Advanced biosensors are frequently based on electrosynthesized polymeric films. In this context, the electrosynthesis mechanism underlying the electrochemical oxidation of 2-naphthol (2-NAP) in phosphate buffer at pH 7 on Pt electrodes has been investigated. The voltammetric behaviour suggested the formation of a non-conducting polymer (poly(2-NAP)) through an irreversible electrochemical process complicated by 2-NAP adsorption and fast electrode passivation. Repeat experiments showed the passive films to be strongly adherent to the Pt surface with thicknesses of approximately 10 nm, as estimated by in-situ electrochemical quartz crystal microbalance (EQCM) measurements and by X-ray photoelectron spectroscopy (XPS). The polymer structure was then investigated by XPS, which gave evidence of the presence of naphthalene rings bonded through poly(oxide) groups (C–O–C) and of quinonoid groups, probably present as the ends of polymeric chains. The polymer repeat unit and terminal groups derived by XPS analysis are in accordance with electrochemical results and with synthesis routes reported for phenol-derived compounds in aqueous solution. XPS also gave evidence of a large excess of oxygen, probably arising from water molecules entrapped by the polymeric chains, as suggested by angle-resolved XPS and thermal treatment of poly(2- NAP)/Pt film under ultra-high vacuum (UHV).

Electrosynthesized, non-conducting films of poly(2-naphthol): electrochemical and XPS investigations

CIRIELLO, Rosanna;GUERRIERI, Antonio;SALVI, Anna Maria
2008-01-01

Abstract

Advanced biosensors are frequently based on electrosynthesized polymeric films. In this context, the electrosynthesis mechanism underlying the electrochemical oxidation of 2-naphthol (2-NAP) in phosphate buffer at pH 7 on Pt electrodes has been investigated. The voltammetric behaviour suggested the formation of a non-conducting polymer (poly(2-NAP)) through an irreversible electrochemical process complicated by 2-NAP adsorption and fast electrode passivation. Repeat experiments showed the passive films to be strongly adherent to the Pt surface with thicknesses of approximately 10 nm, as estimated by in-situ electrochemical quartz crystal microbalance (EQCM) measurements and by X-ray photoelectron spectroscopy (XPS). The polymer structure was then investigated by XPS, which gave evidence of the presence of naphthalene rings bonded through poly(oxide) groups (C–O–C) and of quinonoid groups, probably present as the ends of polymeric chains. The polymer repeat unit and terminal groups derived by XPS analysis are in accordance with electrochemical results and with synthesis routes reported for phenol-derived compounds in aqueous solution. XPS also gave evidence of a large excess of oxygen, probably arising from water molecules entrapped by the polymeric chains, as suggested by angle-resolved XPS and thermal treatment of poly(2- NAP)/Pt film under ultra-high vacuum (UHV).
2008
File in questo prodotto:
File Dimensione Formato  
Anal Bioanal Chem.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 718.76 kB
Formato Adobe PDF
718.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/16939
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact