

Completeness theorems for the Stokes system

Journal:	Complex Variables and Elliptic Equations		
Manuscript ID	GCOV-2019-0049.R1		
Date Submitted by the Author:	09-Jul-2019		
Complete List of Authors:	Cialdea, Alberto; Università della Basilicata, Matematica, Informatica ed Economia Nino, Giancarlo; Universite de Geneve, Department of Mathematics		
Kesearch Paper			
href="http://www.ams.org/mathscinet/msc/msc2010.html"	Completeness theorems, Stokes system, Partial differential systems with constant coefficients		
4arget="_blank">2010 Mathematics Subject			
Classification:		\quad	42C30, 76D07, 35Q35
:---			

SCHOLARONE ${ }^{\text {m }}$
 Manuscripts

Completeness theorems for the Stokes system

A. Cialdea * G. Nino ${ }^{\dagger}$

To Prof. Massimo Lanza de Cristoforis on occasion of his 60th birthday
Abstract The linear Stokes system is considered and the completeness (in the sense of Picone) on the boundary of a given bounded domain of polynomial solutions is proved. The completeness is obtained in both L^{p} and uniform norms.

Keywords Completeness theorems, Stokes system, Partial differential systems with constant coefficients.

Mathematics Subject Classification (2010) 42C30, 76D07, 35Q35.

1 Introduction

The aim of the present paper is to prove the completeness on the boundary of a simply connected ${ }^{1}$ bounded domain of polynomial solutions of the Stokes system:

$$
\left\{\begin{array}{l}
\Delta v-\nabla p=0 \tag{1}\\
\nabla \cdot v=0
\end{array}\right.
$$

This completeness theorem concerns the Dirichlet problem and fits into the framework of the so called completeness theorems in the sense of Picone. This problem was posed long time ago by Mauro Picone and the very first results in this direction were proved by Gaetano Fichera [9] for the Laplacian.

[^0]Several other results have been proved since then. They concern different boundary value problems for different partial differential equations. We refer to [6] for an history of this problem and an updated bibliography.

Here we just note two facts. First, usually these results concern with a boundary value problem for a particular partial differential equation. Quite recently in $[4,5]$ the Dirichlet problem for a general scalar elliptic equation of any order with constant coefficients has been considered and necessary and sufficient conditions have been established to guarantee the validity of the related completeness of polynomial solutions. Secondly, very little is known about systems. There are available results only for elasticity [3, 11] and thermoelasticity [6].

The present paper is organized as follows. Section 2 is devoted to some preliminaries concerning potential theory. In particular we give some "jump formulas" for the hydrodynamical potentials generated by measures and we prove a uniqueness result for such potentials.

Section 3 concerns the construction of the system of polynomial solutions of (1). This construction hinges on the results obtained in [1].

The completeness of polynomial solutions in $\left[L^{p}(\Sigma)\right]^{3}$ and in $\left[C^{0}(\Sigma)\right]^{3}$ are proved in Section 4 and Section 5, respectively.

Finally in Section 6 we consider multiple connected domains and we determine the closure in L^{p} norm of the linear space generated by the system of polynomial solutions.

2 Preliminaries

In this paper Ω is a connected bounded domain of \mathbb{R}^{3}. The boundary of Ω, which we denote by Σ is supposed to be C^{1}. Throughout this paper, ν is the exterior unit normal vector on Σ.

As well known, a simple layer hydrodynamical potential (v, p) with density ϕ is defined as

$$
\begin{gather*}
v_{i}(x)=-\int_{\Sigma} \phi_{j}(y) \gamma_{i j}(x-y) d \sigma_{y}, \quad i=1,2,3 \tag{2}\\
p(x)=-\int_{\Sigma} \phi_{j}(y) \epsilon_{j}(x-y) d \sigma_{y} \tag{3}
\end{gather*}
$$

where

$$
\begin{gather*}
\gamma_{i j}(x-y)=-\frac{1}{4 \pi}\left[\frac{\delta_{i j}}{|x-y|}-\frac{1}{2} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}|x-y|\right] \tag{4}\\
\epsilon_{j}(x-y)=\frac{1}{4 \pi} \frac{\partial}{\partial x_{j}} \frac{1}{|x-y|}
\end{gather*}
$$

$(i, j=1,2,3)$ is the fundamental solution for the Stokes system (1).
The main results concerning such potentials can be found in the classical monograph by Ladyzhenskaya [13, Chapter 3]. Among them we recall the jump formulas related to the stress tensor

$$
\begin{equation*}
T_{i j}=-\delta_{i j} p+\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}} \tag{5}
\end{equation*}
$$

Theorem 1 Let $\Sigma \in C^{1}$. Let $\phi \in\left[L^{1}(\Sigma)\right]^{3}$. Let $T_{i j}$ be the stress tensor (5) related to the potentials (2), (3). Let $x_{0} \in \Sigma$ be a Lebesgue point of ϕ. Then

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}}\left(T_{i k}(x) \nu_{k}\left(x_{0}\right)-T_{i k}\left(x^{\prime}\right) \nu_{k}\left(x_{0}\right)\right)=\phi_{i}\left(x_{0}\right) \tag{6}
\end{equation*}
$$

where x is a point on the inner normal to Σ at x_{0} and x^{\prime} is its symmetric with respect to x_{0}.

