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Abstract We study Levi harmonic maps, i.e., C∞ solutions f : M → M ′ to τH(f ) ≡
traceg(ΠHβf ) = 0, where (M,η,g) is an (almost) contact (semi) Riemannian mani-
fold, M ′ is a (semi) Riemannian manifold, βf is the second fundamental form of f ,
and ΠHβf is the restriction of βf to the Levi distribution H = Ker(η). Many exam-
ples are exhibited, e.g., the Hopf vector field on the unit sphere S2n+1, immersions
of Brieskorn spheres, and the geodesic flow of the tangent sphere bundle over a Rie-
mannian manifold of constant curvature 1 are Levi harmonic maps. A CR map f

of contact (semi) Riemannian manifolds (with spacelike Reeb fields) is pseudohar-
monic if and only if f is Levi harmonic. We give a variational interpretation of Levi
harmonicity. Any Levi harmonic morphism is shown to be a Levi harmonic map.
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1 Introduction

The present paper is devoted to the study of a class of variational principles whose
corresponding Euler–Lagrange equations are degenerate elliptic and generalize or-
dinary harmonic map theory in the spirit of sub-Riemannian geometry (cf. [49]),
i.e., given a smooth map f : M → M ′ of (semi) Riemannian manifolds (M,g) and
(M ′, g′) one replaces the Hilbert–Schmidt norm of df by the trace with respect to
g of the restriction of f ∗g′ to a given codimension-one distribution H on M (rather
than applying the same construction to the full f ∗g′). Omitting a direction (the conor-
mal η to H) has far-reaching consequences, e.g., the tension tensor is the trace of the
restriction to H of the second fundamental form βf of f (rather than the trace of the
full βf ), the principal part in the Euler–Lagrange system is a second-order differential
operator �H whose ellipticity degenerates precisely in the missed direction η. When
M is a strictly pseudoconvex CR manifold and H is its Levi distribution, the operator
�H is the sublaplacian (cf. [21]) and one is led to subelliptic problems. Indeed, E.
Barletta et al. introduced (cf. [6]) pseudoharmonic maps f : M → M ′ from a nonde-
generate CR manifold M endowed with a contact form θ into a Riemannian manifold
M ′, as a global manifestation of J. Jost & C-J. Xu’s subelliptic harmonic maps (from
an open set in R

2n+1 endowed with a Hörmander system of vector fields, cf. [33]).
When M ′ is itself a nondegenerate CR manifold carrying the contact form θ ′, a re-
sult in [6] describes pseudoharmonicity of CR maps f : M → M ′. R. Petit, [47],
considered the following (pseudohermitian analog to the) second fundamental form

βf (X,Y ) = ∇′f
Xf∗Y − f∗∇̂XY, X,Y ∈ X(M), (1.1)

where ∇̂ is the Tanaka–Webster connection of M and ∇′f = f −1∇′ is the pull-
back of the Levi-Civita connection ∇′ of M ′ (a connection in the pullback bundle
f −1T M ′ → M). The approach in [6] is to replace ∇′ by an arbitrary linear con-
nection D′ on M ′, consider the restriction ΠHβf of (1.1) to the Levi distribution
H = Ker(θ), and take the trace with respect to the Levi form Gθ . Then f is pseudo-
harmonic (with respect to the data (θ,D′)) if τ(f ) ≡ traceGθ (ΠHβf ) = 0.

Recently, R. Petit et al. [20], studied contact harmonic maps, i.e., C∞ maps
f : M → M ′ from a compact strictly pseudoconvex CR manifold M into a contact
metric manifold M ′ which are critical points of the functional

E(f ) = 1

2

∫
M

∥∥(df )H,H′
∥∥2

θ ∧ (dθ)n,

where θ is a contact form on M and (df )H,H′ = prH′ ◦f∗ : H → f −1 H′.
J. Konderak & R. Wolak, [37], introduced transversally harmonic maps as foliated

maps f : (M, F , g) → (M ′, F ′, g′) between foliated Riemannian manifolds satisfy-
ing a condition similar to the vanishing of the tension field in Riemannian geometry.
The approach there is to use the canonical adapted connections (in the transverse
bundles of the given Riemannian foliations F and F ′) to build a foliated analog
βf of the second fundamental form and then take the trace of βf with respect to
the given holonomy invariant Riemannian bundle metric gQ in the transverse bundle
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Q ≡ ν(F ) → M . A variational interpretation of the resulting equations

tracegQ
(βf ) = 0 (1.2)

was given by A. Tommasoli et al. [22], who considered the variational principle
δET (f ) = 0 for the transverse energy functional

ET (f ) = 1

2

∫
M

‖dT f ‖2dvg (1.3)

and showed that the corresponding Euler–Lagrange equations agree with (1.2) if and
only if the source foliation F is harmonic. We note that, for the special case primarily
considered in this paper, i.e., that of a contact metric manifold (M,η,g), the flow Fξ

defined by the Reeb vector field ξ is a Riemannian foliation (equivalently, g is bundle-
like) if and only if M is a K-contact metric manifold, i.e., ξ is a Killing vector field
(and then Fξ is totally geodesic).

As a natural continuation of the ideas in [6], we introduce the notion of a Levi
harmonic map f : M → M ′ from an almost contact semi-Riemannian manifold into
a semi-Riemannian manifold, and study the Levi harmonicity for CR maps between
two almost contact semi-Riemannian manifolds. Following the ideas of B. Fuglede
(who started the study of the semi-Riemannian case within harmonic map theory, cf.
[26] and [2], pp. 427–455) we allow a priori for the case s = −1 (cf. notation in
Sect. 2). This is perhaps the most general geometric setting (metrics are but semi-
Riemannian and in general the contact condition (2.3) is not satisfied and the under-
lying almost CR structures are not integrable).

The paper is organized as follows. In Sects. 2.1–2.2 we recall the notions of contact
semi-Riemannian geometry and pseudohermitian CR geometry needed through the
paper (basing the exposition on G. Calvaruso et al. [12], and G. Tomassini et al.
[21]). Also in Sect. 2.3 we set the basis of a parabolic exponential map theory (and
corresponding contact normal coordinates) on a contact Riemannian manifold. This
is similar to the work by D. Jerison & J.M. Lee, [32], in CR geometry, with the
additional difficulty that the almost CR structure T1,0(M) is not parallel with respect
to the generalized Tanaka–Webster connection ∇̂ (so that special coframes in the
sense of [32], p. 311, may not be produced).

In Sect. 3 for each C∞ map f : (M,ϕ, ξ, η, g) → (M ′, g′) from an almost contact
semi-Riemannian manifold into a semi-Riemannian manifold, we consider the ordi-
nary second fundamental form βf given by (1.1) where ∇̂ is replaced by the Levi-
Civita connection of (M,g). The following notion is central in the present paper. f is
Levi harmonic with respect to H = Ker(η) if

τH(f ) ≡ traceg(ΠHβf ) = 0,

where ΠH βf is the restriction of βf to H ⊗ H. Moreover, we compute the ten-
sion field τH(f ) for a CR map f : M → M ′ between two almost contact semi-
Riemannian manifolds satisfying the so-called ϕ-condition. While the ϕ-condition
(cf. (3.8) in Sect. 3) looks rather artificial, we emphasize successively that the class of
almost contact semi-Riemannian manifolds obeying (3.8) is quite large. For instance,
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contact semi-Riemannian manifolds are known to satisfy the ϕ-condition (and if this
is the case then τH(f ) = 2nsϕ′f∗ξ (cf. Theorem 3.9)). As an application of parabolic
exponential map theory we study the geometry of fixed point sets of isopseudoher-
mitian transformations of a contact Riemannian manifold M (cf. Theorem 3.6 and
Corollary 3.7 in Sect. 3.2).

Sections 3.3 to 3.5 are devoted to CR maps from contact semi-Riemannian man-
ifolds with additional geometric properties. In Sect. 3.3 we consider the case where
M is an orientable real hypersurface of an (indefinite) Kähler manifold M , equipped
with the almost contact (semi-) Riemannian structure induced by M , and we compute
τH(f ) in terms of the mean curvature of M . If M is a ruled real hypersurface of a
complex space form M(c), c ∈ R \ {0}, then any CR map f : M → M ′ is shown to
be Levi harmonic. In Sect. 3.4 we show that any CR map f : M → M ′ between two
quasi-cosymplectic manifolds is Levi harmonic. In Sect. 3.5 we study Levi harmonic
maps defined by the Reeb vector field of a K-contact manifold. The Hopf vector field
on the unit sphere S2n+1 and the geodesic flow of the unit tangent sphere bundle of a
Riemannian manifold of constant curvature +1 are shown to be Levi harmonic maps
(cf. Corollaries 3.13 and 3.14).

For each C∞ map f : M → M ′ of contact semi-Riemannian manifolds, we con-
sider the second fundamental form β̂f given by (1.1) where ∇′ is replaced by the
generalized Tanaka–Webster connection of M ′ (cf. [51]). Let τ̂H(f ) be the trace with
respect to g of the restriction ΠHβ̂f of β̂(f ) to H ⊗ H. We call f pseudoharmonic
if τ̂H(f ) = 0. Although the notion in [6] (pseudoharmonicity with respect to the data
(θ,D′), where D′ is an arbitrary linear connection on M ′) is sufficiently general to
include (for D′ = ∇̂′) pseudoharmonicity as meant in this paper, the main results in
[6] are confined (except for Theorem 1.1 in [6], p. 724) to the case of a Riemannian
target manifold (D′ = ∇′). Our finding in Sect. 3.6 is that a CR map f : M → M ′
of contact semi-Riemannian manifolds is pseudoharmonic if and only if f is Levi
harmonic.

In Sect. 4 we study Levi harmonic maps defined by isometric immersions i :
M → M , where M is an invariant submanifold of an almost contact metric mani-
fold (M,ϕ, ξ, η, g). In particular, if (M,ϕ, ξ, η, g) is a contact metric manifold or
a quasi-cosymplectic manifold, then the inclusion i : M → M is Levi harmonic and
minimal (cf. Theorem 4.1).

Section 5 is devoted to maps from Brieskorn spheres. The inclusion of the
Brieskorn sphere Σ2n−1(2, . . . ,2) into S2n+1 is Levi harmonic. Moreover, as a con-
sequence of Corollary 3.7 (on the geometry of a connected component of the fixed
point set of an isopseudohermitian transformation) we show that certain immersions
of Brieskorn spheres Σ2n−3(a′) → Σ2n−1(2k, a′) are Levi harmonic.

A variational interpretation of Levi harmonicity is formulated in Sect. 6 together
with a discussion of the resulting Euler–Lagrange equations in the framework of de-
generate elliptic equations theory.

Section 7 discusses several ramifications of the theory of harmonic morphisms,
within contact Riemannian geometry, such as Levi harmonic and pseudoharmonic
morphisms. Any Levi harmonic morphism f : M → M ′ of an almost contact Rie-
mannian manifold M into a Riemannian manifold M ′ is a Levi harmonic map
(cf. Theorem 7.7). A similar result for pseudoharmonic morphisms holds only for
Sasakian target manifolds M ′ (cf. Theorem 7.8).
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2 Contact Metric Geometry

In Sect. 2.1 we collect a few basic facts on contact Riemannian manifolds (cf. [10]
and [12] for the Riemannian and semi-Riemannian cases, respectively). Sect. 2.2 is
devoted to the needed notions of CR and pseudohermitian geometry (cf. [21] and
[19]). In Sect. 2.3 we establish the existence and main properties of the parabolic
exponential map and corresponding contact normal coordinates at a point on a contact
Riemannian manifold. The material in Sect. 2.3 is new and adapts (to the context
of contact Riemannian geometry) a technique introduced by G.B. Folland & E.M.
Stein (cf. [25]) and successively refined by D. Jerison & J.M. Lee (cf. [32]) within
pseudohermitian geometry (i.e., by making use of a distinguished linear connection
associated with a fixed contact form on a strictly pseudoconvex CR manifold, the
Tanaka–Webster connection). Our almost CR structures are in general non-integrable,
and the use of the Tanaka–Webster connection is replaced by its generalization due
to S. Tanno, [51].

2.1 Contact Semi-Riemannian Manifolds

Let M be a real (2n + 1)-dimensional C∞ manifold. An almost contact structure
(ϕ, ξ, η) on M consists of a (1,1)-tensor field ϕ, a tangent vector field ξ ∈ X(M)

(the characteristic, or Reeb, field), and a differential 1-form η ∈ Ω1(M) such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1. (2.1)

In particular, ϕ(ξ) = 0 and η ◦ϕ = 0. Let s ∈ {±1}. Given an almost contact structure
(ϕ, ξ, η) on M , a compatible metric is a semi-Riemannian metric g on M such that

g(ϕX,ϕY ) = g(X,Y ) − sη(X)η(Y ), X,Y ∈ X(M). (2.2)

Then η(X) = sg(ξ,X) and g(ξ, ξ) = s. Therefore, the characteristic vector field ξ is
either spacelike or timelike (ξ is never lightlike). Also if Φ(X,Y ) = g(X,ϕY ) then
(by (2.2)) Φ ∈ Ω2(M). The synthetic object (ϕ, ξ, η, g) is an almost contact semi-
Riemannian structure. If in addition the contact condition

dη = Φ (2.3)

is satisfied then η is a contact form, i.e., η ∧ (dη)n is a volume form on M (and
(ϕ, ξ, η, g) is referred to as contact semi-Riemannian structure on M). On each con-
tact semi-Riemannian manifold the tensor field h = (1/2)Lξ ϕ (where L is the Lie
derivative) is symmetric and satisfies

∇ξ = −sϕ − ϕ ◦ h, ∇ξ ϕ = 0, h ◦ ϕ + ϕ ◦ h = 0, h(ξ) = 0. (2.4)

Here ∇ is the Levi-Civita connection of the semi-Riemannian manifold (M,g).
Moreover (by Lemma 4.3 in [12]),

(∇Xϕ)Y + (∇ϕXϕ)ϕY = 2g(X,Y )ξ − η(Y )
{
sX + sη(X)ξ + h(X)

}
. (2.5)
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A contact semi-Riemannian manifold is a K-contact semi-Riemannian manifold if
ξ is a Killing vector field (equivalently, h = 0). The result in [10] that K-contact
Riemannian manifolds are characterized by the Ricci curvature condition �(ξ, ξ) =
2n holds in the positive definite case and fails in general (for arbitrary contact semi-
Riemannian manifolds, cf. [12]). A contact semi-Riemannian structure (ϕ, ξ, η, g) is
Sasakian if

(∇Xϕ)Y = g(X,Y )ξ − sη(Y )X.

