Vasopressin and vasopressin antagonists are finding expanded use in mouse models of disease and in clinical medicine. To provide further insight into the physiological role of V1a and V2 vasopressin receptors in the human and mouse kidney, intrarenal localization of the receptors mRNA was determined by in situ hybridization. V2-receptor mRNA was predominantly expressed in the medulla, whereas mRNA for V1a receptors predominated in the cortex. The segmental localization of vasopressin-receptor mRNAs was determined using simultaneous in situ hybridization and immunohistochemistry for segment-specific markers, including aquaporin-2, Dolichos biflorus agglutinin, epithelial Na channels, Tamm Horsfall glycoprotein, and thiazide-sensitive Na(+)-Cl(-) cotransporter. Notably, V1a receptor expression was exclusively expressed in V-ATPase/anion exchanger-1-labeled alpha-intercalated cells of the medullary collecting duct in both mouse and human kidney. In cortical collecting ducts, V1a mRNA was more widespread and detected in both principal and intercalated cells. V2-receptor mRNA is diffusely expressed along the collecting ducts in both mouse and human kidney, with higher expression levels in the medulla. These results demonstrate heterogenous axial expression of both V1a and V2 vasopressin receptors along the human and mouse collecting duct. The restricted expression of V1a-receptor mRNA in intercalated cells suggests a role for this receptor in acid-base balance. These findings further suggest distinct regulation of renal transport function by AVP through V1a and V2 receptors in the cortex vs. the medulla.

Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct.

CARMOSINO, MONICA;
2007-01-01

Abstract

Vasopressin and vasopressin antagonists are finding expanded use in mouse models of disease and in clinical medicine. To provide further insight into the physiological role of V1a and V2 vasopressin receptors in the human and mouse kidney, intrarenal localization of the receptors mRNA was determined by in situ hybridization. V2-receptor mRNA was predominantly expressed in the medulla, whereas mRNA for V1a receptors predominated in the cortex. The segmental localization of vasopressin-receptor mRNAs was determined using simultaneous in situ hybridization and immunohistochemistry for segment-specific markers, including aquaporin-2, Dolichos biflorus agglutinin, epithelial Na channels, Tamm Horsfall glycoprotein, and thiazide-sensitive Na(+)-Cl(-) cotransporter. Notably, V1a receptor expression was exclusively expressed in V-ATPase/anion exchanger-1-labeled alpha-intercalated cells of the medullary collecting duct in both mouse and human kidney. In cortical collecting ducts, V1a mRNA was more widespread and detected in both principal and intercalated cells. V2-receptor mRNA is diffusely expressed along the collecting ducts in both mouse and human kidney, with higher expression levels in the medulla. These results demonstrate heterogenous axial expression of both V1a and V2 vasopressin receptors along the human and mouse collecting duct. The restricted expression of V1a-receptor mRNA in intercalated cells suggests a role for this receptor in acid-base balance. These findings further suggest distinct regulation of renal transport function by AVP through V1a and V2 receptors in the cortex vs. the medulla.
2007
File in questo prodotto:
File Dimensione Formato  
AJP Breyer.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 863.78 kB
Formato Adobe PDF
863.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/39435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact