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Abstract The linear Stokes system is considered and the completeness
(in the sense of Picone) on the boundary of a given bounded domain of
polynomial solutions is proved. The completeness is obtained in both Lp and
uniform norms.
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1 Introduction

The aim of the present paper is to prove the completeness on the boundary of
a simply connected 1 bounded domain of polynomial solutions of the Stokes
system: {

∆v −∇p = 0

∇ · v = 0.
(1)

This completeness theorem concerns the Dirichlet problem and fits into
the framework of the so called completeness theorems in the sense of Picone.
This problem was posed long time ago by Mauro Picone and the very first
results in this direction were proved by Gaetano Fichera [9] for the Laplacian.

∗Department of Mathematics, Computer Sciences and Economics, University of Basi-
licata, V.le dell’Ateneo Lucano, 10, 85100 Potenza, Italy. email: cialdea@email.it.
†Department of Mathematics, University of Geneva, 2–4 Rue du Lièvre, 1211 Geneva

4, Switzerland. email : giancarlo.nino@unige.ch.
1By this we mean that both the domain and its complement are connected.
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Several other results have been proved since then. They concern different

boundary value problems for different partial differential equations. We refer
to [6] for an history of this problem and an updated bibliography.

Here we just note two facts. First, usually these results concern with a
boundary value problem for a particular partial differential equation. Quite
recently in [4, 5] the Dirichlet problem for a general scalar elliptic equation of
any order with constant coefficients has been considered and necessary and
sufficient conditions have been established to guarantee the validity of the
related completeness of polynomial solutions. Secondly, very little is known
about systems. There are available results only for elasticity [3, 11] and
thermoelasticity [6].

The present paper is organized as follows. Section 2 is devoted to some
preliminaries concerning potential theory. In particular we give some “jump
formulas” for the hydrodynamical potentials generated by measures and we
prove a uniqueness result for such potentials.

Section 3 concerns the construction of the system of polynomial solutions
of (1). This construction hinges on the results obtained in [1].

The completeness of polynomial solutions in [Lp(Σ)]3 and in [C0(Σ)]3 are
proved in Section 4 and Section 5, respectively.

Finally in Section 6 we consider multiple connected domains and we de-
termine the closure in Lp norm of the linear space generated by the system
of polynomial solutions.

2 Preliminaries

In this paper Ω is a connected bounded domain of R3. The boundary of Ω,
which we denote by Σ is supposed to be C1. Throughout this paper, ν is the
exterior unit normal vector on Σ.

As well known, a simple layer hydrodynamical potential (v, p) with den-
sity φ is defined as

vi(x) = −
∫

Σ

φj(y)γij(x− y)dσy , i = 1, 2, 3, (2)

p(x) = −
∫

Σ

φj(y)εj(x− y)dσy , (3)

2

Page 2 of 17

URL: http:/mc.manuscriptcentral.com/gcov

Complex Variables and Elliptic Equations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
where

γij(x− y) = − 1

4π

[
δij
|x− y|

− 1

2

∂2

∂xi∂xj
|x− y|

]
,

εj(x− y) =
1

4π

∂

∂xj

1

|x− y|
,

(4)

(i, j = 1, 2, 3) is the fundamental solution for the Stokes system (1).
The main results concerning such potentials can be found in the classical

monograph by Ladyzhenskaya [13, Chapter 3]. Among them we recall the
jump formulas related to the stress tensor

Tij = −δijp+
∂vi
∂xj

+
∂vj
∂xi

. (5)

Theorem 1 Let Σ ∈ C1. Let φ ∈ [L1(Σ)]
3
. Let Tij be the stress tensor (5)

related to the potentials (2), (3). Let x0 ∈ Σ be a Lebesgue point of φ. Then

lim
x→x0

(Tik(x)νk(x0)− Tik(x′)νk(x0)) = φi(x0) , (6)

where x is a point on the inner normal to Σ at x0 and x′ is its symmetric
with respect to x0.

Proof. Under more particular hypothesis this result is classical. A proof
under the assumptions given here can be obtained observing that

Tik(x) =
1

4π

∫
Σ

φj(y)

[
δik

∂

∂xj

1

|x− y|
+ δij

∂

∂xk

1

|x− y|
+

δkj
∂

∂xi

1

|x− y|
− ∂3

∂xi∂xj∂xk
|x− y|

]
dσy

(7)

and applying [5, Theorem 3, p.6-7] (see also [4, p.84]).