2.2 Almost CR Structures

Let M be a real (2n + 1)-dimensional manifold. An almost CR structure on M is a
complex subbundle T1,0(M), of complex rank n, of the complexified tangent bundle
T (M) ⊗ C such that T1,0(M) ∩ T0,1(M) = (0) where T0,1(M) = T1,0(M) (overbars
denote complex conjugates). The integer n is the CR dimension. An almost CR struc-
ture T1,0(M) is integrable, and then T1,0(M) is referred to as a CR structure, if
Z,W ∈ C∞(U,T1,0(M)) yields [Z,W ] ∈ C∞(U,T1,0(M)) for any open set U ⊂ M .
The Levi (or maximally complex) distribution is the real rank 2n distribution on M

given by H ≡ H(M) = Re{T1,0(M) ⊕ T0,1(M)}. It carries the complex structure

J : H → H, J (Z + Z) = i(Z − Z), Z ∈ T1,0(M) (i = √−1).

Then T1,0(M) = {X − iJX : X ∈ H}, i.e., T1,0(M) is the eigenbundle of JC (the C-
linear extension of J to H ⊗ C) corresponding to the eigenvalue i. The pair (H, J )

(the real manifestation of T1,0(M)) is often referred to as an almost CR structure on
M , as well. A pseudohermitian structure is a differential 1-form θ ∈ Ω1(M) such
that Ker(θ) = H. Given a pseudohermitian structure θ on M the Levi form Gθ is
given by

Gθ(X,Y ) = (dθ)(X,JY ), X,Y ∈ H.

An almost CR structure (H, J ) is nondegenerate if the Levi form Gθ is nondegen-
erate for some θ . If this is the case, θ is a contact form (i.e., θ ∧ (dθ)n is a volume
form). Let Ex ⊂ T ∗

x (M) be the subspace consisting of the values at x ∈ M of all pseu-
dohermitian structures on M . Then E = ⋃

x∈M Ex is (the total space of) a real line
subbundle of the cotangent bundle T ∗(M) and the pseudohermitian structures are the
globally defined nowhere zero C∞ sections in E. If M is oriented (an assumption
adopted throughout this paper) then E is trivial, i.e., E ≈ M × R (a vector bundle
isomorphism). Therefore, any other pseudohermitian structure θ̂ ∈ C∞(E) is related
to θ by θ̂ = λθ for some C∞ function λ : M → R \ {0}. Then G

θ̂
= λGθ , hence

nondegeneracy is a CR invariant. An almost CR structure (H, J ) is strictly pseudo-
convex if Gθ is positive definite for some θ . If this is the case then G−θ is negative
definite (hence strict pseudoconvexity is not a CR invariant). It should be observed
that Gθ is Hermitian, i.e., Gθ(JX,JY ) = Gθ(X,Y ) (equivalently Gθ is symmetric,
i.e., Gθ(X,Y ) = Gθ(Y,X)) if and only if

[JX,Y ] + [X,JY ] ∈ C∞(H), X,Y ∈ C∞(H). (2.6)
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Integrability of T1,0(M) is known to be equivalent to (2.6) together with

J
{[JX,Y ] + [X,JY ]} = [JX,JY ] − [X,Y ], X,Y ∈ C∞(H).

Thus for any CR structure Gθ is Hermitian. Let (M, H, J ) be a nondegenerate almost
CR manifold and θ a fixed contact form on M . Let us extend J to an endomorphism
ϕ of the tangent bundle by requesting that ϕ = J on H and ϕ(T ) = 0. Here T ∈
X(M) is the unique nowhere zero tangent vector field on M determined by θ(T ) = 1
and t�dθ = 0. Then ϕ2 = −I + θ ⊗ T . The integrability condition on H is relaxed
throughout to the requirement (2.6). Then the Webster metric is the semi-Riemannian
metric gθ given by

gθ (X,Y ) = (dθ)(X,JY ), gθ (X,T ) = 0, gθ (T ,T ) = 1,

for any X,Y ∈ H. Then (ϕ, ξ = −T ,η = −θ, g = gθ ) is a contact semi-Riemannian
structure on M . If Gθ is positive definite, the Webster metric gθ is a Riemannian
metric (and (ϕ, ξ, η, g) is a contact metric structure on M). Conversely, any almost
contact manifold (M,ϕ, ξ, η) carries the almost CR structure given by H = Ker(η)

and J = ϕ|H. By a result of S. Ianuş, [29], if (ϕ, ξ, η) is normal (i.e., [ϕ,ϕ]+2(dη)⊗
ξ = 0) then (H, J ) is integrable.

2.3 Contact Normal Coordinates

Let (M, (ϕ, ξ, η, g)) be a contact semi-Riemannian manifold. Let ∇̂ be the general-
ized Tanaka–Webster connection, i.e., the linear connection given by

∇̂XY = ∇XY + η(X)ϕ(Y ) − η(Y )∇Xξ + {
(∇Xη)Y

}
ξ (2.7)

for any X,Y ∈ X(M). ∇̂ is due to S. Tanno, [51] (though confined to the positive
definite case) and admits (when ξ is spacelike) an axiomatic description similar to
that of the ordinary Tanaka–Webster connection (cf. N. Tanaka, [50]) except for the
property ∇̂ϕ = 0 (the vanishing of ∇̂ϕ is equivalent to the integrability of the un-
derlying almost CR structure). Indeed, if (ϕ, ξ, η, g) is a contact semi-Riemannian
structure with s = 1, then (2.7) may be described (cf. [51], p. 354) as the unique
linear connection ∇̂ on M obeying the axioms

∇̂η = 0, ∇̂ξ = 0, ∇̂g = 0, (2.8)

T∇̂(ξ,ϕX) + ϕT∇̂(ξ,X) = 0, X ∈ X(M), (2.9)

T∇̂(X,Y ) = 2(dη)(X,Y )ξ, X,Y ∈ H = Ker(η), (2.10)

(∇̂Xϕ)Y = Q(Y,X), X,Y ∈ X(M). (2.11)

Here T∇̂ is the torsion tensor field of ∇̂ . Also, Q is the Tanno tensor, i.e.,

Q(Y,X) = (∇Xϕ)Y + {
(∇Xη)ϕY

}
ξ + η(Y )ϕ(∇Xξ).

By a result in [51], Q = 0 if and only if (H, J ) is integrable (and then ∇̂ is the
ordinary Tanaka–Webster connection of (M,η)).
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Definition 2.1 A class C2 curve γ : (−ε, ε) → M is said to be a parabolic geodesic
if there is λ ∈ R such that

(∇̂γ̇ γ̇ )γ (s) = 2λξγ (s), |s| < ε. (2.12)

To keep track of the parameter λ, a solution γ to (2.12) is also referred to as a
λ-parabolic geodesic.

Let N = 2n + 1 and let χ = (x1, . . . , xN) : U → R
N be a local coordinate system

on M . We set Ω = χ(U) × R
N ⊂ R

2N . Let Γ̂ i
jk ∈ C∞(U) be the local coefficients

of ∇̂ with respect to (U,xi) and let us set

F i(u,v, λ) = 2λξ i
(
χ−1(u)

) − Γ̂ i
jk

(
χ−1(u)

)
vjvk

so that F i ∈ C∞(Ω × R) for any 1 ≤ i ≤ N . By classical results in ODE theory, for
each (u1,v1) ∈ Ω there is an open neighborhood ω ⊂ Ω of (u1,v1) and a number
δ > 0 such that for any (u0,v0) ∈ ω and any λ ∈ R the system

d2ui

ds2
(s) = F i

(
u(s),

du
ds

(s), λ

)
, 1 ≤ i ≤ N, (2.13)

has a unique solution uλ = u(·, λ) : (−δ, δ) → R
N such that

u(0, λ) = u0,
∂u
∂s

(0, λ) = v0. (2.14)

Also (by classical results on the dependence of the solution to the Cauchy problem
(2.13)–(2.14) on initial conditions and parameters) the map (u0,v0, s, λ) �→ u(s, λ) is
of class C∞ in all its 2N + 2 variables. For the remainder of Sect. 2.3 the discussion
is confined to the case of contact metric structures (i.e., g is positive definite and
s = 1). We establish

Theorem 2.2 For every point x0 ∈ M there is an open neighborhood U ⊂ M of
x0 and a number ε > 0 such that for each x ∈ U and each X ∈ Hx of length
‖X‖ = gx(X,X)1/2 < ε and each λ ∈ R there is a unique λ-parabolic geodesic
γX,λ : (−2,2) → M satisfying the conditions γX,λ(0) = x and γ̇X,λ(0) = X.

Proof The existence and uniqueness theorem above implies that the statement is true
if we replace the interval (−2,2) by an arbitrarily small interval. Precisely, there is a
neighborhood U of x0 in M and there exist numbers ε1 > 0 and ε2 > 0 such that for
each x ∈ U and each Y ∈ Hx of length ‖Y‖ < ε1 and each μ ∈ R there is a unique
μ-parabolic geodesic γY,μ : (−2ε2,2ε2) → M satisfying the required initial condi-
tions

γY,μ(0) = x, γ̇Y,μ(0) = Y.

Let 0 < ε < ε1ε2 and let X ∈ Hx with ‖X‖ < ε and let λ ∈ R. If r = 1/ε2 then
‖rX‖ = r‖X‖ < rε < ε1 while if |s| < 2 then |ε2s| < 2ε2. Let then γ : (−2,2) → M
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be the curve given by

γ (s) = γrX,r2λ(s/r), |s| < 2.

For each fixed |s| < 2 let (V , xi) be a local coordinate system on M such that γ (s) ∈
V . Then

(∇̂γ̇ γ̇ )γ (s) =
{

d2γ i

ds2
(s) + Γ̂ i

jk

(
γ (s)

)dγ j

ds
(s)

dγ k

ds
(s)

}(
∂

∂xi

)
γ (s)

= 1

r2
(∇̂γ̇

rX,r2λ
γ̇rX,r2λ)γ (s) = 2λξγ (s),

hence γ is a λ-parabolic geodesic (of initial data (x,X)). �

Let x0 ∈ M . By Theorem 2.2 there exist an open neighborhood U ⊂ M of x0 and
a number ε > 0 such that for any x ∈ U , X ∈ Hx of length ‖X‖ < ε, and λ ∈ R there
is a unique λ-parabolic geodesic γX,λ : (−2,2) → M of initial data (x,X).

Definition 2.3 The parabolic exponential map at x is given by

Expx : Nε(0x) → M, Expx(X + λξx) = γX,λ(1),

X ∈ Hx, λ ∈ R, X + λξx ∈ Nε(0x).

Here Nε(0x) = {Y + μξx ∈ Tx(M) : Y ∈ Hx,‖Y‖ < ε, |μ| < ε}.

0-parabolic geodesics are merely geodesics of the generalized Tanaka–Webster
connection ∇̂ . The terminology λ-parabolic is only motivated when λ �= 0, for given
any X ∈ Hx and any λ ∈ R \ {0} one may consider the curve PX,λ : R → Tx(M)

given by PX,λ(s) = sX + s2λξx (a parabola tangent to M at x) and observe that the
parabolic exponential maps PX,λ onto the λ-parabolic geodesic of initial data (x,X).
Indeed, as a byproduct of the proof of Theorem 2.2,

γrX,r2λ(s) = γX,λ(rs) (2.15)

whenever either side is defined. Then (by (2.15))

Expx

[
PX,λ(s)

] = γsX,s2λ(1) = γX,λ(s).

Theorem 2.4 The parabolic exponential Expx is a diffeomorphism on a sufficiently
small neighborhood of the origin in Tx(M).

Proof To prove Theorem 2.4, we need to recall a few elements of the geometry of the
tangent bundle over M . By eventually replacing U furnished by Theorem 2.2 with
a smaller open set, we may assume that U is the domain of a local coordinate sys-
tem (xi) such that xi(x0) = 0. Let (π−1(U), xi, yi) be the induced local coordinates
on T (M) and set ξ i = yi ◦ ξ ∈ C∞(U). Here π : T (M) → M is the projection. Let
π−1T (M) → T (M) be the pullback of T (M) by π (the diagonal bundle). The natu-
ral lift of X ∈ X(M) is the section Xπ = X ◦ π ∈ C∞(π−1T M). Let D = π−1∇̂ be
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the pullback connection, i.e., the connection in π−1T (M) → T (M) induced by ∇̂ .
This is most easily described in local coordinates as

D∂i
Xj = (

Γ̂ k
ij ◦ π

)
Xk, D∂̇i

Xj = 0,

where we have set ∂i = ∂/∂xi and ∂̇i = ∂/∂yi (for simplicity) while Xi = (∂/∂xi)π ∈
C∞(π−1(U),π−1T (M)). A tangent vector field V ∈ X(T (M)) is horizontal if
DV L = 0, where L ∈ C∞(π−1T (M)) is the Liouville vector, i.e., L(v) = (v, v) for
any v ∈ T (M). Let H ⊂ T (M) be the horizontal distribution, i.e., Hv consists of the
values at v ∈ T (M) of all horizontal vector fields on T (M). Then H is a nonlinear
connection on T (M), i.e.,

Tv

(
T (M)

) = Hv ⊕ Ker(dvπ), v ∈ T (M).

Also if Ni
j = (Γ̂ i

jk ◦ π)yk ∈ C∞(π−1(U)) (the local coefficients of the nonlinear
connection H ) then

δi = δ

δxi
= ∂i − N

j
i ∂̇j , 1 ≤ i ≤ 2n + 1,

is a local frame in π−1T (M) → T (M) defined on the open set π−1(U). The vertical
lift is the vector bundle morphism γ : π−1T (M) → Ker(dπ) given by

γv(v,w) = ȧ(0) ∈ Tv

(
T (M)

)
, v ∈ T (M), w ∈ Tπ(v)(M),

a(t) = v + tw, |t | < δ (δ > 0).

Locally γ (Xi) = ∂̇i . The horizontal lift is the vector bundle morphism β : π−1T (M)

→ H given by

βv = [
Lv : Hv → (

π−1T (M)
)
v

]−1
,

Lv : Tv

(
T (M)

) → (
π−1T (M)

)
v
, v ∈ T (M),

Lv(A) = (
v, (dvπ)A

)
, A ∈ Tv

(
T (M)

)
.

Locally β(Xi) = δi . Next we consider the (globally defined) vector field X on the
product manifold T (M) × R given by

X = β(L) + 2tγ
(
ξπ

)
, (2.16)

where t is the Cartesian coordinate on the R factor and ξπ ∈ C∞(π−1T (M)) is the
natural lift of ξ (i.e., ξπ = ξ ◦ π ). If π−1(U) × R is endowed with the local co-
ordinates (xi, yi, t) then (2.16) may be written X = yiδi + 2tξ i ∂̇i . Let {Φs}|s|<ε

be the local 1-parameter group of local transformations gotten by integrating X so
that Φ(s, v,λ) = Φs(v,λ) is well defined and C∞ in a neighborhood of the origin
(−ε, ε) × U × (−ε, ε) ⊂ R × π−1(U) × R. Let p1 : T (M) → R → T (M) be the
projection on the first factor. Given X ∈ U ∩ Hx (with x = π(X) ∈ U ) and |λ| < ε,
let us set

γ (s) = (π ◦ p1)
[
Φs(X,λ)

] ∈ U. (2.17)
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We also adopt the notation

C(X,λ)(s) = Φs(X,λ), |s| < ε,

so that

Ċ(X,λ)(s) = XC(X,λ)(s). (2.18)

On the other hand,

Ċ(X,λ)(s) = dγ i

ds
(s)∂i,C(s) + dvi

ds
(s)∂̇i,C(s) + da

ds

(
∂

∂t

)
C(s)

,

where C is short for C(X,λ) and

γ i = xi ◦ γ, vi = yi ◦ C, a = t ◦ C.

Then (by (2.16)–(2.18))

dγ i

ds
(s) = vi(s),

da

ds
(s) = 0,

dvi

ds
(s) = 2λξ i

(
γ (s)

) − Ni
j

(
p1

(
C(s)

))
vj (s),

so that a(s) = λ and

d2γ i

ds2
(s) = 2λξ i

(
γ (s)

) − Γ i
jk

(
γ (s)

)dγ j

ds
(s)

dγ k

ds
(s),

that is, γ is the λ-parabolic geodesic of initial data (x,X). Thus

γX,λ(s) = (π ◦ p1)
[
Φs(X,λ)

]
, (2.19)

where either side is defined. Let |s0| < ε, X ∈ U ∩ Hx , and |λ| < ε. Then (by (2.15)
with s = s0 and r = r0 = 1/s0)

Expx(X + λξx) = γX,λ(1) = γX,λ(r0s0) = γr0X,r2
0 λ(s0)

= (π ◦ p1)
[
Φs0

(
r0X,r2

0 λ
)]

.

As Φs0(v,μ) is defined and C∞ for all (v,μ) in a neighborhood of the origin, it
follows that Expx is C∞ in a sufficiently small neighborhood of the zero vector 0x ∈
Tx(M). Let yi

x = yi |π−1(x) be the natural coordinates on Tx(M) (induced by (U,xi)

with x ∈ U ). Also, for each v ∈ Tx(M) let Fv : Tv(Tx(M)) → Tx(M) be the natural
linear isomorphism (i.e., Fv(∂/∂yi

x)v = (∂/∂xi)x ). We ought to compute

(d0x Expx)F
−1
0x

(X), (d0x Expx)F
−1
0x

(ξx).
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Let us set Ψ j = xj ◦ Expx . If X ∈ U ∩ Hx then we consider the curve γ (s) =
Expx(sX) ∈ M so that (by (2.15)) γ (s) = γsX,0(1) = γX,0(s). Therefore,

X = γ̇X,0(0) = γ̇ (0) = dγ i

ds
(0)

(
∂

∂xi

)
x

= ∂Ψ i

∂y
j
x

(0x)y
j (X)

(
∂

∂xi

)
x

= (d0x Expx)F
−1
0x

(X).

Similarly, let a(s) ∈ M be an integral curve of ξ such that a(0) = x and let |λ| < ε.
We set b(r) = a(r2λ) ∈ M and observe that

ḃ(r) = 2rλξb(r). (2.20)

In particular (by (2.8)),

(∇̂ḃ ḃ)b(r) = 2λξb(r) + 2rλ(∇̂ḃξ )b(r) = 2λξb(r)

so that b is the λ-parabolic geodesic of initial data (x,0x), i.e., b(r) = γ0x ,λ(r). Then
for r = 1

a(λ) = γ0x ,λ(1), |λ| < ε.

Finally, we may compute the tangent vector to a(λ) = Expx(λξx) to yield

(d0x Expx)F
−1
0x

(ξx) = ξx.

Therefore, (d0x Expx) ◦ F−1
0x

is the identity on a neighborhood of 0x ∈ Tx(M) (and
the statement follows from the implicit function theorem). Theorem 2.4 is proved. �

Let x0 ∈ M . Special frames as in [32], p. 311 (gotten by parallel displacement of a
linear basis {wα : 1 ≤ α ≤ n} ⊂ T1,0(M)x0 ) may not be built because the generalized
Tanaka–Webster connection does not descend to a connection in T1,0(M). Indeed (by
(2.8)) ∇̂ parallelizes H = Ker(η) yet (by (2.11)) ∇̂ does not parallelize the complex
structure along H.

Let {va : 1 ≤ a ≤ 2n} ⊂ Hx0 be a gx0 -orthonormal basis. By Theorem 2.4 there is
an open neighborhood U ⊂ M of x0 and a number ε > 0 such that Expx0

: Nε(0x0) →
U is a diffeomorphism. Hence for any x ∈ U there exist X ∈ Hx0 and λ ∈ R such that
X + λξx0 ∈ Nε(0x0) and γX,λ(1) = Expx0

(X + λξx0) = x. Let τx : Tx0(M) → Tx(M)

be the parallel displacement operator along γX,λ associated with ∇̂ . As ∇̂ξ = 0 and
H is ∇-parallel, one has τx(ξx0) = ξx and τx0(Hx0) = Hx .

Lemma 2.5 Let us set ξa(x) = τx(va). Then {ξa : 1 ≤ a ≤ 2n} is a C∞ orthonormal
local frame of H defined on the open set U such that ∇̂γ̇X,λ

ξa = 0 for any X ∈ Hx0

and λ ∈ R with X + λξx0 ∈ Nε(0x0).

Proof Let u : R
N → Tx0(M) be a linear frame tangent to M at x0 (an R-linear iso-

morphism). We set

ϕ = (
x1, . . . , xN

) = u−1 ◦ (
Expx0

: Nε(0x0) → U
)−1 : U → R

N (2.21)
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so that (U,ϕ) is a local coordinate system about x0 (and ϕ(x0) = 0). Let v ∈ Hx and
let us set Yx = τx(v). We start by showing that Y is C∞. Indeed, let ϕ = (x1, . . . , xN)

be a contact normal coordinate system on U centered at x0 and let us set Y =
Y j ∂/∂xj . By definition, Y is ∇̂-parallel along each parabolic geodesic λX,λ with
X + λξx0 ∈ Hx0 . This means that u(t,X,λ) = Y j (γX,λ(t))ej is C∞ with respect to t

and satisfies

∂uj

∂t
(t,X,λ) = −Γ

j
ik

(
γX,λ(t)

)dγ i
X,λ

dt
(t)uk(t,X,λ), (2.22)

uj (0,X,λ) = Y j (x0). (2.23)

By standard results in ODE theory, the solution to the Cauchy problem (2.22)–(2.23)
depends smoothly on parameters. Also, for any x ∈ ϕ(U)

(
Y j ◦ ϕ−1)(x) = Xj

(
γX,λ(1)

) = uj (1,X,λ),

where X = ΠH,x0u(x) and λ = ηx0(u(x)), hence Y j is C∞ in a neighborhood of
x = ϕ−1(x). Then each ξa is C∞ on U . Finally (by the Ricci condition ∇̂g = 0) each
τx is a linear isometry of (Hx0 , gx0) into (Hx, gx). �

Definition 2.6 A local frame {ξa : 1 ≤ a ≤ 2n} ⊂ C∞(U, H) is special if (i) g(ξa, ξb)

= δab for any 1 ≤ a, b ≤ 2n and (ii) each ξa is ∇̂-parallel along any parabolic
geodesic γX,λ.

Let {ξa : 1 ≤ a ≤ 2n} be a special local frame of H, defined on an open neigh-
borhood U ⊂ M of a point x0 ∈ M such that the parabolic exponential map Expx0

:
Nε(0x0) → U is a diffeomorphism. Let {ηa : 1 ≤ a ≤ 2n} ⊂ Ω1(U) be the local 1-
forms on M defined by ηa(ξb) = δa

b and ηa(ξ) = 0. Let us consider the linear frame
u : R

N → Tx0(M) given by u−1(v) = ηi
x0

(v)ei for any v ∈ Tx0(M) where η0 = η and
{ei : 0 ≤ i ≤ 2n} ⊂ R

N is the canonical linear basis. Finally, let us define ϕ : U → R
N

by (2.21).

Definition 2.7 ϕ = (x1, . . . , xN) : U → R
N is referred to as a contact normal local

coordinate system centered at x0.

When T1,0(M) is integrable (and ϕx0u(eα) = u(eα+n) for any 1 ≤ α ≤ n)
(x1, . . . , xN) are the pseudohermitian normal coordinates introduced by D. Jerison
& J.M. Lee, [32], p. 311.

Lemma 2.8 Let (U,xi) be a local system of contact normal coordinates on M , as-
sociated with the special local frame {ξa : 1 ≤ a ≤ 2n} of H, centered at the point
x ∈ U . Then

(i) any λ-parabolic geodesic of initial data (x,X) with X ∈ Hx is locally given by

γ 0(t) = λt2, γ a(t) = λat, 1 ≤ a ≤ 2n, (2.24)
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where X = λaξa,x . Conversely, any local coordinate system (U,xi) possessing
the above property is the contact normal coordinate system determined by the
frame {ξa : 1 ≤ a ≤ 2n}.

(ii) If Γ̂ i
jk ∈ C∞(U) are the local coefficients of the generalized Tanaka–Webster

connection ∇̂ with respect to the contact normal coordinate system (U,xi) cen-
tered at x, then

Γ̂ i
ab(x) + Γ̂ i

ba(x) = 0. (2.25)

Formula (2.25) should be paralleled to Proposition 8.4 in [36], Vol. I, p. 148. Fur-
ther identities (satisfied by Γ̂ i

jk at the center x) are derived in Lemma 7.9.

Proof of Lemma 2.8 (i) Let γX,λ(t) = Expx(tX + t2λξx) and γ i = xi ◦ γX,λ for any
0 ≤ i ≤ 2n so that (2.24) holds, and conversely.

(ii) For any (λ0, . . . , λ2n) ∈ R
2n+1 the curve locally given by (2.24) with respect

to a contact normal coordinate system is a λ-parabolic geodesic (with λ = λ0). Then
(by (2.12))

d2γ i

dt2
+ (

Γ̂ i
jk ◦ γ

)dγ j

dt

dγ k

dt
= 2λ

(
ξ i ◦ γ

)
(2.26)

or (by (2.24))

λaλbΓ̂ 0
ab

(
γX,λ(t)

) = 2λ
{
ξ0(γX,λ(t)

) − 1
} + O(t),

λaλbΓ̂ c
ab

(
γX,λ(t)

) = 2λξc
(
γX,λ(t)

) + O(t),

hence (for t = 0)

λaλbΓ̂ 0
ab(x) = 2λ

{
ξ0(x) − 1

}
, λaλbΓ c

ab(x) = 2λξc(x)

yielding

ξ0(x) = 1, ξa(x) = 0, 1 ≤ a ≤ 2n, (2.27)

and then (2.25). �

As a byproduct, one obtained (2.27), i.e., ξx = (∂/∂x1)x . One may also show that
ξa,x = (∂/∂xa)x for any 1 ≤ a ≤ 2n. Indeed,

dϕ(x)ϕ
−1 = dϕ(x)(Expx ◦u) = (d0x Expx) ◦ (dϕ(x)u) = F0x ◦ (dϕ(x)u),

hence (as ui(X0, . . . ,X2n) = Xjξ i
j (x) with ξj = ξ i

j , ∂/∂xi and ξ0 = ξ )

(
∂/∂xa

)
x

= (
dϕ(x)ϕ

−1)(∂/∂Xa
)
ϕ(x)

= ξ i
a(x)F0x

(
∂/∂yi

x

)
0x

= ξa,x . �
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3 Pseudoharmonic and Levi Harmonic Maps

3.1 Basic Notions

Let (M, (ϕ, ξ, η, g)) be a real (2n+1)-dimensional almost contact semi-Riemannian
manifold and (M ′, g′) a semi-Riemannian manifold. Let f : M → M ′ be a C∞ map
and f −1T (M ′) → M the pullback of T (M ′) by f . Let ∇′f = f −1∇′ be the pullback
of the Levi-Civita connection ∇′ of (M ′, g′), i.e., the connection in the vector bundle
f −1T (M ′) → M induced by ∇′. If (U,xi) and (V , yα) are local coordinate systems
on M and N such that f (U) ⊂ V then ∇′f is locally described by

∇′f
∂/∂xj

(
∂/∂yβ

)f = ∂f α

∂xj

(
Γ ′γ

αβ ◦ f
)(

∂/∂yγ
)f

where Yf = Y ◦ f ∈ C∞(f −1(V ), f −1T (M ′)) denotes the natural lift of Y ∈ X(V )

and Γ ′γ
αβ are the Christoffel symbols of (M ′, g′). Similarly, any linear connection D

on M ′ admits a well-defined pullback Df = f −1D to a connection in the vector bun-
dle f −1T (M ′). Let H = Ker(η) and J = ϕ|H be the almost CR structure underlying
(ϕ, ξ, η, g). The second fundamental form βf of f is given by

βf (X,Y ) = ∇′f
Xf∗Y − f∗∇XY, X,Y ∈ X(M). (3.1)

Here ∇ is the Levi-Civita connection of (M,g). Also f∗X ∈ C∞(f −1T (M ′)) is
given by (f∗X)(x) = (dxf )Xx ∈ Tf (x)(M

′) for any x ∈ M and any X ∈ X(M). Next
let τH(f ) ∈ C∞(f −1T (M ′)) be given by

τH(f ) = traceg(ΠHβf ), (3.2)

where ΠHβf is the restriction of βf to H ⊗ H.

Definition 3.1 A C∞ map f : M → M ′ is Levi harmonic with respect to H = Ker(η)

if τH(f ) = 0.

This is similar to the construction in [6] (where ∇ is replaced by ∇̂) except that
we consider the ordinary second fundamental form of f (cf., e.g., [23]). The contact
analog τH(f ) of the tension tensor τ(f ) in [23] is defined in terms of covariant
derivatives along H (the derivatives in the “bad” real direction ξ are dropped) and
traces are taken with respect to the Levi form (rather than the full metric g). As
another generalization of the ideas in [6] we set

β̂f (X,Y ) = (
f −1∇̂′)

X
f∗Y − f∗∇̂XY, X,Y ∈ X(M), (3.3)

τ̂H(f ) = traceg(ΠHβ̂f ), (3.4)

and adopt

Definition 3.2 A C∞ map f : M → M ′ is pseudoharmonic if τ̂H(f ) = 0.
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3.2 Pseudohermitian Maps

By a celebrated result of A. Lichnerowicz, [38], any holomorphic map of compact
Kählerian manifolds is harmonic and an absolute minimum within its homotopy
class. As emphasized by H. Urakawa, [52], Lichnerowicz’s theorem lacks an appro-
priate CR analog. Indeed, CR maps of strictly pseudoconvex CR manifolds are not
harmonic (with respect to the Webster metrics) in general (cf. [52]). Another attempt
to bridge Kählerian and pseudohermitian geometry is to parallel CR and subelliptic
harmonic maps (cf. [6]). As it turns out, a CR map f is not subelliptic harmonic ei-
ther, unless f is pseudohermitian. In this section we consider CR, pseudohermitian,
and isopseudohermitian maps and prove a result imitative of [6] (cf. Theorem 3.9 be-
low). Also, by using the parabolic exponential formalism built in Sect. 2.3, we prove
a pseudohermitian analog to a result by K. Nomizu, [30], p. 113 (on fixed point sets
of isometries of a Riemannian manifold). Only the ideas in [6] are extended since, as
explained in Sect. 1, pseudo and Levi harmonicity are logically inequivalent notions.

Definition 3.3 A C∞ map f : M → M ′ of almost CR manifolds is a CR map if

(dxf )Hx ⊂ H
(
M ′)

f (x)
, (dxf ) ◦ Jx = J ′

f (x) ◦ (dxf ), (3.5)

for any x ∈ M .

Typical examples of CR maps are gotten as traces of holomorphic maps of Kähle-
rian manifolds on real hypersurfaces. Precisely, let M be a Kählerian manifold. Any
orientable real hypersurface M ⊂ M admits a natural almost contact metric structure
(cf., e.g., [10]). If M ′ ⊂ M

′
is another oriented real hypersurface in the Kählerian

manifold M
′

and F : M → M
′

is a holomorphic map such that F(M) ⊂ M ′ then
f ≡ F |M : M → M ′ is a CR map. It should be emphasized that, in spite of our metric
approach (where the wealth of additional first-order geometric structure (ϕ, ξ, η, g)

is meant to “compensate” for the lack of integrability of T1,0(M)) the property (3.5)
is tied to the almost CR structures alone. In particular, the statements above hold true
for traces of holomorphic maps among indefinite Kählerian manifolds (cf. E. Bar-
ros & A. Romero, [8], for definitions and examples). Indeed, let M be an indefinite
Kählerian manifold and M ⊂ M an orientable real hypersurface. The indefinite Käh-
ler structure of M induces on M an almost contact semi-Riemannian structure (cf.
A. Bejancu & K.L. Duggal, [9]).

Let θ and θ ′ be pseudohermitian structures on the almost CR manifolds M and M ′,
respectively. If f : M → M ′ is a CR map then f ∗θ ′ = μθ for some μ ∈ C∞(M).

Definition 3.4 A CR map f is pseudohermitian if μ = c for some c ∈ R. Also f is
isopseudohermitian if c = 1.

We shall need

Lemma 3.5 (i) Let M be a nondegenerate almost CR manifold and η a contact form
on M . Let (M ′, ϕ′, ξ ′, η′, g′) be a contact Riemannian manifold and f : M → M ′ an
isopseudohermitian immersion of (M,η) into (M ′, η′) (i.e., f is an immersion, a CR
map, and f ∗η′ = η) such that f (M) is tangent to ξ ′. Let Tx(M)⊥ be the orthogonal
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complement of (dxf )Tx(M) in Tf (x)(M
′) with respect to g′

f (x) for all x ∈ M . If
tanx : Tf (x)(M

′) → Tx(M) is the natural projection with respect to the direct sum
decomposition Tf (x)(M

′) = [(dxf )Tx(M)] ⊕ Tx(M)⊥ then ∇̂ defined by

(∇̂XY)x = tanx

(∇̂′
XY

)
f (x)

, X,Y ∈ X(M), x ∈ M, (3.6)

is the generalized Tanaka–Webster connection of (M,ϕ, ξ, η, g) where ϕ = ϕ′|Ker(η),
ξ = ξ ′ ◦ f and g = f ∗g′.

(ii) Let (M, (ϕ, ξ, η, g)) be a contact metric manifold and f : M → M a pseu-
dohermitian transformation, i.e., a CR diffeomorphism such that f ∗η = cη for some
c ∈ R. If γ : (−δ, δ) → M is a λ-parabolic geodesic then f ◦ γ : (−δ, δ) → M is a
λ′-parabolic geodesic with λ′ = cλ.

In the case where the almost CR structure T1,0(M) is integrable, part (ii) in Lemma
3.5 is Lemma 11.9 in E. Barletta et al. [7], p. 205. Cf. also J. Masamune et al. [18].

Proof of Lemma 3.5 (i) If X,Y ∈ X(M) there exist C∞ extensions X′, Y ′ ∈ X(M ′),
i.e., X′ ◦ f = X and Y ′ ◦ f = Y . Then (∇̂′

X′Y ′) ◦ f does not depend upon the choice

of extensions, and the notation (∇̂′
XY) ◦ f is legitimate. A calculation shows that

(∇̂′
XY

) ◦ f = (
f −1∇̂′)

X
f∗Y. (3.7)

Let ∇̂ be defined by (3.6). Arguments similar to the proof of Theorem 6 in [16],
p. 187, show that ∇̂ satisfies (2.8)–(2.11), hence (by the uniqueness part in Tanno’s
result, cf. [51]) ∇̂ is precisely the generalized Tanaka–Webster connection.

(ii) The proof closely follows the calculations in [7], pp. 205–206. One defines the
maps f→ : X(M) → X(M) and f→∇̂ : X(M) × X(M) → X(M) by setting

(f→X)y = (df −1(y)f )Xf −1(y), y ∈ M,

(f→∇̂)XY = (f→)−1∇̂f→Xf→Y, X,Y ∈ X(M),

so that f→ is a module isomorphism and f→∇̂ a linear connection on M . Exploiting
the identity

f ∗g = cg + c(c − 1)η ⊗ η,

one readily checks that (2.8)–(2.11) hold with ∇̂ replaced by f→∇̂ , hence f→∇̂ = ∇̂ .
Finally, if γ is a λ-parabolic geodesic and γf ≡ f ◦ γ then

∇̂γ̇f
γ̇f = 2cλ(ξ ◦ γf ). �

Given a contact metric manifold M , let f : M → M be an isopseudohermitian map
and Fix(f ) = {x ∈ M : f (x) = x} the set of its fixed points. Let dT f ≡ (df )H,H =
f∗ : H → f −1 H. For each fixed point x ∈ Fix(f ) we set

Fix(dT f )x = {
X ∈ Hx : (dxf )X = X

}
,

Fix(dxf ) = {
X + λξx ∈ Tx(M) : X ∈ Fix(dT f )x λ ∈ R

}
.
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Then Fix(dxf ) is a linear subspace of Tx(M). Also, as f : M → M is a CR map,
Fix(dT f )x is Jx -invariant where Jx = ϕ|Hx

. In particular, dimR Fix(dT f )x = 2r for
some r ≥ 0 (eventually depending on x). By the proof of Theorem 2.4, there is ε > 0
and an open neighborhood U ⊂ M of x such that Expx : Nε(0x) → U is a diffeomor-
phism, where Nε(0x) = {X + λξx : X ∈ Hx,‖X‖ < ε, |λ| < ε}. Then

Theorem 3.6 Let f : M → M be an isopseudohermitian transformation.

(i) If X ∈ Hx and λ ∈ R are such that X + λξx ∈ Fix(dxf ) ∩ Nε(0x) then the
λ-parabolic geodesic γ : (−2,2) → M of initial data (x,X) consists of fixed
points of f , i.e., γ (t) ∈ Fix(f ) for any |t | < 2.

(ii) The parabolic exponential map Expx is a diffeomorphism of Fix(dxf )∩Nε(0x)

onto Fix(f ) ∩ U .
(iii) Each connected component L of the fixed point set Fix(f ) is a (2r + 1)-

dimensional submanifold of M , where 2r = dimR Fix(dT f )x for any x ∈ L.
Moreover, L is tangent to the Reeb field ξ . Let us set

ϕL,x = ϕx |Fix(dxf ), ηL = i∗η, gL = i∗g,

where i : L → M is the inclusion. Then either L is a maximal integral curve of ξ

(when r = 0) or (ϕL, ξ, ηL,gL) is a contact metric structure on L (when r ≥ 1)
such that i : L → M is an isopseudohermitian immersion.

(iv) Assume that r ≥ 1. Each λ-parabolic geodesic of L such that γ̇ (0) ∈ H(L)γ (0)

is a λ-parabolic geodesic of M .

Proof (i) Let us set β(t) = f (γ (t)) so that (by Lemma 3.5) β is a λ-parabolic
geodesic. Note that β(0) = x and β̇(0) = (dxf )γ̇ (0) = X, hence f ◦ γ = β =
γX,λ = γ .

(ii) It suffices to check that Expx(Fix(dxf ) ∩ Nε(0x)) = Fix(f ) ∩ U . To this end
let y ∈ Expx(Fix(dxf ) ∩ Nε(0x)). Then there exist X ∈ Hx and λ ∈ R such that
X + λξx ∈ Fix(dxf ) ∩ Nε(0x) and y = Expx(X + λξx) = γX,λ(1) ∈ Fix(f ) ∩ U (by
part (i) in Theorem 3.6). Vice versa, let y ∈ Fix(f ) ∩ U and X + λξx ∈ Nε(0x) such
that Expx(X + λξx) = y. Let γ ≡ γX,λ be the λ-parabolic geodesic of initial data
(x,X) and let us set

β(t) = f
(
γ (t)

)
, α(t) = Expx

(
t (dxf )X + t2λξx

)
.

By Lemma 3.5 and the proof of Theorem 2.2 both α and β are λ-parabolic geodesics
of initial data (x, (dxf )X), hence α = β . Finally, as y is a fixed point of f one has

Expx(X + λξx) = y = f (y) = f
(
Expx(X + λξx)

) = f
(
γ (1)

)
= β(1) = α(1) = Expx

(
(dxf )X + λξx

)

so that X + λξx ∈ Fix(dxf ).
(iii) Let x ∈ Fix(f ) and let L be the connected component of Fix(f ) through x.

The set Nε(0x)∩Fix(dxf ) is open in Fix(dxf ) (as a topological subspace of Tx(M)).
On the other hand Nε(0x) ∩ Fix(dxf ) = {X + λξx ∈ Fix(dxf ) : ‖X‖ < ε, |λ| < ε},
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hence Nε(0x) ∩ Fix(dxf ) is a connected subset of Fix(dxf ). By part (ii) in The-
orem 3.6 the map Expx : Nε(0x) ∩ Fix(dxf ) → U ∩ Fix(f ) is a diffeomorphism,
hence U ∩ Fix(f ) is a connected subset of Fix(f ) passing through the point x. The
maximality of L then yields U ∩ Fix(f ) ⊂ L. In particular, U ∩ Fix(f ) is the trace
of U ∩ Fix(f ) on L and U ∩ Fix(f ) is open in Fix(f ), hence U ∩ Fix(f ) is open
in L too. At this point one may build a local chart on L with domain U ∩ Fix(f ), as
follows. Let u : R

2n+1 → Tx(M) be an arbitrary linear frame tangent to M at x and

ϕ = (
x1, . . . , x2n+1) ≡ u−1 ◦ (

Expx : Nε(0x) → U
)−1

the corresponding local coordinate system on M about x. For each y ∈ U the R-linear
isomorphism hy : Ty(M) → R

2n+1 induces on Ty(M) the same topology as the norm
‖v‖ = gy(v, v)1/2, v ∈ Ty(M). As f is a diffeomorphism r = 1

2 dimR Fix(dT f )x =
const. Hence, by eventually relabeling the coordinates hx(Fix(dxf )) = R

2r+1 = {ξ ∈
R

2n+1 : ξa = 0,2r + 2 ≤ a ≤ 2n + 1}. Then

ψ ≡ hx ◦ (
Expx : Fix(dxf ) ∩ Nε(0x) → Fix(f ) ∩ U

)−1

is a local coordinate system on L about x. For each X ∈ Hx and λ ∈ R such that
X + λξx ∈ Fix(dxf ) ∩ Nε(0x) we set as above

γX,λ(t) = Expx

(
tX + t2λξx

)
, |t | < 2,

and consider the curve α : (−ε, ε) → L given by

α(λ) = γ0x ,λ(1), |λ| < ε.

The fact that α lies in L is a consequence of part (i) in Theorem 3.6. If a(λ) = λξx

then (with the notation in the proof of Theorem 2.4) ȧ(λ) = F−1
a(λ)(ξx), hence (again

by the proof of Theorem 2.4)

Tx(L) � α̇(0) = (d0x Expx) ◦ F−1
0x

(ξx) = ξx

so that ξ ∈ X(L). Similarly, Tx(L) = Fix(dxf ) and L is an almost CR manifold with
the almost CR structure H(L)x = Fix(dT f )x .

(iv) Let γ be a λ-parabolic geodesic of L such that γ (0) = x ∈ L and X ≡ γ̇ (0) ∈
H(L)x = Fix(dT f )x . Next, for sufficiently small δ > 0 we consider the λ-parabolic
geodesic in M given by γ (t) = Exp(tX + t2λξx), |t | < δ, so that (by Theorem 3.6)
γ (t) ∈ Fix(f ) ∩ U . If ∇̂L is the generalized Tanaka–Webster connection of L then
(by (3.6))

(∇̂L

γ̇
γ̇
)
γ (t)

= tanγ (t)(∇̂γ̇ γ̇ )γ (t) = 2λ tanγ (t)(ξγ (t)) = 2λξγ (t)

so that γ is also a λ-parabolic geodesic of L, of the same initial data (x,X). Therefore
γ = γ , i.e., γ is a λ-parabolic geodesic in M . �
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Corollary 3.7 Let f : M → M be an isopseudohermitian transformation of the con-
tact metric manifold (M, (ϕ, ξ, η, g)) and L a connected component of the fixed
point set of f . If dim(L) ≥ 3 then the inclusion i : L → M is pseudoharmonic, i.e.,
τ̂H(L)(i) = 0.

Proof Let x ∈ L and X ∈ H(L)x = Fix(dT f )x such that X �= 0. There are ε > 0 and
δ > 0 such that for any v ∈ Tx(L) with ‖v‖ < ε there is a unique geodesic (−δ, δ) →
L of ∇̂L with initial conditions (x, v). Let us choose 0 < r < ε/‖X‖ and consider the
unique geodesic γ : (−δ, δ) → L of ∇̂L such that γ (0) = x and γ̇ (0) = rX. By (iv)
in Theorem 3.6 the curve γ is also a geodesic of ∇̂ , hence (by (3.7))

r2β̂i,x(X,X) = β̂i,γ (0)

(
γ̇ (0), γ̇ (0)

) = {(
f −1∇̂)

γ̇
f∗γ̇ − f∗∇̂L

γ̇ γ̇
}
γ (0)

= 0. �

Next we adopt

Definition 3.8 We say (M, (ϕ, ξ, η, g)) satisfies the ϕ-condition if

∇ϕXϕX + ∇XX = ϕ[ϕX,X] (3.8)

for any X ∈ H.

We establish the following

Theorem 3.9 Let (M,ϕ, ξ, η, g) and (M ′, ϕ′, ξ ′, η′, g′) be two almost contact semi-
Riemannian manifolds with dim(M) = 2n + 1, satisfying the ϕ-condition. For each
CR map f : M → M ′

τH(f ) = − trace(ϕ∇ξ)ϕ′f f∗ξ. (3.9)

Here ϕ′f : f −1T (M ′) → f −1T (M ′) is the pullback of ϕ′ by f . If additionally
(ϕ, ξ, η, g) is a contact semi-Riemannian structure then

τH(f ) = −2nsϕ′f f∗ξ, (3.10)

where s = g(ξ, ξ). Hence f is Levi harmonic if and only if f∗ξ = cξ ′ for some c ∈ R.
If this is the case then f is a pseudohermitian map.

Proof The tangent bundle to any (2n + 1)-dimensional almost contact semi-
Riemannian manifold M admits a local semi-orthonormal frame (a ϕ-basis), i.e.,
a frame of the form {ξ,Eα,ϕEα : 1 ≤ α ≤ n}. By (2.2) if Eα is a spacelike (respec-
tively, timelike) then ϕEα is spacelike (respectively, timelike). In particular, a semi-
Riemannian metric compatible with an almost contact structure has either signature
(2p+1,2n−2p) or signature (2p,2n−2p+1), according to whether ξ is spacelike
or timelike.

Let {ξ,Eα,ϕEα : 1 ≤ α ≤ n} be a ϕ-basis and let us set sα = g(Eα,Eα) ∈ {±1}.
As f is a CR map one has

τH(f ) =
n∑

α=1

sα

{∇′f
Eα

f∗Eα − f∗∇EαEα + ∇′f
ϕEα

f∗ϕEα − f∗∇ϕEαϕEα

}
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=
n∑

α=1

sα

{∇′f
Eα

f∗Eα + ∇′f
ϕEα

ϕ′f f∗Eα − f∗(∇EαEα + ∇ϕEαϕEα)
}
.

Next (as both M and M ′ satisfy the ϕ-condition)

τH(f ) =
n∑

α=1

sα

(
ϕ′f f∗ − f∗ϕ

)[ϕEα,Eα].

Note that [ϕEα,Eα] = −ϕ2[ϕEα,Eα] + g([ϕEα,Eα], ξ)ξ and ϕ′f f∗ − f∗ϕ = 0 on
H. Also

n∑
α=1

sαg
([ϕEα,Eα], ξ) =

n∑
α=1

sα

{
g(∇ϕEαEα, ξ) − g(∇EαϕEα, ξ)

}

=
n∑

α=1

sα

{−g(∇ϕEαξ,Eα) + g(∇Eαξ,ϕEα)
}

= −
n∑

α=1

sα

{
g(ϕ∇ϕEαξ,ϕEα) + g(ϕ∇Eαξ,Eα)

}

= − trace(ϕ∇ξ) + sg(ϕ∇ξ ξ, ξ) = − trace(ϕ∇ξ),

yielding (3.9). Let us assume from now on that M is a contact semi-Riemannian
manifold. Then (by (2.5)) for any X,Y ∈ H

∇XϕY − ϕ∇XY − ∇ϕXY − ϕ∇ϕXϕY = 2g(X,Y )ξ.

In particular, for Y = ϕX one derives (3.8). Hence any contact pseudo metric mani-
fold satisfies the ϕ-condition and then (3.9) must hold. Then (by (2.4))

trace(ϕ∇ξ) =
n∑

α=1

sα

{
g(ϕ∇ϕEαξ,ϕEα) + g(ϕ∇Eαξ,Eα)

}

=
n∑

α=1

sα

{
g(sEα + hEα,Eα) + g(sϕEα + hϕEα,ϕEα)

}

= 2ns + trace(h) = 2ns,

yielding (3.10). Consequently τH(f ) = 0 if and only if f∗ξ = c(ξ ′)f for some c ∈ R.
Necessity is immediate. Conversely τH(f ) = 0 implies f∗ξ = λ(ξ ′)f for some λ ∈
C∞(M,R). Yet f is a CR map, hence f ∗η′ = λη. Then

(
df ∗η′)(ξ, ·) = ξ(λ)η − dλ,(

df ∗η′)(ξ,X)x = (
f ∗dη′)(ξ,X)

= (
dη′)

f (x)

(
(dxf )ξx, (dxf )Xx

)

= λ(x)
(
dη′)

f (x)

(
ξ ′
f (x), (dxf )Xx

) = 0,
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for any X ∈ X(M) and x ∈ M so that

dλ = ξ(λ)η. (3.11)

Finally (using (3.11) twice)

ξ(λ)η ∧ dη = dλ ∧ dη = −d(dλ ∧ η) = −d
(
ξ(λ)η ∧ η

) = 0

so that for any X ∈ H

−ξ(λ)g(X,X) = ξ(λ)(dη)(X,ϕX) = ξ(λ)(η ∧ dη)(ξ,X,ϕX) = 0,

i.e., dλ = 0. �

3.3 Levi Harmonic Maps from Real Hypersurfaces of Indefinite Kähler Manifolds

Let M be an orientable real hypersurface of an (indefinite) Kähler manifold (M,J,g)

of real dimension 2n + 2 equipped with the induced almost contact (semi-) Rieman-
nian structure (ϕ, ξ, η, g). We recall the Gauss and Weingarten formulas

∇XY = ∇XY + B(X,Y ), ∇XN = −AX, (3.12)

where ∇ and ∇ are respectively the Levi-Civita connection of M and M . Also B is
the second fundamental form and A the shape operator. Then

(∇Xϕ)Y = sg(AX,Y )ξ − η(Y )AX, ∇Xξ = −ϕAX. (3.13)

ξ is commonly referred to as the Hopf vector field of M . Cf. [9], p. 551 (ξ in the
current paper and that in [9] or [41] differ by a sign). M is a Hopf hypersurface
(cf. [41, 44]) if ξ is an eigenvector of the shape operator, i.e., Aξ = αξ . Note that
∇ξ ξ = −ϕAξ yields ∇ξ ξ = 0 ⇐⇒ Aξ = αξ . Next (by (3.13)) for any X ∈ Ker(η)

(∇Xϕ)ϕX = sg(AX,ϕX)ξ,

that is,

∇XX + ϕ∇XϕX = −sg(AX,ϕX)ξ. (3.14)

Replacing X by ϕX gives

∇ϕXϕX − ϕ(∇ϕXX) = sg(AϕX,X)ξ = sg(AX,ϕX)ξ (3.15)

for any X ∈ Ker(η). As a consequence of (3.14)–(3.15) the almost contact semi-
Riemannian structure of an orientable real hypersurfaces in an indefinite Kähler man-
ifold satisfies the ϕ-condition. Let {ξ,Eα,ϕEα : 1 ≤ α ≤ n} be a ϕ-basis. Then (by
(3.13))

trace(ϕ∇ξ) =
n∑

α=1

sα

{
g(ϕ∇ϕEαξ,ϕEα) + g(ϕ∇Eαξ,Eα)

}

Author's personal copy



Levi Harmonic Maps of Contact Riemannian Manifolds

=
n∑

α=1

sα

{
g(∇ϕEαξ,Eα) − g(∇Eαξ,ϕEα)

}

=
n∑

α=1

sα

{−g(ϕAϕEα,Eα) + g(ϕAEα,ϕEα)
}

=
n∑

α=1

sα

{
g(AϕEα,ϕEα) + g(AEα,Eα)

}
.

Therefore

trace(ϕ∇ξ) = H − sg(Aξ, ξ) (3.16)

where H = trace(A) is mean curvature of M in M .
Let M be an orientable real hypersurface of a complex space form M(c), c �= 0,

equipped with the almost contact metric structure (ϕ, ξ, η, g) induced by the Kähle-
rian structure of M(c). If H = Ker(η) = (Rξ)⊥ is integrable and each integral mani-
fold is totally geodesic in M(c) then M is a ruled hypersurface (cf. M. Kimura, [34],
M. Kimura & S. Maeda, [35]). If this is the case then (cf. [35])

Aξ = μξ + νE, ν �= 0, AE = νξ, AX = 0,

for any X orthogonal to ξ and E, where E ∈ (Rξ)⊥ is a unit vector field and μ,ν ∈
C∞(M,R). Then

H = trace(A) = μ = g(Aξ, ξ). (3.17)

Finally (by (3.16)–(3.17) and Theorem 3.9)

Theorem 3.10 Let M be an orientable real hypersurface of an (indefinite) Kähler
manifold M , equipped with the induced almost contact (semi-) Riemannian struc-
ture. Let (M ′, ϕ′, ξ ′, η′, g′) be an almost contact semi-Riemannian manifold which
satisfying the ϕ-condition. Then for any CR map f : M → M ′

τH(f ) = (
H − sg(Aξ, ξ)

)
ϕ′f f∗ξ. (3.18)

If M is a ruled real hypersurface of a complex space form M(c) with c �= 0 then any
CR map f : M → M ′ is Levi harmonic.

3.4 Levi Harmonic Maps from Generalized Cosymplectic Manifolds

Let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold. M is almost cosym-
plectic if the differential forms η and Φ are closed (cf. G. Goldberg & K. Yano,
[27]). M is cosymplectic if it is almost cosymplectic and the almost contact structure
(ϕ, ξ, η) is normal (equivalently ∇φ = 0). Cf. [10], p. 77. (Almost) cosymplectic
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manifolds have been extensively studied (cf. [14, 24, 42, 46]). An almost contact
Riemannian manifold M is quasi-cosymplectic (cf. [11], and [15], p. 666) if

(∇Xϕ)Y + (∇ϕXϕ)ϕY = η(Y )∇ϕXξ, X,Y ∈ X(M). (3.19)

The class of quasi-cosymplectic manifolds contains the classes of cosymplectic and
almost cosymplectic manifolds. By a result of Z. Olszak (cf. [42], Lemma 2.2, p. 240)
any almost cosymplectic manifold satisfies (3.19). Examples of quasi-cosymplectic
manifolds which are not almost cosymplectic do exist (cf. [11], and [15], p. 668).
By a result in [11] the Calabi quasi-Kähler structure on R

4 × S2 yields a quasi-
cosymplectic structure on R

2 × S2 × R which is not almost cosymplectic. Moreover,
a result in [15] shows that R

3 ×S2 with the almost contact metric structure induced by
the quasi-Kähler structure on R

4 × S2 via the embedding of R
3 × S2 in R

4 × S2 pro-
vides another examples of the sort. Also R

5 × CP 3 admits an almost contact metric
structure which is quasi-cosymplectic but not almost cosymplectic (cf. [15], p. 668).

Let (M,ϕ, ξ, η, g) be a quasi-cosymplectic manifold. Let us set Y = ξ in (3.19).
Then

ϕ∇Xξ = −∇ϕXξ, ∇ξ ξ = 0. (3.20)

Moreover, let X ∈ Ker(η) and let us set Y = ϕX in (3.19). Then (∇Xϕ)ϕX =
(∇ϕXϕ)X or ∇XX + ∇ϕXϕX = ϕ[ϕX,X]. Thus any quasi-cosymplectic manifold
satisfies the ϕ-condition. Besides (by (3.20))

trace(ϕ∇ξ) =
n∑

α=1

{
g(ϕ∇Eαξ,Eα) + g(ϕ∇ϕEαξ,ϕEα)

}

=
n∑

α=1

{
g(−∇ϕEαξ,Eα) + g(∇Eαξ,ϕEα)

}

= −
n∑

α=1

{
g(∇ϕEαξ,Eα) + g(ϕ∇Eαξ,Eα)

} = 0.

Consequently (by Theorem 3.9)

Theorem 3.11 Any CR map f : M → M ′ among two quasi-cosymplectic manifolds
is Levi harmonic.

3.5 Levi Harmonicity of the Reeb Field

We need to recall the standard contact metric structure on (the total space of) the unit
tangent sphere bundle (cf., e.g., [10]). Let (M,g) be an n-dimensional Riemannian
manifold. With the notation in Sect. 2.3 the Sasaki metric G on T (M) is given by

G(βX,βY ) = G(γX,γ Y ) = g(X,Y ) ◦ π, G(βX,γ Y ) = G(γX,βY ) = 0,

for any X,Y ∈ C∞(π−1T M). The geodesic flow ξ ∈ X(T (M)) is defined by ξ =
β(L). The tangent sphere bundle is U(M,g) = {v ∈ T (M) : gπ(v)(v, v) = 1}. The
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Sasaki metric on U(M,g) is G̃ = ι∗G where ι : U(M,g) → T (M) is the inclu-
sion. Let ξ̃ be the pointwise restriction of ξ to U(M,g). Then ξ̃ ∈ X(U(M,g))

(any horizontal vector field on T (M) is tangent to U(M,g)). Also N = γ (L) is a
unit normal field on U(M,g). The tangential lift of X ∈ C∞(π−1T M) is defined as
γX − gπ(X, L)N ∈ X(U(M,g)). For each tangent vector field X ∈ X(M) we adopt
the notation

XH = β
(
Xπ

)
, XV = γ

(
Xπ

)
, XT = XV − gπ

(
Xπ, L

)
N.

Clearly

T
(
U(M,g)

) = H ⊕ γ (RL)⊥

where (RL)⊥v is the orthogonal complement of RL(u) in the inner product space
((π−1T M)v, g

π
v ) for any v ∈ U(M,g). The Sasaki metric G̃ on U(M,g) is explicitly

described by

G̃
(
XH ,YH

) = g(X,Y ) ◦ π, G̃
(
XH ,YT

) = 0,

G̃
(
XT ,Y T

) = g(X,Y ) ◦ π − gπ
(
Xπ, L

)
gπ

(
Yπ , L

)
,

for any X,Y ∈ X(M). The standard contact metric structure (ϕ, ξ, η, g) on U(M,g)

is given by

ϕ
(
XH

) = XT , ϕ
(
XT

) = −XH + (1/2)gπ
(
Xπ, L

)
β(L),

ξ = 2ξ̃ = 2β(L),

η
(
XH

) = (1/2)gπ
(
Xπ, L

)
, η

(
XT

) = 0,

g = (1/4)G̃.

Let t ∈ (0,+∞). The synthetic object
(
ϕt ≡ ϕ, ξ t ≡ (1/t)ξ , ηt ≡ tη, gt ≡ tg + (

t2 − t
)
η ⊗ η

)
(3.21)

is a D-homothetic deformation of (ϕ, ξ, η, g). Then (3.21) is a g-natural contact met-
ric structure on U(M,g) (in the sense of [1] and [45]) and gt is the g-natural metric
defined by the parameters

a = t/4, b = c = 0, d = (
t2 − t

)
/4 = 4a2 − a.

Let (M,ϕ, ξ, η, g) be a K-contact manifold. Then (by Theorem 6.2 in [45])

ξ : (M,g,η) → (
U(M,g), gt , ηt

)

is a CR map. Moreover,

(dxξ)v = ξH
v + (∇ξ ξ)Vv = (1/2)ξv = (t/2)(ξ t )v, v ≡ ξx,

ξ∗ηt = μη, μ ≡ (
ξ∗ηt

)
(ξ) = t/2.

Thus (by Theorem 3.9)

Author's personal copy



S. Dragomir and D. Perrone

Theorem 3.12 Let (M,ϕ, ξ, η, g) be a K-contact manifold and let (ϕt , ξ t , ηt , gt ) a
D-homothetic deformation of the standard contact Riemannian structure of U(M,g).
Then ξ : (M,g,η) → (U(M,g), gt , ηt ) is Levi harmonic for any t > 0. Moreover, ξ

is a pseudohermitian map (isopseudohermitian for t = 2).

Note that (ϕt , ξ t , ηt , gt ) is K-contact if and only if M has constant sectional cur-
vature +1 (and if this is the case the structure is Sasakian, cf. [10], p. 144).

Let S2n+1 ⊂ C
n+1 be the sphere endowed with the canonical Sasakian structure

(ϕ0, ξ0, η0, g0). ξ0 is a Hopf vector field on S2n+1, hence

Corollary 3.13 ξ0 : (S2n+1, g0, η0) → (U(S2n+1, g0), gt , ηt ) is a Levi harmonic
map for any t > 0.

If (M,g) is a Riemannian manifold of constant sectional curvature +1 the contact
metric structure (ϕ, ξ, η, g) on U(M,g) is K-contact. Let (g′

t , η
′
t ) be a D-homothetic

deformation the corresponding contact metric structure on T1T1M obtained by using
the standard contact metric structure on U(U(M,g), g). Then (by Theorem 3.12)

Corollary 3.14 Let (M,g) be a Riemannian manifold of constant curvature +1.
The geodesic flow ξ̄ of U(M,g) is a Levi harmonic map of (U(M,g), g, η) into
(U(U(M,g), g), g′

t , η
′
t ).

3.6 On a Theorem by E. Barletta

Given a contact metric manifold M , S. Tanno defined (cf. [51]) the generalized
Tanaka–Webster connection ∇̂ by (2.7). Also ∇̂ may be described by the axioms
(2.8)–(2.11). In Sect. 2.3 Tanno’s formalism is readily transferred to the case of con-
tact semi-Riemannian structures (ϕ, ξ, η, g) with s = 1. If X ∈ Ker(η) and Y = ϕX

then (by (2.11))

(∇̂Xϕ)ϕX = (∇Xϕ)ϕX + g(∇Xξ,−X)ξ,

(∇̂ϕXϕ)X = (∇ϕXϕ)X + g(∇ϕXξ,ϕX)ξ.

Hence (by (2.4))

(∇̂Xϕ)ϕX − (∇̂ϕXϕ)X = (∇Xϕ)ϕX − (∇ϕXϕ)X

so that (by (2.5))

(∇̂Xϕ)ϕX − (∇̂ϕXϕ)X = 0, X ∈ H, (3.22)

or

∇̂XX + ∇̂ϕXϕX = ϕ(∇̂ϕXX − ∇̂XϕX) = ϕ
(
T̂ (ϕX,X) + [ϕX,X]).

Then (by (2.9))

∇̂XX + ∇̂ϕXϕX = ϕ[ϕX,X], X ∈ H, (3.23)
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i.e., ∇̂ satisfies the ϕ-condition. Let f : M → M ′ be a C∞ map between two con-
tact semi-Riemannian manifolds with s = 1 and consider the fundamental form β̂f

and the tension field τ̂H(f ) given by (3.3)–(3.4) and leading to the notion of pseudo-
harmonicity. By exploiting (3.23) a verbatim repetition of the proof of Theorem 3.9
leads to

τ̂H(f ) = trace(ϕ∇ξ)ϕ′f f∗ξ = τH(f ).

We proved (similarly to Theorem 1.1 in [6])

Theorem 3.15 Let M and M ′ be two contact semi-Riemannian manifolds whose
Reeb fields are spacelike. For any CR map f : M → M ′

τ̂H(f ) = 2nϕ′f f∗ξ = τH(f ).

Thus f is pseudoharmonic if and only if it is H-harmonic. In particular, f is pseu-
doharmonic if and only if f∗ξ = cξ ′f for some c ∈ R. If this is the case f is pseudo-
hermitian.

4 Invariant Submanifolds and Levi Harmonicity

Let M be a submanifold of a (2n + 1)-dimensional almost contact metric manifold
(M,ϕ, ξ, η, g). M is an invariant submanifold of M if ϕpTp(M) ⊂ Tp(M) for any
p ∈ M . Two extreme cases may be distinguished (cf. [53]) as I) ξ is tangent to M

(and then M is odd-dimensional, i.e., dim(M) = 2n + 1) or II) ξ is transverse to M

(and then M is even-dimensional). When M is a contact Riemannian manifold case
II does not occur (cf. [10], p. 122). In this section we only consider case I. Then M

carries the induced almost contact Riemannian structure (ϕ, ξ, η, g) given by

ϕ ◦ i∗ = i∗ ◦ ϕ, η = i∗η, g = i∗g,

where i : M → M is the inclusion. In particular, i is a CR map. By a result of G.D.
Ludden (cf. [39]) if M is cosymplectic then M is cosymplectic, too. A result by
D. Chinea (cf., e.g., Theorem 8.1 in [10]) shows that when M is a contact Riemannian
manifold i : M → M is a minimal isometric immersion. We establish

Theorem 4.1

(a) Let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold satisfying the
ϕ-condition. Then (M,ϕ, ξ, η, g) is an almost contact Riemannian manifold sat-
isfying the ϕ-condition. Moreover, the map i : M → M is Levi harmonic. The
mean curvature of i is given by

H = [
1/(2n + 1)

]
α(ξ, ξ)

where α is the second fundamental form of i. If additionally ξ is geodesic then i

is minimal.
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(b) Let (M,ϕ, ξ, η, g) be a quasi-cosymplectic manifold. Then (M,ϕ, ξ, η, g) is a
quasi-cosymplectic manifold and i is both Levi harmonic and minimal.

(c) Let (M,ϕ, ξ, η, g) be a contact Riemannian manifold. Then (M,ϕ, ξ, η, g) is a
contact Riemannian manifold and i is both Levi harmonic and minimal.

Proof (a) Assume M satisfies the ϕ-condition. Then for any X ∈ H

∇ϕXϕX + ∇XX = ϕ[ϕX,X],
or (by the Gauss formula)

∇ϕXϕX + α(ϕX,ϕX) + ∇XX + α(X,X) = ϕ[ϕX,X]. (4.24)

The tangential and normal components of (4.24) are

∇ϕXϕX + ∇XX = ϕ[ϕX,X], (4.25)

α(ϕX,ϕX) + α(X,X) = 0, (4.26)

for any X ∈ H. Thus (by (4.25)) M satisfies the ϕ-condition. Therefore (as i is a CR
map) equation (3.9) yields τH(i) = trace(ϕ∇ξ)ϕξ = 0, that is, i is Levi harmonic.
Let {ξ,Eβ,ϕEβ : 1 ≤ β ≤ n) be a ϕ-basis. Then (by (4.26)) the mean curvature of i

is

H = 1

2n + 1

{
α(ξ, ξ) +

n∑
β=1

(
α(ϕEβ,ϕEβ) + α(Eβ,Eβ)

)} = 1

2n + 1
α(ξ, ξ)

where α(ξ, ξ) = ∇ξ ξ − ∇ξ ξ . When ξ is geodesic, α(ξ, ξ) = 0 and i is minimal.
(b) Assume M to be quasi-cosymplectic. Then (by (3.19))

(∇Xϕ)Y + (∇ϕXϕ)ϕY = η(Y )∇ϕXξ (4.27)

for any X,Y ∈ X(M). Next (by the Gauss formula)

(∇Xϕ)Y = ∇XϕY − ϕ∇XY = ∇XϕY − ϕ∇XY

= ∇XϕY + α(X,ϕY ) − ϕ
(∇XY + α(X,Y )

)
,

that is,

(∇Xϕ)Y = (∇Xϕ)Y + α(X,ϕY ) − ϕα(X,Y ). (4.28)

Hence

(∇ϕXϕ)ϕY = (∇ϕXϕ)ϕY + α
(
ϕX,ϕ2Y

) − ϕα(ϕX,ϕY ). (4.29)

Besides

η(Y )∇ϕXξ = η(Y )
(∇ϕXξ + α(ξ,ϕX)

)
. (4.30)
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Moreover, W ∈ Tp(M)⊥ ⊂ Tp(M) implies ϕW ∈ Tp(M)⊥ due to

g(ϕW,X) = −g(W,ϕX) = −g(W,ϕX) = 0.

Finally (by (4.28)–(4.30)) the tangential component of (4.27) is

(∇Xϕ)Y + (∇ϕXϕ)ϕY = η(Y )∇ϕXξ

for any X,Y ∈ X(M). Thus M is a quasi-cosymplectic manifold. Yet quasi-
cosymplectic manifolds satisfy the ϕ-condition and their characteristic vector fields
are geodesic. Therefore (by statement (a) in Theorem 4.1) i is Levi harmonic and
minimal.

(c) If M is a contact Riemannian manifold then any invariant submanifold M

inherits a contact Riemannian structure by (cf., e.g., [10], p. 122). Then (c) follows
from (a). �

To give an example, let M2n+3(c) be a complete simply connected Sasakian man-
ifold of constant φ-sectional curvature c. As is well known, M2n+3(c) is (up to an
isometry) one of the Sasakian manifolds S2n+3, R

2n+3, or Dn+1 × R equipped with
Sasakian structures of ϕ-sectional curvature c > −3, c = −3, and c < −3 respec-
tively, where Dn+1 ⊂ C

n+1 is a simply connected bounded domain. Then M2n+1(c)

is an invariant submanifold of M2n+3(c) (cf. [54], p. 328), hence the inclusion
i : M2n+1(c) → M2n+3(c) is Levi harmonic.

5 Brieskorn Spheres

Let C
n+1 with the Cartesian complex coordinates z = (z0, . . . , zn) and a = (a0, . . . ,

an) ∈ Z
n+1 such that aj ≥ 2. Let us consider the polynomial Pa(z) = ∑n

j=0 z
aj

j ∈
C[z]. Then B2n(a) = {z ∈ C

n+1 : Pa(z) = 0} is an algebraic hypersurface in C
n+1

and B2n(a) \ {0} is an n-dimensional complex submanifold. Let us set Σ2n−1(a) =
B2n(a) ∩ S2n+1 (the Brieskorn sphere determined by a). By a result in [54],
pp. 303–305, S2n+1 admits a Sasakian structure (ϕ, ξ, η, g) (distinct from the stan-
dard Sasakian structure) such that Σ2n−1(2, . . . ,2) is an invariant submanifold of
(S2n+1, ϕ, ξ, η, g). Thus (by Theorem 4.1)

Corollary 5.1 The inclusion Σ2n−1(2, . . . ,2) → S2n+1 is Levi harmonic.

Let Qn = π0(B
2n+2(2, . . . ,2)) be the complex quadric, where π0 : C

n+2 \ {0} →
CP n+1 is the projection. Let π : S2n+3 → CP n+1 be the Hopf fibration. The satu-
rated set P = π−1(Qn) is the total space of the circle bundle S1 → P → Qn. Then P

is an invariant submanifold of the sphere S2n+3 equipped with the standard Sasakian
structure (cf. [54], p. 328), hence

Corollary 5.2 The inclusion P → S2n+3 is Levi harmonic.
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Let us consider the map F : C
n+1 → C

n+1 given by F(z) = (−z0, z1, . . . , zn) for
any z = (z0, . . . , zn) ∈ C

n+1. If k ∈ Z, k ≥ 1, and a0 = 2k then F descends to an iso-
metric transformation f : M → M where M ≡ Σ2n−1(2k, a′) and a′ = (a1, . . . , an).
Also M is a CR manifold of hypersurface type (of CR dimension n− 1 and CR codi-
mension 1) embedded in C

n+1 as a CR submanifold of codimension 3, hence f is
a CR isomorphism (as the trace of a holomorphic map). A proof that M is a contact
manifold is given in [48]. Here we give a simpler proof (avoiding the explicit calcu-
lation of the form η ∧ (dη)n−1). Indeed, let us consider the functions fj ∈ C∞(U)

given by

fj (z) = aj

a0

z
aj −1
j

z
a0−1
0

, 1 ≤ j ≤ n (a0 = 2k)

where U = {z ∈ B2n(a) : z0 �= 0} (an open subset of B2n(a) \ {0}). The Cauchy–
Riemann equations on U are

∂u

∂zj

− f j (z)
∂u

∂z0
= 0, 1 ≤ j ≤ n. (5.31)

As a0 − 1 is odd fj ◦ F = −fj , hence the equations (5.31) are invariant under the
transformation F (which is the same as saying that F maps the holomorphic tangent
bundle over B2n(a) \ {0} in itself). Next let Ω = {z ∈ U ∩ M : zn − f n(z)z0 �= 0} (an
open subset of M) and let us consider the functions Gα,Hα ∈ C∞(Ω) given by

Gα(z) = fα(z)zn − zαfn(z)

zn − fn(z)z0
, Hα(z) = zα − fα(z)z0

zn − fn(z)z0
, 1 ≤ α ≤ n − 1.

If Tα ≡ ∂/∂zα −Gα∂/∂z0 −Hα∂/∂zn then the tangential Cauchy–Riemann equations
on Ω (induced by (5.31)) are

T α(u) = 0, 1 ≤ α ≤ n − 1. (5.32)

As Gα ◦ f = −Gα and Hα ◦ f = Hα the equations (5.32) are invariant under f

(equivalently, f is a CR map). Moreover, the (pullback to M of the) real 1-form

η = −i

{
z0dz0 +

n−1∑
α=1

zαdzα + zndzn

}
+ complex conjugate

(i = √−1) is a pseudohermitian structure on M . Indeed, z0Gα + znHα = zα yields
η(Tα) = 0 for any 1 ≤ α ≤ n − 1. Then f ∗η = η, i.e., f is isopseudohermitian. Also
Fix(f ) = Σ2n−3(a′) so that

Corollary 5.3 Let n ≥ 3 and a = (a0, . . . , an) ∈ Z
n+1 such that a0 = 2k, k ≥ 1,

and aj ≥ 2 for any 1 ≤ j ≤ n. The inclusion Σ2n−3(a′) → Σ2n−1(2k, a′) is Levi
harmonic.

For instance, Σ3(2,2,2) → Σ5(2,2,2,2) is Levi harmonic.
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Proof of Corollary 5.3 As dη = 2i(dz0 ∧ dz0 + ∑n−1
α=1 dzα ∧ dzα + dzn ∧ dzn) the

Levi form of M = Σ2n−1(a) is given by

Lθ(Z,Z) = −i(dη)(Z,Z) =
n−1∑
α=1

{∣∣Zα
∣∣2 + ∣∣GαZα

∣∣2 + ∣∣HαZα
∣∣2}

,

hence M is strictly pseudoconvex and Corollary 3.7 applies, i.e., ι : Σ2n−3(a′) →
M is pseudoharmonic. Finally (by Theorem 3.15) as ι is a CR map, if H =
H(Σ2n−3(a′)) then τH(ι) = τ̂H(ι) = 0. �

6 Variational Treatment of Levi Harmonicity

Let (M,ϕ, ξ, η, g) be a (2n + 1)-dimensional almost contact Riemannian manifold
and (M ′, g′) a Riemannian manifold. If Ω ⊂ M is a relatively compact domain we
set

EΩ(f ) = 1

2

∫
Ω

traceg

(
ΠHf ∗g′)dvg (6.33)

for any f ∈ C∞(M,M ′). Let us derive the Euler–Lagrange equations for the energy
functional (6.33). To this end let {ft }|t |<ε be a smooth 1-parameter variation of f =
f0 supported in Ω and let

F : M × (−ε, ε) → M ′, F (p, t) = ft (p), p ∈ M, |t | < ε.

Let V ∈ C∞(f −1T M ′) be the corresponding infinitesimal variation, i.e.,

Vp = (d(p,0)F )(∂/∂t)(p,0), p ∈ M,

and Supp(V ) ⊂ Ω . Let {Ea : 1 ≤ a ≤ 2n} be a local orthonormal frame of H defined
on the open set U ⊂ M . Let M̃ = M × (−ε, ε). For any X ∈ X(M) we define X̃ ∈
X(M̃) by setting

X̃(p,t) = (dpαt )Xp,

αt : M → M̃, αt (p) = (p, t), (p, t) ∈ M̃.

Let u ∈ C∞(M̃) be given by

u(p, t) ≡ traceg

(
ΠHf ∗

t g′)
p

=
2n∑

a=1

g′
ft (p)

(
(dpft )Ea,p, (dpft )Ea,p

) =
2n∑

a=1

g′F (F∗Ẽa,F∗Ẽa)(p,t)

for any p ∈ U and |t | < ε, where g′F = F−1g′ is the pullback of g′ by F (a Rieman-
nian bundle metric in F−1T M ′ → M̃). Let also ∇′F = F−1∇′ be the pullback of ∇′
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by F . Next (as ∇′F g′F = 0)

∂u

∂t
=

2n∑
a=1

∂

∂t

{
g′F (F∗Ẽa,F∗Ea)

} = 2
2n∑

a=1

g′F (∇′F
∂/∂tF∗Ẽa,F∗Ẽa

)
. (6.34)

As [∂/∂t, Ẽa] = 0 and ∇′ is torsion free

g′F (∇′F
∂/∂tF∗Ẽa,F∗Ẽa

) = g′F (∇′F
Ẽa

F∗(∂/∂t),F∗Ẽa

)

= Ẽa

{
g′F (

F∗(∂/∂t),F∗Ẽa

)} − g′F (
F∗(∂/∂t),∇′

Ẽa
F∗Ẽa

)
.

(6.35)

For each |t | < ε let Xt ∈ H be defined by

g(Xt ,Y ) = g′F (
F∗(∂/∂t),F∗Ỹ

) ◦ αt , Y ∈ H. (6.36)

Then for any p ∈ U and |t | < ε

2n∑
a=1

Ẽa,(p,t)

{
g′F (

F∗(∂/∂t),F∗Ẽa

)}

=
2n∑

a=1

Ea,p

{
g(Xt ,Ea)

}

=
2n∑

a=1

{
g(∇EaXt ,Ea) + g(∇EaEa,Xt )

}
(p).

Let div be the divergence operator, i.e., LXdvg = div(X)dvg for any X ∈ X(M).
Then

2n∑
a=1

Ẽa,(p,t)

{
g′F (

F∗(∂/∂t),F∗Ẽa

)}

= {
div(Xt ) − g(∇ξXt , ξ)

}
(p) +

2n∑
a=1

g(Xt ,∇EaEa)p (6.37)

(by ∇g = 0, g(Xt , ξ) = 0, ∇ξ ξ ∈ H and (6.36))

= div(Xt )(p) + g′F (
F∗(∂/∂t),F∗Ỹ

)
(p,t)

where

Y ≡ ∇ξ ξ +
2n∑

a=1

ΠH∇EaEa. (6.38)
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On the other hand

ΠH∇EaEa = ∇EaEa − η(∇EaEa)ξ = ∇EaEa + g(Ea,∇Eaξ)ξ (6.39)

so that (6.38) becomes

Y = ∇ξ ξ + div(ξ)ξ +
2n∑

a=1

∇EaEa

and we may conclude that

1

2

∂u

∂t
(·,0) = divX0 − g′f (

V, τH(f ) − f∗
{∇ξ ξ + div(ξ)ξ

})
. (6.40)

We obtain the following

Theorem 6.1 Let (M,ϕ, ξ, η, g) and (M ′, g′) be respectively an almost contact Rie-
mannian manifold and a Riemannian manifold. Let Ω ⊂ M be a relatively compact
domain. A C∞ map f : M → M ′ is a critical point of EΩ : C∞(M,M ′) → R if and
only if

τH(f ) = f∗
{∇ξ ξ + div(ξ)ξ

}
. (6.41)

Let f : M → M ′ be an immersion and a critical point of EΩ . Then f is Levi har-
monic if and only if the Reeb field ξ is geodesic and divergence free.

Proof By (6.40) and Green’s lemma

d

dt

{
EΩ(ft )

}
t=0 = −

∫
Ω

g′f (
V, τH(f ) − f∗

{∇ξ ξ + div(ξ)ξ
})

dvg

for any smooth 1-parameter variation {ft }|t |<ε of f supported in Ω (the first variation
formula for EΩ ), hence the Euler–Lagrange equations sought after are (6.41). As
∇ξ ξ ∈ H the last statement follows from (6.41). �

Corollary 6.2 Let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold such
that (i) M satisfies the ϕ-condition and (ii) ξ is a geodesic vector field. Let f : M →
M ′ be a C∞ map of M into a Riemannian manifold (M ′, g′). Then f is Levi harmonic
if and only if f is a critical point of EΩ : C∞(M,M ′) → R for any relatively compact
domain Ω ⊂ M .

Proof Let {Ea : 1 ≤ a ≤ 2n} ≡ {eα,ϕeα : 1 ≤ α ≤ n} be a local orthonormal frame of
H. As M satisfies the ϕ-condition

2n∑
a=1

∇EaEa =
n∑

α=1

(∇eα eα + ∇ϕeαϕeα) =
n∑

α=1

ϕ[ϕeα, eα] ∈ H.
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Hence (by (6.39)) div(ξ) = 0 which together with the assumption ∇ξ ξ = 0 yields

d

dt

{
EΩ(ft )

}
t=0 = −

∫
Ω

g′f (
V, τH(f )

)
dvg

thus leading to the variational interpretation of Levi harmonicity. �

The many ramifications of harmonicity (subelliptic harmonic, contact harmonic,
Levi harmonic, and pseudoharmonic maps) seem to indicate that the theory of har-
monic maps has reached a stage of mannerism. It is, however, the authors’ opinion
that the mentioned ramifications (to which one may add p-harmonic and exponen-
tially harmonic maps (cf. [40] and [43]), Gromov’s tangentially harmonic maps (cf.
[28]), and harmonic maps from Finslerian manifolds (cf., e.g., [13] and [55, 56])) are
but a measure of the enormous success enjoyed by the theory. As a more specific
comment, the ramifications of harmonicity in the present paper do possess one com-
mon feature: the relevant equations (cf., e.g., (6.41)) are nonlinear degenerate elliptic
PDE systems. Indeed, let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold
and let {Ea : 1 ≤ a ≤ 2n} be a local orthonormal frame of H defined on U ⊂ M and
let (U ′, x′α) be a local coordinate system on M ′ such that f (U) ⊂ U ′. Let us consider
the second-order differential operator locally given by

�Hu ≡ −
2n∑

a=1

{
Ea

(
Ea(u)

) − (∇EaEa)(u)
} = �u + ξ(ξu) − (∇ξ ξ)(u)

for any u ∈ C2(M). Here � is the Laplace–Beltrami operator of (M,g). Then

τH(f ) = {−�Hf α + (
Γ ′α

βγ ◦ f
)(∇Hf β

)(
f γ

)}(
∂/∂x′α)f

where f α = x′α ◦f and ∇Hu = ∑2n
a=1 Ea(u)Ea (the H-gradient). On the other hand

let us compute the symbol

σ2(�H) ∈ Smbl2(E,E)

≡ {
σ ∈ Hom

(
π−1E,π−1E

) : σtω = t2σω,ω ∈ T ′(M), t > 0
}

where E = M × R (the trivial line bundle). Also T ′(M) = T ∗(M) \ (0) and π :
T ′(M) → M is the projection. Let u ∈ C∞(M) and ω ∈ T ′(M) with x = π(ω). Then

σ2(�H)ωsx = �H

(
i2

2!
[
a − a(x)

]2
s

)
(x)

where a ∈ C∞(M) and s ∈ C∞(E) are such that (da)x = ω and s(x) = (x,u(x)).
A calculation based on �H(uv) = u�Hv + v�Hu − g(∇Hu,∇Hv) leads to

σ2(�H)ωs(x) = ‖∇Ha‖2
xs(x). (6.42)

Therefore (by (6.42)) Ker[σ2(�H)ω] �= (0) if and only if ω ∈ Rηx , i.e., the ellipticity
of �H degenerates precisely in the direction η. In the contact Riemannian case �H
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is due to S. Tanno, [51], p. 363. If this is the case then (by Theorem 3 in [5], p. 76)
�H is subelliptic of order 1

2 and hence hypoelliptic. Similarly, the principal part of
the pseudoharmonic map system τ̂H(f ) = 0, i.e., locally

�̂Hf α −
2n∑

a=1

(
Γ̂ ′ α

βγ ◦ f
)
Ea

(
f β

)
Ea

(
f γ

) = 0,

is the second-order differential operator �̂H locally given by

�̂Hu = −
2n∑

a=1

{
Ea(Eau) − (∇̂EaEa)(u)

}

coinciding with the sublaplacian �b (cf., e.g., [21], p. 111) in the integrable case. By
(2.7)

�H = �̂H + 2nHH (6.43)

where HH = (1/2n) traceg(BH) is the mean curvature vector of the Levi distribution
(and BH(X,Y ) = (∇XY)⊥ = η(∇XY)ξ for any X,Y ∈ H). On an almost contact
Riemannian manifold M the operators �H and �̂H are distinct in general. However
if M is contact Riemannian then M satisfies the ϕ-condition and consequently the
Levi distribution is minimal (the contact Riemannian analog to Theorem 1.4 in [21],
p. 37), hence �H = �̂H (= �b when T1,0(M) is integrable).

We close Sect. 6 with a comparison among the functionals (1.3) and (6.33). Let M

be a contact Riemannian manifold and f : M → M ′ a C∞ map into a foliated Rie-
mannian manifold (M ′, g′, F ′). Let Q′ = ν(F ′) = T (M)/T (F ′) be the transverse
bundle and π ′ : T (M ′) → Q′ the natural projection. If {Ea : 1 ≤ a ≤ 2n} is a local
g-orthonormal frame in H defined on U ⊂ M then {sa ≡ πEa : 1 ≤ a ≤ 2n} is a
local gQ-orthonormal frame in Q = ν(Fξ ). Here Fξ is the Reeb foliation (tangent
to ξ ), gQ(r, s) = g(σg(r), σg(s)) for any r, s ∈ Q, and σg : Q → T (Fξ )

⊥ = H is the
natural bundle isomorphism. Let us assume that f is a foliated map of (M, Fξ ) into
(M ′, F ′). Then for each x ∈ U

‖dT f ‖(x)2 =
2n∑

a=1

g′f
Q′

(
(dT f )sa, (dT f )sa

)
x

=
∑
a

g′
f (x)

((
(dxf )Ea,x

)⊥
,
(
(dxf )Ea,x

)⊥)

where v⊥ is the T (F ′)⊥f (x)-component of v ∈ Tf (x)(M
′). Assume from now on

that M ′ is a contact Riemannian manifold as well, and F ′ = Fξ ′ . Then (dxf )ξx =
λf (x)ξ ′

f (x)
for some λf ∈ C∞(M) and any x ∈ M . Also

‖dT f ‖2 = traceg

(
ΠHf ∗g′) + ‖f ∗η′‖2 − λ2

f (6.44)

with λf ≡ (f ∗η′)(ξ), hence Levi and transverse harmonicity (in the sense of [22])
do not coincide, in general. However if additionally f is a contact map (i.e., f∗H ⊂
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f −1 H′) or an isometry (i.e., f ∗g′ = g) then ‖f ∗η′‖2 = λ2
f (and by (6.44) f is Levi

harmonic if and only if f is transversally harmonic).

7 Levi Harmonic Morphisms

Let (M,ϕ, ξ, η, g) be an almost contact Riemannian manifold and f : M → M ′ a
continuous map into a Riemannian manifold (M ′, g′).

Definition 7.1 f is a Levi harmonic morphism if for any local harmonic function v :
U ′ ⊂ M ′ → R the function u ≡ v ◦ f : U → R satisfies �Hu = 0 in U ≡ f −1(U ′).

The equation �Hu = 0 in Definition 7.1 is meant in distribution sense. However
combining existence of local harmonic coordinates about each point of M ′ with the
hypoellipticity of �H leads to the following regularity result.

Proposition 7.2 Every Levi harmonic morphism from a contact Riemannian mani-
fold is C∞.

Replacing �H by �̂H in Definition 7.1 leads to the following natural notion.

Definition 7.3 f is a pseudoharmonic morphism if the pullback by f of any local
harmonic function v : U ′ → R is a solution to �̂Hu = 0.

When M is a strictly pseudoconvex CR manifold endowed with a fixed contact
form η, pseudoharmonic morphisms are due to E. Barletta, [3]–[4], who proved a
Fuglede–Ishihara type theorem (cf. also Theorem 6 in [17], p. 435). The noninte-
grable case (where M is but (almost) contact Riemannian) has not been studied so far.
The proof of Fuglede–Ishihara’s theorem (cf. Theorem 4.2.2 in [2], p. 108) makes es-
sential use of normal coordinate systems and of the existence of local harmonic func-
tions with prescribed gradient and Hessian at a point (a result known as Ishihara’s
lemma, cf. [31]) on the target Riemannian manifold M ′ (and Barletta’s Theorem 6 in
[17], p. 435, is proved along the same lines).

The notion of morphism is of course very general and may be given for any pair of
sheaf spaces (M, S) and (M ′, S ′), i.e., a continuous map f : M → M ′ is a morphism
if f ∗S ′ ⊂ S . As a natural ramification of Definitions 7.1 and 7.3 one may consider
the sheaves S and S ′ of local harmonics of �̂H and �̂H′ . Precisely,

Definition 7.4 Let (M,ϕ, ξ, η, g) and (M ′, ϕ′, ξ ′, η′) be two contact Riemannian
manifolds. A continuous map f : M → M ′ is a (H, H′)-harmonic morphism if
the pullback by f of any local solution to �̂H′v = 0 is a (distribution) solution to
�̂Hu = 0.

A moment’s thought exhibits the additional difficulties appearing in a theory of
(H, H′)-harmonic morphisms. For instance, it is unknown whether points on contact
Riemannian manifolds M admit local coordinate neighborhoods (U,xi) such that
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�̂Hxi = 0 (and then no analog to the regularity result in Proposition 7.2 is a priori
available). Also a subelliptic analog to Ishihara’s lemma is missing in present time
subelliptic theory. The following result is straightforward.

Lemma 7.5 Let f : M → M ′ be a C∞ map of an almost contact Riemannian mani-
fold (M,ϕ, ξ, η, g) into a manifold with linear connection (M ′,D′). Let {ξa : 1 ≤ a ≤
2n} be a local g-orthonormal frame of H on U ⊂ M and (U ′, x′α) a local coordinate
system on M ′ such that f (U) ⊂ U ′.

L(v ◦ f ) =
{

Lf α −
2n∑

a=1

(
Γ ′α

βγ ◦ f
)
Ea

(
f β

)
Ea

(
f γ

)}
(vα ◦ f )

−
2n∑

a=1

(vα,β ◦ f )Ea

(
f α

)
Ea

(
f β

)
(7.45)

for any L ∈ {�H, �̂H} and any C2 function v : M ′ → R, where f α = x′α ◦ f , vα ≡
∂v/∂x′α , vα,β = vαβ − Γ ′γ

αβvγ , and vαβ ≡ ∂2v/∂x′α∂x′β . Also Γ ′α
βγ ∈ C∞(U ′) are

the coefficients of D′ with respect to (U ′, x′α).

We shall also need (cf. T. Ishihara, [31])

Lemma 7.6 Let (M ′, g′) be a ν-dimensional Riemannian manifold and Cα,Cαβ ∈ R,
1 ≤ α,β ≤ ν, such that Cαβ = Cβα and

∑ν
α=1 Cαα = 0. Let y0 ∈ M ′ and (U ′, x′α)

a normal coordinate system on M ′ centered at y0 such that x′α(y0) = 0. There is a
harmonic function v : U ′ → R such that vα(y0) = Cα and vαβ(y0) = Cαβ for any
1 ≤ α,β ≤ ν.

We establish

Theorem 7.7 Let (M,ϕ, ξ, g) be an almost contact Riemannian manifold and f :
M → M ′ a C∞ map into a Riemannian manifold (M ′, g′). If f is a Levi harmonic
morphism then f is a Levi harmonic map.

Proof Let x0 ∈ M and y0 = f (x0) ∈ M ′. Let {Ea : 1 ≤ a ≤ 2n} be a local
g-orthonormal frame of H defined on the open set U ⊂ M and (U ′, x′α) a nor-
mal coordinate system on M ′ centered at y0 such that f (U) ⊂ U ′. Let ν = dim(M ′)
and α0 ∈ {1, . . . , ν} and let us set Cα = δαα0 and Cαβ = 0. By Ishihara’s lemma there
is v : U ′ → R such that �′v = 0 in U ′ and vα(y0) = δαα0 and vαβ(y0) = 0. Let us
apply Lemma 7.5 with D′ = ∇′ (together with Γ ′α

βγ (y0) = 0) to derive (as f is a
Levi harmonic morphism)

(
�Hf α0 −

2n∑
a=1

(
Γ ′α0

βγ ◦ f
)
Ea

(
f β

)
Ea

(
f γ

))

x0

= 0,

i.e., f is a Levi harmonic map. �
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Theorem 7.8 Let f : M → M ′ be a C∞ map of an almost contact Riemannian man-
ifold (M,ϕ, ξ, η, g) into a Sasakian manifold (M ′, ϕ′, ξ ′, η′, g′). If f is a pseudohar-
monic morphism then f is a pseudoharmonic map.

A treatment similar to the proof of Theorem 7.7 requires the use of special local
coordinates such that (7.59) holds. The natural choice appears to be that of contact
normal coordinates at y0 = f (x0), which make sense on any contact Riemannian
manifold M ′. The local coefficients of the generalized Tanaka–Webster connection
∇̂′ evaluated at the center y0 are indeed simple (cf. Lemma 7.9 below) yet (7.59)
does not hold in general (as ∇̂′ has torsion). Consequently the result in Theorem 7.8
is confined to the class of pseudoharmonic morphism with values in a Riemannian
manifold M ′ whose underlying metric is Sasakian.

Lemma 7.9 Let (M,ϕ, ξ, η, g) be a contact Riemannian manifold. Let Γ̂ i
jk be the

coefficients of the generalized Tanaka–Webster connection with respect to a contact
normal coordinate system (U,xi) centered at x ∈ U . Then

Γ̂ 0
a0(x) = Γ 0

0a(x) = 0, 1 ≤ a ≤ 2n, (7.46)

Γ̂ a
b0(x) = −1

3
τa
b (x), Γ̂ a

0b(x) = 2

3
τa
b (x), 1 ≤ a, b ≤ 2n, (7.47)

Γ̂ i
00(x) = 0, 0 ≤ i ≤ 2n, (7.48)

where τ i
j ∈ C∞(U) are given by τ(∂/∂xj ) = τ i

j ∂/∂xi and τ is the pseudohermitian
torsion, i.e., τ(X) = T∇̂(ξ,X) for any X ∈ X(M).

This is an addition to (2.25) in Lemma 2.8 and the proof is similar. Indeed, (2.26)
may be written

λaλbΓ̂ 0
ab

(
γ (t)

) + 2λλat
{
Γ̂ 0

a0

(
γ (t)

) + Γ̂ 0
0a

(
γ (t)

)} + 4λ2t2Γ̂ 0
00

(
γ (t)

)

= 2λ
{
ξ0(γ (t)

) − 1
}
, (7.49)

λaλbΓ̂ c
ab

(
γ (t)

) + 2λλat
{
Γ̂ c

a0

(
γ (t)

) + Γ̂ c
0a

(
γ (t)

)} + 4λ2t2Γ̂ c
00

(
γ (t)

)
= 2λξc

(
γ (t)

)
. (7.50)

Let us differentiate with respect to t in (7.49). We obtain

2λλa
{
Γ̂ 0

a0

(
γ (t)

) + Γ̂ 0
0a

(
γ (t)

)} + λaλbλc ∂Γ̂ 0
ab

∂xc

(
γ (t)

) = 2λλa ∂ξ0

∂xa

(
γ (t)

) + O(t),

hence (for t = 0)

2λλa
{
Γ̂ 0

a0(x) + Γ̂ 0
0a(x)

} + λaλbλc ∂Γ̂ 0
ab

∂xc
(x) = 2λλa ∂ξ0

∂xa
(x) (7.51)
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for any λ ∈ R. For λ = 0 one has λaλbλc(∂Γ̂ 0
ab/∂xc)(x) = 0 and (7.51) yields

λa{Γ̂ 0
a0(x) + Γ̂ 0

0a(x) − (∂ξ0/∂xa)(x)} = 0 for any (λ1, . . . , λ2n) ∈ R
2n or

Γ̂ 0
a0(x) + Γ̂ 0

0a(x) = ∂ξ0

∂xa
(x). (7.52)

On the other hand (by (2.8)) ξ is parallel with respect to ∇̂ , i.e., ∂ξ i/∂xj + Γ̂ i
jkξ

k = 0
which evaluates at the center x as

Γ̂ i
j0(x) = − ∂ξ i

∂xj
(x). (7.53)

Also ∇̂∂/∂x0∂/∂xj = ∇̂∂/∂xj ∂/∂x0 + T∇̂(∂/∂x0, ∂/∂xj ). Let us evaluate at x and use
(∂/∂x0)x = ξx to derive

Γ̂ i
0j (x) = Γ̂ i

j0(x) + τ i
j (x). (7.54)

Formulae (7.52)–(7.53) lead to

Γ̂ 0
a0(x) = − ∂ξ0

∂xa
(x), Γ̂ 0

0a(x) = 2
∂ξ0

∂xa
(x).

As τx is Hx -valued and (∂/∂x0)x = ξx and (∂/∂xa)x = ξa,x it must be that τ 0
a (x) = 0.

Finally (by (7.54))

∂ξ0

∂xa
(x) = 0, Γ̂ 0

a0(x) = Γ̂ 0
0a(x) = 0,

and (7.46) is proved. To prove (7.47) we differentiate twice with respect to t in (7.49)
and obtain

8λ2Γ̂ 0
00

(
γ (t)

) + 4λλaλb

{
∂Γ̂ 0

a0

∂xb

(
γ (t)

) + ∂Γ̂ 0
0a

∂xb

(
γ (t)

)}

+ λaλbλcλd ∂2Γ̂ 0
ab

∂xc∂xd

(
γ (t)

) + 2λλaλb ∂Γ̂ 0
ab

∂x0

(
γ (t)

)

= 2λλaλb ∂2ξ0

∂xa∂xb

(
γ (t)

) + 4λ2 ∂ξ0

∂x0

(
γ (t)

) + O(t). (7.55)

Thus, for t = 0 and λ = 0 one has λaλbλcλd(∂2Γ̂ 0
ab/∂xc∂xd)(x) = 0 and the identity

(7.55) evaluated at t = 0 becomes

4λΓ̂ 0
00(x) + 2λaλb

{
∂Γ̂ 0

a0

∂xb
(x) + ∂Γ̂ 0

0a

∂xb
(x)

}
+ λλaλb ∂Γ̂ 0

ab

∂x0
(x)

= λaλb ∂2ξ0

∂xa∂xb
(x) + 2λ

∂ξ0

∂x0
(x).

In particular, for λa = 0

2Γ̂ 0
00(x) = ∂ξ0

∂x0
(x),
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hence (by (7.53))

∂ξ0

∂x0
(x) = 0, Γ̂ 0

00(x) = 0, (7.56)

thus proving (7.48) for i = 0. Next we differentiate in (7.50) twice with respect to t

to get

8λ2t Γ̂ c
00

(
γ (t)

) + 2λλa
{
Γ̂ c

a0

(
γ (t)

) + Γ̂ c
0a

(
γ (t)

)}

+ 2λλaλbt

{
∂Γ̂ c

a0

∂xb

(
γ (t)

) + ∂Γ̂ c
0a

∂xb

(
γ (t)

)} + λaλbλd ∂Γ̂ c
ab

∂xd

(
γ (t)

)

+ 2λλaλbt
∂Γ̂ c

ab

∂x0

(
γ (t)

)

= 2λλa ∂ξc

∂xa

(
γ (t)

) + 4λ2t
∂ξ c

∂x0

(
γ (t)

) + O
(
t2), (7.57)

8λ2Γ̂ c
00

(
γ (t)

) + 4λλaλb

{
∂Γ̂ c

a0

∂xb

(
γ (t)

) + ∂Γ̂ c
0a

∂xb

(
γ (t)

)}

+ λaλbλdλe ∂2Γ̂ c
ab

∂xd∂xe

(
γ (t)

) + 2λλaλb ∂Γ̂ c
ab

∂x0

(
γ (t)

)

= 2λλaλb ∂2ξc

∂xa∂xb

(
γ (t)

) + 4λ2 ∂ξc

∂x0

(
γ (t)

) + O(t). (7.58)

Let us evaluate (7.57) at t = 0 and λ = 0 to derive λaλbλd(∂Γ̂ c
ab/∂xd)(x) = 0. Then

(7.57) at t = 0 yields

Γ̂ c
a0(x) + Γ̂ c

0a(x) = ∂ξc

∂xa
(x),

hence (by (7.53))

Γ̂ c
a0(x) = − ∂ξc

∂xa
(x), Γ̂ c

0a(x) = 2
∂ξc

∂xa
(x),

or (by (7.54))

Γ̂ c
a0(x) = −1

3
τ c
a (x), Γ̂ c

0a(x) = 2

3
τ c
a (x),

proving (7.47). Finally (by (7.58) with t = 0 and λa = 0)

2Γ̂ c
00(x) = ∂ξc

∂x0
(x)

or (by (7.53))

∂ξc

∂x0
(x) = 0, Γ̂ c

00(x) = 0,

completing the proof of (7.48). �
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Proof of Theorem 7.8 As M ′ is assumed to be Sasakian its pseudohermitian torsion
vanishes (τ ′α

β = 0). We proceed as in the proof of Theorem 7.7 except that we choose
a contact normal coordinate system (U ′, x′α) centered at y0 and apply Lemma 7.5
for L = �̂H and D′ = ∇̂′. By (2.25) in Lemma 2.8 and (7.46)–(7.48) in Lemma 7.9
(applied to ∇̂′) it follows that

Γ̂ ′ α
βγ (y0)v

βvγ = 0,
(
v1, . . . , vν

) ∈ R
ν. (7.59)

Thus (�̂Hf α0 − ∑2n
a=1(Γ̂

′ α0
βγ ◦ f )Ea(f

β)Ea(f
γ ))x0 = 0, i.e., f is a pseudohar-

monic map. �

The study of (H, H′)-harmonic morphisms is left as an open problem. An ap-
proach similar to the proofs of Theorems 7.7 and 7.8 requires a subelliptic analog to
Lemma 7.6.
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