In this paper the problem of attitude tracking control for a rigid spacecraft is addressed. It is assumed that only attitude measurements are available, and thus spacecraft's angular velocity has to be properly estimated. Two alternative schemes are proposed in which the unit quaternion is adopted to represent the orientation. In the first scheme, a second-order model-based observer is adopted to estimate the angular velocity used in the control law. In the second scheme, an estimate of the angular velocity error is obtained through a lead filter. Sufficient conditions ensuring local exponential stability of the two controllers are derived via Lyapunov analysis.

Output Feedback Control for Attitude Tracking

CACCAVALE, Fabrizio;
1999-01-01

Abstract

In this paper the problem of attitude tracking control for a rigid spacecraft is addressed. It is assumed that only attitude measurements are available, and thus spacecraft's angular velocity has to be properly estimated. Two alternative schemes are proposed in which the unit quaternion is adopted to represent the orientation. In the first scheme, a second-order model-based observer is adopted to estimate the angular velocity used in the control law. In the second scheme, an estimate of the angular velocity error is obtained through a lead filter. Sufficient conditions ensuring local exponential stability of the two controllers are derived via Lyapunov analysis.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/6572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 83
social impact