A comparison of radiative transfer models for simulating radiances from the Atmospheric Infrared Sounder (AIRS), has been undertaken. Results from 14 line-by-line and fast parameterized infrared models were submitted. Several aspects of the models were compared. First, the forward model calculations for all 2378 AIRS channels for 52 diverse atmospheric profiles and one tropical Pacific profile coincident with AIRS data were performed for three local zenith viewing angles: nadir, 45, and 60 degrees. Second, for a subset of the models and only 20 AIRS channels the transmittances from each layer to space were provided. Finally, for some models the Jacobians with respect to temperature, water vapor, and ozone were also computed. For the forward model calculations, most models agree to within 0.02 K when compared to a reference line-by-line model averaged over a subset of profiles, with the exception of a few spectral regions. When compared with AIRS observations, however, the mean differences increase to 0.2 K, and for a few models even greater differences are seen. The transmittance differences highlighted regions of the spectrum where the spectroscopy of the models differs, particularly in the carbon dioxide absorption bands at 667 cm−1 and 2386 cm−1. For the Jacobians all models have some profiles/channels that do not fit the reference well, and the main problems are documented here. The model differences only increase slightly for off-nadir viewing angles for both forward and Jacobian calculations.

A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances

MASIELLO, Guido;
2007-01-01

Abstract

A comparison of radiative transfer models for simulating radiances from the Atmospheric Infrared Sounder (AIRS), has been undertaken. Results from 14 line-by-line and fast parameterized infrared models were submitted. Several aspects of the models were compared. First, the forward model calculations for all 2378 AIRS channels for 52 diverse atmospheric profiles and one tropical Pacific profile coincident with AIRS data were performed for three local zenith viewing angles: nadir, 45, and 60 degrees. Second, for a subset of the models and only 20 AIRS channels the transmittances from each layer to space were provided. Finally, for some models the Jacobians with respect to temperature, water vapor, and ozone were also computed. For the forward model calculations, most models agree to within 0.02 K when compared to a reference line-by-line model averaged over a subset of profiles, with the exception of a few spectral regions. When compared with AIRS observations, however, the mean differences increase to 0.2 K, and for a few models even greater differences are seen. The transmittance differences highlighted regions of the spectrum where the spectroscopy of the models differs, particularly in the carbon dioxide absorption bands at 667 cm−1 and 2386 cm−1. For the Jacobians all models have some profiles/channels that do not fit the reference well, and the main problems are documented here. The model differences only increase slightly for off-nadir viewing angles for both forward and Jacobian calculations.
2007
File in questo prodotto:
File Dimensione Formato  
2007_Saunders_JGR.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 755.35 kB
Formato Adobe PDF
755.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/5694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 56
social impact