with eigenvalue > 1 were considered significant and analyzed further.

http://qgis.osgeo.org
https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/
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Figure 3. Basic forms identified by the MSPA analysis (core, islet, bridge, loop, branch, edge, and
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3. Results

Table 1 reports aggregated and individual class changes in landscape composition over
the study period. While built-up areas expanded significantly from 6.6% in 1949 to 28.9%
in 2016, the largest decline was observed for agricultural systems including pastures (from
81.5% to 58.3%). Forests increased moderately and other land use classes (including wet-
lands and water bodies) remained largely stable. Among agricultural systems, arable land
experienced the largest negative change (Figure 4). Less intense changes were observed for
vineyards (decreasing), olive groves, pastures and crop mosaics (slightly increasing).

Table 1. Landscape composition (%) by year in the study area (four classes); other use includes
wetlands, water bodies, rocks, sand; rate of growth was calculated as annual per cent change
over time.

Class 1949 2016 Rate of Growth

Built-up area 6.6 28.9 5.0
Agricultural systems, pastures 81.5 58.3 −0.6

Forests 11.2 12.0 0.1
Other use 0.7 0.7 -
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Figure 4. Landscape composition (%) by year considering eight land-use classes.

Based on MSPA, trends over time in the per cent ‘core’ area were illustrated in Table 2.
Built-up areas contained a relatively stable proportion of ‘core’ patches with a moderate
increase from 34.9% in 1949 to 35.7% in 2016. Arable land, vineyards, pastures and crop
mosaics experienced the most intense decline over time. The other classes had a less intense
decline in ‘core’ parches; forests were the class with the lowest negative rate of change in
‘core’ patches.

Table 2. ‘Core’ area (%) and annual changes (%) by year and land-use class (difference was calculated
as annual per cent change over time).

Class 1949 2016 Differences

Built-up area 34.9 35.7 0.03
Arable land 61.6 35.7 −0.63
Crop mosaic 17.1 5.4 −1.02

Vineyards 43.0 8.5 −1.20
Olive groves 14.0 3.1 −1.16

Pastures 25.2 6.5 −1.11
Forests 36.6 29.2 −0.30

Specifically focusing on built-up areas, changes over time in the average patch size
(ha) is shown in Table 3 by morphological class. While patches classified as ‘cores’ remain
the largest for both years, their size declined significantly during the study period. The
same pattern was observed for ‘edge’ patches. By contrast, ‘bridges’ increased significantly
over time, likely suggesting a sort of landscape ‘fractalization’ in smaller patches with
some intrinsic interconnections.

Table 3. Average patch size (ha) of built-up areas by morphological class and year (difference was
calculated as annual per cent change over time; statistics is the level of probability associated with
a non-parametric Mann Whitney U-test checking for similarity in patch size over time; * indicates
significant differences at p < 0.05 after Bonferroni’s correction for multiple comparisons).

Class 1949 2016 Difference Statistic

Core 20.3 16.2 −0.38 *
Islet 0.9 1.4 0.53

Perforation 6.0 6.1 0.02
Edge 9.0 4.1 −1.78 *
Loop 5.3 5.6 0.08

Bridge 6.7 11.0 0.58 *
Branch 1.1 0.8 −0.56

Figure 5 illustrates the empirical results of a Principal Component Analysis run on
the bi-dimensional matrix linking land-use classes and morphological categories with the
use of a representative target variable, the average patch size. For 1949, PCA extracted two
main components explaining together 83.5% of landscape variability. Component 1 (65.1%)
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discriminated largely un-fragmented landscapes dominated by arable land (right side)
from patchy agricultural systems mostly associated with olive groves (smaller patch size).
Core, bridge, edge, loop were the classes most associated with Component 1. Component
2 (18.4%) discriminated pastures and forests from vineyards evidencing the intrinsic role of
‘perforation’ class. All in all, 1949 landscape structure was rather simplified and oriented
towards intensity of land-use. The contribution of built-up areas in landscape variability
was quite modest. The biplot (loadings vs. scores) clearly discriminated natural systems,
extensive rural systems and intensive crops were discriminated.
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Figure 5. Biplot of a Principal Component Analysis investigated similarities and differences in the
spatial distribution of the average patch size (ha) by land-use class and morphological category;
(a) 1949, (b) 2016.

For 2016, PCA extracted two main components accounting together for 66.2% of
landscape variability. Component 1 (39.1%) discriminated un-fragmented landscapes dom-
inated by built-up areas and arable land together (right side) from fragmented agricultural-
natural systems associated with olive groves, pastures and crop mosaics (smaller patch
size). This result suggests an increasing fractalization of peri-urban landscapes, mixing
residential settlements and arable land (typical association observed at the fringe of Rome).
Extensive rural systems further away from the fringe are becoming increasingly fragmented
with a latent association between natural covers and productive crops (pastures, olive tree,
crop mosaic). Perforation and core patches were mostly associated with built-up areas and
arable land. Islet and branch categories are primarily associated with olive groves, pastures
and crop mosaic. Component 2 (27.1%) discriminated forests from vineyards evidencing
the role of ‘edge’ and ‘loop’ categories. Based on these results, the actual landscape struc-
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ture was intrinsically more complex and less ordered along a land-use intensity gradient,
evidencing in turn the important contribution of built-up areas to landscape variability.

4. Discussion

In recent years, comparative analysis aimed at capturing underlying patterns and
trends from land-use databases has been fed by a continuous demand for high-resolution
data as well as reliable indicators and new methodologies [60–67]. This work focuses on
land-use changes occurring in Rome, which has grown very fast over the last seventy years,
to infer different means of urban expansion using exploratory data analysis. The role of a
continuous monitoring of land use is a fundamental support for sustainable development
policies in urban regions [68]. In areas, such as those of southern Europe, characterized
by generally small-fragmented cities [69–72], polycentric patterns have infrequently been
observed with the exception of a few limited cases. In comparison with northern and west-
ern European regions [14,16,73–75], typified by polycentric modes of urban development,
Mediterranean cities have experienced a partial failure of this model due to their specific
socio-economic features [18,76,77]. Recently, in fact, significant changes in morphology
and socio-economic structures have been found in many Mediterranean cities as a result of
incoming sprawling phenomena [78–80] following a more dispersed (and not polycentric)
pattern [42,81,82]. In the specific case of the city of Rome, thanks to morphological analysis,
how the landscape changed its structure following different waves of expansion of various
intensities occurring in recent decades was demonstrated.

In particular, local socioeconomic contexts in the study area have sometimes acceler-
ated the emergence of a more scattered and discontinuous agglomeration to the detriment
of a denser and more compact asset, with severe consequences for the health status of
environmental components. These changes were probably stimulated by socio-economic
drivers such as land speculation, second homes, and internal/ foreign migration [12,23].
More recently, in other Mediterranean cities, urban expansion modes have followed a
scattered pattern for settlements, infrastructural facilities and industrial areas [2,83–85].
This translates into a sharp reduction of the average size of core areas and a strong patch
fragmentation, especially loops and bridge patches that show an increase in size for most of
the land uses considered. In general, changes in the morphology of the agricultural lands
have been strongly influenced by sprawl phenomena [11,29,36], confirming the inferences
of past studies at both local and continental levels [79].

Economy-oriented factors have strongly influenced the urban growth history of Rome
in the last seventy years. The diachronic analysis presented in this paper (1949–2016)
provides evidence for the formidable transformations occurring during the time period
investigated, which can only partially be attributed to cover changes (increase of urban
land uses, decrease of natural and agricultural areas). The major upheavals involve the
landscape structure: the core areas of all the considered land uses decline with high
magnitudes for agricultural and semi-natural classes, indicating the major role assumed by
sprawling phenomena (scattered and chaotic development). The approach followed in this
paper laid a good foundation for future studies aimed, on the one hand, at continuously
updating the adopted monitoring system and, on the other, at refining/improving the
detail level of the adopted databases. In both the cases, we were able to make use of
remote information.

The extraordinary wealth of data deriving from satellite/airborne sensors can be
profitably used at local/regional scale to achieve the easy updating of land cover maps
and a better characterization of the investigated areas. Land-use maps obtained from a
multitude of classification methods from remote-sensed imagery have a higher spatial
resolution compared with those used in this work (based, for example, on the Corine
Land Cover having a coarser spatial resolution: Minimum Mapping Unit (MMU) of
25 hectares for areal phenomena and a minimum width of 100 m for linear phenomena).
This can be achieved by relying on long-term datasets of satellite images such as Landsat or
SPOT [83,86–89] or more recent, free and high-resolution generation of satellite data such as
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Sentinel 2 [90–92]. Furthermore, the enhanced possibility of using finer spectral resolutions
and more spectral bands (as in the case of hyperspectral data, see e.g., [93–97]) can result in
a very high labelling of the present land cover categories. This facilitates the detection of
specific classes, especially urban land uses (see, e.g., [98,99]) and improves the sensitivity
of morphological analysis to capture subtle phenomena such as attrition processes (i.e.,
gradual loss of remaining fragments of peculiar land cover classes), which often indicate
the last stage of land transformations subject to heavy fragmentation [100]. Starting from
these technical improvements, supported by mathematical morphology and multivariate
statistics, it could be easier to notice failure or the effectiveness of adopted policy measures
in the perspective of a continuous refinement of territorial planning actions.

5. Conclusions

When evaluating long-term landscape transformations in peri-urban regions, the
empirical results of this study indicate the expected “wasteful” character of sprawling
development models leading to a more fragmented land-use pattern with unavoidable
effects on the capacity of ecosystems to maintain a complete provision of services and
goods. In this field, additional studies are needed to refine the spatially explicit analysis of
land-use data matrices in a multidimensional space by adopting appropriate monitoring
tools. Our study may provide useful insights on sprawling processes and pushes forward
the debate on the future development of sustainable plans in Mediterranean cities. These
results can be generalized to urban regions in developed (but peripheral) countries in
Europe and, possibly, in other socioeconomic contexts throughout the globe.
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