In the present paper we shall consider also potentials generated by mea-
sures, i.e.

vi(x) = −
∫

Σ

γij(x− y)dµjy , i = 1, 2, 3, (8)

p(x) = −
∫

Σ

εj(x− y)dµjy , (9)

3
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where µ = (µ1, µ2, µ3) is a vector measure with µj ∈M(Σ) = [C0(Σ)]

∗
.

The boundary behaviour of the stress tensor related to these potentials
is more delicate. In order to describe the behaviour of such potentials, let
us introduce a family of “parallel surfaces” Σρ. Let us denote by ζ(x) a
unit vector of class C1(Σ) such that ζ(x) · ν(x) > β0 > 0. We can choose
ρ0 > 0 in such a way that the surface Σρ defined by xρ = x+ ρζ(x), x ∈ Σ,
is the boundary of a domain containing Ω (contained in Ω) if 0 < ρ 6 ρ0

(−ρ0 6 ρ < 0). One can prove that if Σ ∈ C1 such a vector does exist (see
[12, pp. 273–275]).

We have the following result.

Theorem 2 Let Σ ∈ C1. Let µ ∈ [M(Σ)]3. Let Tij be the stress tensor (5)

related to the potentials (8), (9). Then, for any ψ ∈
[
Cλ(R3)

]3
, we have the

following “jump formulas”:

lim
ρ→0+

(∫
Σρ

ψi(xρ)νk(xρ)Tik(xρ) dσρ −
∫

Σ−ρ

ψi(x−ρ)νk(x−ρ)Tik(x−ρ) dσ−ρ

)
= −

∫
Σ

ψi(x) dµix .

(10)

Proof. This result can be proved by means of [5, Theorem 5, p.11], keeping
in mind formula (7).

We give now the following uniqueness result.

Theorem 3 Let v be the potential (8), where µ ∈ [M(Σ]3. If v(x) = 0 for
any x ∈ R3 \ Ω, then v(x) = 0 for x ∈ Ω.

Proof. Let (ϕ, q) be a vector function belonging to
[
C2,λ(Ω)

]4
. We have

−
∫

Ω−ρ

vi

(
∆ϕi +

∂q

∂xi

)
dx =

∫
Σ−ρ

(Tij(v)ϕiνj − T ′ij(ϕ)viνj) dσ−ρ , (11)

where

T ′ij = δijq +
∂ϕi
∂xj

+
∂ϕj
∂xi

(see [13, p.53]).

4
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Since the vector v belongs to [W 1,1

loc (R3)]3 (see, e.g., [5, Lemma 4, p.14])
and v(x) = 0 for x ∈ R3 \ Ω, we have

lim
ρ→0+

∫
Σ−ρ

T ′ij(ϕ)viνj dσ−ρ = 0.

Moreover, denoting by ϕ̃ a Hölder continuous function defined in R3 which
coincides with ϕ in Ω 2 , formula (10) shows that

lim
ρ→0+

∫
Σ−ρ

Tij(v)ϕiνj dσ−ρ =

lim
ρ→0+

(∫
Σ−ρ

Tij(v)ϕiνj dσ−ρ −
∫

Σρ

Tij(v)ϕ̃iνj dσρ

)
=

∫
Σ

ϕi dµ
i

Letting ρ→ 0+ in (11) we find∫
Ω

vi

(
∆ϕi +

∂q

∂xi

)
dx = −

∫
Σ

ϕi dµ
i .

This leads to ∫
Ω

vi ∆ϕi dx = 0

for any ϕ ∈
[
C2,λ(Ω)

]3
such that ϕ = 0 on Σ, and this implies the result.

3 Polynomials solutions

In paper [1] a system of polynomial solutions of the Stokes system (1) has
been constructed. Unfortunately a small computational mistake led to a
wrong expression for the function q, which was used again in [2].

2It suffices to take
ϕ̃(x) = inf

y∈Ω

{
ϕ(y) + C|x− y|λ

}
,

where C > 0 and 0 < λ 6 1 are such that |ϕ(x)− ϕ(y)| 6 C|x− y|λ, for any x, y ∈ Ω.

5
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Theorem 4 Let v = (v1, . . . , vn) and q be a homogeneous vector polynomial
of degree k and a homogeneous scalar polynomial of degree k−1, respectively
(k > 2). The vector (v, q) satisfies Stokes system (1) if and only if

v(x) = Hk(x)− 1

2(k − 1)
|x|2∇(∇ ·Hk(x)),

q(x) = −n+ 2k − 4

k − 1
∇ ·Hk(x),

(12)

Hk being a harmonic vector homogeneous polynomial of degree k.

Proof. We shall not repeat the proof given in [1]. We just mention that the
sixth formula from the top at [1, p.317] has to be replaced by

2nHk−2(x) + 4(x · ∇)Hk−2(x) = ∇Hk−1.

Repeating the proof given in [1] the reader will find without difficulties
that the right expression of the sought polynomials is (12).

By means of the previous result, we can easily construct a complete sys-
tem of polynomial solutions of Stokes system. By this we mean a system of
homogeneous polynomials such that any polynomial satisfying Stokes system
(1) can be written as a finite linear combination of vectors of this system.

We shall write it explicitly in the case n = 3. With the same idea it can
be written in any dimension.

Let us denote by {ωks}(s = 1, . . . , 2k+ 1; k = 0, 1, . . .) a complete system
of harmonic polynomials, i.e.

ωks = |x|kYks
(
x

|x|

)
(s = 1, . . . , 2k + 1; k = 0, 1, . . .) (13)

{Yks} being the system of spherical harmonics.

Theorem 5 Let v = (v1, v2, v3) and p be homogeneous polynomials of de-
gree k and k − 1 respectively (k > 1). The vector (v, p) satisfies the Stokes
system (1) if ,and only if, it is a linear combination of the following 6k + 3

6
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polynomials:(
ωks+

1

2(1−k)
|x|2∂11ωks,

1

2(1−k)
|x|2∂21ωks,

1

2(1−k)
|x|2∂31ωks,

2k−1

1−k
∂1ωks

)
,(

1

2(1−k)
|x|2∂12ωks, ωks+

1

2(1−k)
|x|2∂22ωks,

1

2(1−k)
|x|2∂32ωks,

2k−1

1−k
∂2ωks

)
,(

1

2(1−k)
|x|2∂13ωks,

1

2(1−k)
|x|2∂23ωks, ωks+

1

2(1−k)
|x|2∂33ωks,

2k−1

1−k
∂3ωks

)
,

(14)
(s = 1, . . . , 2k + 1), ωks being the harmonic polynomials (13).

Proof. The result follows immediately from Theorem 4 and from the well
known fact that any harmonic polynomial can be written as a linear combi-
nation of elements of {ωks}.

We denote by {Wk} (k = 0, 1, 2 . . .) the system constituted by the vector
polynomials

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(x2, 0, 0, 0), (x3, 0, 0, 0), (0, x1, 0, 0), (0, x3, 0, 0), (0, 0, x1, 0), (0, 0, x2, 0),

(x1,−x2, 0, 0), (x1, 0,−x3, 0),

and all the polynomials given by (14) (s=1,. . . , 2k + 1; k=0,1,. . . ), ordered
in one sequence.

Clearly any polynomial solution of Stokes system (1) can be written as a
finite linear combination of elements of {Wk}.

4 Completeness in Lp(Σ)

.
We start with the following Lemma, in which we denote by wk the 3-

dimensional vector given by the first three components of Wk.

Lemma 1 Let Ω be a bounded domain with a C1 boundary and such that
R3 \ Ω is connected. Let µ = (µ1, µ2, µ3) ∈ [M(Σ)]3. If∫

Σ

wk dµ = 0, k = 0, 1, 2, . . . , (15)

7
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then ∫

Σ

γij(x− y)dµjy = 0, (i = 1, 2, 3),

for any x ∈ R3 \ Ω, where γij è is the fundamental velocity tensor.

Proof. The following expansions hold:

1

|x− y|
=
∞∑
k=0

|y|k

|x|k+1
Xk(cos γ),

|x− y| =
∞∑
k=0

[
− 1

2k − 1

|y|k

|x|k−1
Xk(cos γ) +

1

2k + 3

|y|k+2

|x|k+1
Xk(cos γ)

]
,

where Xk(t) denotes the Legendre polynomial

1

2kk!

dk

dtk
(t2 − 1)k

and cos γ = x · y/(|x| |y|).
If we fix x 6= 0, these expansions uniformly converge in any compact set

contained in the ball |y| < |x|. The first expansion is very well known. For
the other one, see [8, p.196].

By means of the spherical harmonic addition theorem, we get

1

|x− y|
=
∞∑
k=0

2k+1∑
s=0

λks(x)ωks(y),

|x− y| =
∞∑
k=0

2k+1∑
s=0

[
χks(x)ωks(y) + τks(x) |y|2ωks(y)

]
where ωks are the harmonic polynomials (13) and

λks(x) =
1

|x|k+1
Yks

(
x

|x|

)
,

χks(x) = − 1

2k − 1

1

|x|k−1
Yks

(
x

|x|

)
, τks(x) =

1

2k + 3

1

|x|k+1
Yks

(
x

|x|

)
.
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From (4) we find

4πγij(x− y) = −
[

δij
|x− y|

− 1

2

∂2

∂yi∂yj
|x− y|

]
=

−δij
∞∑
k=0

2k+1∑
s=0

λks(x)ωks(y)+

1

2

∞∑
k=0

2k+1∑
s=0

(
χks(x)

∂2

∂yi∂yj
ωks(y) + τks(x)

∂2

∂yi∂yj
(|y|2ωks(y))

)
.

(16)

We remark that

∇ ∂

∂yi
ωks(y)

is a divergence-free harmonic vector. Therefore it satisfies Stokes system (1)
(p = 0). Consider now the sum of the first and the last series in the right
hand side of (16). The generic term we obtain is equal to

−δijλks(x)ωks(y) +
1

2
τks(x)

∂2

∂yi∂yj
(|y|2ωks(y)) =

τks(x)

(
−δij(2k + 3)ωks(y) +

1

2

∂2

∂yi∂yj
(|y|2ωks(y))

)
.

Let us fix k and s and denote by Φij(y) the function

−δij(2k + 3)ωks(y) +
1

2

∂2

∂yi∂yj
(|y|2ωks(y))

and by Φi the vector (Φi1,Φi2,Φi3). Since ∆(|y|2ωks(y)) = 2(2k + 3)ωks(y),
we have

∆

(
−δij(2k + 3)ωks(y) +

1

2

∂2

∂yi∂yj
(|y|2ωks(y))

)
= (2k + 3)

∂2ωks
∂yi∂yj

.

This shows that ∆Φi = ∇p, where

p = (2k + 3)
∂ωks
∂yi

. (17)

Moreover Φi is divergence-free, since

∂Φij

∂yj
= −(2k + 3)

∂ωks
∂yi

+
1

2

∂

∂yi
∆(|y|2ωks(y)) = 0.

9
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We have then shown that the vector Φi satisfies Stokes system (1) (where

p is given by (17)). In view of (16) we can write

γi(x− y) =
∞∑
h=0

cih(x)vh(y)

uniformly for y ∈ Ω, provided that |x| > R, where R = (maxx∈Ω |x|)/r. Here
cih are scalar functions and vh are vector homogenous polynomials satisfying
Stokes system.

Orthogonality conditions (15) imply∫
Σ

γij(x− y)dµjy =
∞∑
h=0

cih(x)

∫
Σ

vh(y) dµy = 0

for any x such that |x| > R. The potentials on the left hand side being
analytic in the connected domain R3 \ Ω, the thesis follows.

We are now in a position to prove the completeness of {wk} in the Lp-
norm.

Theorem 6 Let Ω ∈ R3 a bounded connected domain with a C1 boundary
and such that R3 \ Ω is connected. The system {wk} is complete in the
subspace of [Lp(Σ)]3 {

f ∈ [Lp(Σ)]3 |
∫

Σ

f · ν dσ = 0

}
(18)

(1 6 p <∞).

Proof. In order to prove this result, it is sufficient to show that if φ ∈
[Lq(Σ)]3 (q = p/(p− 1)) is such that∫

Σ

φ · wk dσ = 0, k = 0, 1, 2, . . . ,

then φ = cν . Thanks to Lemma 1, we have∫
Σ

φj(y)γij(x− y)dσy = 0, x ∈ R3 \ Ω, i = 1, 2, 3.