Proof. Under more particular hypothesis this result is classical. A proof under the assumptions given here can be obtained observing that

$$
\begin{align*}
T_{i k}(x)= & \frac{1}{4 \pi} \int_{\Sigma} \phi_{j}(y)\left[\delta_{i k} \frac{\partial}{\partial x_{j}} \frac{1}{|x-y|}+\delta_{i j} \frac{\partial}{\partial x_{k}} \frac{1}{|x-y|}+\right. \tag{7}\\
& \left.\delta_{k j} \frac{\partial}{\partial x_{i}} \frac{1}{|x-y|}-\frac{\partial^{3}}{\partial x_{i} \partial x_{j} \partial x_{k}}|x-y|\right] d \sigma_{y}
\end{align*}
$$

and applying [5, Theorem 3, p.6-7] (see also [4, p.84]).
In the present paper we shall consider also potentials generated by measures, i.e.

$$
\begin{gather*}
v_{i}(x)=-\int_{\Sigma} \gamma_{i j}(x-y) d \mu_{y}^{j}, \quad i=1,2,3 \tag{8}\\
p(x)=-\int_{\Sigma} \epsilon_{j}(x-y) d \mu_{y}^{j} \tag{9}
\end{gather*}
$$

where $\mu=\left(\mu^{1}, \mu^{2}, \mu^{3}\right)$ is a vector measure with $\mu^{j} \in M(\Sigma)=\left[C^{0}(\Sigma)\right]^{*}$.
The boundary behaviour of the stress tensor related to these potentials is more delicate. In order to describe the behaviour of such potentials, let us introduce a family of "parallel surfaces" Σ_{ρ}. Let us denote by $\zeta(x)$ a unit vector of class $C^{1}(\Sigma)$ such that $\zeta(x) \cdot \nu(x) \geqslant \beta_{0}>0$. We can choose $\rho_{0}>0$ in such a way that the surface Σ_{ρ} defined by $x_{\rho}=x+\rho \zeta(x), x \in \Sigma$, is the boundary of a domain containing Ω (contained in Ω) if $0<\rho \leqslant \rho_{0}$ $\left(-\rho_{0} \leqslant \rho<0\right)$. One can prove that if $\Sigma \in C^{1}$ such a vector does exist (see [12, pp. 273-275]).

We have the following result.
Theorem 2 Let $\Sigma \in C^{1}$. Let $\mu \in[M(\Sigma)]^{3}$. Let $T_{i j}$ be the stress tensor (5) related to the potentials (8), (9). Then, for any $\psi \in\left[C^{\lambda}\left(\mathbb{R}^{3}\right)\right]^{3}$, we have the following "jump formulas":

$$
\begin{gather*}
\lim _{\rho \rightarrow 0^{+}}\left(\int_{\Sigma_{\rho}} \psi_{i}\left(x_{\rho}\right) \nu_{k}\left(x_{\rho}\right) T_{i k}\left(x_{\rho}\right) d \sigma_{\rho}-\int_{\Sigma_{-\rho}} \psi_{i}\left(x_{-\rho}\right) \nu_{k}\left(x_{-\rho}\right) T_{i k}\left(x_{-\rho}\right) d \sigma_{-\rho}\right) \\
=-\int_{\Sigma} \psi_{i}(x) d \mu_{x}^{i} \tag{10}
\end{gather*}
$$

Proof. This result can be proved by means of [5, Theorem 5, p.11], keeping in mind formula (7).

We give now the following uniqueness result.
Theorem 3 Let v be the potential (8), where $\mu \in\left[M(\Sigma]^{3}\right.$. If $v(x)=0$ for any $x \in \mathbb{R}^{3} \backslash \bar{\Omega}$, then $v(x)=0$ for $x \in \Omega$.
Proof. Let (φ, q) be a vector function belonging to $\left[C^{2, \lambda}(\bar{\Omega})\right]^{4}$. We have

$$
\begin{equation*}
-\int_{\Omega_{-\rho}} v_{i}\left(\Delta \varphi_{i}+\frac{\partial q}{\partial x_{i}}\right) d x=\int_{\Sigma_{-\rho}}\left(T_{i j}(v) \varphi_{i} \nu_{j}-T_{i j}^{\prime}(\varphi) v_{i} \nu_{j}\right) d \sigma_{-\rho} \tag{11}
\end{equation*}
$$

where

$$
T_{i j}^{\prime}=\delta_{i j} q+\frac{\partial \varphi_{i}}{\partial x_{j}}+\frac{\partial \varphi_{j}}{\partial x_{i}}
$$

(see [13, p.53]).

