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Abstract 19 

Three different geomorphic approaches to the identification of flood prone areas are investigated by 20 

means of a comparative analysis of the input parameters, the performances and the range of 21 

applicability. The selected algorithms are: the method proposed by Manfreda et al. (2011) based on 22 

a modified version of the Topographic Index (TIm); the linear binary classifier proposed by 23 

Degiorgis et al. (2012), which uses different geomorphic features related to the location of the site 24 

under exam with respect to the nearest hazard source; the hydro-geomorphic method by Nardi et al. 25 

(2006) simulating inundation flow depths along the river valley with the associated extent of 26 

surrounding inundated areas. Comparison has been carried out on two sub-catchments of the Tiber 27 

River in Central Italy. The simulated flooded areas, obtained using the selected three methods, are 28 

evaluated using as a reference the Tiber River Basin Authority standard flood maps. The aim of the 29 

research is to deepen our understating on the potential of geomorphic algorithms and to define new 30 

strategies for prompt hydraulic risk mapping and preliminary flood hazard graduation. This is of 31 

foremost importance when detailed hydrologic and hydraulic studies are not available, e.g., over 32 

large regions and for ungauged basins. 33 

 34 

Keywords: flood hazard, DEM, terrain analysis, Tiber River, ungauged basins. 35 
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1 Introduction  36 

The identification of flood prone areas is a critical issue that is becoming more challenging and 37 

pressing for our society (e.g., Sivapalan et al., 2012; Di Baldassarre et al., 2013a; Di Baldassarre et 38 

al., 2013b). Both public administrators and private companies (e.g., insurance companies) call for 39 

the development of new tools and strategies for prompt risk identification and mapping over large 40 

regions.  41 

In the last few decades, the scientific community developed significant efforts to improve 42 

techniques for the detection of areas exposed to the flood hazard and, nowadays, there are several 43 

hydrologic and hydraulic modelling approaches that are regularly used for practical applications 44 

(e.g., Norman et al., 2001; Grimaldi et al., 2013). Those standard models are classified according to 45 

their geometric and physical representation of the flood domain (e.g., grid cell or triangular 46 

irregular networks) and physical dynamics (e.g., 1D and 2D models). Physically based 2D models 47 

are able to describe the inundation hydrodynamics, allowing the mapping of flow depth and extent 48 

at the scale of the single building and down to the scale of micro-topographic and vegetation 49 

features (e.g., Cobby et al., 2003; Kim et al., 2011). Nevertheless, 2D flood models are 50 

computationally intense and require a significant amount of data and parameters values to describe 51 

the riverbed and floodway morphology as well as the surface roughness. This poses a challenging 52 

problem for their calibration and validation (Horritt and Bates, 2002; Di Baldassarre et al., 2009).  53 

Notwithstanding the limitation of these models, there are several attempts to provide a global flood 54 

mapping collecting all available information (e.g. Dilley et al., 2005; Moel et al., 2009) or using 55 

large scale physically based models of rainfall-runoff and river routing (e.g. Pappenberger et al., 56 

2012; Winsemius et al., 2013). Even if the full mosaic is not available yet, because of the 57 

limitations in the resolution of the products and the scale of the river basins considered, it may be 58 

extremely useful in reinsurance, large scale flood preparedness and emergency response (e.g. 59 

Kappes et al., 2012).  60 



  

 4

In order to overcome modelling limitations, a significant effort is oriented in the optimization of the 61 

existing algorithms for global flood mapping. In this contest, it is interesting to recall the recent 62 

work by Lamb et al. (2009) that suggested the use of technology from the computer graphics 63 

industry to accelerate a 2D diffusion wave flood model that have been used in several countries in 64 

Europe.  Nevertheless, a comprehensive and detailed flood map at the global scale is still lacking.  65 

On the other end, the river basin morphology intrinsically contains an extraordinary amount of 66 

information on flood-driven erosion and depositional phenomena, constituting a useful indicator of 67 

the flood exposure of a given area (e.g., Arnaud-Fassetta et al., 2009). These information may be 68 

used to enhance our ability to identify the portion of a river basin frequently submerged or extend 69 

information extractable from hydraulic simulation. In fact, the terrain morphology plays a central 70 

role in flood waves behaviour in a fundamental interplay that govern the landscape evolution across 71 

multiple spatial and temporal scales (e.g., Tucker et al., 2001; Tucker and Whipple, 2002). 72 

Following this theoretical principle, several authors have shown that the delineation of flood prone 73 

areas at the large scale can be carried out using simplified methods that rely on basin 74 

geomorphologic feature characterization (e.g., McGlynn and Seibert, 2003; Gallant and Dowling, 75 

2003; Dodov and Foufoula-Georgiou, 2006). This kind of applications were originally hampered by 76 

the scarcity of detailed topographic data, but the advent of new technologies to measure topographic 77 

surface elevation (e.g., GPS, SAR, SAR interferometry, and laser altimetry), combined with the 78 

growing power of computers and the development of Geographic Information Systems (GIS), has 79 

given a strong impulse to the development of geomorphic approaches for valley bottoms 80 

identification using Digital Elevation Models (DEMs) as main data source.  81 

We should be aware that while the first class of approaches (hydrologic and hydraulic) are able to 82 

appropriately identify and delimitate flood hazard areas, the second class (geomorphologic) are 83 

useful in ungauged condition to preliminary identify flooded areas. 84 

In this work, we selected three different approaches for DEM-based flood prone areas identification 85 

that are hereafter briefly introduced: the modified Topmodel index approach by Manfreda et al. 86 
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(2011), a linear binary classifier by Degiorgis et al. (2012, 2013) and a inundation hydro-87 

geomorphic characterization algorithm by Nardi et al. (2006, 2013). For simplicity, they will be 88 

named Geomorphic Method 1 (GM1), GM2 and GM3, respectively.  89 

GM1 is based on the topographic index by Kirkby (1975), defined as ln(Ad/tanβ), as a function of 90 

the local upslope contributing area (Ad) and the local slope (tanβ). This index, as representative of 91 

the runoff production and storage mechanism, is a good indicator of frequently saturated areas as 92 

well as flood-prone areas, as recently investigated by Manfreda et al. (2011) that propose an 93 

improved index by changing the relative weight of the drained area with respect to the local slope 94 

introducing an exponent n (n<1) for the term Ad. This exponent was introduced in order to provide a 95 

measure of the relative value assumed by the hydraulic radius (~Ad
n) in a given point that represents 96 

a better descriptor of flood exposure. This index was used to develop a simplified procedure for the 97 

identification of flood-exposed areas. 98 

Expanding the idea of using morphological indices for the description of flood prone areas, 99 

Degiorgis et al. (2012) investigated the relationship between several morphological features and 100 

flood hazard at the catchment scale using linear binary classifiers. Such procedure, here named 101 

GM2, is based on five selected morphologic features derived from DEMs. According to this work 102 

application, the best-performing feature is the difference in elevation between the location under 103 

exam and the downstream river node to which the site is hydrologically connected.  104 

The GM3 estimates the variable water level along the river network and, by evaluating the elevation 105 

difference with surrounding areas, identifies the flooded area. This hydro-geomorphic algorithm, 106 

representing an extension of the geomorphic constant water level method by Williams et al. (2000), 107 

is based on the principle that flood-related erosional and depositional processes shaped the 108 

floodplain itself. As a result, the energy associated to these physical river flow phenomena is 109 

expressed in elevation terms to identify flood prone areas along fluvial valleys. 110 

The three above-mentioned studies laid the groundwork for the present research that tackles the 111 

problem of the identification of the dominant topographic controls on the extend of flood prone-112 



  

 6

areas, where inundation is most likely to happen. This research question motivates this work that, 113 

by investigating the outcomes of the three selected techniques on two sub-catchments of the Tiber 114 

River in Central Italy, provides a useful discussion for understanding the simulated flooded 115 

areas behaviour as a function of the morphological indices. The aim is to better comprehend the 116 

potential and limitations of each algorithm to identify the most suitable geomorphic parameters and 117 

modelling approaches for the delineation of flood prone areas over large regions.  118 

 119 

2 The study area and dataset: the Tiber River in Central Italy 120 

The Tiber River originates from the Apennine Mountains in Emilia-Romagna (Fumaiolo mountain, 121 

1407 m a.s.l.) and flows for 405 km in a generally southerly direction through Umbria and Lazio 122 

towards the Tyrrhenian Sea. It is the largest river basin in central Italy with a drainage area of 123 

17.375 km
2
 (Figure 1). 124 

The Tiber River Basin Authority (TRBA) plan reports that the dominant land use for the basin is 125 

agriculture that covers about 53% of the surface, while approximately 39% is forested and 5% is 126 

urbanized. Its mean discharge at the outlet is approximately 230 m
3
/sec, while the highest historical 127 

flood discharge was recorded in 1598 with a peak flow of about 4000 m
3
/sec at the outlet (e.g., 128 

Calenda et al., 2005). This extraordinary value, corresponding to an estimated return period of 129 

500year, have been reconstructed starting from the ten surviving flood markers that commemorate 130 

the 1598 flood. 131 

 132 

For the purpose of this work, the study area is represented by the upper Tiber River basin, which is 133 

characterized by a complex topography that is mainly hilly with elevation ranging from 100 to 1500 134 

m a.s.l.. The selected sub-catchments are: the upper Tiber River, with an area of about 5000 km
2
, 135 

and the Chiascio River (one of the main left tributaries of Tiber River), with a drainage area of 136 

approximately 727 Km
2
. See Figure 1 for the geographic and topographic setting of the two selected 137 

study basins. 138 
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Finally, it is extremely instructive to provide a preliminary description of the alluvial plain based on 139 

the geological information available over the area. This area may be considered as the maximum 140 

extend for any study related to flooding process. In fact the three formations that may be considered 141 

part of the river system from the geological point of view identify a significant portion of the river 142 

basin (see Figure 2) that do not necessarily correspond with the exposed to flood inundation under 143 

the scenario considered in the present work. 144 

 145 

2.1 Standard flood maps 146 

Several hydrologic and hydraulic studies, with different levels of detail, are available for this river 147 

basin. In particular, the “Piano di Assetto Idrogeologico” or PAI (Law Decree 183/1998 and 148 

49/2010 implementing of the European Flood Directive 2007/60/EC) developed by TRBA contains 149 

flood hazard and risk maps based on detailed standard hydrologic and hydraulic models as well as 150 

guidelines and procedures for mitigation measures to be adopted for an integrated sustainable and 151 

safe urban development at the basin scale (TRBA PAI, 2010).  152 

The TRBA PAI was developed using high precision bathymetric surveys of the channel surveyed as 153 

cross sections with average spacing interval of 200-400 meters, for a total of 1800 cross sections 154 

over a length of about 700 km. This detailed fluvial morphology was used as main input of a 1D 155 

hydraulic model simulating the effect of the design hydrographs considering return periods of 50, 156 

200, and 500 years. Hydraulic simulation was carried out by the use of two models: the HEC-RAS 157 

(Hydrologic Engineering Center - River Analysis System – HEC-RAS, 2008) and the FRESCURE 158 

(FREe Surface CURrent Evaluation – TRBA 2010). The second one has been used in parallel with 159 

HEC-RAS for validation and comparison of the results.  160 

A graphical layout of TRBA flood map is given in Figure 3, where: the dark blue line is the 161 

reference drainage network; red identify flood-prone areas derived from hydraulic studies of the 162 

standard PAI; the green areas are the so-called “marginal hazard areas”, introduced by Degiorgis et 163 
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al. (2013). It is necessary to underline that the marginal hazard areas are identified as the ensemble 164 

of the DEM cells that are: i) directly drained by the reference river network  (dark blue of Figure 165 

3.B); ii) not flowing through the streams depicted in light blue in Figure 3.B; iii) not recognized as 166 

prone to floods. This area is identified in order to define a study domain for the geomorphic 167 

methods proposed herein.  168 

2.2 DEM and the stream network  169 

The DEM used in this work is obtained from the HydroSHEDS dataset 170 

(hydrosheds.cr.usgs.gov/index.php), a remotely sensed elevation data product originated from the 171 

NASA Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution that is approximately 172 

82 m. The Hydrosheds DEM is characterized by two sub-products: the VOID-filled (DEM–VOID) 173 

and the hydrologically CONditioned (DEM–CON) elevation model. In DEM–VOID the no-data 174 

voids are filled and the main elevation inconsistencies removed. DEM–CON is further conditioned 175 

to produce a river network coherent with the actual network (stream burning by decreasing the 176 

elevation of DEM cells along digitized river channels). Note that, since the conditioning process of 177 

the DEM-CON significantly alters the original elevation data, its use is limited only to the drainage 178 

network identification procedures, while the quantitative measures of morphologic characteristics 179 

(e.g., local slope, curvature or elevation difference between points) are derived from the original 180 

DEM–VOID data. 181 

The reference drainage network, used by the three selected methods, is derived from the 182 

hydrologically conditioned DEM (DEM-CON) adopting the stream network delineation procedure 183 

proposed by Giannoni et al. (2005). Such algorithm stems from the classical slope-area method 184 

(Montgomery and Dietrich, 1988) and takes into account both the contributing area, A, and the local 185 

slope, S for the identification of channel initiation. In particular, channel heads are located at cells 186 

where the quantity AS
k
 exceeds a given threshold that, in the present case, was set equal to 10

5
 m

2
, 187 
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while the channel path to the outlet is identified by following the steepest direction (Jenson and 188 

Domingue, 1988; Nardi et al., 2008). 189 

 190 

3 Methods and their application 191 

In the present section, the three selected methods (GM1, GM2, GM3), already introduced in Section 192 

1, are described in more technical details in order to provide an overview of the input data and main 193 

characteristics and specification of the procedures (see Figure 4). As a general remark, the three 194 

methods have an increasing level of complexity and require different input. GM1 and GM2 are only 195 

based on geomorphic features derived from the DEMs, while the GM3 is a hydro-geomorphic 196 

approach and requires also information on the design flood peak at the basin outlet or the 197 

assignment of inundation depths for each channel node. This implies that the GM3 can be used 198 

starting from a preliminary hydrological study on the flood flow statistics for a given river basin and 199 

may be used without calibration, while GM1 and GM2 requires a calibration based on pre-existent 200 

flood maps for at least a subplot of the study area. 201 

3.1 The Modified Topographic Index 202 

The simulation of the catchment response to a precipitation event by means of topographic analysis 203 

dates back to Kirkby (1975) that proposed the topographic index, defined as ln(Ad/tanβ), as a 204 

function of the local upslope contributing area per unit contour (Ad) and the local slope (tanβ), in 205 

order to morphologically index the runoff production. The term “Ad” reflects the tendency of water 206 

to accumulate in certain locations of the basin, while the term “tanβ” represents the tendency of the 207 

gravitational force to route the water downhill. Therefore, the cells corresponding to high values of 208 

topographic index will tend to saturate first and are indicator of areas characterized by high specific 209 

contributing area, or limited slope. This index is commonly used to quantify topographic control on 210 

numerous hydrological processes and applications for water flow path estimation and soil moisture 211 

redistribution (Beven and Kirkby, 1979; Burt and Butcher, 1985; Moore et al., 1991).  212 
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This index is also a good flood-prone areas as recently highlighted by Manfreda et al. (2011) and 213 

Jalayer et al. (2014). In particular, Manfreda et al. (2011) proposed an improved index by changing 214 

the relative weight of the drained area with respect to the local slope introducing an exponent n 215 

(n<1) for the term Ad. The aim of such assumption is to provide a measure of the relative value 216 

assumed by the hydraulic radius in a given point. This principle, that generally refers only to the 217 

channelized flow,  is roughly applied to the whole basin.  By tuning the parameter n, the relative 218 

weight of the two terms of the expression may be modified, giving more or less relevance to local 219 

slope or to drainage area.  220 

This index, named by the authors Modified Topographic Index, is defined as: 221 

 [1]

 222 

Manfreda et al. (2011) observed that the portion of a basin exposed to flood inundation is generally 223 

characterized by a TI� higher than a given threshold, τ. According to this concept, it is possible to 224 

develop a simple procedure to detect areas exposed to flood inundation by identifying the correct 225 

exponent and selecting the right threshold that optimizes the simulated flood map. This method was 226 

also used by Di Leo et al. (2011) to produce an automated procedure for the detection of flood 227 

prone areas, named r.hazard.flood (included in the GRASS GIS open source platform). 228 

The calibration of the parameters τ and n can be obtained through the comparison between the flood 229 

prone area obtained with GM1 and the pre-existent flood inundation map obtained with hydraulic 230 

simulation using classical statistical measures of the performance of a binary classification test (e.g., 231 

Fawcelt, 2006).  232 

This kind of approach is widely used in medicine tests, such as genetic tests and blood tests for 233 

various diseases or conditions, are far from infallible. A test can produce two kinds of errors: a false 234 

positive result (meaning that the test indicates presence of the disease when it is not there) or a false 235 

negative result (meaning that the test indicates absence of the disease when it is in fact present). In 236 

general, a population of tested individuals may be divided into four groups:  237 

TI
m

= ln
A

d

n

tan(β )
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 • True Positives (TP): those who test positive for a condition and are positive (i.e., have the 238 

condition),  239 

• False Positives (FP): those who test positive, but are negative (i.e., do not have the condition),  240 

• True Negatives (TN): those who test negative and are negative,  241 

• False Negatives (FN): those who test negative, but are positive.  242 

 243 

Given the above definition, the standard metrics used to identify the errors (Type I and Type II) and 244 

correct prediction: 245 

• True positive rate: rtp =TP/(TP+FN); 246 

• False positive rate (Error Type I): rfp =FP/(FP+TN); 247 

• True negative rate: rtn =TN/(FP+TN); 248 

• False negative rate (Error Type II): rfn =1−TPR. 249 

In this case, we substitute the disease with the presence of a flood prone area and the condition with 250 

a specific morphological feature. A similar approach is also used in GM2. 251 

In particular, the errors of Type I and II can be defined as:  252 

  ��� =
�	
��∩	���

�	
��
 (Type I),  ��� = 	
��∩�	���

	
��
 (Type II)

 [2]

 253 

where: STRBA and SGM1 describe the domain predicted as flooded by the TRBA and by the GM1; 254 

NSTRBA and NSGM1 are the areas predicted as non-flooded by the hydraulic model and the GM1, 255 

respectively.  256 

The sum of the two errors (���+ ��� ) represents an objective function that can be used for 257 

calibration purposes.  258 

3.2 The linear binary classifiers 259 

GM2 identifies areas subject to the flooding hazard through pattern classification techniques using 260 

several morphologic features. In particular, the linear binary classifier have been applied using one 261 

or a combination of two morphologic features.  262 
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In this work, the following DEM-derived quantitative morphologic features are taken into account: 263 

1. the contributing area, A [m
2
]; 264 

2. the surface curvature, ∇2
H [-], defined as the Laplacian of the elevation; 265 

3. the local slope, S [-], estimated as the maximum slope among the eight possible flow directions 266 

that connect the cell under exam to the adjacent cells;  267 

4. the distance of each cell from the nearest stream, D [m], defined as the length of the path 268 

hydraulically connecting the location under exam to the nearest element of the drainage network; 269 

5. the relative elevation to the nearest stream, H [m], defined as the  difference in elevation between 270 

the cell under exam and the nearest element of the drainage network.  271 

All the above features are displayed in Figure 5 for the portion of the Tiber River basin considered 272 

in the present study.   273 

These features, related to the location of the site under exam with respect to the nearest hazard 274 

source (i.e., the nearest stream), are considered separately or mixed leaving the matching and 275 

weighting to an optimization procedure. A binary classifier was used to identify the best performing 276 

feature among the five above mentioned (e.g., Fawcelt, 2006).  277 

Under such assumption, classification is obtained by using a moving threshold that discriminate 278 

between two portions of an area according to the specific value assumed by a given feature in a 279 

given point. This leads to the construction of the Receiver Operating Characteristics (ROC) curves 280 

that describes the value of the true positive rate as a function of the false positive rates by changing 281 

the threshold value. For any given threshold, the true positive rates, rtp, defines the percentage of 282 

flooded area correctly identified, while the false positive rate, rfp, defines how many incorrect 283 

flooded pixels have been identified by the specific threshold among all samples predicted to be non-284 

flooded by TRBA. We recall that the rfp was already introduced in the GM1 and was identified as 285 

overestimation error.  286 

The Area Under the ROC Curve (also known as AUC) is used to compare the performances 287 

obtained with each morphologic feature. In general, an AUC equal to one represents the optimal 288 
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condition for which rtp= 1 and rfp = 0. This measure is used only to evaluate the relative 289 

performances of each morphological feature, but not for the calibration of the threshold necessary to 290 

depict a map of flood-prone areas that will be obtained using a procedure similar to the one 291 

introduced in GM1.  292 

From an operational point of view, the relationships between the selected morphologic features and 293 

the flood map are first calibrated at the sample scale and then applied to extend the hazard 294 

information at the basin scale. 295 

 296 

3.3 Hydro-geomorphic method  297 

GM3 is an automated GIS-based procedure, implementing a set of terrain analysis algorithms for 298 

flooded area delineation by linking a simplified inundation model with the geomorphic properties of 299 

the stream network and the fluvial buffer morphometry (Nardi et al., 2006; Nardi et al., 2013). The 300 

inundation model is defined as a function of the hydrologic characteristics of a predefined design 301 

flood event designed based on the flow peak discharge at the basin outlet.  302 

This approach is based on three main steps:  303 

1. DEM-based identification of the alluvial plain cross-sectional morphometry; 304 

2. Identification of the inundation flow depth at the basin outlet corresponding to a predefined 305 

design flood peak discharge of given return period and estimation of the variable flow 306 

depths along the river network by using a power law scaling with the contributing area;  307 

3. The absolute flood level elevation, assigned to each cross section, is compared to 308 

surrounding areas to identify the inundation extent that is the hydro-geomorphic flooded 309 

area. 310 

The main input parameters of the method are the DEM and the design outlet flood discharge (Qo) 311 

that may be obtained from stream flow records, post flood field measurements or statistical flood 312 

frequency analyses. 313 
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In Step 1 a sample set of cross sections are automatically extracted from the DEM to adequately 314 

represent the morphology. In this phase, the simulated river network is further simplified removing 315 

meanders that may alter the cross sections description. 316 

Step 2 is based on the estimation of a variable flow level or flood stage (h) that is quantified for 317 

each stream cell as function of the contributing area (A), by using the hydraulic scaling relation 318 

proposed by Leopold and Maddock [1953]:  319 

ℎ = ���

 [3]

 320 

where h is the water depth [m], A is the contributing area at the cell [m2], and a [m1-2b] and b [-] are 321 

the power law coefficient and exponent, respectively.  322 

The flood stages h are typically not available at a sufficient number of locations for a proper 323 

calibration of a and b parameters. For this reason, GM3 implements a DEM-based algorithm for the 324 

estimation of the variable flood stage along the stream network that makes use of a predefined peak 325 

discharge value for the outlet. The corresponding peak values along the entire stream network are 326 

obtained by scaling the peak discharge through the explicit equation of the Geomorphic 327 

Instantaneous Unit Hydrograph (GIUH) method. Once the peak discharge is defined for a selected 328 

location, the corresponding water level is estimated using the uniform flow discharge equation in 329 

the Manning form.  330 

The water level is, then, derived at a number of locations in the stream network to provide paired 331 

values of h and A. Those values are plotted on a log-log plot to estimate the best fitting line. 332 

