Acylated homoserine lactones (AHLs) are self-generated signal molecules that mediate population density-dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria. These signal molecules diffuse from bacterial cells and accumulate in the medium as a function of cell growth. In selected foods AHLs contribute to product spoilage. As different bacterial species produce AHL analogs that differ in length of the N-acyl chain, ranging from 4 to 14 carbons and in the substitution at the C-3 position of the side chain (i.e., oxo or hydroxyl group), the suitability and applicability of a gas chromatography–mass spectrometry direct method for characterizing trace amounts of AHLs was evaluated using N-heptanoyl-homoserine lactone as internal standard. Crude cell-free supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica, and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode, using the prominent fragment at m/z 143. The observed profiles of distinguishable N-acyl-homoserine lactones occurring in bacterial extracts were compared and discussed. The presence of a labile 3-oxo-hexanoylhomoserine lactone was evidenced but serious difficulties arose in estimating its concentration as thermal degradation occurs during the gas chromatographic separation. Its electron impact mass spectra was, however, given and interpreted.

Occurrence of N-Acyl-L-Homoserine Lactones in Extracts of Some Gram-Negative Bacteria Evaluated by Gas Chromatography/Mass Spectrometry.

BIANCO, Giuliana;
2007-01-01

Abstract

Acylated homoserine lactones (AHLs) are self-generated signal molecules that mediate population density-dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria. These signal molecules diffuse from bacterial cells and accumulate in the medium as a function of cell growth. In selected foods AHLs contribute to product spoilage. As different bacterial species produce AHL analogs that differ in length of the N-acyl chain, ranging from 4 to 14 carbons and in the substitution at the C-3 position of the side chain (i.e., oxo or hydroxyl group), the suitability and applicability of a gas chromatography–mass spectrometry direct method for characterizing trace amounts of AHLs was evaluated using N-heptanoyl-homoserine lactone as internal standard. Crude cell-free supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica, and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode, using the prominent fragment at m/z 143. The observed profiles of distinguishable N-acyl-homoserine lactones occurring in bacterial extracts were compared and discussed. The presence of a labile 3-oxo-hexanoylhomoserine lactone was evidenced but serious difficulties arose in estimating its concentration as thermal degradation occurs during the gas chromatographic separation. Its electron impact mass spectra was, however, given and interpreted.
2007
File in questo prodotto:
File Dimensione Formato  
AB07.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 630.92 kB
Formato Adobe PDF
630.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/4963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 67
social impact