10
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The simple layer potential (v1, v2, v3, p), where

vi(x) = vi(φ, x) = −
∫

Σ

φj(y)γij(x− y)dσy ,

p(x) = p(φ, x) = −
∫

Σ

φi(y)εi(x− y)dσy ,

satisfies Stokes system (1) for x /∈ Σ. In R3 \ Ω we have v = 0, and then
∇p = 0. The set R3 \ Ω being connected, we find p = c in R3 \ Ω. On the
other hand, we have that the potential representing p vanishes at infinity and
then p = 0 in R3 \ Ω.

Theorem 3 shows that v = 0 (and then ∇p = 0) also in Ω. Then the
potential (3) is equal to a real constant −c in Ω and vanishes in R3 \ Ω.

Therefore

Tij =

{
δijc in Ω,

0 in R3 \ Ω.

In view of jump formula (6), we get φ = cν a.e. on Σ and the Theorem
is proved.

We note that this completeness Theorems implies the Runge property for
Stokes system (1). Indeed we have:

Theorem 7 Let A be a domain such that R3 \ A is connected. Let U =
(u, p) ∈ [C∞(A)]4 be a solution of system (1) in A. For any compact set
K ⊂ A there exists a sequence vn of polynomials solutions of (1) such that
vn → u uniformly in K.

Proof. Let Ω be a bounded domain with smooth boundary such that K ⊂ Ω,
Ω ⊂ A and R3\Ω is connected. Because of the completeness property proved
in Theorem 6 there exists a sequence vn of polynomial solutions of (1) such
that vn → u in [L2(∂Ω)]3. In view of classical results, this implies that
vn → u uniformly in K.

5 Completeness in the uniform norm

The problem of the completeness in uniform norm is much more delicate, as
it involves potentials generated by measures.

11
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Theorem 8 Let Ω ⊂ R3 be a bounded connected domain with a C1 boundary
such that R3 \ Ω is connected. The system {wk} is complete in the subspace
of [C0(Σ)]

3 {
f ∈

[
C0(Σ)

]3 | ∫
Σ

f · ν dσ = 0

}
.

Proof. In order to prove this theorem, it is sufficient to show that if µ ∈
[M(Σ)]3 is such that ∫

Σ

wk dµ = 0 k = 0, 1, 2, . . . , (19)

then
dµ = cνdσ (20)

where c is a real constant and σ is the (n−1)-dimensional Lebesgue measure
on Σ. Equation (20) means that µ� σ (i.e. µ is absolutely continuous with
respect to σ) and that the Radon-Nikodym derivative of µ with respect to σ
is cν, i.e.

µi(A) = c

∫
A

νi dσ, i = 1, 2, 3,

for any Borel set A ⊂ Σ.
Lemma 1 shows that conditions (19) imply

vi(x) = −
∫

Σ

γij(x− y) dµjy = 0 , x ∈ R3 \ Ω, i = 1, 2, 3.

Theorem 3 allows to conclude that v(x) = 0 also in Ω.
As in the proof of Theorem 6, there exists a real constant c such that

p(x) = −
∫

Σ

εj(x− y) dµjy =

{
−c if x ∈ Ω,

0 if x ∈ R3 \ Ω,

and then

Tij =

{
δijc in Ω,

0 in R3 \ Ω.
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Let ψ ∈

[
Cλ(R3)

]3
. In view of Theorem 2, we get∫

Σ

ψi dµ
i =

− lim
ρ→0+

(∫
Σρ

ψi(xρ)νk(xρ)Tik(xρ) dσρ −
∫

Σ−ρ

ψi(x−ρ)νk(x−ρ)Tik(x−ρ) dσ−ρ

)
=

lim
ρ→0+

c

∫
Σ−ρ

ψi(x−ρ) νi(x−ρ) dσ−ρ = c

∫
Σ

ψi νi dσ .

Because of the arbitrariness of ψ, we have µ� σ and dµ = cνdσ.

6 Multiple connected domains

In this section we consider domains which are connected but not simply
connected. Saying that Ω is a multiple connected domain, or - more precisely
- an (m+ 1)-connected domain, we mean that Ω is an open connected set of
the form

Ω = Ω0 \
m⋃
j=1

Ωj, (21)

where each Ωj (j = 0, . . . ,m) is a bounded domain of R3 with connected
boundaries Σj ∈ C1 (j = 0, . . . ,m) and such that

Ωj ⊂ Ω0 and Ωj ∩ Ωk = ∅, j, k = 1, . . . ,m, j 6= k.