Resulting a and b parameters, thus, represent respectively the intercept and slope of the simulated 333 

hydraulic scaling relation (Equation 3). The estimated water level is compared to the elevation of 334 

neighbouring cells defining the potentially inundated area.  335 

In this way the climatic and hydrologic regime of the region is enforced into the model (the GIUH 336 

equation uses as input parameters the design rainfall intensity and the peak discharge at the outlet) 337 

following the theoretical principle of the original work: the floodplain extracted from DEMs by 338 
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capturing the topographic signature of historical flood processes (Nardi at al., 2006; Nardi et al., 339 

2013). In fact, GM3 performs the floodplain delineation in hydrogeomorphic terms by filtering 340 

flood prone areas as respect to the specific flood flow height associated to the pour point of the 341 

corresponding basin and not in geometric terms. 342 

 343 

4 Application and results 344 

The outcomes of the three methods are presented and investigated using as reference dataset the 345 

standard flood inundation maps of the TRBA, computed for a return period of 200 years. Maps 346 

provided by the TRBA may be affected by errors due to the modelling assumptions, survey errors, 347 

infrastructures, etc., but still represent the results of the most intensive and detailed study that is the 348 

actual best available information on flood hazard for the specific area.  349 

Each algorithm has been calibrated using the same procedure originally suggested by the authors of 350 

the methods. Nevertheless, the domain of study is limited to the marginal hazard areas in all 351 

procedures and also the final comparison is made using common error metrics in order to provide a 352 

common ground of comparison. It is necessary to remark that methods have significant differences 353 

in their philosophy and calibration procedures that may somewhat influence the results. In fact, the 354 

GM1 and GM2 were numerically calibrated using objective functions, while parameters 355 

downstream hydraulic geometry relationship in GM3 are tuned by selecting the final calibration set, 356 

among the different combinations satisfying  the enforcement of the predefined outlet flood flow 357 

level of given return period, by means of a qualitative comparison with the standard TRBA flood 358 

map. 359 

In the following, we provide a description of the application of each procedure that was made 360 

independently from each other.  361 
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4.1 The modified topographic index 362 

The calibration of the two parameters n and τ of the GM1 was performed using only the portion of 363 

the basin within the marginal hazard areas, which provides a description of the flooded area along 364 

the main river and a portion of few tributaries. To this end, an iterative procedure was used, varying 365 

both the values of n and τ, searching for the minimum of the sum of the two error functions (���+ 366 

��� ) previously introduced (see Section 3.1). Comparison is made between the areas with 367 

topographic index (described in Figure 6.A) higher that the given threshold with the hazard maps 368 

provided by the TRBA searching for the parameters values that minimize the total error ((���+ ���). 369 

The resulting parameters are:  370 

- exponent n=0.020; threshold τ=3.1 for the Upper Tiber River basin, where the error ���= 371 

0.062 and ���= 0.387; 372 

- exponent n=0.00; threshold τ=2.6 for the Chiascio River basin, where the error ���= 0.098 373 

and ���= 0.486. 374 

Once the optimal parameters are calibrated over the marginal hazard areas, they are used to map 375 

areas exposed to flood inundations over the portion of the sub-catchments not included in the 376 

original River Basin Authority PAI, as shown in Figure 6.B. In this case, calibrated parameter 377 

values evidenced that the rule of the slope is a dominant one with respect to that of the contributing 378 

area, because the parameter n obtained from the calibration is almost zero in both cases.  379 

It is necessary to remark that our previous experiences highlighted that the application to rivers 380 

featuring low slope provides higher errors. This is confirmed in the present application where the 381 

selected area cover an area with a gentle slope, but the choice was influenced by the need to select 382 

an area for models inter-comparison. In particular, GM3 imposed the constrain on the selection of 383 

the study area that could not be extended on basins with an area lower than 500km
2
.  384 

 385 
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4.2 The linear binary classifier 386 

The morphometric features, introduced in Section 3.2, have been used as a single feature or in 387 

combination of two. The first step of GM2 is characterized by the distinction between flood-prone 388 

areas (class 1) and marginal hazard areas (class 0). To this end, data are first normalized, so that 389 

corresponding values lie between -1 and 1.  390 

GM2 was first adopted in a single feature framework and later in a two-features basis. ROC curves, 391 

defined as the set of pairs (rfp, rtp) obtained by varying the threshold of the classifier, were derived 392 

for each feature in order to select the most efficient feature (seeFigure 7). The optimal normalized 393 

threshold value is obtained by minimizing the sum of the false positive rate and the false negative 394 

rate rfp + (1 - rtp) assigning equal weights to the two rates. It is necessary to remark that each data 395 

point is assigned to the class 0 if the feature is above the threshold, and to the class 1 if it is under 396 

the threshold for the classifiers based on H, D, and S and vice-versa for the features ∇2
H and A. 397 

Such assumption allows obtaining ROC curves whose area under the curve are greater than 0.5, that 398 

is the value associated to a completely random classifier. 399 

It is necessary to underline that the objective function adopted in GM2 is the same of GM1. The 400 

main difference between the two methodologies is the fact that GM1 optimizes two parameters (n 401 

and τ), while GM2 works only on the relative value of the threshold trying to identify the best 402 

performing geomorphological feature.  403 

The Figure 7.A and B describe the ROC curves associated with the linear binary classifiers obtained 404 

by separately thresholding each feature, defined in terms of false positive and true positive rates for 405 

both the Tiber River and the Chiascio sub-catchments. The graph provides a general description of 406 

the ability of each classifier in detecting flood prone areas.  407 

For a quantitative evaluation of the results, we collected the values of the optimal normalized 408 

threshold, and the corresponding false positive rate r��, the true positive rate r��, the sum rfp+(1-rtp) 409 
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obtained for each features, and the area under the ROC curve in Table 1 (for the Tiber River) and in 410 

Table 2 (for the Chiascio River) in order to objectively analyse the performance of the selected 411 

parameters that are H, S and D, respectively.  412 

Along with the single feature classifier, linear binary classifiers as a function of two features were 413 

also tested. In this case 10 couples of normalized features (see Table 3 and 4) are considered using 414 

an index obtained by a linear combination of the two. Therefore, assigned the two normalized 415 

features x1 and x2, the algorithm adopts the following function for the classification: 416 

 