Since the vector v belongs to $\left[W_{\text {loc }}^{1,1}\left(\mathbb{R}^{3}\right)\right]^{3}$ (see, e.g., $[5$, Lemma 4, p.14]) and $v(x)=0$ for $x \in \mathbb{R}^{3} \backslash \bar{\Omega}$, we have

$$
\lim _{\rho \rightarrow 0^{+}} \int_{\Sigma_{-\rho}} T_{i j}^{\prime}(\varphi) v_{i} \nu_{j} d \sigma_{-\rho}=0
$$

Moreover, denoting by $\widetilde{\varphi}$ a Hölder continuous function defined in \mathbb{R}^{3} which coincides with φ in $\bar{\Omega}^{2}$, formula (10) shows that

$$
\begin{gathered}
\lim _{\rho \rightarrow 0^{+}} \int_{\Sigma_{-\rho}} T_{i j}(v) \varphi_{i} \nu_{j} d \sigma_{-\rho}= \\
\lim _{\rho \rightarrow 0^{+}}\left(\int_{\Sigma_{-\rho}} T_{i j}(v) \varphi_{i} \nu_{j} d \sigma_{-\rho}-\int_{\Sigma_{\rho}} T_{i j}(v) \widetilde{\varphi}_{i} \nu_{j} d \sigma_{\rho}\right)=\int_{\Sigma} \varphi_{i} d \mu^{i}
\end{gathered}
$$

Letting $\rho \rightarrow 0^{+}$in (11) we find

$$
\int_{\Omega} v_{i}\left(\Delta \varphi_{i}+\frac{\partial q}{\partial x_{i}}\right) d x=-\int_{\Sigma} \varphi_{i} d \mu^{i}
$$

This leads to

$$
\int_{\Omega} v_{i} \Delta \varphi_{i} d x=0
$$

for any $\varphi \in\left[C^{2, \lambda}(\bar{\Omega})\right]^{3}$ such that $\varphi=0$ on Σ, and this implies the result.

3 Polynomials solutions

In paper [1] a system of polynomial solutions of the Stokes system (1) has been constructed. Unfortunately a small computational mistake led to a wrong expression for the function q, which was used again in [2].

[^1]Theorem 4 Let $v=\left(v_{1}, \ldots, v_{n}\right)$ and q be a homogeneous vector polynomial of degree k and a homogeneous scalar polynomial of degree $k-1$, respectively ($k \geqslant 2$). The vector (v, q) satisfies Stokes system (1) if and only if

$$
\begin{gather*}
v(x)=H_{k}(x)-\frac{1}{2(k-1)}|x|^{2} \nabla\left(\nabla \cdot H_{k}(x)\right), \\
q(x)=-\frac{n+2 k-4}{k-1} \nabla \cdot H_{k}(x) \tag{12}
\end{gather*}
$$

H_{k} being a harmonic vector homogeneous polynomial of degree k.
Proof. We shall not repeat the proof given in [1]. We just mention that the sixth formula from the top at [1, p.317] has to be replaced by

$$
2 n H_{k-2}(x)+4(x \cdot \nabla) H_{k-2}(x)=\nabla H_{k-1} .
$$

Repeating the proof given in [1] the reader will find without difficulties that the right expression of the sought polynomials is (12).

By means of the previous result, we can easily construct a complete system of polynomial solutions of Stokes system. By this we mean a system of homogeneous polynomials such that any polynomial satisfying Stokes system (1) can be written as a finite linear combination of vectors of this system.

We shall write it explicitly in the case $n=3$. With the same idea it can be written in any dimension.

Let us denote by $\left\{\omega_{k s}\right\}(s=1, \ldots, 2 k+1 ; k=0,1, \ldots)$ a complete system of harmonic polynomials, i.e.

$$
\begin{equation*}
\omega_{k s}=|x|^{k} Y_{k s}\left(\frac{x}{|x|}\right) \quad(s=1, \ldots, 2 k+1 ; k=0,1, \ldots) \tag{13}
\end{equation*}
$$

$\left\{Y_{k s}\right\}$ being the system of spherical harmonics.
Theorem 5 Let $v=\left(v_{1}, v_{2}, v_{3}\right)$ and p be homogeneous polynomials of degree k and $k-1$ respectively $(k>1)$. The vector (v, p) satisfies the Stokes system (1) if , and only if, it is a linear combination of the following $6 k+3$
polynomials:

$$
\begin{align*}
& \left(\omega_{k s}+\frac{1}{2(1-k)}|x|^{2} \partial_{11} \omega_{k s}, \frac{1}{2(1-k)}|x|^{2} \partial_{21} \omega_{k s}, \frac{1}{2(1-k)}|x|^{2} \partial_{31} \omega_{k s}, \frac{2 k-1}{1-k} \partial_{1} \omega_{k s}\right), \\
& \left(\frac{1}{2(1-k)}|x|^{2} \partial_{12} \omega_{k s}, \omega_{k s}+\frac{1}{2(1-k)}|x|^{2} \partial_{22} \omega_{k s}, \frac{1}{2(1-k)}|x|^{2} \partial_{32} \omega_{k s}, \frac{2 k-1}{1-k} \partial_{2} \omega_{k s}\right), \\
& \left(\frac{1}{2(1-k)}|x|^{2} \partial_{13} \omega_{k s}, \frac{1}{2(1-k)}|x|^{2} \partial_{23} \omega_{k s}, \omega_{k s}+\frac{1}{2(1-k)}|x|^{2} \partial_{33} \omega_{k s}, \frac{2 k-1}{1-k} \partial_{3} \omega_{k s}\right), \tag{14}
\end{align*}
$$

($s=1, \ldots, 2 k+1$), $\omega_{k s}$ being the harmonic polynomials (13).
Proof. The result follows immediately from Theorem 4 and from the well known fact that any harmonic polynomial can be written as a linear combination of elements of $\left\{\omega_{k s}\right\}$.