For such domains the polynomial solutions are not complete in the sub-
space (18) anymore. We are going to determine the closure of the space
generated by such systems. What comes out is that such a closure can be
described by means of the boundary values of the solutions of some trans-
mission problems.

In the following Theorem, writing Tij(v, p) we mean the stress tensor (5)
related to the vector (v, p) and the suffix + (−) will denote the limit from the
interior (exterior) of Ω.

Theorem 9 Let 1 6 p < ∞. Let Ω be the (m + 1)-connected domain (21).
Suppose f = (f1, f2, f3) ∈ [Lq(Σ)]3 (q = p/(p− 1) if p > 1; q = ∞ if p = 1)
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is such that ∫

Σ

f · wk dσ = 0, k = 0, 1, 2, . . . . (22)

Then there exists (v, p) solution of Stokes system 3{
∆v −∇p = 0, in Ω

∇ · v = 0, in Ω
(23)

satisfying the boundary condition

v = 0, on Σ0, (24)

and such that, denoting by (v(h), p(h)) the solution of the BVP
∆v(h) −∇p(h) = 0, in Ωh

∇ · v(h) = 0, in Ωh

v(h) = v, on Σh,

(25)

(h = 1, . . . ,m), we have{
fi = T+

ij (v, p)νj, on Σ0

fi = T+
ij (v, p)νj − T−ij (v(h), p(h))νj , on Σh, h = 1, . . . ,m.

(26)

Proof. As in the proof of Theorem 6, conditions (22) imply that the poten-
tials

vi(x) = −
∫

Σ

fj(y)γij(x− y)dσy , i = 1, 2, 3, (27)

p(x) = −
∫

Σ

fj(y)εj(x− y)dσy , (28)

vanish in R3 \ Ω0.
Let us denote by (v, p) the vector given by (27)-(28) for x ∈ Ω. This

vector satisfies Stokes system (1) and the boundary condition (24). In view
of (6) we get also the first equation in (26).

3This and the other BVPs are considered in suitable spaces of potentials with Lp

densities. See [7, Theorem 23] for further details.
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For any 1 6 h 6 m, the vector (v(h), p(h)) given by (27)-(28) for x ∈ Ωh,

is solution of the BVP (25) and f satisfies the condition (26) on Σh because
of (6).

Conversely, suppose (23)-(26) are satisfied. From the Green formula (see
[13, formula (10), p.53] and writing the vector Wk as (wk1, wk2, wk,3, wk4) =
(wk, wk4), we get∫

Σ

f · wk dσ =

∫
Σ0

f · wk dσ +
m∑
h=1

∫
Σh

f · wk dσ =

∫
Σ0

T+
ij (v, p)νjwki dσ +

m∑
h=1

∫
Σh

(
T+
ij (v, p)− T−ij (v(h), p(h))

)
νjwki dσ =

∫
Σ

T+
ij (v, p)νjwki dσ −

m∑
h=1

∫
Σh

T−ij (v(h), p(h))νjwki dσ =

∫
Σ

T
′+
ij (wk, wk4)νjvi dσ −

m∑
h=1

∫
Σh

T
′−
ij (wk, wk4)νjv

(h)
i dσ =

m∑
h=1

∫
Σh

(
T
′+
ij (wk, wk4)− T ′−ij (wk, wk4)

)
νjvi dσ .

The integrals in the last hand side vanish, because

T
′−
ij (wk, wk4) = T

′+
ij (wk, wk4).

In fact the first derivatives of vectors Wk have no jumps across Σ, since they
are C∞ all over the space R3. This shows that (22) are satisfied and the
theorem is proved.

As a Corollary we can describe the linear space generated by {wk} as the
orthogonal complement of a certain linear space.

Theorem 10 The closure in [Lp(Σ)]3 of the linear space generated by the
system {wk} is constituted by the vectors G ∈ [Lp(Σ)]3 such that∫

Σ

F ·Gdσ = 0,

for any F ∈ [Lq(Σ)]3 given by (26), with (v, p) and (v(h), p(h)) (h = 1, . . . ,m)
satisfying (23)-(25).
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Proof. It follows immediately from Theorem 9.

Finally we mention that a complete system in a (m+1)-connected domain
could be obtained as done in [9, 10] for Laplace equation and elasticity.
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ticity, in Rogosin, S., Çelebi, A. (Eds) Analysis as a Life, Trends in
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