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1 Introduction

The aim of this paper is to state some embedding theorems between function
spaces related to the weight

u(x) = xγe−x−α−xβ

, α > 0, β > 1, γ ≥ 0, x ∈ (0, +∞),(1)

i.e. spaces of functions defined on the real semiaxis, which can grow exponen-
tially at 0 and +∞.

2 Preliminary results

In the sequel c, C will stand for positive constants which can assume different
values in each formula and we shall write C �= C(a, b, . . .) when C is indepen-
dent of a, b, . . .. Furthermore A ∼ B will mean that if A and B are positive
quantities depending on some parameters, then there exists a positive constant
C independent of these parameters such that (A/B)±1 ≤ C.

Moreover, we denote by ‖·‖p the Lp−norm on (0, +∞) for 1 ≤ p ≤ ∞ and,
by a slight abuse of notation, the quasinorm of the Lp−spaces for 0 < p < 1,
defined in the usual way. Finally, Pm will be the set of all algebraic polynomials
of degree at most m.

2.1 Polynomial inequalities

First of all we observe that the exponential part of the weight u, i.e. w(x) =
e−x−α−xβ

can be reduced to a weight belonging to the class F(C2+) defined
by Levin and Lubinsky in [1]. We denote by ετ = ετ (w) and aτ = aτ (w) the
Mhaskar–Rakhmanov–Saff numbers related to w, with

lim
τ→+∞

ετ = 0 , lim
τ→+∞

aτ = +∞ .

From the results in [1], we deduce

ετ ∼
(√

aτ

τ

) 1
α+1/2

(2)

and

aτ ∼ τ 1/β ,(3)

where the constants in “∼” are independent of τ .

Hence we easily get the following restricted range inequality. For any
Pm ∈ Pm, 0 < p ≤ ∞, setting n = m + 
γ�, we have

‖Pm u‖p ≤ C ‖Pm u‖Lp[εn,an] ,
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where C �= C(m,Pm), εn = εn(w) and an = an(w).

The following Bernstein and Markov inequalities have been proved in [3].

Theorem 2.1 Let 0 < p ≤ ∞. For any Pm ∈ Pm, we have

‖P ′m ϕu‖p ≤ C m√
am

‖Pm u‖p(4)

‖P ′m u‖p ≤ C m√
εmam

‖Pm u‖p ,(5)

where ϕ(x) =
√

x and C �= C(m, Pm).

In analogy with the Bernstein and Markov inequalities we have two versions
of the Nikolskii inequalities (see [3]).

Theorem 2.2 Let 1 ≤ p < q ≤ ∞. Then, for any Pm ∈ Pm, we get∥∥∥Pm ϕ
1
p
− 1

q u
∥∥∥

q
≤ C

(
m√
am

) 1
p
− 1

q

‖Pm u‖p(6)

and

‖Pm u‖q ≤ C
(

m√
εmam

) 1
p
− 1

q

‖Pm u‖p(7)

where ϕ(x) =
√

x and C �= C(m, Pm).

2.2 Function spaces and polynomial approximation

Let us now define some function spaces related to the weight u (see [2]). By
Lp

u, 1 ≤ p < ∞, we denote the set of all measurable functions f such that

‖f‖Lp
u

:= ‖fu‖p =

⎛⎝ +∞∫
0

|fu|p (x) dx

⎞⎠1/p

< ∞ ,

while, for p = ∞, by a slight abuse of notation, we set

L∞u = Cu =

{
f ∈ C0(0, +∞) : lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
with the norm

‖f‖L∞u := ‖fu‖∞ = sup
x∈(0,+∞)

|f(x)u(x)| .

To characterize functions in these spaces, we introduce the following moduli
of smoothness. For any f ∈ Lp

u, 1 ≤ p ≤ ∞, r ≥ 1 and 0 < t < t0, we set

Ωr
ϕ(c, f, t)u,p = sup

0<h≤t

∥∥Δr
hϕ (f) u

∥∥
Lp(Ih(c))

,
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where Ih(c) =
[
h1/(α+1/2), c h−1/(β−1/2)

]
, c > 1 fixed, and

Δr
hϕf(x) =

r∑
i=0

(−1)i

⎛⎝r

i

⎞⎠ f (x + (r − i)hϕ(x)) , ϕ(x) =
√

x .

Then we define the complete rth modulus of smoothness by

ωr
ϕ(f, t)u,p = Ωr

ϕ(f, t)u,p + inf
q∈Pr−1

‖(f − q) u‖
Lp(0,t

1/(α+1
2)]

+ inf
q∈Pr−1

‖(f − q) u‖
Lp[c t

−1/(β− 1
2),+∞)

(8)

with c > 1 a fixed constant. Let r ≥ 1 and 0 < t < t0 for some

By means of the main part of the modulus of smoothness, for 1 ≤ p ≤ ∞,
we can define the Zygmund-type spaces

Zp
s (u) =

{
f ∈ Lp

u : sup
t>0

Ωr
ϕ(f, t)u,p

ts
< ∞, r > s

}
,

s ∈ R+, with the norm

‖f‖Zp
s (u) = ‖f‖Lp

u
+ sup

t>0

Ωr
ϕ(f, t)u,p

ts
.

We remark that, in the definition of Zp
s (u), the main part of the rth modulus

of smoothness Ωr
ϕ(f, t)u,p can be replaced by the complete modulus ωr

ϕ(f, t)u,p,
as can be deduced from next theorem.

Let us denote by Em(f)u,p = infP∈Pm ‖(f − P ) u‖p the error of best polyno-
mial approximation of a function f ∈ Lp

u, 1 ≤ p ≤ ∞. The following Jackson,
weak Jackson and Stechkin inequalities have been proved in [2].

Theorem 2.3 For any f ∈ Lp
u, 1 ≤ p ≤ ∞, and m > r ≥ 1, we have

Em(f)u,p ≤ C ωr
ϕ

(
f,

√
am

m

)
u,p

,(9)

and, assuming Ωr
ϕ(f, t)u,p t−1 ∈ L1[0, 1],

Em(f)u,p ≤ C

√
am
m∫

0

Ωr
ϕ(f, t)u,p

t
dt , r < m .(10)

Finally for any f ∈ Lp
u, 1 ≤ p ≤ ∞, we get

ωr
ϕ

(
f,

√
am

m

)
u,p

≤ C
(√

am

m

)r m∑
i=0

(
i√
ai

)r
Ei(f)u,p

i
.(11)

In any case C is independent of m and f .
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3 Embedding theorems

Now, using the Nikolskii inequalities (6) and (7), by arguments analogous
to [4,5], we can prove some embedding theorems, connecting function spaces
related to the weight u defined in the previous Section.

Theorem 3.1 For any f ∈ Lp
u, 1 ≤ p < ∞, such that

1∫
0

Ωr
ϕ(f, t)u,p

t1+η/p
dt < ∞ ,(12)

where η = (2α + 2)/(2α + 1), we have

Em(f)u,∞ ≤ C

√
am
m∫

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt ,(13)

Ωr
ϕ

(
f,

√
am

m

)
u,∞

≤ C

√
am
m∫

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt(14)

and

‖fu‖∞ ≤ C
⎧⎨⎩‖fu‖p +

1∫
0

Ωr
ϕ(f, t)u,p

t1+η/p
dt

⎫⎬⎭ ,(15)

where C depends only on r.

Theorem 3.2 For any f ∈ Lp
u, 1 ≤ p < ∞ such that

1∫
0

Ωr
ϕ(f, t)u,p

t1+1/p
dt < ∞ ,(16)

we have

Em(f)ϕ1/pu,∞ ≤ C

√
am
m∫

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt ,(17)

Ωr
ϕ

(
f,

√
am

m

)
ϕ1/pu,∞

≤ C

√
am
m∫

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt(18)
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and

‖fϕ1/pu‖∞ ≤ C
⎧⎨⎩‖fu‖p +

1∫
0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

⎫⎬⎭ ,(19)

where C depends only on r.

From Theorem 3.2 we can easily deduce the following corollary, useful in
several contexts.

Corollary 3.3 If f ∈ Lp
u, 1 ≤ p < ∞, is such that

1∫
0

Ωr
ϕ(f, t)u,p

t1+1/p
dt < ∞ ,(20)

then f is continuous on (0, +∞).
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