We denote by $\left\{W_{k}\right\}(k=0,1,2 \ldots)$ the system constituted by the vector polynomials

$$
\begin{gathered}
(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) \\
\left(x_{2}, 0,0,0\right),\left(x_{3}, 0,0,0\right),\left(0, x_{1}, 0,0\right),\left(0, x_{3}, 0,0\right),\left(0,0, x_{1}, 0\right),\left(0,0, x_{2}, 0\right) \\
\left(x_{1},-x_{2}, 0,0\right),\left(x_{1}, 0,-x_{3}, 0\right)
\end{gathered}
$$

and all the polynomials given by (14) ($\mathrm{s}=1, \ldots, 2 \mathrm{k}+1 ; \mathrm{k}=0,1, \ldots$), ordered in one sequence.

Clearly any polynomial solution of Stokes system (1) can be written as a finite linear combination of elements of $\left\{W_{k}\right\}$.

4 Completeness in $L^{p}(\Sigma)$

We start with the following Lemma, in which we denote by w_{k} the 3dimensional vector given by the first three components of W_{k}.

Lemma 1 Let Ω be a bounded domain with a C^{1} boundary and such that $\mathbb{R}^{3} \backslash \bar{\Omega}$ is connected. Let $\mu=\left(\mu^{1}, \mu^{2}, \mu^{3}\right) \in[M(\Sigma)]^{3}$. If

$$
\begin{equation*}
\int_{\Sigma} w_{k} d \mu=0, \quad k=0,1,2, \ldots \tag{15}
\end{equation*}
$$

then

$$
\int_{\Sigma} \gamma_{i j}(x-y) d \mu_{y}^{j}=0, \quad(i=1,2,3),
$$

for any $x \in \mathbb{R}^{3} \backslash \bar{\Omega}$, where $\gamma_{i j}$ è is the fundamental velocity tensor.
Proof. The following expansions hold:

$$
\begin{gathered}
\frac{1}{|x-y|}=\sum_{k=0}^{\infty} \frac{|y|^{k}}{|x|^{k+1}} X_{k}(\cos \gamma), \\
|x-y|=\sum_{k=0}^{\infty}\left[-\frac{1}{2 k-1} \frac{|y|^{k}}{|x|^{k-1}} X_{k}(\cos \gamma)+\frac{1}{2 k+3} \frac{|y|^{k+2}}{|x|^{k+1}} X_{k}(\cos \gamma)\right],
\end{gathered}
$$

where $X_{k}(t)$ denotes the Legendre polynomial

$$
\frac{1}{2^{k} k!} \frac{d^{k}}{d t^{k}}\left(t^{2}-1\right)^{k}
$$

and $\cos \gamma=x \cdot y /(|x||y|)$.
If we fix $x \neq 0$, these expansions uniformly converge in any compact set contained in the ball $|y|<|x|$. The first expansion is very well known. For the other one, see [8, p.196].

By means of the spherical harmonic addition theorem, we get

$$
\begin{gathered}
\frac{1}{|x-y|}=\sum_{k=0}^{\infty} \sum_{s=0}^{2 k+1} \lambda_{k s}(x) \omega_{k s}(y), \\
|x-y|=\sum_{k=0}^{\infty} \sum_{s=0}^{2 k+1}\left[\chi_{k s}(x) \omega_{k s}(y)+\tau_{k s}(x)|y|^{2} \omega_{k s}(y)\right]
\end{gathered}
$$

where $\omega_{k s}$ are the harmonic polynomials (13) and

$$
\begin{gathered}
\lambda_{k s}(x)=\frac{1}{|x|^{k+1}} Y_{k s}\left(\frac{x}{|x|}\right), \\
\chi_{k s}(x)=-\frac{1}{2 k-1} \frac{1}{|x|^{k-1}} Y_{k s}\left(\frac{x}{|x|}\right), \quad \tau_{k s}(x)=\frac{1}{2 k+3} \frac{1}{|x|^{k+1}} Y_{k s}\left(\frac{x}{|x|}\right) .
\end{gathered}
$$

From (4) we find

$$
\begin{gather*}
4 \pi \gamma_{i j}(x-y)=-\left[\frac{\delta_{i j}}{|x-y|}-\frac{1}{2} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}|x-y|\right]= \\
-\delta_{i j} \sum_{k=0}^{\infty} \sum_{s=0}^{2 k+1} \lambda_{k s}(x) \omega_{k s}(y)+ \tag{16}\\
\frac{1}{2} \sum_{k=0}^{\infty} \sum_{s=0}^{2 k+1}\left(\chi_{k s}(x) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}} \omega_{k s}(y)+\tau_{k s}(x) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(|y|^{2} \omega_{k s}(y)\right)\right)
\end{gather*}
$$

We remark that

$$
\nabla \frac{\partial}{\partial y_{i}} \omega_{k s}(y)
$$

is a divergence-free harmonic vector. Therefore it satisfies Stokes system (1) $(p=0)$. Consider now the sum of the first and the last series in the right hand side of (16). The generic term we obtain is equal to

$$
\begin{gathered}
-\delta_{i j} \lambda_{k s}(x) \omega_{k s}(y)+\frac{1}{2} \tau_{k s}(x) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(|y|^{2} \omega_{k s}(y)\right)= \\
\tau_{k s}(x)\left(-\delta_{i j}(2 k+3) \omega_{k s}(y)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(|y|^{2} \omega_{k s}(y)\right)\right) .
\end{gathered}
$$

Let us fix k and s and denote by $\Phi_{i j}(y)$ the function

$$
-\delta_{i j}(2 k+3) \omega_{k s}(y)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(|y|^{2} \omega_{k s}(y)\right)
$$

and by Φ_{i} the vector $\left(\Phi_{i 1}, \Phi_{i 2}, \Phi_{i 3}\right)$. Since $\Delta\left(|y|^{2} \omega_{k s}(y)\right)=2(2 k+3) \omega_{k s}(y)$, we have

$$
\Delta\left(-\delta_{i j}(2 k+3) \omega_{k s}(y)+\frac{1}{2} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(|y|^{2} \omega_{k s}(y)\right)\right)=(2 k+3) \frac{\partial^{2} \omega_{k s}}{\partial y_{i} \partial y_{j}} .
$$

This shows that $\Delta \Phi_{i}=\nabla p$, where

$$
\begin{equation*}
p=(2 k+3) \frac{\partial \omega_{k s}}{\partial y_{i}} \tag{17}
\end{equation*}
$$

Moreover Φ_{i} is divergence-free, since

$$
\frac{\partial \Phi_{i j}}{\partial y_{j}}=-(2 k+3) \frac{\partial \omega_{k s}}{\partial y_{i}}+\frac{1}{2} \frac{\partial}{\partial y_{i}} \Delta\left(|y|^{2} \omega_{k s}(y)\right)=0
$$

We have then shown that the vector Φ_{i} satisfies Stokes system (1) (where p is given by (17)). In view of (16) we can write

$$
\gamma_{i}(x-y)=\sum_{h=0}^{\infty} c_{i h}(x) v_{h}(y)
$$

uniformly for $y \in \bar{\Omega}$, provided that $|x|>R$, where $R=\left(\max _{x \in \bar{\Omega}}|x|\right) / r$. Here $c_{i h}$ are scalar functions and v_{h} are vector homogenous polynomials satisfying Stokes system.

Orthogonality conditions (15) imply

$$
\int_{\Sigma} \gamma_{i j}(x-y) d \mu_{y}^{j}=\sum_{h=0}^{\infty} c_{i h}(x) \int_{\Sigma} v_{h}(y) d \mu_{y}=0
$$

for any x such that $|x|>R$. The potentials on the left hand side being analytic in the connected domain $\mathbb{R}^{3} \backslash \bar{\Omega}$, the thesis follows.

We are now in a position to prove the completeness of $\left\{w_{k}\right\}$ in the $L^{p_{-}}$ norm.

Theorem 6 Let $\Omega \in \mathbb{R}^{3}$ a bounded connected domain with a C^{1} boundary and such that $\mathbb{R}^{3} \backslash \bar{\Omega}$ is connected. The system $\left\{w_{k}\right\}$ is complete in the subspace of $\left[L^{p}(\Sigma)\right]^{3}$

$$
\begin{equation*}
\left\{f \in\left[L^{p}(\Sigma)\right]^{3} \mid \int_{\Sigma} f \cdot \nu d \sigma=0\right\} \tag{18}
\end{equation*}
$$

$(1 \leqslant p<\infty)$.
Proof. In order to prove this result, it is sufficient to show that if $\phi \in$ $\left[L^{q}(\Sigma)\right]^{3}(q=p /(p-1))$ is such that

$$
\int_{\Sigma} \phi \cdot w_{k} d \sigma=0, \quad k=0,1,2, \ldots
$$

then $\phi=c \nu$. Thanks to Lemma 1, we have

$$
\int_{\Sigma} \phi_{j}(y) \gamma_{i j}(x-y) d \sigma_{y}=0, \quad x \in \mathbb{R}^{3} \backslash \bar{\Omega}, i=1,2,3
$$

The simple layer potential $\left(v_{1}, v_{2}, v_{3}, p\right)$, where

$$
\begin{aligned}
& v_{i}(x)=v_{i}(\phi, x) \\
&=-\int_{\Sigma} \phi_{j}(y) \gamma_{i j}(x-y) d \sigma_{y} \\
& p(x)=p(\phi, x)
\end{aligned}=-\int_{\Sigma} \phi_{i}(y) \epsilon_{i}(x-y) d \sigma_{y}, ~ \$
$$

satisfies Stokes system (1) for $x \notin \Sigma$. In $\mathbb{R}^{3} \backslash \bar{\Omega}$ we have $v=0$, and then $\nabla p=0$. The set $\mathbb{R}^{3} \backslash \bar{\Omega}$ being connected, we find $p=c$ in $\mathbb{R}^{3} \backslash \bar{\Omega}$. On the other hand, we have that the potential representing p vanishes at infinity and then $p=0$ in $\mathbb{R}^{3} \backslash \bar{\Omega}$.

Theorem 3 shows that $v=0$ (and then $\nabla p=0$) also in Ω. Then the potential (3) is equal to a real constant $-c$ in Ω and vanishes in $\mathbb{R}^{3} \backslash \bar{\Omega}$.