 [4]

 417 

where:  S(·) in the Heaviside step function, x1 and x2 are the considered normalized features, α1 and 418 

α2 the associated coefficients in the linear combination, and α3 the threshold.  419 

In order to simplify the search for the optimal parameters, the parameter space is reduced to two 420 

dimension assuming: , , , where  and 421 

. Also in this case, the normalized threshold is obtained by minimizing the sum of the false 422 

positive rate and the false negative rate rfp + (1 - rtp).  423 

The procedure is repeated for each of the 10 possible pairs of normalized features and the results for 424 

the optimal two-features binary classifiers, searched by discretizing θ and t, are summarized in 425 

Tables 3 and 4.  426 

Once the optimal two-feature classifier has been identified, this classifier associates the pattern (x1, 427 

x2) to the class 0 if  to the class 1 otherwise. The corresponding ROC curve can be 428 

drawn varying the threshold α3, while  and  are fixed.  429 

The Figure 8.A and B compares the ROC curves associated with the best two-features classifiers 430 

and the best single-features classifiers previously obtained. Such comparison was used in order to 431 

understand if the linear combination of two features might produce some advantages with respect to 432 
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the single feature classifier. Results shows that the best performing couple of parameters is 433 

represented by D and S in the Tiber River and H and D in the Chiascio River.  434 

The two-feature classifier obviously provides a lower relative error measured by rfp + (1 - rtp).  It 435 

identifies properly the 93% (and 85% for the Chiascio River) of flood-prone areas, with a reduction 436 

of the overestimation errors (rfn) respect to the best single-feature. Nevertheless, the performances 437 

obtained with the single feature classifier based on relative elevation H alone are close to those 438 

obtained with the two-features in both river basins. Moreover, the H feature provides a slightly 439 

increase of rtp, which means that identifies 93% (and 90% for the Chiascio River) of the areas 440 

exposed to flood inundation. Considering these aspects and the fact that the single feature classifier 441 

has the advantage to be simpler and requires less computational time, we adopted in the following 442 

the classifier based on the single feature H for comparison.  443 

These results are consistent with those obtained in previous studies (Degiorgis et al., 2012) and 444 

confirm that increasing relative elevation from the risk source corresponds to lower hazard level. 445 

Another relevant advantage that one should underline in the use of the morphological feature H is 446 

the fact that the dimensionless threshold seems to be stable among the two selected study cases. 447 

This may be extremely useful when the flood map has to be extended in other sub-catchments of the 448 

same area.  449 

 450 

 451 

4.3 The hydro-geomorphic delineation method 452 

The third method is more complex, with respect to the first two, since it is based on advanced 453 

terrain analysis together with low frequency (return time higher than 200-500 years) flood flow 454 

heights and discharges, which are generally not available. The method is calibrated using the peak 455 

discharge at the basin outlet to estimate the hydraulic geometry parameters. As already explained in 456 
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the previous paragraphs, this algorithm requires the value of peak discharge at the basin outlet; in 457 

the present case, this was set with reference to a return period of 200 years and extracted from the 458 

TRBA standard flood mapping plan and studies. In the present case, the values adopted for the peak 459 

discharge are 2700m
3
/s and 1300 m

3
/s for the Tiber River and the Chiascio at the outlet.  460 

Figure 9 provides an example of the calibration of the method applied over the study area. In 461 

particular, the boundary of the hydro-geomorphic flooded area is compared with the standard 462 

TRBA flood map. There is a good agreement in general on the main river network with minor 463 

discrepancies that are clearly visible on the tributaries that are due to a misleading simulated stream 464 

network or due to the present of significantly urbanized areas. Such discrepancies in general are the 465 

result of the resolution of the DEM that is not able to accurately capture the morphology of the 466 

riverbanks, roads or other infrastructures. The overall performance of GM3 is presented in Figure 467 

10. 468 

 469 

4.4 Results comparison  470 

To provide a visual comparison of the results of the three selected methods, maps of the areas 471 

exposed to flood inundations are visually compared with those predicted by the TRBA (Figure 11). 472 

In addition, Figure 12 provides a sequence of subsets of the global map in order to magnify the 473 

details of the results obtained by each procedure for two sample areas within the study domain. 474 

From the visual comparison, it is noted that the flood map obtained using GM1 is characterized by a 475 

larger flooded extent as compared to the other two methods, while GM3 seems to be less 476 

conservative. 477 

Notwithstanding the limitation of the flood map adopted for comparison that may be affected by 478 

modelling errors and inaccuracies, it is necessary to state that such maps are probably the most 479 

accurate available over the area and it is very hard to obtain or find similar flood maps of real event 480 
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at this scale. Therefore, this information was the only available over the Tiber River and according 481 

to our analysis  the three methods provide a reasonable interpretation of areas subject to floods, 482 

highlighting the potential and performances of such geomorphic procedures, which can be easily 483 

applied and generalized over the entire river basin or large regions. Given the different level of 484 

complexity of the procedures adopted model intercomparison should take into account the number 485 

of parameters used for their calibration as well as the significantly different structure  (see GM1 and 486 

GM2 versus GM3). This makes difficult the evaluation of the performances that have been 487 

measured by the same simple metrics introduced in the section 3.2. In particular, the values of 488 

���, ���	, ��� and ��� computed with the three different approaches are reported in Tables 5 and 6 for 489 

the two considered basins in order to provide a comprehensive and objective comparative analysis 490 

of the results.  491 

These rates provides a measure of the ability of a model to correctly identify the flood areas (���), to 492 

discriminate the portion an area that is free of flooding (	���	), and the incorrect identification of 493 

flooded (���) and non-flooded areas (���	). Results highlight the following aspects:  494 

i) The sum of ���	 and ��� provides a measure of the total error that allow a preliminary 495 

evaluation of the performances among methods. According this, the best performing 496 

method is the GM3 on the Upper Tiber River, while GM2 provides better results on the 497 

Chiascio river. This is a first preliminary indication on the scale effect on the different 498 

procedure adopted and it may be influenced by the resolution of the DEM adopted, 499 

which is probably too coarse for the smaller basin. Nevertheless, this limitation does not 500 

affect the performances of GM2 that improve significantly especially in terms of false 501 

positive rate.  502 

ii) The GM1 shows the highest ��� with a high ��� false positive rate, while the GM2 shows 503 

a slightly lower ���  and also a lower ���  (especially for the Chiascio river). Both 504 
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methods provide a small underestimation of the flooded areas that is certainly an 505 

important prerogative of a method for the delineation of flood prone areas.  506 

iii) the GM3 shows a lower ��� in both case studies, and the best performances in terms of 507 

���  and ��� in both studied cases. This result may be partially related to the fact that the 508 

method was calibrated manually, but it is also due to the assumption of the model itself. 509 

It is necessary to underline that GM2 somehow represents a generalization of GM1. In fact, it 510 

searches among a large number of morphological features in order to identify the best performing 511 

one. According to this, it seems that among all morphological features analysed in the present paper 512 

including the modified topographic index, the feature H seems to be the most significant for the 513 

identification of flood prone areas. This feature alone, after a binary classification, was able to beat 514 

the more complex GM3 on the Chiascio river.  515 

This open a perspective for the use of such procedures that may be used to fill a gap in the flood 516 

mapping over the small scale basins. Such finding should be reinforced by additional studies that 517 

are currently undergoing, but it represents a great potential for the flood mapping over large scale 518 

that is currently limited to medium-large size basins.  519 

After all, it is clear that each model has its own potential that can be optimized, using the 520 

information obtained from the present study, trying to understand how to improve these tools.  521 

 522 

 523 

  524 

5 Conclusions 525 

This study provides an investigation on the potential of three parsimonious geomorphic procedures 526 

emphasizing the role played by some morphologic features on flood exposure (e.g., elevation to the 527 
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nearest channel, local slope, topographic convergence). The methodologies are tested on two sub-528 

catchments of the Tiber River: one basin corresponds to the main river valley and one is an 529 

important tributary. Standard flood maps gathered from the TRBA are used for comparison 530 

purposes.  531 

In the present application, the GM1 correctly identifies most of the flood prone areas, but it tends to 532 

overestimate their areal extension. The GM2 provides a lower rtp value, but with a relevant 533 

reduction of rfp. The GM3 seems not able to reach the same rate of true positive rate shown by the 534 

other two simpler methods, but it is more reliable in the identification of non-flooded area. In fact, it 535 

produces the highest ���  value and the lower false positive rate, ��� . GM3 is more impacted by the 536 

low resolution of the DEM, that seems inadequate to represent the flooded area morphology 537 

especially on upper tributaries and where urban features are significant.  538 

Results of this comparative study show the main characteristics of the three selected methodologies 539 

emphasizing limitation and potential of each approach. In particular, it seems that methods based on 540 

morphological indices (GM1 as well as GM2) provides a better description of the valley bottom 541 

where flooded areas occur, but their performances are poorer in the identification of non-flooded 542 

areas where significant overestimation is noted. In this regard GM3 may play the important role of 543 

complementing the non-flooded characterization, since the hydro-geomorphic tool provides a very 544 

small overestimation error (both in terms of false negative rate and true negative rate) in defining 545 

the later extent of fluvial corridors. This result is mainly due to the fact that morphological indices 546 

are not able to detect the positive effect of riverbanks and other artefact. To be noted that GM3 547 

seems to be sensitive to the DEM resolution and its performances shall surely benefit of the 548 

increasing availability of more accurate and detailed DEM that new technologies will make 549 

available in the near future.  550 

As a result, the coupling of next generation digital topographic data with a new integrated terrain 551 

analysis tool integrating an optimal combination of the three selected procedures may pave the 552 
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efficient use of DEM-based morphological approaches for a more reliable classification of flood 553 

risk over large areas.  Furthermore, it would be extremely interesting to try identifying a possible 554 

relationship between the threshold values of the GM1 or GM2 procedures as a function of the 555 

different return period of the flood inundations.  556 

 557 
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 648 

TABLES 649 

 650 

Features τ � ! �"! rfp+(1-rtp) AUC 

As -0.999 0.013 0.108 0.905 0.548 

D -0.982 0.298 0.759 0.539 0.799 

∇2
H 0.018 0.731 0.930 0.802 0.543 

H -0.952 0.336 0.934 0.402 0.867 

S -0.943 0.412 0.935 0.476 0.800 

Table 1. Upper Tiber River basin. The threshold, τ, the false positive rate, � !, the true positive 651 

rate, �"! , the sum � ! + $% − �"!' , and the area under the curve (AUC) for the five selected 652 

features. The best performing feature is highlighted using bold characters.  653 

 654 
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 655 

Features τ � ! �"! rfp+(1-rtp) AUC 

As -0.999 0.058 0.276 0.783 0.614 

D -0.960 0.150 0.835 0.315 0.906 

∇2H -0.017 0.744 0.932 0.813 0.579 

H -0.956 0.188 0.901 0.286 0.935 

S -0.929 0.442 0.877 0.565 0.746 

Table 2. Chiascio River basin. The threshold, τ, the false positive rate, ()*, the true positive rate, 656 

�"!, the sum � ! + $% − �"!', and the area under the curve (AUC) for the five selected features. 657 

The best performing feature is highlighted using bold characters. 658 
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 659 

Pairs of features +* t* � !  �"! rfp+(1-rtp) 

As, D 310 -0.900 0.263 0.724 0.539 

As, ∇2
H 90 0.020 0.731 0.930 0.802 

As, S 310 -0.640 0.412 0.938 0.474 

As, H 310 -0.700 0.337 0.934 0.402 

∇2
H, S 230 -0.500 0.356 0.901 0.456 

∇2
H,H 260 -0.800 0.359 0.950 0.409 

D, ∇2H 180 -0.980 0.331 0.791 0.541 

D, S 210 -0.960 0.287 0.930 0.356 

D, H 240 -0.960 0.301 0.928 0.374 

H, S 210 -0.960 0.262 0.889 0.373 

Table 3. Upper Tiber River. The θ* and t* parameters, the false positive rate � !, the true positive 660 

rate �"!, the sum � ! + $% − �"!' and the area under the curve AUC for the approximately optimal 661 

two features linear binary classifiers. The best performing parameters is highlighted using bold 662 

characters. 663 
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 664 

Pairs of features +* t* � !  �"! rfp+(1-rtp) 

As, D 270 -0.960 0.150 0.835 0.315 

As, ∇2
H 40 -0.540 0.520 0.726 0.794 

As, S 290 -0.880 0.442 0.881 0.561 

As, H 300 -0.900 0.161 0.877 0.284 

∇2
H, S 250 -0.680 0.405 0.850 0.555 

∇2
H,H 270 -0.960 0.139 0.842 0.297 

D, ∇2H 180 -0.960 0.149 0.834 0.315 

D, S 190 -0.940 0.173 0.884 0.289 

D, H 230 -0.960 0.098 0.850 0.248 

H, S 180 -0.960 0.139 0.843 0.296 

Table 4. Chiascio River basin. The θ* and t* parameters, the false positive rate � ! , the true 665 

positive rate �"!, the sum � ! + $% − �"!' and the area under the curve AUC for the approximately 666 

optimal two features linear binary classifiers. The best performing parameters is highlighted using 667 

bold characters. 668 

 669 
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 670 

 Mod. Topographic 

Index 

Single-feature 

binary classifier 

Hydrogeomorphic 

Method 

Ideal value 

True positive rate, �"! 93.8% 93.4% 75.8% 100% 

False negative rate, � , 6.2% 6.6% 24.2% 0% 

True negative rate, �", 61.3% 66.4% 94.3% 100% 

False positive rate, � ! 38.7% 33.6% 5.7% 0% 

 � , +	� ! 44.9% 40.2% 29.9% 0% 

Table 5. Comparison among the three investigated methods in terms of statistical measures of the 671 

performances for the Upper Tiber Basin. 672 
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 673 

 Mod. Topographic 

Index 

Single-feature 

binary classifier 

Hydrogeomorphic 

Method 

Ideal value 

True positive rate, �"! 90.2% 90.1% 60.1% 100% 

False negative rate, � , 9.8% 9.9% 39.9% 0% 

True negative rate, �", 51.4% 81.2% 97.2% 100% 

False positive rate, � ! 48.6% 18.8% 2.8% 0% 

 � , +	� ! 58.4% 28.7% 42.7% 0% 

Table 6. Comparison among the three investigated methods in terms of statistical measures of the 674 

performances for the Chiascio River basin. 675 
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FIGURES 676 

 677 

 678 

 679 

Figure 1. Tiber River geographic and topographic setting in Central Italy. The two selected study 680 

basins are located in the upper Tiber upstream of the Lazio-Umbria boundaries. The Chiascio river 681 

is a left tributary (in orange)..   682 

  683 



  

 684 

 685 

Figure 2. Identification of the alluvial plain based on the geological map of the Upper Tiber River. 686 

Deposits, Alluvial terraces, fluviolacustrine 
and fluvioglacial deposits (Olocene). 

Deposits, Alluvial terraces, fluviolacustrine 
and fluvioglacial deposits (Pleistocene). 

fluviolacustrine and fluvioglacial deposits 
(Pleistocene and Pliocene). 



  

 687 

Figure 3. A) Filled Digital Elevation Model (m a.s.l) derived from SRTM data. B) Summary of the 688 

Tiber Basin Authority studies: reference drainage network (dark blue), flood-prone areas (red), and 689 

marginal hazard areas (green). The dashed boxes describe insets used for a local comparison of the 690 

proposed procedures. 691 

  692 

(A) (B) 
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 693 

Figure 4. Schematic description of the three different algorithms analysed herein.  694 

 695 

 696 
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 697 

 698 

Figure 5. Representation of the basic morphologic features used to identify flood-prone areas of 699 

the Upper Tiber River with the GM2 approach. 700 



  

 701 

Figure 6. A) Maps of the Modified Topographic Index and B) maps of the sub-catchment areas 702 

exposed to flood inundations according to this method; for the Upper Tiber River τ=3.1, for the 703 

Chiascio River τ=2.6). 704 

TIm TIm>τ  
(A) 

(B) 
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 706 

 707 

Figure 7. Receiver Operating Characteristics (ROC) curves for the five selected features for the 708 

Upper Tiber River basin (A) and the Chiascio River basin (B). ROC curves are obtained by 709 

applying a threshold to one of the five features in the dataset, and by varying the threshold. 710 

711 

(A) (B) 



   712 

Figure 8. Receiver Operating Characteristics (ROC) curve and area under the curve (AUC) for the 713 

best two-features classifier, based on the flow path distance to the nearest stream and slope S for the 714 

Upper Tiber River basin (A) and the Chiascio River basin (B). ROC curves and AUCs for the best 715 

single-features classifiers based on H is also reported. 716 

 717 

 718 

  719 
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 720 

 721 

 722 

Figure 9. Identification of flood prone area using the GM3 model: calibration by qualitative 723 

comparison with the standard flood map on the Tiber-Chiascio confluence area. 724 

 725 

  726 



  

 727 

Figure 10. Hydro-geomorphic flooded area delineation results (GM3 model) on the study area as 728 

compared to standard TRBA flood map for 200 years return time 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

200 years 
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 737 

 738 

Figure 11. Maps of the areas exposed to flood inundations according to the three mentioned 739 

methodologies (B, C, and D), compared with those predicted by the Tiber River Basin Authority 740 

(A). 741 

  742 
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 743 

Figure 12. Visual comparison of the performances of the GM1, GM2 and GM3 methods as 744 

compared to standard TRBA PAI flood maps for two different areas: the upper basin (upper boxes) 745 

and the Tiber-Chiascio confluence zone (lower boxes). 746 

 747 
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Highlights 

 

 

Mapping flood hazard on the Tiber River. 

 

Comparative analysis of three different geomorphic approaches for the identification of flood 

prone areas. 

 

New strategies for preliminary flood hazard mapping in ungauged basins. 


