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AbstractIn this paper we use an integral formulation of the eddy 

currents problem in the presence of superconductors to analyse resistive 
joints for cables of interest for controlled thermonuclear fusion.  

I. INTRODUCTION 

Next generation fusion devices (e.g. ITER [1]) will largely 
benefit from the use of superconducting magnets that are able 
to carry high average current densities (J ~20 A/mm2) at high 
field (13 T) for long operation times (>>1000 s).  

To achieve this (large) potential performance gain an effort 
has been made in Europe as well as in several other countries 
to manufacture and test Nb3Sn-based Cable In Counduit 
Conductors (CICCs) whose technology is most suited for 
fusion applications. In particular, within the frame of the 
ITER project, the European Fusion Development Agreement, 
has coordinated the design, construction and testing of the 
Toroidal Field Model Coil that has successfully demonstrated 
the capability of European Industries to built large  
superconducting magnet (Iop ~ 80 kA). 

Since superconducting cables are manufactured in limited 
lengths (~ hundreds of meters) , a key element in each large 
magnet design is the joint that electrically connects different 
cable lengths. Such joining element is of resistive nature (e.g. 
copper) and it needs to be cooled at cryogenic temperature 
(~4.5 K) to remove the Joule heat produced as the current 
flows through the copper without heating the adjacent cable 
lengths. It follows that a key figure of merit in each joint 
design is its overall resistance (~ Joule heating). 

In this paper we model numerically the basic 
electromagnetic processes taking place in a typical resistive 
joint with the main aim of forecasting its resistance and - 
therefore – its cryogenic load (i.e. power dissipated). 

II. MATHEMATICAL AND NUMERICAL FORMULATION 

The mathematical formulation of the problem and its 
numerical counterpart has been already introduced in [2-3]. 
We consider 3-D non-magnetic domain Vc, made of both 
superconductors and ordinary conductors, subject to an 
external magnetic field; in addition, N equipotential 
electrodes Sk⊆∂Vc, connected to an external feeding circuit 
(ϕk is the potential of the k-th electrode), force a transport 
current flow in Vc. In this work, we extend the formulation to 
the case in which the various conducting regions are possibly 

separated by thin resistive layers Σ, for which we assign the 
value of ξ = d η (physical dimensions: Ω m2), where d is the 
width and η the resistivity of the layer. 

The governing equations in the magneto-quasistatic limit, 
i.e. the eddy current problem in the time domain, are 
formulated posing the electric field E=−∂A/∂t−∇ϕ, where A 
is the magnetic vector potential (with Coulomb gauge): 
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and ϕ is the electric scalar potential, J is the current density 
in Vc and A0 describes the external field. The integral 
formulation of the field’s equation is complemented by the 
electrical constitutive relationship, represented by the 
power-law E=Ec(J/Jc)nJ/J  (Ec, Jc and n are parameters; we 
notice that n=1 provides the linear case), which is 
reformulated by the following variational inequality [4]:  
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(3) 
Here, Q is a suitable functional space expressing the 
properties of J in Vc and on ∂Vc, and (a,b) is the volume 
integral ∫Vca ⋅bdV. Making an implicit approximation with a 
time step ∆t for the time derivative and provided the 
convexity of U, the unique solution of (2) can be found as the 
minimum with respect to J of a suitable functional F. In 
order to take into account the resistive layers separating the 
conducting regions, we introduce a quadratic component to 
the functional F presented in [3], in the stream of [5].  
The integral formulation allows us to discretize only Vc. We 
introduce a two-component electric vector potential T such 
that J=∇×T, and expand it in term of edge elements [6]. 
Suitable linear combinations Mh of edge elements are in fact 
chosen as basis function [7], in order to take into account the 
presence of electrodes and of multiply connected domains, so 
that J=∑hIh∇×Mh. The discretization introduced leads to the 
following discrete functional to be minimized respect to the 
unknown column array I = {Ik}: 
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where b is a column vector depending on potentials ϕk and:  
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The functional UD can be calculated by numerically 
integrating (3). The quadratic component US,D, which takes 
into account the resistive layers, does not compromise the 
uniqueness of the minimum of FD. The minimum is obtained 
by the use of a gradient-like method, which uses the 
numerical approximation of the gradient of the functional FD.  

III. PRELIMINARY RESULTS AND CONCLUSIONS 

The aforementioned formulation has been used for the 
analysis of a realistic resistive joint of interest for fusion 
applications. The geometry is reported in Fig. 1a. The cables 
are 1 m long; the resistive joint is 450 mm long. In the cable 
cross sections there are 6 petals, twisted around a cooling 
channel central tube of 10 mm diameter with a twist pitch of 
450 mm. The cable outer diameter is 38 mm. The petals are 
superconducting in the longitudinal direction and they have a 
resistive interface at their interfaces. In the joint region, 
around the cable petals there is a copper sleeve (5 mm thick) 
that is in contact with the petals through a solder that is 
simulated by a resistive interface. The copper sleeve is in 
contact with a copper sole, again through a soldered interface. 
The copper sole is made by 5 identical pieces 90 mm long, 
insulated between each other to prevent current flow along 
the longitudinal direction of the joint. Outside the joint, the 
cable is surrounded by a stainless steel 316 LN jacket of 
circular cross section with outer diameter of 48 mm. Also 
here there is a resistive interface at the petals-jacket interface 
to simulate the petals wrapping. 

The mesh used (1968 hexahedral elements) is depicted in 
Fig. 1b. The difficulty of matching the cable petals with their 
helicoidally shaped volumes with the copper sole has been 
solved by assuming step varying volumes for the petals in the 
joint region. The problem has been preliminarly solved with 
the simplifying assumption that the superconducting material 
behaves linearly, with a resistivity equal to 1e-12 Ω m. The 
resistive interfaces have been assigned a value of ξ=1e-9Ωm2. 
We assumed that the voltage distribution over electrodes 
(shaded in Fig. 1a) is constant and that the jacket is not fed 
by any voltage (no electrodes contact). We computed the 
steady state current density distribution after a voltage step; 

in Fig. 2 some details are shown. 
As a future activity, we will study the effects of a correct 

modelling of the superconducting materials (rather than 
linear) on the local and global quantities affecting the 
resistive joint.  

This work was supported in part by Italian MIUR and by 
ENEA/CREATE. 

 
       (a)       (b) 

Fig. 1. Geometry (a) and mesh (b). 

       
      (a)     (b)     (c) 

Fig. 2. Details of the current density distribution: (a) near the electrodes A-B; 
(b) resistive joint; (c) one of the petals of the superconducting cable. 
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