Therefore

$$
T_{i j}= \begin{cases}\delta_{i j} c & \text { in } \Omega \\ 0 & \text { in } \mathbb{R}^{3} \backslash \bar{\Omega}\end{cases}
$$

In view of jump formula (6), we get $\phi=c \nu$ a.e. on Σ and the Theorem is proved.

We note that this completeness Theorems implies the Runge property for Stokes system (1). Indeed we have:

Theorem 7 Let A be a domain such that $\mathbb{R}^{3} \backslash A$ is connected. Let $U=$ $(u, p) \in\left[C^{\infty}(A)\right]^{4}$ be a solution of system (1) in A. For any compact set $K \subset A$ there exists a sequence v_{n} of polynomials solutions of (1) such that $v_{n} \rightarrow u$ uniformly in K.

Proof. Let Ω be a bounded domain with smooth boundary such that $K \subset \Omega$, $\bar{\Omega} \subset A$ and $\mathbb{R}^{3} \backslash \Omega$ is connected. Because of the completeness property proved in Theorem 6 there exists a sequence v_{n} of polynomial solutions of (1) such that $v_{n} \rightarrow u$ in $\left[L^{2}(\partial \Omega)\right]^{3}$. In view of classical results, this implies that $v_{n} \rightarrow u$ uniformly in K.

5 Completeness in the uniform norm

The problem of the completeness in uniform norm is much more delicate, as it involves potentials generated by measures.

Theorem 8 Let $\Omega \subset \mathbb{R}^{3}$ be a bounded connected domain with a C^{1} boundary such that $\mathbb{R}^{3} \backslash \bar{\Omega}$ is connected. The system $\left\{w_{k}\right\}$ is complete in the subspace of $\left[C^{0}(\Sigma)\right]^{3}$

$$
\left\{f \in\left[C^{0}(\Sigma)\right]^{3} \mid \int_{\Sigma} f \cdot \nu d \sigma=0\right\} .
$$

Proof. In order to prove this theorem, it is sufficient to show that if $\mu \in$ $[M(\Sigma)]^{3}$ is such that

$$
\begin{equation*}
\int_{\Sigma} w_{k} d \mu=0 \quad k=0,1,2, \ldots \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
d \mu=c \nu d \sigma \tag{20}
\end{equation*}
$$

where c is a real constant and σ is the $(n-1)$-dimensional Lebesgue measure on Σ. Equation (20) means that $\mu \ll \sigma$ (i.e. μ is absolutely continuous with respect to σ) and that the Radon-Nikodym derivative of μ with respect to σ is $c \nu$, i.e.

$$
\mu^{i}(A)=c \int_{A} \nu^{i} d \sigma, \quad i=1,2,3
$$

for any Borel set $A \subset \Sigma$.
Lemma 1 shows that conditions (19) imply

$$
v_{i}(x)=-\int_{\Sigma} \gamma_{i j}(x-y) d \mu_{y}^{j}=0, \quad x \in \mathbb{R}^{3} \backslash \bar{\Omega}, i=1,2,3 .
$$

Theorem 3 allows to conclude that $v(x)=0$ also in Ω.
As in the proof of Theorem 6 , there exists a real constant c such that

$$
p(x)=-\int_{\Sigma} \epsilon_{j}(x-y) d \mu_{y}^{j}= \begin{cases}-c & \text { if } x \in \Omega \\ 0 & \text { if } x \in \mathbb{R}^{3} \backslash \bar{\Omega}\end{cases}
$$

and then

$$
T_{i j}= \begin{cases}\delta_{i j} c & \text { in } \Omega \\ 0 & \text { in } \mathbb{R}^{3} \backslash \bar{\Omega}\end{cases}
$$

Let $\psi \in\left[C^{\lambda}\left(\mathbb{R}^{3}\right)\right]^{3}$. In view of Theorem 2, we get

$$
\begin{gathered}
\int_{\Sigma} \psi_{i} d \mu^{i}= \\
-\lim _{\rho \rightarrow 0^{+}}\left(\int_{\Sigma_{\rho}} \psi_{i}\left(x_{\rho}\right) \nu_{k}\left(x_{\rho}\right) T_{i k}\left(x_{\rho}\right) d \sigma_{\rho}-\int_{\Sigma_{-\rho}} \psi_{i}\left(x_{-\rho}\right) \nu_{k}\left(x_{-\rho}\right) T_{i k}\left(x_{-\rho}\right) d \sigma_{-\rho}\right)= \\
\lim _{\rho \rightarrow 0^{+}} c \int_{\Sigma_{-\rho}} \psi_{i}\left(x_{-\rho}\right) \nu_{i}\left(x_{-\rho}\right) d \sigma_{-\rho}=c \int_{\Sigma} \psi_{i} \nu_{i} d \sigma
\end{gathered}
$$

Because of the arbitrariness of ψ, we have $\mu \ll \sigma$ and $d \mu=c \nu d \sigma$.

6 Multiple connected domains

In this section we consider domains which are connected but not simply connected. Saying that Ω is a multiple connected domain, or - more precisely - an $(m+1)$-connected domain, we mean that Ω is an open connected set of the form

$$
\begin{equation*}
\Omega=\Omega_{0} \backslash \bigcup_{j=1}^{m} \bar{\Omega}_{j} \tag{21}
\end{equation*}
$$

where each $\Omega_{j}(j=0, \ldots, m)$ is a bounded domain of \mathbb{R}^{3} with connected boundaries $\Sigma_{j} \in C^{1}(j=0, \ldots, m)$ and such that

$$
\bar{\Omega}_{j} \subset \Omega_{0} \text { and } \bar{\Omega}_{j} \cap \bar{\Omega}_{k}=\emptyset, \quad j, k=1, \ldots, m, j \neq k .
$$

For such domains the polynomial solutions are not complete in the subspace (18) anymore. We are going to determine the closure of the space generated by such systems. What comes out is that such a closure can be described by means of the boundary values of the solutions of some transmission problems.

In the following Theorem, writing $T_{i j}(v, p)$ we mean the stress tensor (5) related to the vector (v, p) and the suffix ${ }^{+}\left({ }^{-}\right)$will denote the limit from the interior (exterior) of Ω.

Theorem 9 Let $1 \leqslant p<\infty$. Let Ω be the ($m+1$)-connected domain (21). Suppose $f=\left(f_{1}, f_{2}, f_{3}\right) \in\left[L^{q}(\Sigma)\right]^{3}(q=p /(p-1)$ if $p>1 ; q=\infty$ if $p=1)$
is such that

$$
\begin{equation*}
\int_{\Sigma} f \cdot w_{k} d \sigma=0, \quad k=0,1,2, \ldots \tag{22}
\end{equation*}
$$

Then there exists (v, p) solution of Stokes system ${ }^{3}$

$$
\begin{cases}\Delta v-\nabla p=0, & \text { in } \Omega \tag{23}\\ \nabla \cdot v=0, & \text { in } \Omega\end{cases}
$$

satisfying the boundary condition

$$
\begin{equation*}
v=0, \quad \text { on } \Sigma_{0}, \tag{24}
\end{equation*}
$$

and such that, denoting by $\left(v^{(h)}, p^{(h)}\right)$ the solution of the BVP

$$
\begin{cases}\Delta v^{(h)}-\nabla p^{(h)}=0, & \text { in } \Omega_{h} \tag{25}\\ \nabla \cdot v^{(h)}=0, & \text { in } \Omega_{h} \\ v^{(h)}=v, & \text { on } \Sigma_{h},\end{cases}
$$

($h=1, \ldots, m$), we have

$$
\begin{cases}f_{i}=T_{i j}^{+}(v, p) \nu_{j}, & \text { on } \Sigma_{0} \tag{26}\\ f_{i}=T_{i j}^{+}(v, p) \nu_{j}-T_{i j}^{-}\left(v^{(h)}, p^{(h)}\right) \nu_{j}, & \text { on } \Sigma_{h}, h=1, \ldots, m .\end{cases}
$$

Proof. As in the proof of Theorem 6, conditions (22) imply that the potentials

$$
\begin{gather*}
v_{i}(x)=-\int_{\Sigma} f_{j}(y) \gamma_{i j}(x-y) d \sigma_{y}, \quad i=1,2,3, \tag{27}\\
p(x)=-\int_{\Sigma} f_{j}(y) \epsilon_{j}(x-y) d \sigma_{y} \tag{28}
\end{gather*}
$$

vanish in $\mathbb{R}^{3} \backslash \overline{\Omega_{0}}$.
Let us denote by (v, p) the vector given by (27)-(28) for $x \in \Omega$. This vector satisfies Stokes system (1) and the boundary condition (24). In view of (6) we get also the first equation in (26).

[^2]For any $1 \leqslant h \leqslant m$, the vector $\left(v^{(h)}, p^{(h)}\right)$ given by (27)-(28) for $x \in \Omega_{h}$, is solution of the BVP (25) and f satisfies the condition (26) on Σ_{h} because of (6).

Conversely, suppose (23)-(26) are satisfied. From the Green formula (see [13, formula (10), p.53] and writing the vector W_{k} as $\left(w_{k 1}, w_{k 2}, w_{k, 3}, w_{k 4}\right)=$ $\left(w_{k}, w_{k 4}\right)$, we get

$$
\begin{gathered}
\int_{\Sigma} f \cdot w_{k} d \sigma=\int_{\Sigma_{0}} f \cdot w_{k} d \sigma+\sum_{h=1}^{m} \int_{\Sigma_{h}} f \cdot w_{k} d \sigma= \\
\int_{\Sigma_{0}} T_{i j}^{+}(v, p) \nu_{j} w_{k i} d \sigma+\sum_{h=1}^{m} \int_{\Sigma_{h}}\left(T_{i j}^{+}(v, p)-T_{i j}^{-}\left(v^{(h)}, p^{(h)}\right)\right) \nu_{j} w_{k i} d \sigma= \\
\int_{\Sigma} T_{i j}^{+}(v, p) \nu_{j} w_{k i} d \sigma-\sum_{h=1}^{m} \int_{\Sigma_{h}} T_{i j}^{-}\left(v^{(h)}, p^{(h)}\right) \nu_{j} w_{k i} d \sigma= \\
\int_{\Sigma} T_{i j}^{\prime+}\left(w_{k}, w_{k 4}\right) \nu_{j} v_{i} d \sigma-\sum_{h=1}^{m} \int_{\Sigma_{h}} T_{i j}^{\prime-}\left(w_{k}, w_{k 4}\right) \nu_{j} v_{i}^{(h)} d \sigma= \\
\sum_{h=1}^{m} \int_{\Sigma_{h}}\left(T_{i j}^{\prime+}\left(w_{k}, w_{k 4}\right)-T_{i j}^{\prime-}\left(w_{k}, w_{k 4}\right)\right) \nu_{j} v_{i} d \sigma
\end{gathered}
$$

The integrals in the last hand side vanish, because

$$
T_{i j}^{\prime-}\left(w_{k}, w_{k 4}\right)=T_{i j}^{\prime+}\left(w_{k}, w_{k 4}\right)
$$

In fact the first derivatives of vectors W_{k} have no jumps across Σ, since they are C^{∞} all over the space \mathbb{R}^{3}. This shows that (22) are satisfied and the theorem is proved.

As a Corollary we can describe the linear space generated by $\left\{w_{k}\right\}$ as the orthogonal complement of a certain linear space.

Theorem 10 The closure in $\left[L^{p}(\Sigma)\right]^{3}$ of the linear space generated by the system $\left\{w_{k}\right\}$ is constituted by the vectors $G \in\left[L^{p}(\Sigma)\right]^{3}$ such that

$$
\int_{\Sigma} F \cdot G d \sigma=0
$$

for any $F \in\left[L^{q}(\Sigma)\right]^{3}$ given by (26), with (v, p) and $\left(v^{(h)}, p^{(h)}\right)(h=1, \ldots, m)$ satisfying (23)-(25).

Proof. It follows immediately from Theorem 9.
Finally we mention that a complete system in a $(m+1)$-connected domain could be obtained as done in $[9,10]$ for Laplace equation and elasticity.

References

[1] Choe, H. J., On the Fundamental Solutions to Stokes Equations, J. Differential Equations, 153 (1999) 313-337.
[2] Choe, H. J., Jinb, B. J., Characterization of generalized solutions for the homogeneous Stokes equations in exterior domains, Nonlinear Anal., 48 (2002) 765-779.
[3] A. Cialdea, Formule di maggiorazione e teoremi di completezza relativi al sistema dell'elasticità tridimensionale, Riv. Mat. Univ. Parma (4) 14, (1988) 283-302.
[4] A. Cialdea, Completeness Theorems for elliptic equations of higher order with constant coefficients. Georgian Math. J.l, 14 (2007) 81-97.
[5] A. Cialdea, Completeness theorems in the uniform norm connected to elliptic equations of higher order with constant coefficients, Anal. Appl. (Singap.), 10, N.1, (2012), 1-20.
[6] A. Cialdea, Completeness Theorems on the Boundary in Thermoelasticity, in Rogosin, S., Çelebi, A. (Eds) Analysis as a Life, Trends in Mathematics, Birkhäuser, (2019) 93-115.
[7] A. Cialdea, V. Leonessa, A. Malaspina, On the Dirichlet problem for the Stokes system in multiply connected domains. Abstr. Appl. Anal., Vol. 2013, Article ID 765020, 12 pages (2013) DOI: 10.1155/2013/765020.
[8] G. Fichera, Teoremi di completezza connessi all'integrazione dell'equazione $\Delta_{4} u=f$, Giorn. Mat. Battaglini, (4) 1 (1947), 184-199.
[9] G. Fichera, Teoremi di completezza sulla frontiera di un dominio per taluni sistemi di funzioni, Ann. Mat. Pura Appl. (4) (1948) 1-28.
[10] G. Fichera, Sui problemi analitici dell'elasticità piana, Rend. Sem. Fac. Sci. Univ. Cagliari 18 (1948), 1-22.
[11] G. Fichera, Sull'esistenza e sul calcolo delle soluzioni dei problemi al contorno, relativi all'equilibrio di un corpo elastico, Ann. Sc. Norm. Super. Pisa 248, (1950) 35-99.
[12] G. Fichera, L. De Vito, Funzioni Analitiche di una Variabile Complessa, 3rd edn. Veschi, Roma (1971).
[13] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach Science Publishers (1969).

[^0]: *Department of Mathematics, Computer Sciences and Economics, University of Basilicata, V.le dell'Ateneo Lucano, 10, 85100 Potenza, Italy. email: cialdea@email.it.
 ${ }^{\dagger}$ Department of Mathematics, University of Geneva, 2-4 Rue du Lièvre, 1211 Geneva 4, Switzerland. email: giancarlo.nino@unige.ch.
 ${ }^{1}$ By this we mean that both the domain and its complement are connected.

[^1]: ${ }^{2}$ It suffices to take

 $$
 \widetilde{\varphi}(x)=\inf _{y \in \bar{\Omega}}\left\{\varphi(y)+C|x-y|^{\lambda}\right\},
 $$

 where $C>0$ and $0<\lambda \leqslant 1$ are such that $|\varphi(x)-\varphi(y)| \leqslant C|x-y|^{\lambda}$, for any $x, y \in \bar{\Omega}$.

[^2]: ${ }^{3}$ This and the other BVPs are considered in suitable spaces of potentials with L^{p} densities. See [7, Theorem 23] for further details.

