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ABSTRACT 
 
The increasing frequency and intensity of extreme meteorological and climatic 

events, such as droughts and floods, represent a direct manifestation of the growing 

impacts of climate change on natural hazards. Within the context of these 

phenomena, one of the crucial parameters to be considered is the variability of the 

Soil Moisture (SM), namely the soil water content from the soil surface up to the 

root zone (RZ) depth. However, to fully understand the four dimensions (i.e., 3D 

spatial plus temporal) SM evolution and its implications for associated risks, it is 

essential to have access to high-resolution temporal and spatial data. 

Currently, SM information retrieval relies on three main approaches: ground-based 

measurements, hydrological modeling, and remote sensing. However, each method 

has its own limitations as well as advantages. Ground-based measurements often 

provide high quality point data, but they are unevenly distributed across territories 

with limited spatial extension, and that can be affected by systematic probe errors. 

On the other hand, hydrological modelling can extend the scale of application but 

relies heavily on the fundamental assumptions of the model used as well as on the 

quality of the available input/ancillary data. Finally, satellite sensors can provide a 

synoptic view and high frequency of observation, but often struggle to 

simultaneously provide adequate spatial and temporal resolution.  

The integration of data from ground measurements, remote sensing, and 

hydrological modeling could allow for filling the gap(s) in each approach, fostering 

the creation of an innovative and cost-effective monitoring system. Such an 

integrated approach would also be capable of providing precise measurements 

along the soil profile, addressing another open field in SM research. 

This thesis aims at bridging these gaps by addressing three key questions. Firstly, it 

seeks to explore the peculiarities of SM products within the European context 
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encompassing the Mediterranean area recognized as one of the areas most 

impacted by climate change. Secondly, it aims to investigate the possibility of 

integrating different SM products on a large scale. Lastly, it focuses on examining 

the feasibility of constructing high-resolution spatial (x, y) and temporal (t) 

information at various soil depths (d). The development and testing of a 4D SM 

product would facilitate the acquisition of accurate SM information throughout the 

soil layer, from the surface to the root zone, holding the potential to significantly 

enhance our understanding of soil moisture dynamics. 

To reach such results, several intermediate steps have been developed, starting with 

a preliminary analysis of the accuracy of a few satellite-based SM products, trying 

to investigate which one offers the best performance also concerning the goal of 

create a 4D SM product. Such an analysis has been carried out, for the first time in 

this work, at the European ecoregions spatial scale, by an intercomparison of five 

SM datasets with the ground information made available by the International Soil 

Moisture Network (ISMN). This preliminary analysis allowed us to both assess the 

different performance of the considered products, and to understand that the 

ecoregion scale could be a suitable investigation level to capture dynamic behavior 

patterns. A deeper exploration of previous findings and a confirmation of the 

behavior of these ecoregions concerning seasonality, including the complete 

removal of seasonality and studying the relationships with phenological phases, 

were then carried out. Finally, focusing only on active microwave sensors, which 

have demonstrated a different level of accuracy, the 4D SM product has been 

developed and tested. In particular, ASCAT (H119-H120) and the enhanced S-1 

SM product, both based on active measurements in the C-band, were considered. 

The first is sub-daily provided at about 25km of spatial resolution, while the second 

one can allow for information at a higher spatial resolution (1km for the Surface 

Soil Moisture – SSM - data) but with a sub-weekly temporal resolution. Two 

different approaches, the Soil Water Index (SWI) and Soil Moisture Analytical 
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Relationship (SMAR), respectively, were then applied to the data, first to produce 

the blended SSM product, and then the RZSM one.  

 The results obtained provide an overview of the fundamental role of SM, which 

is helpful in issues related to climate change. In particular, the application of SCAT-

SAR SWI SMAR demonstrated a substantial correlation with in-situ data (r ~ 0.8), 

along with significantly reduced prediction errors (RMSD ~ 0.003/0.01). At the 

regional level, the application of SMAR provided more consistent information on 

RZSM with real hydraulic processes compared to the SWI application, which 

displayed a simple reduction in saturation values while maintaining the same input 

data pattern. This discrepancy can be attributed to the absence of a clear 

connection between soil depth and the parameter T. 

The proposed method involves a limited number of parameters and is easily 

implementable. Since the SWI-SMAR approach is based on a recursive algorithm, 

the output improves as the time series length increases. This approach could prove 

particularly useful for large-scale studies to advance our understanding of the 

effects of climate change and risk management. However, current limitations arise 

from approximations of parameters as the normalized coefficient of losses (a), or 

the normalized coefficient related to the soil properties and the depth (b), or the 

saturation at wilting point (sw), or the saturation at field capacity (sc), and the 

computational capacity required for processing large volumes of data (with a nine 

GB output for the sole application in the Basilicata region). Addressing these 

obvious gaps and enhancing the accuracy of the predictions along the soil profile 

would require improvements in parameter derivation. Future developments could 

include integration with additional field experiments and the use of artificial 

intelligence methodologies. 
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SINOSSI 
 
L'incremento nella frequenza e nell'intensità degli eventi meteorologici e climatici 

estremi, come siccità e inondazioni, rappresenta una manifestazione diretta degli 

impatti in aumento dei cambiamenti climatici sui rischi naturali. Nel contesto di tali 

fenomeni, la variabilità della SM, ossia il contenuto d'acqua nel suolo dalla 

superficie fino alla profondità della zona delle radici (RZ), svolge un ruolo di 

cruciale importanza. Tuttavia, per comprendere appieno l'evoluzione della SM in 

quattro dimensioni (cioè, spaziale in 3D più la dimensione temporale) e le sue 

implicazioni per i rischi associati, è essenziale avere accesso a dati temporali e 

spaziali ad alta risoluzione. 

Attualmente, l'acquisizione delle informazioni sulla SM si basa su tre principali 

approcci: misurazioni in situ, modellazione idrologica e misure telerilevate. 

Tuttavia, ciascun metodo ha i propri limiti e vantaggi. Le misurazioni in situ 

forniscono spesso dati puntuali di alta qualità, ma sono distribuiti in modo 

disomogeneo sui territori con limitata estensione spaziale e possono essere 

influenzati da errori sistematici delle sonde. D'altra parte, la modellazione 

idrologica può estendere le scale di applicazione, ma dipende pesantemente dalle 

assunzioni fondamentali del modello utilizzato e dalla qualità dei dati di 

input/ancillari disponibili. Infine, i sensori satellitari possono fornire una vista 

sinottica e una frequenza elevata di osservazione, ma spesso faticano a fornire 

contemporaneamente una risoluzione spaziale e temporale adeguata. 

L'integrazione dei dati provenienti dalle misurazioni in situ, dal telerilevamento e 

dalla modellazione idrologica potrebbe consentire di colmare le lacune di ciascun 

approccio, favorendo la creazione di un sistema di monitoraggio innovativo ed 

economicamente vantaggioso. Un tale approccio integrato sarebbe inoltre in grado 

di fornire misurazioni precise lungo il profilo del suolo, affrontando un altro campo 

aperto nella ricerca sulla SM. 
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Questa tesi si propone di colmare queste lacune affrontando tre domande chiave. 

In primo luogo, cerca di esplorare le peculiarità dei prodotti di SM nel contesto 

europeo che comprende l'area mediterranea, riconosciuta come una delle aree più 

colpite dal cambiamento climatico. In secondo luogo, mira a investigare la 

possibilità di integrare diversi prodotti di SM su larga scala. Infine, si concentra 

sull'esame della fattibilità di costruire informazioni spaziali (x, y) e temporali (t) ad 

alta risoluzione a diverse profondità del suolo. Lo sviluppo e la sperimentazione di 

un prodotto di SM a 4D faciliterebbero l'acquisizione di informazioni precise 

sull'SM lungo l'intero strato di suolo, dalla superficie alla zona radicale, con il 

potenziale di migliorare significativamente la comprensione delle dinamiche 

dell'umidità del suolo. 

Per raggiungere tali risultati, sono stati sviluppati diversi passaggi intermedi, a 

cominciare da un'analisi preliminare dell'accuratezza di alcuni prodotti di SM basati 

su satelliti, cercando di individuare quale offra le migliori prestazioni anche riguardo 

all'obiettivo di creare un prodotto 4D di SM. Tale analisi è stata condotta, per la 

prima volta in questo lavoro, alla scala spaziale delle ecoregioni europee, attraverso 

un'intercomparazione di cinque dataset di SM con le informazioni in situ messe a 

disposizione dall'International Soil Moisture Network (ISMN). Questa analisi 

preliminare ci ha permesso sia di valutare le diverse prestazioni dei prodotti 

considerati, sia di comprendere che la scala delle ecoregioni potrebbe essere un 

livello di indagine adatto per catturare i modelli di comportamento dinamico. 

Successivamente, è stata condotta un'approfondita esplorazione delle scoperte 

precedenti e una conferma del comportamento di queste ecoregioni riguardo alla 

stagionalità, compresa la rimozione completa della stagionalità e lo studio delle 

relazioni con le fasi fenologiche. Infine, concentrandosi solo sui sensori a 

microonde attivi è stato sviluppato e testato il prodotto 4D di SM. In particolare, 

sono stati considerati i prodotti ASCAT (H119-H120) e il prodotto migliorato 

derivante da S-1, entrambi basati su misurazioni attive nella banda C. Il primo è 
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fornito in modo sub-giornaliero con una risoluzione spaziale di circa 25 km, mentre 

il secondo può fornire informazioni a risoluzione spaziale più elevata (1 km per i 

dati di SM superficiale - SSM) ma con una risoluzione temporale sub-settimanale. 

Due diversi approcci, il Soil Water Index (SWI) e la Soil Moisture Analytical 

Relationship (SMAR), sono stati quindi applicati ai dati, prima per produrre il 

prodotto SSM combinato e poi quello di RZSM. 

I risultati ottenuti forniscono una panoramica del ruolo fondamentale dell'umidità 

del suolo, utile per le questioni legate al cambiamento climatico. In particolare, 

l'applicazione di SCAT-SAR SWI SMAR ha dimostrato una sostanziale 

correlazione con i dati in situ (r ~ 0,8), insieme a errori di previsione 

significativamente ridotti (RMSD ~ 0,003/0,01). A livello regionale, l'applicazione 

di SMAR ha fornito informazioni più coerenti su RZSM con veri processi idraulici 

rispetto all'applicazione SWI, che ha mostrato una semplice riduzione dei valori di 

saturazione mantenendo lo stesso modello di dati di input. Questa discrepanza può 

essere attribuita all'assenza di una chiara connessione tra la profondità del suolo e 

il parametro T. 

Il metodo proposto coinvolge un numero limitato di parametri ed è di facile 

implementazione. Poiché l'approccio SWI-SMAR si basa su un algoritmo ricorsivo, 

l'output migliora man mano che la serie temporale si estende. Questo approccio 

potrebbe dimostrarsi particolarmente utile per studi su larga scala per avanzare nella 

comprensione degli effetti del cambiamento climatico e della gestione del rischio. 

Tuttavia, le attuali limitazioni derivano da approssimazioni nei parametri come il 

coefficiente normalizzato delle perdite (a), il coefficiente normalizzato relativo alle 

proprietà del suolo e alla profondità (b), la saturazione al punto di appassimento 

(sw), la saturazione alla capacità di campo (sc), e dalla capacità computazionale 

richiesta per l'elaborazione di grandi volumi di dati (con una produzione di nove 

GB per l'applicazione nella sola regione della Basilicata). 
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Per affrontare queste lacune evidenti e migliorare l'accuratezza delle previsioni 

lungo il profilo del suolo, sarebbe necessario un miglioramento nella derivazione 

dei parametri. Sviluppi futuri potrebbero includere l'integrazione con ulteriori 

esperimenti sul campo e l'uso di metodologie di intelligenza artificiale
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INTRODUCTION 
 
This study was supported by the School of Engineering at the University of 

Basilicata, as part of the Ph.D. Program "Engineering for Innovation and 

Sustainable Development" (curriculum: Methods and Technologies for 

Environmental Monitoring and Protection). The thesis presented here, titled "A 

Four-Dimensional Soil Moisture Product: Closing the Soil Profile Gap with a SWI-

SMAR Approach," aims to outline a scientific-technical innovative scenario by 

using an integrated system of measurements to delineate 4D soil moisture 

information. The investigative process was conducted in conjunction with 

contextualization and theoretical references. The research took place in Italy and 

Austria, particularly in Potenza and Vienna. 

In an era of climate change, the scope and cumulative consequences of both natural 

and human-made disasters underscore the importance of disaster management, 

which refers to a set of principles and strategies for preventing, reducing, or 

controlling risk (EM-DAT 2019). Extreme weather events resulting from climate 

change can alter the hydrological regime by increasing the frequency and magnitude 

of floods (IPCC and others, 2013), droughts, and landslides. Mediterranean regions 

present a highly modified landscape. A correct representation of any phenomenon 

related to climate change requires soil moisture information at a temporal 

resolution of at most daily and a spatial resolution of kilometers. 

Currently, most soil moisture data on a larger or smaller scale are obtained from 

ground-based or remote sensing measurements, which may have some limitations 

(limited temporal or spatial resolution, high cost). In this context, one of the 

greatest potentials lies in the integration of sensors, remote sensing measurements, 

and hydrological modeling. Several studies have developed new techniques to 
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retrieve large-scale soil moisture information with low operational costs that can 

be effectively combined with modeling systems. 

Technology may play a pivotal role in improving soil moisture prediction, especially 

in the root zone. Applications related to climate change can benefit from recent 

technological advancements in data storage, big data management, and 

computational algorithms. Recent years have witnessed a significant increase in the 

amount of data continuously produced and collected for various purposes, which 

can be combined to provide valuable information along the soil profile. The overall 

goal of this thesis was to enhance soil moisture prediction through an evolution of 

the fusion algorithm along the soil profile. 

The key idea is to combine freely available data sources, previously unpublished 

data, and computation techniques, such as the Soil Water Index (SWI) and Soil 

Moisture Analytical Relationship (SMAR), to devise a method for daily 1 km soil 

moisture prediction on a large scale for climate change applications in the 

Mediterranean area. The specific aim was to investigate the capabilities of active 

and passive remote sensing in Europe and subsequently the use of physically based 

models to improve predictions within the soil. 

In contrast to existing works, the present study focuses on creating a workflow that 

provides soil moisture information consistent with physical parameters, soil 

properties, and survey depth. This implies that the more layers for which physical 

parameters are available, the greater the detail along the profile. Models for soil 

moisture along the profile were compiled, trained, validated, and tested. They were 

shown to produce favorable outcomes. The results were applied to Basilicata, using 

empirical parameters. This approach offers an initial operational tool for low-cost 

soil moisture monitoring. It can provide a means to monitor and forecast soil 

moisture on a large scale with high spatial and temporal resolution. 
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The main drawback pertains to the approximate nature of the parameters and 

outcomes. Another limitation may arise from machine-specific constraints due to 

extensive data storage. The overall findings suggest that SWI-SMAR provides an 

effective method for profiling soil moisture monitoring. Improving the parameters 

and expanding the analysis region to include all of Italy may be future directions. 

The central idea of climate change serves as the starting point for the research in 

this thesis. Its primary effects, certain general concerns related to international and 

national agreements, and the role of soil moisture in this context are all summarized 

in Chapter 1. 

Chapter 2 provides a concise review of soil moisture measurement techniques in 

the literature. The analysis of existing literature led to the definition of the specific 

research goals, variables, and components. 

Chapter 3 addresses the methodology used in this study: a SWI-SMAR approach 

based on active remote sensing products (i.e., ASCAT and an enhanced version of 

SSM Sentinel-1). 

Chapter 4 includes: a) a preliminary stage of intercomparison between remote 

sensing soil moisture products at the ecoregion scale; b) an in-depth study of the 

effects of seasonality on ecoregion performance; c) the creation of the SCAT-SAR 

SWI datasets used in the SMAR model to obtain the SCAT-SAR SWI SMAR 

dataset; d) validation on the COSMOS Alento network; e) application to Basilicata. 

Chapter 5 outlines the significance of the main findings and includes some 

suggestions for improvement and speculation on future directions.
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C h a p t e r  1  

THE CLIMATE CHANGE 

Climate change has been a significant and recurring phenomenon in recent decades 

that is causing numerous detrimental impacts on the environment and society. The 

global nature of climate change and its anthropogenic origin (Masson-Delmotte et 

al., 2021) make it a particularly challenging phenomenon to address. The climate 

has been changing across all corners of the world, resulting in a range of impacts. 

Its impacts are multiple and far-reaching, and one of the most obvious impacts is 

the average increase in global temperatures. This increase causes heat waves, 

droughts, forest fires, and sea level rise in different ways from region to region. In 

general, 2020 was the hottest year ever recorded, according to the National 

Aeronautics and Space Administration. 

California experienced severe drought from 2011 to 2017, leading to forest fires 

and problems with the availability of drinking water. Among tropical or subtropical 

regions, Madagascar experienced a famine in 2021, with over one million people 

struggling to have enough to eat due to reduced seasonal precipitation and 

degraded natural resources, as reported by the World Food Program (WFP) 

(https://www.wfp.org/). Shorter and more intense rainfall, combined with the 

consequences of increased temperatures, can lead to flooding and the exacerbation 

of drought. For example, in August 2020, heavy rains caused flash floods in parts 

of Afghanistan and Pakistan, resulting in at least 160 deaths and damage to 

thousands of homes. Similarly, in Lombardy and Veneto, Italy, heavy rains during 

the same period caused at least five deaths. These events illustrate the severe 

consequences of extreme weather events on human lives and infrastructure. Italy 

is particularly vulnerable to hydrogeological risks due to its geography and climate. 
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Significant damage to infrastructure and property can be derived from the increase 

in frequency and intensity of extreme weather events such as hurricanes, storms, 

and floods. All these factors are also causing a loss of biodiversity, due to changes 

in natural habitats, the reduction of wildlife, and the spread of invasive species. 

This is damaging ecosystems and the ecosystem services they provide. 

The effects of climate change are not only limited to the environment; they can 

also affect human health through the spread of vector-borne diseases, air pollution, 

and exposure to temperature. This can cause respiratory and cardiovascular 

problems, among other health issues. Or it presents significant risks to the 

economy. Reduced agricultural productivity, increased costs associated with 

infrastructure and sea level damage, and reduced tourism can all cause significant 

economic losses. It has also been recognized that climate change will lead to 

economic disparities, especially as the degree of dependence on agriculture is one 

of the critical factors. Specifically, 86% of the countries in the world will become 

poorer and income inequality will increase significantly in each of these countries. 

In the worst projections, variations in precipitation alone will result in a 45% 

increase in income inequality for the most agriculture-dependent nations, but 

considering temperature variations, this could increase to a 78% increase in 

inequality (Palagi et al., 2022). Overall, the described effects constitute the vast 

majority of natural disasters reported worldwide in the Emergency Events 

Database (EM-DAT 2022), an international database managed by the Centre for 

Research on the Epidemiology of Disasters (CRED) at the Catholic University of 

Louvain. The database collects fundamental data on technological and natural 

disasters from 1900 to the present, compiled from various sources. The criteria for 

an event to be classified as a natural disaster include the existence of at least one of 

the following conditions: 100 or more people affected, 10 or more deaths, a 

declaration of a state of emergency, or a request for international assistance. Due 

to social, political, and economic factors, a complete and homogeneous 
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representation of all regions of the world is impossible, and the actual number of 

disasters is likely higher. Even if, hazardous events in 2022 were high and increased 

compared to the period from 2002 to 2021, as shown in Fig. 1. 

 

Fig. 1: Occurrence of natural disasters type of the 
2022 in comparison with the average of the years 
2001-2021. Data source: EM-DAT (2022). 

Globally, the most commonly occurring disasters were those associated with floods 

(176) and storms (108). Nevertheless, an elevated degree of variability from the 

mean value of the period 2002–2021 was also observed in other types of disasters, 

such as droughts.  

The EM-DAT 2022 report also highlights that Europe has witnessed a concerning 

rise in the occurrence of natural disasters in recent years, with an especially 

noticeable increase in the frequency of flood and storm events. In addition, the 

region has also experienced a rising number of disasters related to drought and 

wildfires. Specifically, the Mediterranean area has been affected by a significant 

increase in temperatures and a decrease in rainfall, leading to more frequent and 
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severe droughts and a higher risk of forest fires. In fact, it has been estimated that 

the frequency of wildfires has risen by 30% in the Mediterranean region since 1980, 

and this trend is projected to continue.  

Therefore, the growing frequency and intensity of extreme events have raised 

awareness of the negative impacts that climate change can have on the 

environment and society. Therefore, a series of policies and measures are being 

implemented to mitigate its effects, including the adoption of renewable energy 

sources, the reduction of deforestation, and sustainable agriculture. 

1.1 Risk assessment 
Given the magnitude and cumulative impacts of repercussions from climate 

change and more generally from catastrophic events (natural and man-made 

catastrophes), disaster management—defined as a set of policies and techniques to 

avoid, minimize, or limit the risk—is crucial. The efforts are intended to lessen 

losses while boosting resilience. These approaches can be categorized as 

prospective disaster risk management, corrective disaster risk management, and 

compensatory disaster risk management (residual risk management), contingent 

upon whether the threat is current, potential, or residual, as outlined by the United 

Nations General Assembly in 2016. It is important to approach environmental 

sustainability and disaster risk reduction holistically, which necessitates the 

systematization of several gnoseological concepts and epistemological norms. 

There are intricate connections between problems like crises, resilience, intellect, 

and ecology. Effective risk mitigation requires taking into account the values and 

characteristics of numerous components and heterogeneous phenomena.  

The concept of risk can be mathematically expressed as: 
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𝑅𝑖𝑠𝑘 =  ℎ𝑎𝑧𝑎𝑟𝑑 𝑥 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑥 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦                      Eq. 1  

As a result, it is possible to think of the risk from natural hazards as a combination 

of three essential factors: hazard, exposure, and vulnerability. According to the 

United Nations General Assembly 's 2016 definition of hazard, it is "a process, 

phenomenon, or human activity that may result in loss of life, injury, or other health 

impacts, property damage, social and economic disruption, or environmental 

degradation." Natural processes and occurrences are mostly linked to natural 

dangers. 

While, exposure is the state of people, infrastructure, housing, manufacturing 

capabilities, and other tangibly held human assets in hazard-prone places. 

Finally, vulnerability refers to an individual, a community, assets, or systems that 

are more susceptible to the effects of hazards when they are in a state, which is 

determined by physical, social, economic, and environmental elements and 

processes. 

1.2 Normative framework 
1.2.1 International Climate Change Policies: an overview 
According to the US government agency responsible for collecting and publishing 

climate data, the National Oceanic and Atmospheric Administration (NOAA), the 

concentration of CO2 in the atmosphere exceeded 414 parts per million (ppm) in 

2020. This is a level that has not been seen for at least 800 000 years (J. Blunden 

and Boyer, 2022; Jessica Blunden and Boyer, 2022). The increase in atmospheric 

CO2 concentrations was one of the first effects considered when discussing climate 

change. In fact, during the 1980s and 1990s, the rise in CO2 concentration in the 

atmosphere, along with the increase in greenhouse gas emissions resulting from 

human activities such as fossil fuel use and deforestation, and the associated 
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impacts such as global temperature increases, reductions in snow cover and sea ice, 

led the scientific community to establish a solid understanding of climate change. 

One of the earliest actions taken in response to this understanding was the 

establishment of the Intergovernmental Panel on Climate Change (IPCC) by the 

World Meteorological Organization in 1988. The IPCC is an independent scientific 

body composed of experts from around the world who assess the scientific 

evidence on climate change and provide policy recommendations based on this 

evidence. The IPCC's scientific assessments are published in the form of reports, 

which are used as a basis for policy decisions and international climate negotiations. 

An important step forward in the fight against climate change was taken in 1992 

with the United Nations Framework Convention on Climate Change (UNFCCC), 

which aimed to establish an international framework for action to address climate 

change. Agenda 21 

(https://www.un.org/esa/dsd/agenda21/res_agenda21_00.shtml ), a worldwide 

action plan implemented at the international, national, and local levels by United 

Nations system institutions, governments, and significant groups in every area 

where people have an influence on the environment, was also adopted during the 

1992 Earth Summit in Rio de Janeiro. 

However, awareness of the problem of climate change increased particularly from 

2000 onwards, when the Kyoto Protocol came into force and there was a growing 

international commitment to tackling the issue. Adopted in 1997, the Kyoto 

Protocol was the first binding international agreement to reduce greenhouse gas 

emissions. It established emission reduction targets for developed countries and 

introduced the emissions trading mechanism, which allowed countries to offset 

their emissions by purchasing carbon credits from other countries. Although 

representing an important step in the fight against climate change, it also 
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highlighted the difficulties in involving all countries, as only developed countries 

were bound by emission reduction targets. 

At the Millennium Summit in New York in 2000, the United Nations Member 

States overwhelmingly approved the Millennium Declaration. Eight Millennium 

Development Goals (MDGs) were established as a result of the Summit to end 

extreme poverty by 2015. 

Political decisions on climate change have been made through a series of 

Conferences of the Parties (COP) of the UNFCCC, which have been held annually 

since 1995. The COPs have provided an opportunity for nations to discuss 

strategies for reducing greenhouse gas emissions and mitigating the effects of 

climate change. 

One of the main COPs was COP21, held in Paris in 2015, which led to the 

adoption of the Paris Agreement, a binding international agreement that sets the 

goal of limiting the increase in global temperature to less than 2°C above pre-

industrial levels, and pursuing efforts to limit the increase to 1.5°C. The Paris 

Agreement was ratified by 197 countries, representing an important step forward 

in the fight against climate change.  

The Ageda 2030 common roadmap for world peace and prosperity for people and 

the earth was adopted that same year. The 17 Sustainable Development Goals 

(SDGs) are its basic tenets and are reported in Fig.2. The SDGs, which have their 

origins in the MDGs (2000-2015), replace them for the period 2015-2030 with the 

intention of addressing a wider range of global challenges, including social, 

economic, and environmental aspects, addressing, for example, climate change 

(goal 13), with an integrated approach, acknowledging the connections between 

different objectives and the need to address challenges in a comprehensive manner. 
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Fig. 2: The 17 sustainable development goals (SDG). 
Data source: United Nations. 

Subsequent COPs have seen nations commit to achieving the goals set out in the 

Paris Agreement. COP22, held in Marrakech in 2016, saw the adoption of a climate 

action proclamation, while COP23, held in Bonn in 2017, saw nations commit to 

strengthening climate action through increased efforts to reduce emissions and 

increase climate resilience.  

COP24, held in Katowice in 2018, saw the adoption of a package of rules for the 

implementation of the Paris Agreement, establishing the modalities for monitoring 

and reporting greenhouse gas emissions. COP25, held in Madrid in 2019, was 

characterized by important discussions on outstanding issues of the Paris 

Agreement, such as financing for mitigation and adaptation to climate change. 

COP26, held in Glasgow in 2021, was perhaps one of the most important climate 

change events in recent years. During the conference, nations committed to 
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increasing efforts to reduce greenhouse gas emissions and to providing financing 

for adaptation to climate change in the most vulnerable countries. In addition, the 

Glasgow Climate Pact was adopted, a set of decisions aimed at strengthening global 

climate action and implementing the Paris Agreement. These ambitious goals 

include limiting global warming, reducing greenhouse gas emissions, increasing 

climate financing, a greater commitment to climate adaptation, and support for 

innovation. 

1.2.2 European Climate Change Policies 
The international policy to combat climate change adaptation and achieve the goals 

of the Paris Agreement has been incorporated and implemented at the European 

level through the production of a series of regulations. In particular, the European 

Green Deal is a comprehensive plan of investments and actions aimed at making 

Europe the first continent to achieve net zero greenhouse gas emissions by 2050. 

The plan was presented by the European Commission in December 2019 as part 

of the EU's long-term strategy for climate neutrality. The European Green Deal is 

based on three main pillars: 

a) Reducing greenhouse gas emissions by 55% by 2030 compared to 1990 levels 

and achieving net zero emissions by 2050. To achieve these goals, the plan includes 

a series of actions, such as reforming the EU's emissions trading system, increasing 

energy efficiency, increasing the share of renewable energy in the EU, and 

decarbonizing the transport sector. 

b) Protecting nature and biodiversity, promoting sustainable agricultural practices, 

reducing the use of pesticides and fertilizers, protecting forests, and promoting 

biodiversity. 
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b) Creating a sustainable and inclusive economy, through the creation of new green 

jobs, investment in sustainable infrastructure, and promoting a fair and just 

transition to a net zero emissions economy. 

c) The European Green Deal is integrated with the EU's emissions trading system 

(ETS), the Renewable Energy Directive, and the Energy Efficiency Directive. The 

ETS sets a cap on the total amount of greenhouse gas emissions that can be 

released by certain industries in the EU, while the renewable energy and energy 

efficiency directives set binding targets for the share of renewable energy in the 

EU's energy mix and for energy savings in member states. The EU also uses 

economic tools, such as fines, to enforce its regulations on climate change. The 

fines are based on the severity of the violation and can be substantial. 

In the European policy, another noteworthy plan is the Mediterranean Action Plan 

(MAP), which is a specific program of the United Nation Environment Program 

(UNEP). The MAP was created in 1975 in response to the Mediterranean Sea's 

growing environmental problems. It was intended to encourage collaboration 

among Mediterranean coastal nations to address these issues jointly. 

In 2015, the MAP underwent a substantial sea change when it unveiled its first 

Medium-Term Strategy (MTS 2016-2021). Targeting looming climate change and 

environmental sustainability concerns in marine habitats, this strategy laid forth an 

ambitious five-year plan. 

The Mediterranean Strategy for Sustainable Development (MSSD) 2016–2025 was 

also introduced at the same time. This tactic strengthened the MAP's dedication to 

promoting sustainable development across the Mediterranean. It underlined the 

significance of striking a balance between economic development and 

environmental preservation, and it promoted spending on renewable energy, 

ethical fisheries management, and environmentally friendly tourism. 



 

11 | P a g .  
 

1.3 Essential climatic variables 
The Global Climate Observing System (GCOS) was established in 1992 to ensure 

the collection and dissemination of information and observations necessary to 

address climate-related issues. This system was created in response to the 

statements made by the famous NASA scientist James Hansen to the United States 

Senate in 1988, in which he argued that human-caused global warming had already 

measurably influenced the Earth's climate (The New York Times, 1988 

https://www.nytimes.com/1988/06/24/us/global-warming-has-begun-expert-

tells-senate.html ). Four years after this key statement, the GCOS led to the 

identification of 55 essential climate variables (ECV) since 2003. The concept of 

ECV was introduced to identify a set of critical parameters for monitoring long-

term climate trends and understanding the health of the climate system. ECVs have 

subsequently been recognized as an important tool for assessing the effects of 

climate change on Earth by the United Nations Framework Convention on 

Climate Change (UNFCCC) (Pettorelli et al., 2016; Bojinski et al., 2014). 

ECVs are defined as physical, chemical, or biological variables, or a group of related 

variables, that critically contribute to the characterization of the Earth's climate. 

These variables are considered essential because they provide critical information 

on the health of the climate system and its ability to support life on Earth. ECVs 

have been grouped according to their physical interdependence and purpose of 

use. Each ECV has been selected based on its relevance to the climate system and 

its ability to provide essential information on the health of the system and climate 

trends. The principles adopted to select ECVs include the critical relevance of the 

variable to the climate system, the technical feasibility of observation or derivation 

on a global scale using proven methods, and the cost-effectiveness of generating 

and storing data on the variable. 
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ECVs have been classified into three main groups (Fig. 3): atmospheric, terrestrial, 

and oceanic. These groups reflect the major influences on the climate system and 

the role that essential climate variables play in providing critical information on the 

health of the system. For example, atmospheric ECVs include variables such as air 

temperature and greenhouse gas concentrations, while terrestrial ECVs include 

variables such as land cover and soil temperature. Oceanic ECVs, on the other 

hand, include variables such as sea surface temperature and salinity. In 2010, the 

soil moisture (SM) become one of the ECVs since it is a key variable for 

understanding a lots of process. 

 

Fig. 3: Classification of the ECVs by GCOS. Data 
source: GCOS. 

1.3.1 ECV of hydrosphere: the soil moisture 
Water is the fundamental resource of our planet, without which life cannot exist. 

Approximately 97.2% of the water present on Earth is stored in the oceans, 2.15% 

in glaciers, and 0.63% in the land. SM, which is the water contained within the soil 



 

13 | P a g .  
 

up to the plant roots, constitutes only 0.005%. Despite the small reserves occupied 

by SM, it plays a fundamental role in many of the interactions that take place 

between the hydrosphere, biosphere, and atmosphere. Consequently, knowledge 

of SM and its variations is essential in studies that analyze the environment and its 

changes, in meteorology, hydrology, agrometeorology, and climatology. 

In agronomy, an estimate of SM is important for the study of crop development 

during the initial phase of their growth (germination, development of the root 

system, etc.) since plant growth is generally conditioned by the amount of available 

water. In meteorology and climatology, the estimation of SM is particularly 

important because it directly influences the partitioning of energy between latent 

and sensible heat. In hydrological models, it is decisive in determining the division 

of meteoric waters between infiltration and runoff and for predicting the duration 

of drought periods. 

Fig. 4 shows that although the role of SM is central in these fields of application, 

each of them requires a different spatial and temporal resolution. For climate and 

numerical weather prediction (NPW) applications, low spatial resolution and 

variable time resolutions (daily to monthly) are generally required. In the case of 

forest applications, the information should be below km but with a wide temporal 

resolution (weekly/monthly). Hydrological applications refer to a more variable 

spatial scale and a time scale below the day. Finally, applications for agriculture 

require a high spatial resolution (below 1 km) and a temporal resolution at least 

daily or weekly. These factors lead to the conclusion that a scale with a spatial 

resolution of 1 km and a daily temporal resolution would be appropriate for the 

different uses. 
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Fig. 4: Spatial and temporal resolution of the 
application fields in which is involved the SM. 

Focusing on the reason why the SM is essential in so many applications we have 

considered the repercussions it induces. The most important effect is played on 

evapotranspiration, making SM a key variable for understanding water (Eq. 2) and 

energy balance (Eq. 3).  

𝑃 =  𝐼 +  𝐸 +  𝑅 + ∆𝑆                                         Eq. 2 

In the water budget equation, ∆S is the change of water content, P is the 

precipitation, E is the evapotranspiration, R is the surface runoff, and I is the 

infiltration rate. Note that the term ∆S includes SM, but can also encompass 

additional forms of water storage, such as surface water, snow, ice cover, and 

groundwater. 



 

15 | P a g .  
 

𝑅  =  𝐺 +  𝜆𝐸 +  𝑆𝐻 + ∆𝐻                                    Eq. 3 

In the energy budget equation, Rn is the net radiation, G is the ground heat flux, 

λE is the latent heat flux, SH is the sensible heat flux and ∆H is the change of 

energy. As we can see from both equations, the land energy and water balances are 

coupled through the evapotranspiration term (E, λE). Additionally, it is connected 

to a number of biogeochemical cycles (such as the carbon and nitrogen cycles) due 

to the coupling of photosynthesis and transpiration in plants. However, these 

impacts are only significant in areas where soil moisture is the primary determinant 

of evapotranspiration (Seneviratne et al., 2010).  

Fig. 5 provides an overview of the main processes and feedbacks of the soil that 

will be analyzed in the Section 1.2.2.  

 

Fig. 5: Main processes and feedbacks of SM. Data 
Source: IPCC and others, 2013. 
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1.3.2 Feedback between SM and climate 
Due to the cycles (water, energy, and biogeochemical) in which the SM is involved, 

it is subjected to a series of feedbacks, i.e., the possible retroactions of soil moisture 

on itself through the combination of its impact on variables and of the return 

impact of variables on soil moisture. These SM impacts are affected by the 

evapotranspiration (ET) in regime of soil moisture limitation, where the reduction 

in SM brings to a reduction in water available for plants and consequentially 

reduction in ET, since the SM is linked with the water potential in soil. 

The classical hydrology is based on the theory of Budyko (1974, 1956), who 

presented the relation between the evaporative fraction (EF) and the SM with three 

zones, that is, dry, transition, and wet (Seneviratne et al., 2010; Teuling et al., 2009; 

Koster et al., 2004). 

 
Fig. 6: Definition of the evaporative fraction (EF) 
and its maximum value (EFmax) as well as the 
accompanying soil moisture regimes and 
evapotranspiration regimes. 

There are two basic evapotranspiration regimes that may be distinguished by the 

evaporative fraction: an energy-limited and a soil moisture-limited regime. The 
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evaporative fraction is independent of the soil moisture content under the energy-

limited evapotranspiration regime, which corresponds to soil moisture values 

above a certain critical soil moisture value 𝜃௧. A first-order limitation on 

evapotranspiration (soil moisture-limited evapotranspiration regime) is provided 

below 𝜃௧ by soil moisture content. The wilting point (𝜃ௐ), below which no 

evapotranspiration occurs any longer, is another significant barrier. Please note that  𝜃 refers to a type of unit of measurements in which can be expressed the SM, i.e., 

in terms of volumetric water content (VWC). The other units will be detailed in the 

following (Section 1.2.3). 

In light of the influence of soil moisture on evapotranspiration variability, three 

climate/soil moisture regimes can be distinguished: a wet climate regime 𝜃 > 𝜃௧, a dry climate regime 𝜃 <  𝜃ௐ, and a transitional climate regime 𝜃ௐ  ≤ 𝜃 ≤  𝜃௧, where SM significantly limits evapotranspiration variability 

and the ensuing feedbacks to the atmosphere.  The linear dependence of the 

variables (EF- SM) in transition regime is an approximation, however,  Seneviratne 

et al. (2010) have reported that this dependence provides a good representation of 

the first order both in the land surface model (LSM) than in observations. In fact, 

only under transition regime both conditions i.e., the strong dependence of 

evapotranspiration on soil moisture and elevate average evapotranspiration are 

reached for a strong soil-climate coupling. 

Precipitation (P) and temperature (T) are two factors that may have a significant 

influence on feedback, with the last causing heat waves. Naturally, we expect an 

increase in P to lead to an increase in SM, but this condition does not occur in very 

humid soils, where instead runoff is generated. All of this can result in negative 

feedback with an increase in ET and a consequent reduction in SM. However, in 

the case of a transitional regime, positive feedback occurs where an increase in SM 

leads to an increase in ET and an increase in P, which in turn leads to an increase 
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in SM. On the other hand, the reduction of SM could bring to a drying process 

with the reduction of ET and the increase in T. Finally, the increase in T may lead 

to the occurrence of a negative feedback with the increase in ET and the reduction 

of SM. 

Moreover, there are other variables (e.g., albedo, vegetation) and feedback that 

make it complex to schematize the processes that occur, highlighting the centrality 

of SM in soil-atmosphere exchanges. 

1.3.3 SM definition for measurements  
According to Hillel (1998), the water that is typically referred to as SM is that 

present in the unsaturated soil zone. Only a very small portion of this water is 

typically substantial or clearly measured in connection to a certain volume of soil. 

The measure of the volume of water into the volume of soil is indicate as 𝜃  as 

follows: 

𝜃 =  ୴୭୪୳୫ୣ ୭ ୵ୟ୲ୣ୰ [୫య]୴୭୪୳୫ୣ ୭ ୱ୭୧୪ [୫య]                                                      Eq. 4 

In relation to its formulation 𝜃  varies from 0 to 𝜃ௌ் and can assume: 

- Permanent wilting point (𝜃ௐ): This is the lowest water level to which the soil 

can go while still being in an equilibrium with gravity. Because the soil has such a 

low water content, plants can no longer properly draw water because the soil's 

water tension is too high. Water stress symptoms start to appear in plants, and they 

develop much slower. 

- Critical (𝜃ோூ்): a certain critical soil moisture value as said in the previous section 

(Section 1.2.2). 
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- Field capacity (𝜃ி): amount of water that the soil can retain after excess water is 

drained away under the effect of gravity. Plants are able to draw water from the soil 

for their requirements at this moisture level. 

- Saturation (𝜃ௌ்): all soil pores are completely saturated with water. For the 

definition, 𝜃ௌ் could be at most equal to the porosity of the volume of soil 

considered. 

Note that these quantities depend on soil characteristics such as soil texture (and 

on the kind of plant for the wilting point; see Hupet et al. (2005); Sperry et al. 

(2002)). Furthermore, the FC less the WP represents the maximum amount of 

water that may be made accessible to plants. Below the WP, the water is held too 

tightly by the soil matrix and is not available to plants (Hillel, 2003). 

Using θSAT, a further common definition of soil moisture is the saturation ratio 𝜃ௌ , 

which varies between 0 and 1: 

𝜃௦ =  ఏೄಲ                                                                Eq. 5 

In the remaining part of this manuscript, to indicate SM saturation, we will use "s" 

for simplicity. 

The FC and WP led us to the possibility to define the soil moisture index (SMI) as 

follows: 

𝑆𝑀𝐼 =   ି   ೈುಷ ି   ೈು                                              Eq. 6 

Thus, the SMI (which ranges from 0 and 1) is a measurement of the soil moisture 

content as a proportion of the total storage accessible to plants. It should be noted 

that under some conditions, real soil moisture may exceed the field's tolerance (for 
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example, during periods of high precipitation or in saturated riverbank regions). 

The SMI may be adjusted to 1 for any number over FC to get around this problem. 

Define SM in absolute term express S [mm] with the considered soil depth (d, with 

constant cross section). 

𝑆 =  θ ∙ d                                              Eq. 7 

Finally, the soil moisture potential 𝜓 can be used to indicate SM for describing how 

soil moisture binds to the soil matrix. According to standard definitions, SAT, FC, 

WP correspond respectively to soil moisture potentials of 1 hPa, about 100–300 

hPa, and around 15,000 hPa (1.5 MPa). Accordingly, the corresponding suction 

heads (negative pressure heads) are 1 cm, 1-3 m, and 150 m. 

These definitions are significant especially in the context of ground measurements 

since most measures of soil moisture are indirect (e.g., dielectric constant, changes 

in the gravitational field, or soil suction), and are often only connected to one 

definition of SM. 

1.3.4 SM along profile: SSM vs RZSM 
The definitions provided in Section 1.2.3 have highlighted the significance of soil 

volume, with particular emphasis on the importance of constant soil section 

thickness (d). While processes involving SM have been extensively discussed, it is 

imperative to distinguish between moisture in the surface soil layer, referred to as 

Surface Soil Moisture (SSM), and that in the deeper layer, termed Root Zone Soil 

Moisture (RZSM). SSM pertains to a depth of a few centimeters (up to 10 cm), 

depicted as Soil "A" in Fig. 7, representing the water content that predominantly 

interacts with the atmosphere. Conversely, RZSM is referenced at a greater depth 

(up to 1 meter, equivalent to the unsaturated zone depth), Soil "B" in Fig. 7) and 

constitutes the pivotal water source from which plants draw sustenance. However, 
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precisely determining RZSM, as elaborated in Chapter 2, presents challenges often 

addressed through modeling. Nonetheless, its accurate determination holds 

paramount importance in the agricultural domain, as expounded upon later in the 

chapter, enabling optimal assessment and planning of water requirements, thereby 

maximizing available resources and mitigating potential calamities. 

 

Fig. 7: Distinction of the unsatured zone into a 
surface layer and deepen layer. 

1.4 Purpose 
The ongoing climate change presents an urgent global challenge, with far-reaching 

impacts on ecosystems and humanity. Extreme weather events, floods, droughts, 

and landslides are just a few of the effects induced by climate change, all intricately 

connected to soil water resources and alterations in its absorptive capacity. 
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In the following chapter, we will explore various measurement methodologies. 

While point measurements offer precision, they are costly and intricate to 

extrapolate spatially. Satellite-based microwave techniques enable synoptic global 

coverage and excellent measurement repeatability. Nevertheless, a distinction 

should be made between products with high spatial resolution and those 

emphasizing temporal resolution. Hydrological modeling, on the other hand, offers 

solid backing, despite being inextricably linked to model assumptions and input 

data. 

Cramer et al. (2018) revealed that the Mediterranean basin faces a heightened risk 

of climate and environmental changes surpassing global averages in both extent 

and rate. This is due to a convergence of local factors, such as land use changes, 

and global influences propagating through the Mediterranean basin via diverse 

teleconnection modes (Lionello et al., 2014). 

Mitigating the underlying processes of climate and environmental changes and 

adapting to their inevitable consequences stand as paramount priorities for public 

and private stakeholders shaping the future of Mediterranean communities and 

environmental integrity. Such attempts demand research that goes beyond what is 

already known. Currently, several challenges and needs are evident in the 

Mediterranean context: the MAP identifies an observational data and monitoring 

system disparity between the North, South and East regions, prompting an increase 

of observations and network establishment. 

The aim of this thesis is to provide an overview of SM measurements within the 

European zone encompassing the Mediterranean area, focusing particularly on 

microwave remote sensing measurements. Subsequently, the goal is to develop a 

high spatial and temporal resolution product (with a daily interval and 1 km 

resolution), offering a comprehensive four-dimensional depiction of soil profiles. 

This product aims to contribute to climate change mitigation efforts. 
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C h a p t e r  2  

STATE OF THE ART: SOIL MOISTURE MEASUREMENT 
TECHNIQUES 

This section is going to provide an overview of the unique properties of SM and 

its fundamental relationships with soil and water. Thus, the focus has been shifted 

to a comprehensive analysis of the applications of measurement techniques in the 

field of soil moisture observation. 

2.1 The role of soil moisture 
SM, as an integral component of the three-phase soil system, plays a fundamental 

role in various applications. In fact, it is a key element of the surface water balance, 

which controls numerous processes that occur at different temporal and spatial 

scales within the climate system (Baldwin et al., 2019; Manfreda et al., 2011; 

Rodríguez-Iturbe et al., 2006). SM is essential for plant transpiration and 

photosynthesis, it exerts influence over water, energy, and biogeochemical cycles, 

and contributes to natural hazard triggers such as droughts, floods, and landslides, 

owing to its significant role in regulating outflow dynamics and infiltration patterns 

(Albano et al., 2017; Chen et al., 2017; Miralles et al., 2012; Seneviratne et al., 2010; 

Koster et al., 2004).  

The computation of SM considers the variation of this parameter across different 

volumes of soil. Due to its uneven distribution both vertically and horizontally, the 

measurement of SM exhibits variability based on the specific volume under 

consideration (Seneviratne et al., 2010). This variability holds significant 

implications for comparing different measurement methods. Furthermore, 

achieving a robust and accurate estimation of SM, along with its spatiotemporal 
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fluctuations, should ensure significant advantages in the large-scale monitoring of 

the effects induced by extreme meteorological events of climate change. Despite 

the considerable advancements made over time, the absence of an operational 

system capable of monitoring SM variations at the necessary spatial and temporal 

resolutions for various applications continues to be a challenge. Many applications, 

in fact, require frequent observation estimates, typically on a daily basis and over 

expansive areas (Schmugge et al., 1980). 

However, measurement of SSM using conventional methods in large regions 

presents difficulties and high costs. The precise measurements obtained from 

distributed stations across the terrain provide data that span from a few centimeters 

to a few hundred meters at best (Fig. 8). Furthermore, these stations exhibit spatial 

heterogeneity, thereby complicating the straightforward reconstruction of the 

measured parameter (Jackson et al., 1981). This complexity arises due to the 

substantial variability present in the data sought for interpolation. 

Given the challenges associated with directly assessing the spatial distribution of 

SSM through specific measurements, hydrological models are frequently employed 

(Jackson, 1986). Unfortunately, these models rely on extensive sets of 

meteorological data (which can be arduous and costly to acquire) and parameters 

that are often challenging to estimate accurately or are prone to significant errors 

(Walker and Houser, 2002; Wood et al., 1993). 

During the past two decades, the application of remote sensing (RS) techniques 

(both spaceborne and airborne) to measure SSM and its variations has gained much 

attention. These techniques generally facilitate coverage of expansive regions with 

varying time intervals, contingent on the satellite platform employed. Nevertheless, 

a primary limitation of this approach lies in the challenge of reconciling high-

frequency temporal measurements with adequately precise spatial resolution 

measurements, especially in cases where freely available data products are utilized. 
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Furthermore, these measurements solely pertain to the uppermost soil layers, 

which are most susceptible to weather conditions and may not accurately reflect 

the overall soil wetness state. 

 

Fig. 8: Types of SM measurements (in situ, 
hydrological modelling, and remote sensing) their 
relationship with the spatial resolution. 

Therefore, each approach comes with its distinct advantages and drawbacks, yet its 

integration typically yields optimal results in retrieving SM information (Lacava et 

al., 2013; Walker and Houser, 2002; Schmugge et al., 1980). Ground-based 

measurements hold the potential for exceptional accuracy and are, thus, well-suited 

for calibrating and validating hydrological models that provide insights into the 

vertical distribution of SM across the soil profile. On the other hand, satellite 

measurements offer a momentary glimpse into ongoing processes at specific 
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instances, thereby serving as valuable snapshots of dynamic conditions at a given 

point in time (Walker and Houser, 2002). 

2.2 Water-soil relationship 
Rainfall, snowfall, frost, and fog contribute water to the soil. However, only a 

portion, influenced by permeability, can infiltrate the soil. Once inside, its residence 

time is determined by the soil's physical-chemical attributes, biological processes, 

and temperature. The latter factor can impact water losses due to evaporation. 

Water's duration in the soil and its movement within it hinge on the forces affecting 

the water volume within the soil. 

 
Fig. 9: Types of water in rocks: (1) hygroscopic 
water; (2) pellicular water; (3) capillary water; (4) 
gratifying water. Data Source: Casadio and Elmi, 
2000. 

The primary acting forces encompass surface adhesion forces, surface tension 

forces, and gravitational forces. Gravitational force is linked to the constant "g" 

and propels the water vertically downward. Surface adhesion force acts on the layer 

of water molecules on a colloid's surface, where dipoles orient themselves based 

on the polarity of the electronegative field from organ-mineral cells. Surface 

tension forces, also known as capillary forces, are akin to those generated within a 
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capillary tube, leading to the formation of two menisci - one internal and one 

external. In this scenario, water circulates within micropores (diameter <10 mm). 

For instance, when a micropore is filled with water between 50% and 75% and 

transitions into a macropore filled with air, two menisci emerge: one at the air-to-

water interface inside the micropore and the other at the micropore's outer end. 

This gives rise to distinctions between "gravitational," "capillary," "film," and 

"hygroscopic" types of water based on these factors. 

Hygroscopic water (Fig. 9b) is the water in contact with soil colloids, forming a 

layer up to 0.1 m thick. It is not available for use by plants and can be extracted 

only by drying the soil at 105°C for 24-48 hours. Pellicular water (Fig. 9c), closely 

associated with hygroscopic water due to adhesion, can be removed through 

centrifugation and is found in layers of around 1-2 m thickness. Once the needs 

for pellicular water are met, capillary water is held within the narrower pores (Fig. 

9d), defying the force of gravity. This phenomenon is a result of capillarity, which 

arises from the interplay between adhesion and cohesion forces. A portion of 

capillary water, located in pores with a diameter less than 0.2 m, remains 

unavailable to plant roots. However, the capillary water in pores with a diameter 

between 0.2 and 10 m, although moving relatively slowly, is accessible for root 

uptake. The combined content of hygroscopic, pellicular, and capillary water is 

collectively termed retention water. 

As the diameter of micropores expands, particularly exceeding 30 m, surface 

tension forces diminish. Consequently, the water's movement becomes more 

influenced by gravity (Fig. 9e), promoting downward movement and depleting 

water from surface layers that are explored by roots and heavily influenced by 

biological components. 
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Macropores possess diameters that prevent capillary retention of water, effectively 

holding only air and excluding any water vapor present. Higher levels of water 

vapor elevate the likelihood of its condensation onto colloidal surfaces, forming a 

"hygroscopic" water layer. 

2.3 Dielectric properties of soil 
 
As mentioned, several methods for measuring SM exist, and some of these 

leverages the dielectric properties of the soil, particularly the distinction between 

the dielectric properties of soil and water. These properties are quantified using the 

dielectric constant or permittivity (ε), which characterizes how a specific material 

reacts to the presence of an electromagnetic field (Schmugge, 1983). Essentially, it 

signifies the resistance or permission that a material presents to the propagation of 

an electric field within it. 

𝜀 =  𝜀ᇱ +  𝜀ᇱᇱ                                             Eq. 8 

𝜀 consists of a real part 𝜀ᇱ, which describes the propagation of the wave within the 

material (e.g., velocity) and an imaginary part 𝜀ᇱᇱ, which describes the loss of energy 

resulting from the material crossing (Engman and Chauhan, 1995; Topp et al., 

1980). Usually, it is expressed by reference to the dielectric constant measured in 

empty space: 

𝜀ୀ 𝜀/ 𝜀                                                Eq. 9 

Nevertheless, for the sake of simplicity we will refer to εr as ε. 

Fig. 10 depicts, on the left side, the plots of the real part ε' and the imaginary part 

ε'' of the dielectric constant as they vary with different soil types, measured at a 

frequency of 1.4 GHz (Ulaby, 1986). On the right side, the graphs illustrate their 

trends (the upper part for the real part and the lower part for the imaginary part) 
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concerning frequency (in Hz) and temperature (in ºC) (Hoekstra and Delaney, 

1974). 

 

Fig. 10: (a) Variation of the 𝜀ᇱ and the 𝜀ᇱᇱ for 5 
different soils as a function of water content at 1.4 
GHz (Ulaby et al., 1986); (b) Variation of the real 
the real 𝜀 '' and complex part 𝜀ᇱᇱof the dielectric 
constant of water as a function of frequency 
(Hoekstra and Delaney, 1974). 

Ulaby et al. (1982) emphasized the frequency-independence of ε' for dry soil, where 

ε' varies between 2 and 5, and ε'' remains below 0.05. The distinct behaviors 

observed among different soil types arise from varying water content, porosity 

(Njoku and Entekhabi, 1996), and differing levels of porosity. In contrast to the 

behavior of free water at approximately 1 GHz, the real part of the dielectric 

constant exceeds 80, and the imaginary part is around 4 (Ulaby et al., 1996) (Fig. 

10b). This increase in the case of free water is due to the polar nature of water 
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molecules, causing their electric dipoles to align with the direction of the electric 

field. Consequently, this results in enhanced electrical shielding and a significantly 

elevated εr value for water (Engman and Chauhan, 1995). 

The significant increase in the dielectric constant, up to 20 times, has enabled the 

measurement of SM through the phenomenon of dielectric mixing within the soil. 

However, the presence of different types of water in the soil (gravitational or free 

water and water retention) leads to variations in dielectric permittivity. Specifically, 

retention water has a lower ε compared to free water due to the immobilization of 

water molecules absorbed on particle surfaces (Njoku and Entekhabi, 1996; 

Jackson and Schmugge, 1989; Wang and Schmugge, 1980). The dielectric mixing 

models introduced in the scientific literature, briefly reviewed, account for various 

contributions and recognize that the polarization of water molecules hinges on 

factors such as observation frequency and soil temperature (Heimovaara, 1994; 

Ulaby, 1986; Topp et al., 1980). For instance, εr decreases due to the disruption of 

dipole alignment resulting from thermal agitation. 

It is essential to clarify that the study of dielectric mixing is intricate due to the non-

linearity of the mixture, which does not correspond to a simple weighted average 

of its individual components. Topp et al. (1980) proposed an empirical multiple 

regression relationship between SM and the real part of dielectric permittivity (ε') 

valid within the frequency range of 1 MHz to 1 GHz: 

   𝜀ᇱ = 3.03 + 9.3θ + 146.0θଶ − 0.76θଷ                                 Eq. 10 

θ  is the water content. 

The notable advantage of this formulation is its independence from soil density, 

texture, and salinity when considering the real part of the dielectric constant. On 

the contrary, the empirical model put forth by Wang and Schmugge (1980) for 
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describing the dielectric constant of a soil-water mixture within the frequency range 

of 1.4 to 5 GHz is built upon the known dielectric constants of air, ice, soil, and 

water. It also takes into account the respective volume fractions occupied by these 

constituents. The researchers identified a threshold of water content for each soil 

type (lower for sandy soils and higher for clay soils), marking a transitional point 

beyond which the dielectric constant rises sharply. Depending on whether the 

water content is above or below the threshold of the transition zone, the applicable 

formulas are denoted as (a) and (b), respectively: 

    a) 𝜀 =  𝜃𝜀௫  +  (𝑃 −  𝜃)𝜀 + (1 − 𝑃)𝜀                          Eq. 11 

𝜀௫  =  𝜀  +  (𝜀௪ −  𝜀) ఏெ 𝛾                               Eq. 12 

b) 𝜀 =  𝜃𝜀௫  +  (𝜃 − 𝑀௧)𝜀௪ + (𝑃 −  𝜃)𝜀  + (1 − 𝑃)𝜀 

           Eq. 13 

 )( iwix                                     Eq. 14 

Where 𝜀, 𝜀௪, 𝜀, 𝜀 are respectively the dielectric constant of air, water, rocks and 

ice, while 𝜀௫ is the dielectric constant of the absorbed water; P is the porosity of 

the dry soil; 𝜃 and MT respectively are the water content and the transition water 

content; finally, g is an experimental parameter. 

The core concept underpinning this model is that the initial water that comes into 

contact with the ground is firmly adsorbed onto the surface of soil particles, 

hindering dipole rotation. As more water is introduced, it gains the ability to align 

freely. The transition from absorbed to free water is influenced by the soil's particle 

size: clayey soils exhibit higher absorption compared to sandy soils. Several other 
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models have been presented to describe dielectric mixing. For example, Hallikainen 

et al. (1985) used polynomial expressions in the frequency range 1,4-18 GHz: 

𝜀 =  (𝑎  + 𝑎ଵ𝑆 + 𝑎ଶ 𝐶)  + (𝑏  + 𝑏ଵ𝑆 + 𝑏ଶ 𝐶)𝜃 + (𝑐  + 𝑐ଵ𝑆 + 𝑐ଶ 𝐶)𝜃ଶ  Eq. 15 

With S and C, respectively, the percentage of sand and clay. 

Indeed, Dobson et al. (1985) introduced both a semiempirical model and a 

theoretical model for describing dielectric mixing. The theoretical model dissects 

the soil-water mixture into two components: a portion of volume occupied by 

water retention, and another occupied by free water. This division aligns with the 

composition of the soil. The model employs a multiphase formula applicable to 

mixtures containing randomly orientated inclusions: 
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            Eq. 16 

with s, fw and bw and a which indicate soil, free water, retention water and air, 

respectively. Vi indicates the fraction of volume occupied by inclusions. 

On the other hand, the proposed semiempirical model expresses the two 

components of the dielectric constant in the range 1.4-18 GHz as a function of soil 

temperature, soil moisture content, texture, and frequency of observation. 

Peplinski et al. (1995) have extended the previous model of Dobson et al (1985) 

validating it over the entire frequency range between 0.3 and 18 GHz. These are 

still the most widely used methods to describe dielectric mixing. 

2.4 Ground-based measurements of soil moisture 
The systematic monitoring of ground-based SM started in the 1930s within the Ex 

Soviet Union and subsequently extended to Mongolia, China, India, and Eastern 

Europe. In the United States, the first organized observations were established in 
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1980 (Robock et al., 2000; Hollinger and Isard, 1994). Various measurement 

techniques capitalize on monitoring stations and can be categorized as follows: 

- Resistance-Based Methods: methods which involve resistance measurements, 

exemplified by the tensiometer.  

- Capacitance-Based Methods: category which encompasses techniques utilizing 

electrical capacitance, such as the electrical capacitance probe (EC).  

- Time-Domain Reflectometry (TDR) and Frequency-Domain Reflectometry 

(FDR): methods that are grounded in reflectometry principles and include both 

time-domain and frequency-domain variants.  

- Radiation Measurements-Based Methods: techniques that rely on radiation 

measurements are incorporated here, including sensors like the gamma radiation 

sensor and the neutron radiation sensor.  

The following are brief descriptions of some of the measurement approaches 

mentioned. 

2.4.1 Tensiometer 
Given the complex interactions of the soil forces, as mentioned above (Section 

2.2), it is often more convenient to describe the movement of water within the soil 

referring to the energy released per unit of water than to the dominant forces. The 

resistance method uses the concept of water potential in a porous medium. This 

concept facilitates assessment of the state of water over time through the integrated 

system of soil, plant and atmosphere. This shift to potential-based characterization 

replaced the previous classifications that classified various forms of water in the 

soil (such as gravity water, capillary water, and hygroscopic water). By using this 

potential approach, we can better understand the water dynamics in soil. 
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opgt                                      Eq. 17 

The Committee on Terminology of the International Society of Soil Science (ISSS) 

(Hillel, 2003) has precisely defined the total potential of water in soil as the work 

required, per unit quantity of pure water, to transport an infinitesimal amount of 

water reversibly and isothermally from a container of pure water, at a fixed 

elevation and atmospheric pressure, to the soil water at the specific point under 

consideration. 

The tensiometer is constructed with a porous cup, often made of ceramic with very 

fine pores, linked to a vacuum gauge through a rigid tube filled with water. When 

the soil matrix potential is lower (more negative) than the pressure equivalent 

within the tensiometer cup, water moves from the tensiometer, driven by a gradient 

of potential energy, through the saturated porous cup and into the soil. This 

movement creates an aspiration detected by the gauge. Water continues to flow in 

the soil until equilibrium is established, and the aspiration within the tensiometer 

equals the soil's matrix potential, indicating dissipation of the driving force. In wet 

soil conditions, the flow can reverse, with groundwater entering the tensiometer 

until a new equilibrium is reached (S.U. et al., 2014; Or, 2001). 

Primary advantages of the tensiometer include its high accuracy in measuring soil 

moisture at low water potentials and its sensitivity to changes in soil moisture 

within the range relevant to plant-water relationships. However, regular 

maintenance is required to prevent clogging of the tensiometer pores. This method 

has limitations when dealing with frozen or freezing soils, as well as challenges 

when measuring in soils with low water retention capacity. 

2.4.2 Time Domain Reflectometry 
Time Domain Reflectometry, TDR, has been widely used over time (Rao and 

Singh, 2011; Robinson et al., 2008; Hilhorst, 2000). It is based on the dielectric 
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capacities of the soil according to the modelling proposed by Topp et al. (1980). 

By inverting the Eq. 10 we obtain: 

𝜃  = 4.3𝑥10(𝜀ᇱ)ଷ −  5.5𝑥10ିସ(𝜀ᇱ)ଶ −  2.92𝑥10ିଶ𝜀ᇱି 5 − 3𝑥10ିଶ          Eq. 18 

As extensively detailed in the Section 2.3, the variance between the dielectric 

constants of water and the other constituents of the soil leads to the dependence 

of the travel time of electromagnetic pulses on θ. Consequently, time-domain 

reflectometry (TDR) measures the delay between incident electromagnetic pulses 

and reflections propagating within the soil. 

Originating from the formulation established by Topp et al. (1980), which 

underpins the operation of conventional TDR, Hilhost et al. (2000) introduced a 

modification to factor in porosity. This adjustment aimed to achieve a more precise 

determination of the real part of the dielectric constant (ε') and subsequently θ. 

TDR boasts notable advantages including high temporal resolution, rapid data 

acquisition speed, and substantial availability of information. Moreover, it permits 

unattended operation, facilitating the recording of data over time without requiring 

constant supervision (Evett and Steiner, 1995). The effectiveness of TDR is well-

established up to a frequency of 1 GHz. Topp et al. (1982) conducted a laboratory 

study using a 1-meter depth of loam clay soil and demonstrated that the variation 

from the gravimetric method (a destructive laboratory technique) was merely 3%. 

This finding underscores the accuracy of the TDR measurements. These probes 

are available in both mobile and stationary forms, and they can vary greatly in cost. 

The former is primarily utilized for agricultural applications. Mittelbach et al. (2012) 

conducted a comparison between three inexpensive sensors and one pricier. The 

less expensive sensors exhibited inconsistent performance, sensitivity limitations 

under certain humidity conditions, and spurious sensitivity to temperature changes. 

Nonetheless, there are some challenges associated with TDR. Repetitive 
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measurements are often required, leading to potential time consumption. 

Additionally, this type of measurement is more applicable on a smaller scale due to 

its localized nature (Schwartz et al., 2008). Another aspect is the estimation of θ 

through TDR, where the primary source of uncertainty has historically been 

associated with the determination of propagation time (Hook and Livingston, 

1996; Pepin et al., 1995). However, more recent studies have shown that this type 

of probe can also be used to deduce other soil parameters, including dry density, 

porosity, and saturation (Rohini and Singh, 2004). This highlights the expanding 

utility and potential of TDR beyond its original scope. 

2.4.3 Frequency Domain Reflectometry 
The abbreviation FDR stands for Frequency Domain Reflectometry, a technique 

utilized to assess SM by exploiting the dielectric properties of the soil. Specifically, 

FDR determines the soil's dielectric constant by measuring the time it takes to 

charge a capacitor, with the soil acting as the dielectric medium (Minet et al., 2010; 

Robinson and Dean, 1993). This method is based on the principle that the dielectric 

constant of the soil affects the charging time of the capacitor. In FDR 

measurements, the equipment comprises two electrodes that form a capacitor, with 

the soil acting as the dielectric material. The soil's dielectric properties influence the 

time it takes for the capacitor to charge and discharge, creating an oscillating circuit. 

This circuit responds to variations in water content within the soil at frequencies 

ranging from 10 to 150 MHz. FDR's working principal shares similarities with 

TDR (Time Domain Reflectometry), as both methods involve sending signals 

through the soil and measuring their interactions. However, FDR distinguishes 

itself by utilizing a scanning frequency approach. This allows for rapid and non-

destructive data collection across a wide frequency spectrum. 

Lin (2003)demonstrated that while FDR's operation is akin to TDR, FDR often 

yields more accurate results. This observation was further supported by Rao and 
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Singh (2011), who established that FDR outperforms TDR when dealing with soils 

containing less than 5% volumetric moisture content. Therefore, FDR exhibits 

increased sensitivity, particularly in drier soil conditions. 

2.4.4 Neutron diffusion and gamma ray techniques 
Among the radioactive techniques commonly employed for soil moisture 

measurement, two prominent methods are the gamma radiation and neutron 

diffusion technique (S.U. et al., 2014). The neutron diffusion technique involves 

the use of a fast neutron source with an energy level around 5 MeV and a slow 

neutron detector with an energy level of about 0.025 eV at 27 ° C. Despite its 

efficacy in measuring a substantial soil volume, this technique carries inherent risks 

(Jarvis and Leeds-Harrison, 1987). Neutron diffusion methods come in two forms: 

surface probes and cylindrical probes designed to penetrate deeper into the soil. 

The latter are particularly valuable for agricultural and environmental applications. 

Gamma radiation offers high-resolution measurements with a quick response time 

of approximately 1 minute. However, this methodology can be influenced by 

fluctuations in the apparent density of the soil, which can affect the accuracy of soil 

moisture measurements. While gamma radiation provides a non-destructive 

approach, it presents substantial limitations linked to its cost and the potential 

hazards associated with the emitted radiation. Notably, the level of radiation 

emitted by gamma radiation techniques is significantly higher compared to that of 

neutron diffusion techniques. 

2.5 Microwave remote sensing technique 
Numerous studies have demonstrated the feasibility of estimating SSM using 

remote sensing (RS) techniques. Among these techniques, those that utilize 

microwave (MW) frequencies have achieved significant success. Microwave Earth 

Observation (EO) leverages the electromagnetic radiation within the frequency 

range between 1 mm and 1 m on the electromagnetic spectrum. This range is 
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further subdivided into distinct bands, each designated by a specific letter (refer to 

Table 1). 

 

Fig. 11: Electromagnetic spectrum. 

Table 1: Wavelength and frequency for each band in 
which the MW is subdivided. 

Band Designation Wavelength (cm) Frequency (GHz) 
Ka 0.75 – 1.10 40.0 – 26.5 
K 1.10 – 1.67 26.5 – 18.0 
Ku 1.67 – 2.40 18.0 – 12.5 
X 2.40 – 3.75 12.5 – 8.0 
C 3.75 – 7.50 8.0 – 4.0 

S 7.50 – 15.0 4.0 – 2.0 
L 15.0 – 30.0 2.0 – 1.0 
P 30.0 – 100 1.0 – 0.3 

 

In MW we distinguish between two main remote sensing system measurements 

made by active sensors (radar) and passive sensors (radiometers). The difference 

between them lies in the different sources of energy. All matter at a temperature 

above absolute zero emits electromagnetic radiation due to the motion of charged 

particles of its atoms and molecules (De Troch et al., 1996). Active sensors measure 

the electromagnetic radiation reflected (retrodiffuse) by the object being observed, 
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radiated by a source of energy artificially generated by the sensor itself (Sharkov, 

2003), and defined by the backscatter coefficient. 

 

Fig. 12: Operation of active sensor according to 
European Space Agency. Data Source: 
https://www.esa.int/SPECIALS/Eduspace_IT/S
EMTZSZRA0G_0.html. 

Passive sensors or MW radiometers measure the emission properties of the object 

of observation, resulting from its characteristics and temperature. 
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Fig. 13:  Operation of passive sensor according to 
European Space Agency. Data Source: 
https://www.esa.int/SPECIALS/Eduspace_IT/S
EMTZSZRA0G_0.html. 

The use of microwave (MW) measurements, which involve capturing the natural 

electromagnetic radiation emitted by objects or, in the case of active systems, the 

retrodiffused radiation resulting from an energization, offers several advantages. 

One key benefit is their capability to be conducted at any time of day or night 

(Malnes et al., 2005; Jackson et al., 1996). Moreover, they are unaffected by weather 

conditions (Malnes et al., 2005): in the MW range, the attenuation of the signal 

received by sensors due to atmospheric gases and clouds is minimal for frequencies 

below 10 GHz (Elachi, 1987). When comparing active and passive sensors, apart 

from the distinction in the measured parameter, there are significant differences in 

spatial and temporal resolution. Specifically, active sensors excel in providing high 

spatial resolutions on the order of a few meters. However, this advantage comes 

with heightened sensitivity to surface roughness, topographical features, and 

vegetation. Additionally, active sensors tend to have long revisiting times 

(approximately spanning several months). Passive sensors, on the other hand, are 
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characterized by a more frequent temporal repetition (of the order of the hours) 

and spatial resolutions typically of the order of tens of kilometers. They too are 

sensitive, with less intensity than the active ones, to variations in surface roughness 

and the presence of vegetation. 

The main differences are summarized in the Table 2; in general, the MW RS (both 

active and passive) exploit the dielectric capacity of the soil (Section 2.3) to measure 𝜃.  

Table 2: Main differences between active and 
passive sensors. 

Characteristic Passive Microwave Active Microwave 

Property Observed 
brightness temperature 

dielectric properties 
soil temperature 

backscatter coefficient 
dielectric properties 

Noise Sources 
roughness 

vegetation cover 
temperature 

roughness 
surface slope 

vegetation cover 
Signal to Noise fair – good good – very go 

Data Rate Low very high 

Spatial Resolution 10 – 100 km 10 m 
Swath Width Wide narrow – moderate 

Vegetation Effect Moderate moderate – serious 

Roughness Effect Slight Serious 

Topographic Effect Slight Serious 
Revisit Time Good poor – moderate 

 

2.5.1 Active microwave remote sensing technique 
Active sensors utilize a radar antenna, which can be classified as either real aperture 

or synthetic aperture. These antennas emit pulses of electromagnetic waves 

towards the Earth's surface and capture the resulting backscattered signal, referred 

to as return signal. The strength of this retrodiffused signal varies based on the 

properties of the target and radar system, and it is quantified by the sensor. The 
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sensor itself can take the form of an imaging device, such as synthetic aperture 

radar (SAR), or a non-imaging device like scatterometers. 

The intensity of the retrodiffused signal is defined by the backscattering coefficient 

(Schmugge, 1983). This coefficient represents the radar cross-section (measured in 

square meters, m²) of a specific ground pixel per unit area of that pixel. Generally, 

it is expressed in decibels (dB) using the following formula (Ulaby et al., 1996): 

oo
dB  10log10                                         Eq. 19 

The ability of the soil to retrodiffuse the incident electromagnetic radiation 

increases as the dielectric constant increases with non-linear growth so that it is 

greater for low values of 𝜀. Champion (1996) empirically determined the 

backscattering coefficient 𝜎0from the 𝜃: 

𝜎(𝑑𝑏)  =  𝐴 + 𝐵𝜃                                              Eq. 20 

where, A is the coefficient of retrodiffusion for a completely dry surface and B is 

the sensitivity of o in measuring changes in the water content of soils. 

The dispersion of a given soil is a function of its water content; in fact, a part of 

the incident impulse in a dry soil will penetrate the surface of the soil itself, while 

the same signal in a wet soil will increase the intensity of the retrodiffused signal. 

Variations in the backscattering coefficient are affected by dielectric and geometric 

properties, such as surface roughness, plant cover and object topography, and radar 

characteristics, such as wavelength, angle of incidence, polarization (Schmugge, 

1983). 

In greater detail, surface roughness plays a crucial role as a limiting factor in SM 

estimation (Wang et al., 1987). When surface roughness is excessively low 
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(corresponding to smooth surfaces), these surfaces function as mirror-like 

reflectors, resulting in a minimal return signal. Conversely, highly elevated surface 

roughness (very rough surfaces) causes surfaces to resemble Lambertian surfaces 

(Schmugge, 1983), scattering energy uniformly in all directions (Ulaby et al., 1982). 

In the former case, backscattering is significantly influenced by angles of incidence 

near the nadir (i.e., elevation angle close to 90°), while in the latter case, backscatter 

remains nearly angle-independent (Ulaby, 1986). The presence of vegetation 

overlying soil introduces additional complexity. Vegetation both absorbs and 

scatters a portion of incident microwaves, as well as microwaves reflected from the 

underlying surface. The extent of absorption is correlated with the moisture 

content within the vegetation, while scattering is impacted by the geometry and 

structure of the vegetation (Van de Griend and Engman, 1985). Studies have 

indicated that this effect can be mitigated but not completely eliminated (Su et al., 

1997; Schmullius and Furrer, 1992; Van de Griend and Engman, 1985), achieved 

by selecting observation frequencies within the range of 1 to 5 GHz. 

Vegetation notably influences active measurements in the case of vertical-vertical 

(VV) polarization in comparison to horizontal-horizontal (HH) polarizations. 

Recent research demonstrates a preference for cross-polarizations (Schumann et 

al., 2007; Henry et al., 2006; Solbø and Solheim, 2005; Horritt et al., 2003) over 

linear polarizations. 

These active sensors, providing a measure of 𝜎 made it is possible to trace 𝜃 given 

the linear relationship with the backscattering mentioned above (Ulaby et al., 1982). 

An approach to obtain this information is the change detection method proposed 

by Wagner (1998), which obtains the SM information by comparing 𝜎  with the 

lowest value ( 𝜎ௗ௬ ) and highest value ( 𝜎௪௧) recorded extrapolated from a 

long series of measurements with a reference angle of 40 °. 
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𝑆𝑀 =  (ସ)బ ି (ସ)ೝబ
(ସ)బೢି (ସ)ೝబ                                      Eq. 21 

This methodology has been widely applied both to old scatterometers (Wagner et 

al., 1999, European Remote Sensing Scatterometer, ERS Scatterometer) and to 

their new generation substitutes (Advanced scatterometer, ASCAT) of the 

European Space Agency; but also to SAR (Sentinel-1), from which originated the 

Surface Soil Moisture project 1 km of the Copernicus Global Land Service project. 

The characteristics of SM products derived from active sensors are briefly reported. 

2.5.1.1 Main features of the Advanced SCATterometer 
 
One of the instruments carried on board ESA’s MetOp satellites (MetOp -A 

launched in 2006, MetOp -B launched in 2012 and MetOp -C launched in 2018) is 

the Advanced Scatterometer (ASCAT). Such a sensor operates in the C-band (5.3 

GHz) with vertical polarization (VV). The MetOp satellites are ~50 min apart from 

each other with 09:30 a.m. descending and 09:30 p.m. ascending orbits, 

respectively. As said above, using a change detection method developed at the 

Institute of Photogrammetry and Remote Sensing (IPF), of the Vienna University 

of Technology (TU Wien), SSM data in degree of saturation (Wagner et al., 1999b) 

are retrieved from the backscattering measurements 𝜎.  

2.5.1.2 Main features of the Sentinel-1 (S-1) 
The Sentinel-1 constellation is made up of two identical satellites: Sentinel-1A, 

launched in 2014, and Sentinel-1B, launched in 2016. Both satellites are equipped 

with a C-Band Synthetic Aperture Radar (CSAR) instrument, enabling 

observations in one of four modes as illustrated in the Fig. 14: 

- Stripmap (SM) - A standard SAR stripmap imaging mode. 
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- Interferometric Wide swath (IW) - Data is acquired in three swaths using the 

Terrain Observation with Progressive Scanning SAR (TOPSAR) imaging 

technique. This mode serves as the primary observation mode on the land and is 

particularly relevant for soil moisture retrieval. 

- Extra Wide swath (EW) - Data is acquired in five swaths using the TOPSAR 

imaging technique. The EW mode provides extensive swath coverage but sacrifices 

spatial resolution. 

- Wave (WV) - WV is the operational mode of Sentinel-1 over open ocean. 

In the context of the SM application, the IW mode serves as the reference mode. 

IW mode data (with a spatial resolution of approximately 20 m) are provided as 

Level 1 Ground Range Detected products (L1-IWGRD), which serve as the input 

data for the Sentinel-1 Soil Moisture (SSM) 1 km processing chain. The IW mode 

primarily utilizes the VV polarization due to its enhanced sensitivity to soil moisture 

compared to cross-polarized observations in VH. 

A derived product of the SM application from Sentinel-1 is the SSM 1 km CGLS. 

This product involves resampling data from the original 20 m resolution to 1 km 

resolution following the application of the soil moisture algorithm. 
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Fig. 14: Sentinel-1 acquisition modes. Data Source: 
https://Sentinels.copernicus.eu/web/Sentinel/user
-guides/Sentinel-1-sar. 

2.5.2 Passive microwave remote sensing technique 
Radiometers are instruments used to measure electromagnetic radiation emitted 

and/or reflected from the Earth's surface within the spectral range specified in 

Table 1. The intensity of this radiation is typically quantified using the brightness 

temperature (Tb), which represents the temperature that a black body would need 

to have in thermal equilibrium with its surroundings in order to emit radiation at 

the observed intensity and wavelength. 

The energy emitted from different points within the soil volume depends on both 

the dielectric properties of the soil (as discussed in Section 2.3) and the temperature 

of that specific point (Jackson et al., 1997). Similarly, to SAR observations, 
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radiometric measurements are also subject to the influence of surface roughness 

and vegetation, although to a lesser extent. 

Starting from Tb and normalizing with respect to body temperature, we can then 

derive the emissivity (e) of the soil. Subsequently, radiometers measure the product 

of soil temperature and its emissivity. This is based on the approximation of 

Rayleigh-Jeans (where h << kt) applied to Planck's law (Jackson et al., 1981). 

  atmsoilpskypb TTeTT
p

                     Eq. 22 

where  is the transmittance of the Earth's atmosphere, p the surface reflectivity 

for polarization p, ep is the emissivity for polarization p. The first term within the 

bracket on the right side of this equation represents the radiation reflected from 

the sky, which varies with wavelength and atmospheric conditions. The second 

term relates to the emission from a bare ground surface, while the third term 

accounts for the contribution of the Earth's atmosphere between the surface and 

the receiver. 

The emissivity of soil is notably influenced by its water content: a dry soil exhibits 

an emissivity of 0.95, which decreases to below 0.6 in the presence of water. Surface 

roughness enhances soil emissivity (Singh et al., 2003; Wang et al., 1983), narrowing 

the difference in Tb measurements between dry and wet soils (Van de Griend and 

Engman, 1985). Vegetation has the most substantial impact on soil emissivity, as it 

can effectively mask the Earth's surface by absorbing electromagnetic radiation 

emitted by the soil. Subsequently, vegetation re-emits this radiation at its own 

temperature. For frequencies above 5 - 10 GHz, scattering effects within vegetation 

gain significance (Wigneron et al., 1998). 

In the case of passive sensors are applied the radiation transfer models. Techniques 

belonging to this category can be classified as follows: 
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- Single Channel Algorithm (SCA): uses the acquired brightness temperature in 

horizontal polarization HH and makes use of ancillary data, which add additional 

errors in the estimation of SM. 

- Multi - frequency or multi - polarized iterative algorithms: where the value of SM 

is iteratively "modified" in the calculations of Tbv and Tbh with a radiative transfer 

model (RTM) and compared with measurements at 6.9-18 GHz or 10-18 GHz 

(chosen according to radio frequency interference conditions) until the difference 

between the calculated and observed Tb is minimal in square root terms. 

- Algorithms based on polarization indices: linear regression is used to estimate soil 

moisture (Paloscia et al., 2001) and a polarization index to correct the effects of 

vegetation. 

In general, the most reliable information of SM can be obtained from L-band 

measurements (Schmugge et al., 1988), where the SM sensitivity of radiometric 

measurements is maximum, surface roughness effects are minimal, vegetation can 

be considered semi-transparent and the information obtained is related to the 

deeper layers of the soil (Entekhabi et al., 1994). Among the main L-band 

radiometers, those on board of the European Space Agency, SMOS, or National 

Aeronautics and Space Administration., SMAP missions are the most important in 

the field of SM. 

2.5.2.1 Main features of Soil Moisture Ocean Salinity 
The Soil Moisture Ocean Salinity (SMOS) mission was launched in November 

2009 by the European Space Agency in collaboration with the French Centre 

National d’Études Spatiales (CNES) and the Spanish Centro para el Desarrollo 

Tecnológico Industrial (CDTI), as the first explorative mission able to provide 

observations of soil moisture and sea surface salinity exploiting the exchange in the 

Earth's water cycle between land and the atmosphere using MIRAS microwave L-
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band (1.4 GHz) measurements. It consists of spaceborne interferometric 

radiometer able  to  provide  global estimates of surface soil moisture with a 

sampling time step of 2-3 days at the equator and a ground  resolution of  50  km  

(Kerr et al., 2001). It is the first satellite designed with the intention to measure soil 

moisture over land.  

2.5.2.2 Main features of Soil Moisture Active Passive 
In 2015 the NASA Soil Moisture Active Passive satellite mission was launched to 

provide information on surface soil moisture, on the freeze/thaw state of the land 

surface, on root zone SM until 1 m (Derksen et al., 2017; Reichle et al., 2014), and 

net ecosystem exchange (NEE) of carbon. The SMAP satellite is equipped with a 

radiometer working in L-Band at a spatial resolution of ~36 km and a radar that 

functioned only for a few months in 2015 at a frequency of 1.26 GHz and a spatial 

resolution of ~3 km. 

 

2.6 Combined measurements: the European Space Agency Climate 
Change Initiative 

The combined European Space Agency  Climate Change Initiative  (ESA CCI-SM) 

product blends scatterometer-based (ERS- ½, Metop A/B ASCAT) and 

radiometer-based SM information (SMMR, SSM/I, TMI, AMSR - E, WindSat, 

AMSR2, and SMOS), utilizing a weighted normal technique with the loads being 

relative to signal to noise ratio (SNR) assessed by the triple collocation investigation 

of every item (Gruber et al., 2019a; Dorigo et al., 2017). A CDF matching 

procedure is used before integrating all datasets to scale the SM into the Noah land 

surface model by the Global Land Data Assimilation System (GLDAS) (Rodell et 

al., 2004). The day-by-day information provided concerns VWC (m3/m3) at a 

spatial resolution of 0.25° × 0.25°, distributed in NETCDF format. 

2.7 Hydrological model 
The purpose of hydraulic soil modelling is to provide a simplified view of complex 

hydraulic patterns within the soil (Brown and Heuvelink, 2006) because the 
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necessary data are often difficult or impossible to obtain directly from detailed field 

measurements, being costly and time consuming to collect for each new application 

(McNeill et al., 2018). Modelling can be divided into empirical modelling and 

models derived from hydrological modelling.  

2.7.1 Pedotransfer function (PTF) 
The first type of modelling is a well-established approach that has been used over 

time to estimate the hydraulic properties of the soil. This method uses 

mathematical functions by comparing field and laboratory measurements across 

various soils. This approach is grounded in the fact that the hydraulic properties of 

soils can be statistically derived from the physical and structural characteristics of 

soil horizons, including features such as texture, bulk density, organic matter 

content, and the mineralogy of the clay fraction (Romano and Santini, 1997). 

The term "Pedotransfer function" (PTF), used to describe these mathematical 

functions (Vereecken et al., 1990; Bouma, 1989), refers to the techniques utilized 

to estimate hydrological parameters in the Van Genuchten (1980) and Brooks and 

Corey (1966) expressions using quicker and more cost-effective data collection 

methods. 

A great number of PTFs exist in the literature (Saxton and Rawls, 2006; Scheinost 

et al., 1997; Vereecken et al., 1990; Rawls and Brakensiek, 1989; Saxton et al., 1986; 

Cosby et al., 1984; Brakensiek et al., 1984; Rawls et al., 1982; Gupta and Larson, 

1979). The choice of which PTFs to employ depends on factors such as data 

availability, the nature of the survey, the scale of investigation, and the desired level 

of accuracy for the specific case. 

Ungaro and Calzolari (2001) proposed a classification consisting of five PTFs: 

• Level 1: particle size fractions (at least three), weaving classes. 

• Level 2: particle size fractions (at least three), bulk density, or organic matter. 

• Level 3: particle size fractions, bulk density, and organic matter. 

• Level 4: particle size fractions, bulk density, organic matter and water content at 

-33 and -1500 kPa. 
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• Level 5: particle size fractions, bulk density, organic matter and saturation 

hydraulic conductivity Ks. 

In detail, the PTF of Saxton et al., 1986, accepts as input the percentage of clay and 

sand and exploits the Brooks-Corey water retention curve, which represents the 

generalization of the Van Genuchten model. They are subject to applicability limits 

related to capillary potential range (1500-10 kPa), valid textural range (sand 5-30% 

and clay 8-58%; sand 30-95% and clay 5-60%). 

Rawls et al. (1982) proposed a PTF, developed for ten discrete values of the water 

potential (10, 20, 33, 60, 100, 200, 400, 700, 1000, 1500 kPa), which also require 

the clay component [%] and the organic matter as inputs. 

Rawls and Brakensiek (1989) have produced a formulation that adds to the 

percentage of sand and clay the value of porosity n (the ratio between the volume 

of voids Vv, volume not occupied by the solid phase, and the total volume of soil 

V) and has as limitation a textural range of sand 5-70% and clay 5-60%. 

From the classification among the inputs typically essential for applying PTF, the 

information of soil texture is included. Based on the size of the soil particles we 

define gravel (> 2 mm), sand (0.05 ÷ 2 mm), silt (0.002 ÷ 0.05 mm) and clays 

(<0.002 mm).  Gravel is the solid skeleton of the soil. The soil texture can be traced 

back to nomenclature. The most common classification is that of United States 

Department of Agriculture (USDA) (1951) represented graphically in a triangular 

diagram (Fig. 15). From the base of the triangle, the size classes of sand, silt and 

clay are arranged counterclockwise, while the percentage scale is increasing 

clockwise. In this way from the texture, it is possible to trace the type of soil and 

through the PTF mentioned above it is possible to derive the hydrological 

parameters of the soil. 
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Fig. 15: USDA triangle texture. Data Source: Soil 
Survey Manual, YSDA Handbook 18, Washington, 
D.C. 

In the Table 3 the mean value of porosity (n) with the range of variations, the 

saturation at WP (sw) and the saturation at FC (sc) for each type of soil according 

to the twelve classes USDA of Fig.15 was reported: 
Table 3:  n, sw, sc for each soil type according to 
Rawls and Brakensiek, 1989 and Rawls et al., 1992. 

ID Soil type n [-] sw sc 

1  Sandy 0.437   (0.374-0.500) 0.06 0.14 

2 Loamy sand 0.437   (0.363-0.506) 0.11 0.24 

3 Sandy loam  0.453   (0.351-0.555) 0.19 0.42 

4 Silty loam  0.463   (0.375-0.551) 0.27 0.57 

6 Loam  0.501   (0.420-0.582) 0.25 0.50 

7 Sandy clay loam.  0.398   (0.332-0.464) 0.34 0.62 

8 Silty clay loam  0.464   (0.409-0.519) 0.45 0.73 

9 Clay loam  0.471   (0.409-0.519) 0.40 0.67 

10 Sandy clay  0.430   (0.370-0.490) 0.51 0.75 

11 Silty clay 0.479   (0.425-0.533) 0.52 0.78 
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12 Clay  0.475   (0.427-0.523) 0.56 0.8 

 

The ID derived from https://ldas.gsfc.nasa.gov/gldas/soils. 

2.7.2 Hydrological balance modelling 
Efforts to delineate the hydrological balance must take into account the scale of 

investigation. In fact, in order to provide a realistic description of the dynamics of 

SM in an analytically manageable way (Laio et al., 2001; Rodriguez-Iturbe et al., 

1999) it is necessary to deepen the analysis of the climate-soil-vegetation system. 

Although the variables involved are the same, their role changes depending on the 

spatial and temporal scale in which the phenomenon is observed: the spatial 

heterogeneity of the parameters that describe soil, vegetation and topography (e.g., 

radiation, precipitation or wind) make complex understanding of which 

component governs the partitioning of precipitation in transpiration, runoff, 

drainage and storage. The variability of SSM in the remotely detected surface layer 

(0,5 - 2 cm) is particularly high, since this is the active layer for evaporation, and 

because of the vertical and lateral redistribution which in turn are related to 

microtopography and changes in soil properties on the meter scale (Wagner et al., 

1999b). 

With the aim to describe the SM dynamic, Rodriguez-Iturbe et al. (1999) presented 

a probability modelling approach on a point scale searching links between the SM 

dynamics with climate, soil and vegetation. It is based on the steady-state solution 

of the stochastic differential equation for the water balance of the soil water 

balance, in which rain represents a stochastic forcing. In the absence of lateral 

contributions, the Eq.2 becomes in infinitesimal terms: 𝑛𝑧 ௗ௦ௗ௧ = 𝐼(𝑠, 𝑡) − 𝐸(𝑠, 𝑡) − 𝐿(𝑠, 𝑡)                      Eq. 23 

Where n è is the porosity; z is the soil depth; s = ఏ  the relative water content; I(s,t) 

is the precipitation infiltrated in the soil; E(s,t)evapotranspiration and L(s,t) is the 

part due to leakage and depth percolation. 
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Considering the precipitation as a poissonian stochastic process (Milly, 1993) 

(discrete stochastic process representing the random and independent arrival of 

events in an interval of time or space)on a large scale, they showed that it is related 

to SM due to regional feedback. They concluded that spatial dynamics needed to 

be further deepened to describe more accurately the dynamics of SM and the 

partitioning of the hydrological balance. Laio et al. (2001) attempted to make 

improvements to the theory of evapotranspiration and lateral losses and confirmed 

the applicability of its formulation in the work of Salvucci (2001), which evaluated 

the dependence between water content and leakage in Illinois. 

However, hydrological problems are rarely addressed on a point scale, but rather 

on a basin scale, regional and global, hence the importance of distributed 

hydrological models (Abbott and Refsgaard, 1996). A distributed model is a model 

that considers each element of the grid (pixel) as a ground-vegetation system on 

which to simulate physical and biological processes (Chen et al., 2005).  

These distributed models are used within general circulation models (GCM) for 

climate estimation and weather forecasting. In most cases, hydrological models are 

of the "bucket" type (Manabe, 1969), as in the case of the Simple Biosphere Model 

(SiB) (Sellers et al., 1986), a model that tries to represent the patterns of soil-

vegetation-atmosphere transfer (SVATS). It is a model with high vertical but not 

spatial resolution (Wood, 1991 )and a large number of variables, which (Xue et al., 

1991) attempted to reduce. 

The Variable Infiltration Capacity (VIC) model was implemented in the 

Geophysical Fluid Dynamics Laboratory general circulation model (GCM) (Wood 

et al., 1992) and generalized by Liang et al. (1994). It used a two-layer scheme 

(Stamm et al., 1994) and an aerodynamic representation of latent and surface-

sensitive heat flows. The soil representation is a simplified representation and 

allows for the simultaneous presence of different types of vegetation. The model 

of variable infiltration capacity (VIC) (Liang et al., 1996, 1994), and its updates 

(Bowling and Lettenmaier, 2010; Bowling et al., 2004; Cherkauer et al., 2003) have 
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been widely used ranging from water management to land-atmosphere interactions 

and climate change.  VIC has been exploited both as a hydrological model and as 

a scheme of the Earth’s surface coupled to GCM. 

The Noah Land Surface Model (Ek et al., 2003) was developed at the National 

Centers for Environmental Prediction (NCEP), part of the National Oceanic and 

Atmospheric Administration (NOAA) in the United States. Its purpose is to 

improve the representation of surface processes, such as the water cycle and energy 

balance, within weather forecasting models and general circulation models, offering 

a detailed representation of the processes along the vertical profile. Over time, it 

has undergone updates and revisions, including increases from two to four layers 

of soil or changes to the formulation of crown conductance (Chen et al., 1996). 

This model is one of those embedded and run autonomously in modeling 

frameworks developed to enhance the ability to simulate surface processes, earth-

atmosphere interaction, and other related phenomena. 

The Land Information System (LIS) is a software framework that integrates the 

use of advanced models of the Earth’s surface and calculation tools to accurately 

characterize the states and flows of the Earth’s surface. LIS employs the use of 

scalable and high-performance data computing and management technologies to 

address the computational challenges of high-resolution Earth surface modeling 

(Kumar et al., 2006). It was used to develop the 25 km Global Land Data 

Assimilation System (GLDAS) (Rodell et al., 2004) and the 12.5 km North 

American Land Data Assimilation System (NLDAS) (Mitchell et al., 2004).  

On the other hand, the Land Data Assimilation System (LDAS) also integrates 

observed data from stations as well as from satellite observations so as to provide 

constant updates that can mitigate model errors and improve the representation of 

the state of the Earth’s surface in regions and periods with available observations 

(Albergel et al., 2017). These efforts have led to the production of a dataset of 

reanalysis ERA5-Land (Muñoz-Sabater et al., 2021; Copernicus Climate Change 

Service, 2019a, 2019b), which is based on the surface model of the European 
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Centre for Medium-Term Weather Forecasts (ECMWF): the Carbon Hydrology-

Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL). 

CHTESSEL focuses on the representation of carbon exchange and hydrology 

processes on land and is an integral part of the Integrated Forecasting System (IFS), 

supporting a wide range of meteorological and numerical weather forecasting 

(NPW) applications (Boussetta et al., 2021). 

2.7.2.1 ERA5-Land dataset 
ERA5-Land is a global dataset designed to enhance the terrestrial component of 

the fifth generation of the European ReAnalysis (ERA5), which is a crucial 

component of the European Commission's Copernicus Climate Change Service 

(C3S). This dataset encompasses approximately 50 variables that intricately 

describe the water and energy cycles occurring on land worldwide. These variables 

are captured every hour, offering a spatial resolution of 9 km, corresponding to the 

ECMWF triangular-cubic-octahedral operating grid (TCo1279) (Malardel et al., 

2016). The primary objective is to provide a representation that spans from 1950 

onwards. As of January 2020, the ERA5-Land dataset's available period has been 

extended from January 1981 to nearly the present, even if with a time delay of 2-3 

months compared to real-time observations. This dataset offers a comprehensive 

portrayal of the land's water and energy cycles through a grid that faithfully mirrors 

the computational and three-dimensional nature of the Earth's surface. 

To generate this dataset, various factors are incorporated, including land and sea 

masks, lake cover and depth information, soil and vegetation types, and vegetation 

cover. The reliability of the data has been validated through meticulous 

comparisons with numerous in situ observations, predominantly spanning the 

period from 2001 to 2018. Additionally, comparisons with other models have been 

carried out to further ensure data quality (Muñoz-Sabater et al., 2021, p. 5). ERA5-

Land is a significant advancement beyond ERA5, with which it shares the majority 

of parameters that underscore cutting-edge surface modeling techniques applied 

within numerical weather forecasting (NWP) models. Key distinctions lie in the 
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dataset's focused emphasis on fundamental ground processes and the considerable 

enhancement in spatial resolution, globally refining it to 9 km compared to ERA5's 

31 km. Despite these differences, both datasets maintain an identical temporal 

resolution, featuring hourly data points. 

2.7.3 Hydrological modelling along soil profile 
Numerous studies have attempted to estimate the SM along the soil profile from 

SSM (Ragab, 1995; Entekhabi et al., 1994) as the deepest layer is the layer through 

which the vegetation draws sustenance and transpiration takes place. The models 

proposed above (e.g., Section 2.7.2.1) also consider the modeling along the vertical 

profile: the ERA5- Land provides SM [m3/m3] for four different layers of soil: 0-7 

cm; 7-28 cm; 28-100; 100-289 cm. Another type of RZSM dataset is obtained 

through the application of a surface model to a product deriving from the SMAP 

mission (Section 2.5.2.2, i.e., SMAP L4, which will be discussed in Section 3.3.3). 

But this is a given averaged on a thickness of one meter. Generally, in the 

assimilation techniques the major disadvantage is related to the representation of 

variables and how physical processes are modeled (Sabater et al., 2007). Alongside 

these datasets, over time semi-empirical modeling has been proposed: the 

exponential filter, (Wagner et al., 1999a) and the mathematical modeling Kalman’s 

filter (Walker et al., 2001) are still applied today to transmit SM satellite information 

of surface into deep layer. 

2.7.3.1 The exponential filter 
The physical processes governing the interaction between SSM-RZSM (Sabater et 

al., 2007; Houser et al., 1998) have long been central to deriving regression 

coefficients based on site-specific characteristics (Jackson, 1986). Soil water 

content exhibits heterogeneity in size and variability on a small scale due to soil 

properties and hydrological patterns. This complexity is emphasized on a larger 

scale by the intricate nature of vegetation, further complicating interpretation. 

Wagner et al. (1999) introduced a low-pass filter technique that smooths 

information at surface level in favor of that of deeper layers. The basis is a 
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simplified two-layer soil budget, in which the second layer is treated as a reservoir. 

The flow between these layers is directly proportional to the difference in SM 

between them: 𝑛𝑧 ௗ௦మௗ௧ = 𝐶[𝑠ଵ(𝑡) − 𝑠ଶ(𝑡)]                                     Eq. 24 

with n porosity, z depth of the layer, 𝑠ଵ water content of the first layer, 𝑠ଶ water 

content of the second layer and finally C is the pseudodiffusivity, which should 

encompass all the heterogeneous characteristics of the soil and related to 

hydrological processes. By introducing the characteristic length time 𝑇 =  ௭ , assuming the hydraulic conductivity of the soil is constant, t is time and 𝜏 

integration variable, Eq. 24 becomes: 𝑠ଶ(𝑡) =   ଵ் ∫ 𝑠ଵ (𝜏)ex p ቂ− (௧ିఛ)் ቃ 𝑑𝜏௧ିஶ                              Eq. 25 

Discretizing Eq.25, it could be written in terms of Soil Water Index (SWI), calling 

s1 as SSM: 

𝑆𝑊𝐼    (𝑡) =  ∑ ௌௌெ (௧)షష ∑ షష                                  Eq. 26 

Eq. 26 was subsequently made recursive by Albergel et al. (2008) yielding the 

recursive estimate of the Stroud (1999) exponential filter: 𝑆𝑊𝐼() =  𝑆𝑊𝐼 (ିଵ)  +  𝐾   (𝑆𝑆𝑀   (𝑡) − 𝑆𝑊𝐼(ିଵ)          Eq. 27 

Where: 
 𝐾    =  ଵଵା∑ షష                                                Eq. 28 

And finally in the recursive formulation: 𝐾    =  షభషభାషష                                          Eq. 29 

2.7.3.2 The exponential filter as fusion algorithm 
As part of the Copernicus Global Land Service project, the exponential filter was 

applied for the creation of the CGLS Soil Water Index Version (SWI) product.  

SWI is calculated from the fusion of Sentinel-1 C (SAR) and the measurements of 

Metop ASCAT sensors. The data come with a daily time resolution and a different 
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spatial resolution (respectively 1 km or 0.1 degrees) depending on whether you 

consider the product "local", which uses, as mentioned, the information of 

ASCAT- Sentinel-1 (SCAT-SAR SWI) or the global product, which only uses 

ASCAT.  The version of the soil moisture recovery algorithm is the version 

modified by (Naeimi et al., 2009), and the information of SWI (both superficial and 

deep to the variation of T) is provided as a daily information in saturation degrees. 

It is necessary to specify that the recursive formulation does not consider the 

weaving properties of the soil. 

Bauer-Marschallinger et al. (2018) have developed a fusion algorithm to produce 

the SWI 1km product, after parameter creation, as a combination of ASCAT and 

Sentinel-1 SSM information. The algorithm is based on fundamental steps that are: 

• Oversampling of the ASCAT grid to 1 km (through the python thin plate spline 

module) to have the same spatial resolution of the Sentinel-1 data. 

• Generation of matching parameters (MP) through the application of the 

cumulative distribution function (CDF) at times using percentiles (ten percent 

intervals from 10% to 90%) at each point of the grid. 

• Definition of a statistical weight that in Bauer-Marschallinger et al., (2018) is fixed 

at 1:1 (equal for both inputs), although this gives greater importance to ASCAT 

because of its greater amount of information. 

• Application of Weighted Temporal Filtering recursive to obtain SWI high spatial 

and temporal resolution information, following the Eq.30: 

𝑆𝑊𝐼௪் (𝑡ାଵ) =  ௌௐூೢ (௧)శభ ∑ ௪(ௗ(௧శభ)ିଵ)ାௌௌெ (௧శభ)(ାଵ)௪(௧ାଵ) ∑ ௪(௧శభ) ௗ(௧శభ)                     Eq. 30 

With 𝑑𝑒𝑛்(𝑡ାଵ)  =  1 + 𝑒ିష 𝑑𝑒𝑛்(𝑡) =  1𝐾𝑇(𝑡𝑖+1). 
 

2.7.3.3 Soil Moisture Analytical relationship (SMAR) 
The exponential filter has proven to be a simple and effective method for obtaining 

insights into water content, but determining the appropriate parameter T, which 

encompasses a range of physical processes, presents challenges (Wang et al., 2017; 
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Albergel et al., 2008). This led Manfreda et al. (2014) to undertake an endeavor 

where they developed a model derived from the exponential filter formulation. 

This enhanced model takes into consideration soil properties. The foundation of 

this model relies on the conceptual division of the soil into two layers: an upper 

layer, typically spanning a few centimeters (5-10 cm), and a deeper layer, generally 

extending from 60 to 150 cm. By disregarding lateral flows and capillary rise, the 

interaction between these soil layers primarily involves infiltration. Under the 

assumption that movement between the two layers occurs solely when the water 

content surpasses the field capacity (FC), and employing the Green-Ampt 

approach for modeling soil moisture movement (Laio, 2006), the infiltration 

component can be expressed as: 𝑛ଵ𝑧ଵ𝑦(𝑡) =  𝑛ଵ𝑧ଵ𝑦(𝑠(𝑡), 𝑡) =  𝑛ଵ𝑧ଵ ቄ𝑠ଵ(𝑡) −  𝑠ଵ(𝑡)0                    Eq. 31 

Where subscript 1 indicates everything related to the top layer, while subscript 2 

refers to the bottom layer. y(t) is the fraction that infiltrates in the lower layer; 𝑛ଵ 

the porosity of the first layer of soil; zଵ the depth of the first layer of soil;  𝑠ଵis the 

saturation at the FC. 

Thus, defined infiltration and exploiting a simplified form of the loss function, 

including both evapotranspiration and percolation (Rodríguez-Iturbe et al., 2006; 

Porporato et al., 2004), the budget equation (Eq. 23) is thus simplified through the 

introduction of x2 and w0. 

                                             𝑥ଶ =  ௦మష ௦ೈమ ଵି௦ೈమ  
                                           𝑤 = (1 − 𝑠ௐଶ )𝑛ଶ 𝑧ଶ  

        (1 − 𝑠ௐଶ )𝑛ଶ 𝑧ଶ ௗ௫మ(௧)ௗ௧ = 𝑛ଵ𝑧ଵ𝑦(𝑡) − 𝑉ଶ𝑥ଶ(𝑡)                        Eq. 32 

 

With 𝑉ଶ loss coefficient, which encompass both evapotranspiration and depth 

percolation and sw2 saturation at wilting point (WP). Thus, introducing normalized 

coefficients a (related to losses) and b (related to depth and soil properties), Eq.32 

becomes: 
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𝑎 =  𝑉ଶ (1 − 𝑠ௐଶ )𝑛ଶ 𝑧ଶ  𝑏 =  𝑛ଵ 𝑧ଵ (1 − 𝑠ௐଶ )𝑛ଶ 𝑧ଶ   ௗ௫మ(௧)ௗ௧ = 𝑏𝑦(𝑡) − 𝑎𝑥ଶ(𝑡)                                  Eq. 33 

                                  

And finally: 𝑠ଶ(𝑡) = 𝑠௪ଶ + ൫𝑠ଶ ൫𝑡ିଵ൯ −  𝑠௪ଶ൯𝑒ି൫௧ೕష ௧ೕషభ ൯ + (1 − 𝑠ௐଶ )𝑏𝑦൫𝑡൯൫𝑡 − 𝑡ିଵ൯      Eq. 34 

 

The SMAR model introduces four physically based parameters (𝑠௪ଶ, 𝑠ଵ, 𝑎, 𝑏). 

However, the parallelism between the characteristic length time T and a, which is 

also more difficult to determine than the other parameters, should be specified. 

For this reason, numerous subsequent studies have attempted to improve the 

formulation of SMAR by deepening the part related to losses (Baldwin et al., 2017; 

Faridani et al., 2017a, 2017b). 

 

2.8 Soil moisture network 
Ground-based measures have always played a central role in hydrological 

modelling, however with the launch of the first satellite missions an effort was 

required to create a standardized ground network of SM, that could be used in 

applications related to SM products. 

 

2.8.1 The International Soil Moisture Network (ISMN) 
Since 2009, the ISMN has helped with calibration and validation efforts of SM 

retrievals (Dorigo et al., 2013, 2011), gathering and harmonizing data from diverse 

organizations and improving the integration of advanced quality control methods 

(Dorigo et al., 2013), provision of additional metadata, and ancillary variables (e.g., 

precipitation, soil and air temperature). The ISMN data are available at data host 

facility of TU Wien under supervision of the BfG Federal Institute of Hydrology 

(https://ismn.geo.tuwien.ac.at/).  
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2.8.2 The COSMOS-Europe network 
Another SM network is the COSMOS-Europe network. This network is a 

European network of Cosmic-Ray Neutron Soil Moisture Sensors. It contains data 

from 66 cosmic-ray neutron sensors (CRNS) in 12 European countries (in 

alphabetical order: Austria, Denmark, France, Germany, Greece, Italy, Norway, 

Poland, Spain, Switzerland, Turkey, United Kingdom) (Bogena et al., 2021). The 

main difference with the ISMN is that the COSMOS-Europe uses as unique 

technology the cosmic ray, while the ISMN includes different stations all over the 

world and different technologies (TDR, FDR etc., Section 2.4). In addition, the SM 

measured by the cosmic ray refers to an area instead of a point, with a swath of 

hundreds of meters and a depth of order of 20 cm. 
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C h a p t e r  3  

MATERIALS AND METHODS 

In this section, all the materials and methods used for our elaboration are 

presented. The extensive variety of SM measurement types presented in Chapter 

2, required a data exploration aimed at comprehensively grasping the distinctive 

characteristics inherent in each approach. This analysis was made in particular 

between the SM remote sensing data and the ground-based data at the ecoregion 

scale (Section 3.3), using also the ERA5-Land dataset. Therefore, the hosting at TU 

Wien facilitated a more concentrated investigation into the capabilities of active 

sensors (Section 3.2). This phase also involved a detailed examination of the 

algorithms outlined in Section 2.7, culminating into the development of an 

adaptation of the fusion algorithm between the enhanced S-1 SSM (not already 

public available) and ASCAT data record (Section 3.5.1). Utilizing the knowledge 

gained, an effort was made to create a complete framework capable of producing 

four-dimensional SM measurements introducing a physically based model to 

compute the RZSM (Section 3.5.2). This framework is important, especially in the 

context most affected by the effect of climate change, such as the Mediterranean 

area, as the major area subjected to ongoing climate change (Guo et al., 2023; L. 

Noto et al., 2023; L. V. Noto et al., 2023; Pompeu et al., 2023). 

The data used in our study are listed below: 

- Spaceborne remotely sensing data (Section 3.2.1): SMOS – IC, SMAP L4, ESA 

CCI, ASCAT (H115-H116), ASCAT (H119-H120), CGLS SSM 1 km, the 

improved S-1 SSM. 
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- Ground-based data: ISMN data belonging to the European Ecoregions 

(Section3.2.2.1) and COSMOS Alento network (Section3.2.2.2). 

- Modelled data: ERA5-Land at its normal resolution 9 km and downscaled at 1 

km (Section 3.2.3). 

In the following, we explain the concept of ecoregions, which is the scale analysis 

for the investigation of SM type of measurements, before going into depth about 

the characteristics of each data set employed. Moreover, the reason of the choose 

of ecoregions as reference area will be explain in Section 3.3. 

3.1 The European ecoregions 
In 1996, the WorldWide Fund (WWF) for Nature launched the "Global 200 

Initiative," a campaign to promote biodiversity conservation (Bulgarini et al., 2004), 

and making a digital map of 867 terrestrial ecoregions 

(https://ecoregions.appspot.com/). These ecoregions should be a priority for 

implementing conservation actions in relation to their outstanding biodiversity 

features in the terrestrial, freshwater, and marine realm (Olson and Dinerstein, 

2002; Olson et al., 2001). Their boundaries have been determined using a 

combination of existing global maps, such as zoogeographic (Rübel et al.,1930), 

biotic provinces (Dasmann et al.,1974, 1973), and vegetation types (UNESCO 

1969). 

Dinerstein et al. (2017) improved the delimitation in the original Terrestrial 

Ecoregions (Ricketts et al., 1999; Olson and Dinerstein, 1998) to better highlight 

regions of the world that are highly distinctive and deserve greater attention for 

their peculiar habitats.  

Europe belongs to the Palearctic biogeographic realm and contains six biomes (i.e., 

boreal forests/taiga; Mediterranean forests, woodlands & scrub; temperate 
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broadleaf & mixed forests; temperate conifer forests; temperate grasslands, 

savannas & shrublands; tundra) and 37 terrestrial ecoregions ranging from 

Mediterranean-climate woodlands and scrub to temperate rainforests or tundra. All 

together, these ecoregions span an area larger than the European territory, 

including a subset of north-west Asia. Hence, in this study, we refer to these areas 

as “continental” or “European” scale. Ecoregions are not equally represented both 

by the number of ISMN monitoring stations and by their spatial distribution over 

the area. Fig. 16 represents the ISMN ground-stations, aggregated using different 

symbols by local network managed by different individual organizations/institutes, 

above the ecoregions considered in this study identified by a unique code and color. 

For a detailed description of the ISMN network used, please see Section 2.1.1. 

It is evident that there are a few ecoregions represented by ground-based stations 

concentrated only in a defined sub-sector. According to the SM temporal stability 

concept (Liu et al., 2011; Brocca et al., 2011; Loew and Schlenz, 2011; Brocca et 

al., 2009; Starks et al., 2006; Cosh et al., 2006; Vachaud et al., 1985), local SM signal 

can be representative of larger areas, considering that the temporal pattern of point 

SM data is closely related to the temporal pattern of its surrounding area (Brocca 

et al., 2011). This implies that persistent regional SM patterns can influence 

individual zones within a region, resulting in similar SM dynamics. Therefore, it is 

acceptable to use datasets that describe SM in the same way but are recorded at 

different scales. In line with this approach, we aggregated results from non-

homogeneously or sparsely distributed ground stations (in terms of median values) 

to represent the entire ecoregion, following the methodology used by Baldwin et 

al. (2017) in the USA. Furthermore, it is worth noting that, as we said above, ISMN 

stations are randomly spatially distributed in Europe, with some of the EU 

ecoregions completely uncovered. Therefore, it was possible to make the 

comparison of SM satellite products and ground measurements only in 16 of the 

37 above-cited ecoregions. The main features of the considered ecoregions, 
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including their specific Koppen-Geiger climate classification, are described in 

Table 4. 

 

Fig. 16:Distribution of the 16 ecoregions considered 
in this study, spanning an area larger than the 
European territory, including a subset of north-west 
Asia and location of the used ISMN stations 
indicated using different symbols for each local 
network. 
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Table 4: European ecoregions considered for the 
intercomparison. 

Name ID Description 
Koppen – 
Geiger 
climate1 

Apennine 
deciduous 
montane forests: 

644 remote preserved forests and montane grassland in central Italy with a very 
wet climate Cfb2 

Balkan mixed 
forests: 646 great biodiversity area characterized by strong seasonality; it presents a merge 

of Mediterranean and Continental climate influences Cfa3 

Baltic mixed 
forests: 647 forests with mild winters and frequent precipitation of low intensity Cfb 

Cantabrian mixed 
forests: 648 

 
shrubs, dry heaths, wet heaths, and peatland areas with a warm Atlantic 
climate (oceanic winds exposure) 

Cfb 

Celtic broadleaf 
forests: 651 area with a warm temperate climate and strong maritime influence; its 

western part in the UK is characterized by humidity and frequent rainfall Cfb 

Central European 
mixed forests: 654 ecoregion with a predominantly continental climate Cfb 

East European 
forest steppe: 661 lowland area that extends to the foothills of the Carpathians in Romania Cfb 

European Atlantic 
mixed forests: 664 

region stretching from the south of France to the northernmost tip of 
Denmark, influenced by the Gulf Stream (warm, humid air from the 
Atlantic) 

Cfb 

Pannonian mixed 
forests: 674 larger grassland surrounded by the Carpathian Mountains in the northeast 

which influence climate and prevent much rainfall from reaching its center Cfb 

Sarmatic mixed 
forests: 679 mixed forests with alternating rivers and lakes with a predominately 

continental climate although there is maritime influence along coastlines Dfb4 

 
1  (Kottek et al., 2006) 
 
It is worth noting that the climate classification was based on the median climate classification of ground-based stations in 
each ecoregion. 
2 Cfb (warm temperate, fully humid, warm summer): Temperate oceanic climate or subtropical highland climate; coldest 
month averaging above 0 °C (32 °F) (or −3 °C (27 °F)), all months with average temperatures below 22 °C (71.6 °F), and at 
least four months averaging above 10 °C (50 °F). No significant precipitation difference between seasons (neither 
abovementioned set of conditions fulfilled). 
 
3 Cfa (warm temperate, fully humid, hot summer): Humid subtropical climate; coldest month averaging above 0 °C (32 °F) 
(or −3 °C (27 °F)), at least one month's average temperature above 22 °C (71.6 °F), and at least four months averaging above 
10 °C (50 °F). No significant precipitation difference between seasons (neither abovementioned set of conditions fulfilled). 
No dry months in summer. 
 
4 Dfb (snow, fully humid, warm summer): Warm-summer humid continental climate; coldest month averaging below 0 °C 
(32 °F) (or −3 °C (27 °F)), all months with average temperatures below 22 °C (71.6 °F), and at least four months averaging 
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Western 
European 
broadleaf forests: 

686 ecoregions stretch on a large part of Western Europe with high value of 
mean annual rainfall Cfb 

Scandinavian and 
Russian taiga: 717 ecoregion covers the Northern Europe, presenting a cool, humid climate 

with a greater maritime influence Dfc5 

Pontic steppe: 735 extending across Southeast Romania having a temperate climate with 
appreciable winter rain Cfa 

Iberian 
sclerophyllous and 
semi-deciduous 
forests: 

793 region covers the Iberian Peninsula exhibiting very hot and dry summers and 
relatively mild, subhumid winters Csb 

Italian 
sclerophyllous and 
semi-deciduous 
forests: 

795 region gets around the Italian peninsula exhibiting Mediterranean climate 
(hot dry summers and humid, cool winters) Cfb 

Northeast Spain 
and Southern 
France 
Mediterranean 
forests  

799 region embraces Southern France typically with very hot and dry summers 
and relatively temperate and humid to sub-humid winters Cfa 

 
3.2 Datasets 
3.2.1 Spaceborne remotely sensing data 
SMOS-IC: The SMOS-IC v.02 at 25 km of spatial resolution is a globally products, 

available in both ascending (i.e., 06:00 a.m.) and descending (i.e., 06:00 p.m.) orbits. 

The SMOS-IC minimizes the use of auxiliary data (e.g., the Moderate Resolution 

Imaging Spectroradiometer (MODIS), Leaf Area Index (LAI)), exploiting the 

ISMN in situ observations and global maps of Parrens et al. (2016) to optimize the 

effective vegetation scattering albedo (ω) (Fernandez-Moran et al., 2017) and the 

roughness parameters, respectively. We have filtered out the signals affected by 

potential RFI contamination by masking out the ones when root mean square error 

between SMOS L3 and simulated Brightness Temperature (TB-RMSE) were higher 

than 10 K (Wigneron et al., 2020; Al-Yaari et al., 2019) and the strong topography, 

 
above 10 °C (50 °F). No significant precipitation difference between seasons (neither abovementioned set of conditions 
fulfilled). 
 
5 Dfc (snow, fully humid, cool summer):  Subarctic climate; coldest month averaging below 0 °C (32 °F) (or −3 °C (27 °F)) 
and 1–3 months averaging above 10 °C (50 °F). No significant precipitation difference between seasons (neither 
abovementioned set of conditions fulfilled). 
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frozen scene, and contaminated scene (urban + ice + water bodies) by masking 

out scene flags (SF) <=1 (Wigneron et al., 2021; Li et al., 2021, 2020). 

SMAP L4: Among the different available half-orbit SM products (e.g., SMAP L2, 

SMAP L3), we used the model assimilated product SMAP L4 v6 (Data Set ID: 

SPL4SMAU) at 3-h time resolution on the global 9 km modeling grid. The SMAP 

L4 assimilates the 36 km brightness temperature (from L1C_TB), the 9 km 

brightness temperature downscaled by the L2_SM_AP algorithm and freeze/thaw 

observations (from L3_FT_A) using an ensemble Kalman filter (EnKF, Reichle et 

al., 2014). No filter was applied on the product. 

ESA CCI: The main features of the ESA CCI are already reported in Section 2.6. 

The day-by-day information provided concerns VWC (m3/m3) at a spatial 

resolution of 0.25° × 0.25°, distributed in NETCDF format. We refer to the ESA 

CCI v6 product, ending in 2020. Data related to pixel locations covered by snow 

or with temperatures below 0 °C or covered by dense vegetation have been filtered 

out. 

ASCAT (H115-H116): The first part of the study was conducted with the Metop 

ASCAT surface SM climate data records (CDRs), specifically, the H115 – Metop 

ASCAT SSM CDR2019 (H SAF, 2020) and its temporal extension H116, at a 

spatial resolution of 12.5 km, expressed in terms of degrees of saturation, converted 

to physical units in meters using a globally and high-resolution porosity map with 

average polygon size ~100 km (Gleeson et al., 2014). During our analysis, SSM was 

excluded when its value was lower than 0 or greater than 100, or the processing 

flags (PROC_FLAG) indicated that no retrieval was carried out (e.g., 

PROC_FLAG > 1) or the surface state flag (SSF) indicated the following soil 

surface conditions: unknown, unfrozen, frozen, temporary melting/water on the 

surface or permanent ice.  
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ASCAT (H119-H120): The H119 ASCAT SSM CDR v7 12.5 km and its temporal 

extension H120 ASCAT SSM CDR v7 12.5 km (H SAF, 2021) have the same 

properties as the H115-H116, but with a different temporal extension. In fact, we 

used a period spanning from 2017 January to 2022 July for our second part of the 

work, i.e., fusion and the creation of a four-dimensional SM framework. On the 

other hand, the first half (H115–H116) focused on the period from 2015 to 2020. 

Additionally, we did not convert the data into VWC because we needed the data in 

terms of saturation for this second section. 

 

CGLS SSM 1 km: The Copernicus Global Land Service (CGLS) has “a multi-

purpose service component” providing a series of bio-geophysical products on the 

status and evolution of land surface at global scale, such as the SSM CGLS 1 km, 

namely surface soil moisture (in terms of saturation degree) at 1 km (1°/112) spatial 

sampling. The SSM CGLS 1 km is derived from microwave radar data observed 

by the Sentinel-1 SAR satellite sensors (C- band) with a temporal resolution over 

Europe of 1.5-4 days starting from 2016 (the temporal resolution was about 3-8 

days before 2016), when both Sentinel 1A and B became available. 

The Sentinel-1 backscatter value, terrain-geo-corrected and radiometrically 

calibrated, is used to obtain soil moisture applying an adaption of the TU-Wien-

Change-Detection (Wagner, 1998). The algorithm modified by Pathe et al. (2009), 

has been used both for low resolution ERS and ASCAT data and for higher 

resolution SAR validating it over Australia, Africa and large parts of South America 

(Algorithm Theoretical Basis Document CGLS SSM 1 km, Bauer-Marschallinger 

et al., 2019).  

 

Improved S-1 SSM: an enhanced version of a 1 km SSM dataset, obtained by 

applying a change to the original method on S-1 data, was made available for this 

study from the Department of Geodesy and Geoinformation of TU Wien. The 

improvements derived from the application of Quast et al. (2019) generic first-
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order radiative transfer model on S-1 data. With this model authors have tried to 

represent the scattering as combination of bare soil 𝜎 ௦, soil covered by vegetation 𝛾ଶ𝜎 ௦, vegetation 𝛾ଶ𝜎 ௩and their interaction scattering 𝜎 ௧ , as shown in Fig. 17. 𝜎 =  𝜎 ௦  + 𝛾ଶ𝜎 ௦  + 𝛾ଶ𝜎 ௩  + 𝜎 ௧                                 Eq. 35 

Where 𝛾 is a factor of attenuation. 
A parameter accounting for the "effective bare-soil fraction" is included in order 

to take into account all of these contributions as well as the fact that the observed 

scene often encompasses both areas of intense vegetation-cover and effectively 

bare soil sections. Additionally, the bidirectional reflectance distribution function 

(BRDF) of the soil surface is used to describe the bare soil contribution using 

parametric functions.   

 
Fig. 17: Contributions to the backscattered signal. 
Data Source: Quast et al., 2019. 

The creation of a backscattering model must take into account both the coarse 

spatial resolution (in the order of kilometers) and the constrained computing 

complexity (that may be employed to undertake large-scale simulations over 

lengthy time periods). Therefore, it is obvious that the functional representation of 

the scattering behavior must inevitably subsume many different aspects of both 

soil and vegetation into a constrained set of parameters given the coarse resolution 

of scatterometers and the constrained number of independent observables.  
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The solution proposed by Quast et al. (2019) on the basis of their previous works 

(Quast and Wagner, 2016) utilized  a linear combinations of generalized Henyey 

and Greenstein (1941) (HG), defined as function of a single parameter, which 

could be used to mimic the pattern of an isotropic. In particular, they have tested 

the model on 158 sites in France and on ASCAT retrievals using for the vegetation 

scattering a linear combination of three HG a forward-scattering contribution, a 

bounce-off contribution in specular direction, and an isotropic contribution. Also, 

for the BRDF, thus for the bare soil contribution of coarse-resolution monostatic 

scatterometer measurements within reasonable accuracy, they provided a 

parametric description that can be obtained by adjusting the HG function. 

𝐵𝑅𝐷𝐹(𝑁, 𝑡, 𝑎)  =  ேோబ(௧,)  𝐻𝐺(𝑡, Θ෩)                                Eq. 36 

  𝑁 is Nadir hemispherical reflectance of  𝐵𝑅𝐷𝐹. This information is 

linked with the SM: N =𝑠ଶSM, where 𝑠ଶ is constrained by ensuring that 

the resulting range of  N remains physically plausible. 

 𝑅(𝑡, 𝑎) is the Hemispherical Reflectance. 

 Θ෩ is the scattering angle. 

 𝑎 is additional parameter belonging to [-1;1]. 

 𝑡 is asymmetry-factor of  the used BRDF representation which regulates 

the pattern (e.g., t =0 rough). 

Therefore, the data not already free available for the period 2017 January – 2022 

July are in terms of Nadir hemispherical reflectance (N) and in Equi7grid. 

3.2.1.1 Equi7grid 
The Equi7grid format emerged from the necessity to efficiently store high-

resolution satellite information while maintaining geometric accuracy. This format 

has been designed to strike a balance between data volume and acquisition time. It 

identifies seven global continental zones, each based on an equidistant azimuthal 
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projection system (ellipsoidal WGS84 datum). These zones are not necessarily 

aligned with traditional continental boundaries such as “Europe” but are defined 

based on the basis of equidistant azimuthal projection zones that cover different 

parts of the Earth's surface. Each continental zone within Equi7grid has its own 

reference system based on the Equidistant Azimuthal projection. Metric 

coordinates in the projected plane are referenced to the lower-left corner of the 

respective zone. The Equi7grid format comprises three levels of grids, each with 

its own extent and sampling resolution (Bauer-Marschallinger et al., 2014): 

- T6 Grid Level: This level covers an extent of 600 km and supports sampling 

ranging from 1000 meters down to 64 meters. 

- T3 Grid Level: Encompassing a 300 km extent, this level supports sampling 

ranging from 60 meters down to 20 meters. 

- T1 Grid Level: With an extent of 100 km, this level supports sampling ranging 

from 16 meters down to 1 meter. 

The definition is available at https://github.com/TUW-GEO/Equi7Grid. 

3.2.2 Ground-based data 

3.2.2.1 The European ISMN network 
The European ISMN network is composed of 28 station networks that are not 

evenly distributed and some of which are not operational (Dorigo et al., 2021). SM 

data are provided at several depths depending on the site in terms of VWC m3/m3 

and are accompanied by quality flag indicators. We chosen only the ISMN stations 

within the selected ecoregions having SM measurements at a depth of 5 cm 

(assumed as satellite microwave sensing depth (Qiu et al., 2016)),  from January 

2015 to December 2020.  In addition, only measurements flagged as "good" and 

with the VWC between 0-0.6 m3/m3 were considered (Dorigo et al., 2013; Al-Yaari 



 

74 | P a g .  
 

et al., 2019). Among the existing networks, nearly 200 ground stations are available 

representing the 16 ecoregions reported above (Fig. 16). Table 5 summarizes some 

features (Dorigo et al., 2021) of the chosen networks (name, location, number of 

gauge stations and activity status).  

Table 5: Local networks included in the ISMN that 
have been adopted in the intercomparison. 

Name  Location n.stations Status 
WSMN UK 8 Running 
UMBRIA Italy 13 Running 
TERENO Germany 5 Running 
SMOSMANIA France 22 Running 
Ru_CFR Russia 2 Running 
RSMN Romania 20 Running 
REMEDHUS Spain 24 Running 
HYDROL NET_PERUGIA Italy 2 Running 
HOBE Denmark 32 Inactive 
HOAL Austria 33 Running 
FR_Aqui France 5 Running 
FMI Finland 27 Running 
BIEBRZA_S-1 Poland 30 Running 

 

The ISMN is given by the combination of several networks which are managed by 

individual institutes or agencies. This leads to a heterogeneous distribution of the 

monitoring stations which are clustered in specific locations. In the following more 

details are included for each ecoregion and relative ground stations local network(s) 

that fall within: 

- The Italian sclerophyllous and semi-deciduous forests (795) share the Umbria 

network with the Appenine deciduous montane forests (644), which also contain 

the HYDROL-NET_PERUGIA. In both cases stations are located in the Central 

part of Italy. 

- The Romanian monitoring network, RSMN, covers five ecoregions: the Balkan 

Mixed forests (646), the Pannonian mixed forests (674), the Pontic steppe (735), 

the East European forest steppe (661), and the Central European mixed forests 
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(654). The ground-based monitoring stations are located respectively on the border 

with Bulgaria; between Romania and Hungary; in the Black Sea region of Romania 

and finally on the border with Moldova for both the 661 and 654 ecoregions. In 

addition, the Central European mixed forests (654) host the BIEBRZA_S-1 

network, located in northern Poland. 

- The Celtic broadleaf forests (651) is described by the WSMN network which is 

located in the United Kingdom. 

- The European Atlantic mixed forests (664) overlap with the Baltic mixed forests 

(647) in the Hobe monitoring network and with the Northeast Spain and Southern 

France Mediterranean forests (799), Western European broadleaf forests (686), 

and Cantabrian mixed forests (648) in the SMOSMANIA network. Furthermore, 

the European Atlantic mixed forests and Western European broadleaf forests 

(686), which encompasses the HOAL monitoring network, also share the 

TERENO network. The SMOSMANIA network extends to the Mediterranean 

coasts (799) and covers the Occitania (664) and Aquitaine (686 and 648) regions, 

while the HOBE network is centered in Denmark and the HOAL network is 

centered in Austria. The Aquitaine region has additional monitoring capabilities 

through the Fr_Aqui network, which is integrated into the Cantabrian mixed 

forests (648). 

- The Sarmatic mixed forests (679) encompass the Ru_CFR network which belong 

to Russian area. 

- The Scandinavian and Russian taiga (717) include the FMI network which covers 

a northern part of Finland. 

- The Iberian sclerophyllous and semi-deciduous forests (793) is monitored by the 

REMEDHUS network, mostly located in the northern part of Spain.  
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3.2.2.2 COSMOS- Alento network 
The COSMOS Alento network, comprising stations situated within the Alento 

River Catchment (ARC). The ARC represents a long-term ecological infrastructure 

network that forms a constituent part of the TERENO (TERrestrial 

ENvironmental Observatories) long-term ecosystem infrastructure network. This 

network is located in the southern Italy's Campania region, as outlined in the works 

of  (Nasta et al., 2020a, 2020b). In alignment with the objectives of this study, two 

specific sub-catchments within the Upper Alento River Catchment (UARC) were 

selected. The UARC is a mountainous section of the ARC characterized by a 

drainage area of approximately 102 km2. Its downstream limit is defined by the 

presence of the earthen dam known as "Piano della Rocca," as detailed in the 

findings of  (Nasta et al., 2017). The chosen sub-catchments are denoted as MFC2 

and GOR1. These sub-catchments exhibit the subsequent measured attributes: 
Table 6: Man features of the two subcatchments 
MFC2 and GOR1. 

Station Lon Lat d1[mm] n1 n2 d2 WP FC P[mm/year] 
GOR1 15.229 40.311 50 0.652 0.652 27 0.215 0.384 1255 
MFC2 15.184 40.365 50 0.56 0.56 21 0.262 0.38 1215 

 

All parameters utilized in this study were derived from the comprehensive basin 

analysis as detailed in Nasta et al. (2020a). In the instance of porosity, a mean value 

was reported alongside the minimum and maximum values encompassing the 

range. Nevertheless, our decision was to utilize the mean value for both layers. 

3.2.3 Modelled data: ERA5-Land dataset 
 
The development of a technique for parameter extraction and later validation of 

the produced products was required for the study's second phase, i.e., the SCAT-

SAR SWI SMAR application. This goal's fulfillment required the use of the ERA5-

Land dataset. We may get a wide variety of data thanks to the features of this 
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dataset, which are discussed in Chapter 2. Notably, it provides crucial details like 

precipitation, which is necessary for the SMAR application to define losses, as well 

as data on soil moisture at various depths. Additionally, a downscaling procedure 

was carried out utilizing RStudio's KrigR package (Davy and Kusch, 2021; Kusch 

and Davy, 2022) for regional-scale confirmation of our results. By taking this step, 

we were able to improve the localized accuracy of our evaluation and the SM data 

going from a resolution of 9 km to 1 km. 

KrigR is an R studio toolbox for statistical downscale which takes as covariates 

some soil parameters from the global dataset of the Land Atmosphere Interaction 

Research Group at Sun Yat-sen University. The Land Atmosphere Interaction 

Research Group (Dai et al., 2013) dataset was derived from multi-PTFs 

(pedotranfer functions) estimation. It includes the parameters in the Clapp and 

Hornberger Functions (FCH) (Clapp and Hornberger, 1978), and in thermal 

dynamic equations, respectively. The median of the estimation is provided. The 

vertical variation of soil property was captured by eight layers to the depth of 2.3 

m (i.e., 0- 0.045, 0.045- 0.091, 0.091- 0.166, 0.166- 0.289, 0.289- 0.493, 0.493- 0.829, 

0.829- 1.383 and 1.383- 2.296 m). The parameters are: 

Table 7: Parameters for the ERA5-Land downscaled 
from 9 km to 1 km implemented in krigR package. 

Parameter Symbol Units 
Saturated water content of FCH 𝜃௦ cm3/cm3 
Saturated capillary potential of FCH  𝜓௦ cm  

Pore size distribution index of FCH  𝜆 -  

Saturate hydraulic conductivity of FCH  𝐾௦ cm/day  
Heat capacity of soil solids  𝑐௦  J/ (m3 K)  
Thermal conductivity of saturated soil  𝜆ௌ் W/ (m K)  

Thermal conductivity for dry soil  𝜆ோ W/ (m K)  

The approach implemented in the R package follows a two-stage process. In the 

first stage, variograms are fitted to the variable of interest and native covariates at 
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a resolution of 9 km. This involves estimating the spatial correlation between the 

target variable and the covariates at the given resolution using variograms. In the 

second stage, target covariates at a 1 km resolution are combined with the functions 

estimated in the first stage to obtain the downscaled variable (in this case, ERA5- 

Land at a 1 km resolution). The use of variograms and covariate functions can be 

a useful approach to estimate the target variable at the desired resolution. However, 

it is important to note that the accuracy of the estimate depends on the quality of 

the covariates used and their spatial correlation with the target variable.  

3.3 Intercomparison of recent Microwave satellite Soil Moisture Products 
Apart from a large series of works focused on the comparison between remote and 

in situ SM measurements at the single scale of the satellite pixel encompassing the 

ground station/s (Lacava et al., 2012), others have been conducted at a regional 

and/or global scales (Ray et al., 2017; Brocca et al., 2011), extending at the selected 

larger spatial scale achievements related to the ground-based measurements, 

regardless of their often heterogeneous spatial distributions. Among the works that 

focus on narrow specific areas such as in Spain, Italy, France or USA (El Hajj et 

al., 2018; Cui et al., 2017; Brocca et al., 2011), many of them present comparisons 

of different SM datasets with in-situ data, showing not homogeneous results, 

depending on the data considered, as well as on the specific site-condition of the 

area analyzed. For example, ASCAT performed better than AMSR-E in Spain, 

Italy, and France (Brocca et al., 2011), SMAP was found better than the other 

sensors in Spain and USA by Cui et al. (2017), while the work by El Hajj et al. 

(2018) highlighted the relevant impact of Radio Frequency Interference (RFI) on 

SMOS product performances. 

Other studies at continental/global scale (Min et al., 2022; Liu et al., 2019; 

Colliander et al., 2017) tried also to include in the analysis factors, such as climate 

and/or vegetation characteristics, that might change on the basis of the considered 
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scale of investigation and cause the above-mentioned discrepancies among 

different regions (e.g., Al-Yaari et al., 2014). In particular, Al-Yaari et al. (2019) 

conducted a global study at three levels considering: the five continents first, the 

Koppen- Geiger climatic zones (Rubel et al., 2017) and finally at the vegetation 

scale, referring to International Geosphere-Biosphere Programme (IGBP) land 

cover classification (Friedl et al., 2010). The study evidenced that satellites have 

variable performance in Europe, which deserves further investigation. However, 

Min et al. (2022) evidenced that one issue that may significantly affect the 

comparison in Europe is represented by the Radio Frequency Interference - RFI. 

It is worth saying that while climate and soil can be considered as external factors, 

the soil moisture dynamics (Section 2.7) depends on the reciprocal links between 

vegetation and water availability (Porporato and Rodriguez-Iturbe, 2002), hence 

the analysis carried out considering separately variables such as vegetation or 

climate did not allow to fully assess SM performances. On the contrary, taking into 

account the combination of climate and vegetation could allow to better 

understand which one or which combination of factors introduces errors in the 

microwave SM products, as well as justifying why Europe (EU) had poor (in same 

cases) and a diversity of performance in previous studies.  

In addition, the choice of the reference scale is also a critical issue which may 

impact on the performance assessment. For instance, the field scale appears too 

specific to guide on the choice of a satellite product, while global intercomparisons 

generalize the problem too much, making comparison not always easy. By contrast, 

the first phase of the present study, starting from the results of Al-Yaari et al. 

(2019), investigates the behavior of SSM products in EU by implementing an 

intercomparison assessment in areas delineated according to the combination of 

different flora, fauna, and climatic characteristics, i.e., the EU ecoregions. Indeed, 

the study aims to advance in the assessment of the different role of the above-
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mentioned factors and of their relationships in EU, trying to provide indications 

for the SM satellite retrievals in Europe for various applications at scale of 

ecoregion. Thus, the area of the intercomparison is bigger than the Mediterranean 

area, but the cluster chosen allows to preserve the peculiarity. Effectively, 

ecoregions are defined as relatively large land areas characterized by a peculiar 

assemblage of natural communities and species, with boundaries that approximate 

the original extent of natural communities prior to major land-use change (Olson 

et al., 2001). The use of ecoregions for SM assessment, here for the first time 

applied in Europe, has been already tested in USA by Baldwin et al.(2017), 

demonstrating its feasibility, because the variability of SM with respect to the 

ground measurements within each ecoregion was found lower that the one from 

neighboring ecoregions. 

The SM satellite products analyzed are SMAP L4, SMOS-IC, ASCAT (H115 & 

H116), the CGLS SSM 1 km and the ESA CCI, each of them was selected as the 

most up-to-date version of the products at the time of investigation and 

representative of different technologies (i.e., active or passive sensors) and 

approaches (i.e., modelled and/or blended) at different spatiotemporal resolution 

in the period from January 2015 to December 2020. Two years of measurements 

were at least available for all the considered SM products in such a 5-year temporal 

interval. 

Our analysis compares the SM time series extracted from the original grids (e.g., 9 

km for SMAP L4, 25 km for SMOS-IC) for those pixels that correspond to each 

station separately (based on its latitude and longitude). It is possible that some 

stations in a dense network correspond to the same passive (SMAP, and SMOS), 

blended (CCI) pixel and several active (ASCAT) pixels. SM satellite retrievals were 

matched with instantaneous in situ measurements within a time window of 1 h and 

the pairs are aggregated in a “daily” time step. The metrics between satellite data 
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and the in-situ observations were then computed separately for each station. 

Finally, the median of each metric for all stations within an ecoregion was 

calculated. 

It is notable to mention that the different re-mapping grids of satellite data (e.g., 

WARP, SMOS, Quarter-Degree-Grid) as well as the scale discrepancies between 

in situ and satellite data, might have impacted the uncertainty of our results, in 

addition to the aggregation at ecoregion scale (as the largest homogeneous area 

potentially investigated) accordingly with the concept of temporal stability already 

discussed in Section 3.1. However, this issue is out of the scope of the present work 

and, therefore, it isn’t further investigated here. 

Three main scores, widely used within the SM community (Zheng et al., 2022; Peng 

et al., 2021; Al-Yaari et al., 2019; Entekhabi et al., 2010), were considered to 

evaluate remotely sensed SM products accuracy: Pearson Correlation Coefficient 

(r), bias, and unbiased root mean square error (ubRMSE). r is unconcerned with 

any bias in the mean or magnitude of the variations; while the ubRMSE is a 

measure of accuracy after removing of sensitivity to distortions in both mean and 

amplitude of fluctuations, exploiting bias. This latter metric incorporates the 

RSME, which removes only the amplitude of fluctuation (Entekhabi et al., 2010). 

Please, see Zheng et al., 2022; Peng et al., 2021; Al-Yaari et al., 2019 for the 

formulation. 

The performance of the analysis carried out considering an historical series may be 

positively affected by the seasonal cycle (K Scipal et al., 2008). Therefore, we have 

also considered to evaluate SM anomalies, computed, for example, as proposed by 

Rodriguez-Fernández (2016) on the basis of a 35-day moving window (w) (Brocca 

et al., 2011) in order to better assess the accuracy of the SM products. SM(t)  = ୗ(୲)ିୗ(୲ିଵ:୲ାଵ)ധധധധധധധധധധധധധധധധധധധധധധୱ୧୫ୟ(୲ିଵ:୲ାଵ)                                  Eq. 37 

where the anomalies (SM(t) ) could be generically referred to the satellite (SAT) 

or the in situ (ISMN) SM time-series, and computed as deviation of a measured 
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acquired at time (t) from the SM mean 𝑆𝑀(𝑡)ധധധധധധധ evaluated on a temporal interval 

ranging from previous 17 day before (t) and next 17 days after (t). Such a deviation 

is weighted by the SM standard deviation (sigmaSM) computed on the same period. 

Such a formulation allows for a rough reduction of seasonality effects, and hence 

to analyze short-term variations. To completely remove the seasonality, we should 

consider a long-term analysis that will be proposed in a companion study. 

SM anomalies are first exploited to detect outliers, finding, and discarding the outer 

fences of the satellite SM anomalies dataset with the quartiles method (Walfish, 

2006). Then, consistently with previous SM assessment, the metric such as the 

Pearson Correlation Coefficient (rANOM) are evaluated on a single station and then 

aggregated at the ecoregions scale using as a reference value the median. 

 

3.4 Seasonality effects on the intercomparison of satellite Soil Moisture 
products  

The intercomparison of Section 3.3 will give results, which allow us to ask how 

seasonality can influence the performance of microwave satellite SM products. 

Thus, the study of seasonality could better explain the ecoregions pattern. 

In long term analysis, the SM signal can be considered the sum of two main factors: 

a seasonal one due to the natural fluctuations caused by the rainfall and evaporation 

cycle, and anomalies caused by extreme weather conditions, land management, or 

human activities. In signal decomposition, SM anomalies are residuals which can 

be categorized as short-term or long-term variations depending on their 

relationship with seasonality (i.e., on how the seasonality is computed). Short-term 

anomalies are considered to be higher-frequency, sub-seasonal SM variations that 

represent short-term drying and wetting events. In contrast, long-term anomalies 

contain information about both short-term drying and wetting events and seasonal 

deviations from the long-term mean seasonal cycle, referred to as SM climatology 

(Gruber et al., 2020). SM climatology is an important consideration for spatial 

models of SM and long-term temporal variations (Chakravorty et al., 2016). 
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Calculating the long-term SM variation to remove seasonality completely requires 

historical data records spanning several decades (Dorigo et al., 2012), which are 

often not available. Therefore, in the literature, short-term variations are usually 

investigated when comparing SM satellite products. One widely recognized 

approach in the SM community is the use of a moving window, typically spanning 

several weeks (Chen et al., 2017; Albergel et al., 2012), although this approach does 

not allow for complete removal of seasonality. Current research has estimated 

biases and uncertainties assuming that SM data are stationary (i.e., constant over 

time). However, the quality of SM data can vary greatly from season to season, and 

many applications could benefit greatly from temporally varying information. 

In addition, because of the strong link between the quality of SM data and 

vegetation (Gruber et al., 2019b; Van der Schalie et al., 2018; Zwieback et al., 2018), 

the study of its  temporal/seasonal variation is an open field of remote sensing 

research. 

This is important for our research since each ecoregion is a relatively large area, 

and its climate variability is influenced by plant growth and transpiration, i.e., by 

the soil-plant system. Therefore, it is necessary to include an analysis of plant 

phenology, the development of vegetative and reproductive plant organs 

(Haugaasen and Peres, 2005), focusing especially on the timing of bud break, active 

growth, growth cessation, and dormancy release. Vegetation phenology has been 

widely studied at a large scale through remote sensing using spectral indices to 

investigate its relationships with the climate system (Keenan et al., 2014; Myneni et 

al., 1997). However, there are few studies linking SM and phenology, due to the 

inherent limitations of acquiring reliable SM data when dense vegetation is present. 

In summary, the effect induced by the phenological cycle on SM dynamics should 

affect its seasonality in long-term time series.  

Two parallel lines are developed in this part of the study: first, the Robust Satellite 

Techniques (RST - Tramutoli, 2007) approach, that has been applied to the long-

term series of the SM products to completely remove seasonality, and then the 
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achieved results, namely the performance of the detected anomalies with in-situ 

measurements, have been compared with those already obtained by computing 

signal anomalies in the 35-day moving window. RST is an advanced methodology 

for the multitemporal analysis of satellite data that has already been applied to 

microwave data to provide useful information on SM variability at different 

spatiotemporal scales (Manfreda et al., 2011; Lacava et al., 2005). By analyzing 

satellite data acquired under homogeneous observational conditions (i.e., same 

location, same month of the year, same acquisition time), the approach is able to 

effectively separate the climatological signal from short-term signal fluctuations (Di 

Polito et al., 2016; Tramutoli, 2007). The choice of this methodology over others 

is related to the fact that for its proper application three years of continuous 

measurements at monthly scale are enough (Koeppen et al., 2011). 

Concerning the second line, focusing instead on seasonality (without its removal), 

and considering that vegetation preserves the memory of soil moisture, a more in-

depth analysis of the relationship between the hydrological process and the 

phenological cycle for the ecoregions has been carried out. This allowed us to 

assess if the combination of SM dynamics and macro-scale analysis of the 

phenological cycle resulted in a better understanding of satellite remote sensing 

ability in ecoregion detection. The study has considered the average growth and 

dormancy phase for each ecoregion to investigate the occurrence of wet or dry soil 

conditions, taking into account the different weight of hydrological processes 

depending on daily, seasonal or interannual fluctuations. Fig. 18 shows the general 

workflow.  
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Fig. 18: General workflow of the study of effect of 
seasonality on the intercomparison. 

The dark blue boxes highlighted the common parts to both the analyses, while the 

light grey steps/outputs for the first line and finally the dark gray for the second. 

The core steps thus have included: i) data preparation; ii) the RST application and 

iii) the comparison of the RST-based anomalies with both the original data 

obtained after the pre-processing for each satellite product and with the 35-day 

moving window anomalies; iv) the detection of growth and dormancy phases 

through the European Environment Agency (EEA) data and the evaluation of SM 

dynamic by phases and ecoregions on ASCAT data.  

3.4.1 The Robust satellite technique approach 
The RST approach is a general satellite data analysis methodology, already applied 

with successful results for the mitigation of different environmental and natural 

hazards, and also related to the hydrogeological cycle  (Lacava et al., 2010, 2019). 

Two main steps form the basis of RST implementation: i) the long-term 

characterization of the signal under investigation in terms of expected value and 

normal variability and, ii) a change detection step aimed at identifying statistically 

significant signal anomalies. The first step requires the preliminary collection of 
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long-term satellite data records acquired under homogenous conditions (same 

month of the year, same hour of the day) at pixel (x,y) level, which are later analyzed 

to identify the normal signal behavior, usually expressed in terms of temporal mean 

with its natural variability represented by the standard deviation. The second step 

involves the implementation of the Absolute Variation of Local Change of 

Environment (ALICE) Index, as described in the following equation (Tramutoli, 

1998):   ⊗ (𝑥, 𝑦, 𝑡) = (௫,y,t)ିೃಶಷ(௫,௬)ఙೃಶಷ(௫,௬)                                  Eq. 38 

where, in our specific case, the signal V is the SM measurement for each pixel of 

the investigated scene at (x,y) location and time (t); VREF and σREF, respectively, are 

the SM temporal mean and standard deviation computed on the investigated 

dataset for the same pixel. VREF and σREF were computed considering data acquired 

over a long period in the same temporal domain (i.e., at a monthly scale) of the 

image under investigation. In our case, we considered the 2015-2020 period, hence, 

at the end of the analysis we generated 24 reference fields (1 temporal mean + 1 

standard deviation for each calendar month). As already said, for reliable results, a 

time series of measurements spanning at least three years is required (Koeppen et 

al., 2011). As the ALICE index exhibits Gaussian behavior with mean ~ 0 and 

standard deviation ~ 1, the higher the absolute value measured, the lower the 

probability of occurrence (Tramutoli, 1998). Considering long-term time series 

under the same date-time-weather-climatic conditions allowed us to overcome 

possible site effects, known or not. During the generation of reference fields, values 

of signal outside the outer fence were excluded by a quartile analysis for each time-

series (±3IQR), as done for anomalies on moving-window of 35 days.  

We applied this technique to both ISMN ground-based measurements and satellite 

SM retrievals time-series used in Section 3.3.  Subsequently, we computed the 

Pearson Correlation Coefficient, rALICE, and compared it with r and rANOM from our 

previous study, to assess satellite performance using in situ data, and short- and 

long-term variations.  
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3.4.2 SM distribution analysis considering phenological cycle 
The use of the probability density function to describe SM dynamics is a well-

known approach in the scientific community (Laio et al., 2001; Rodriguez-Iturbe 

et al., 1999), with several works focused on extracting RZSM information from 

surface data. For instance, Manfreda et al. (2007) evaluated the conditional 

probability distributions of the deeper layer versus the saturation values of the 

surface layer (ranging from 15% to 100%) for an area in Oklahoma (USA). They 

identified three types of behavior: dry soil (bimodal distribution for saturation 

values below 45%), normal soil (Gaussian distribution below a saturation of 70%), 

and very wet soil (right skewed distribution for all other values). This led to the 

main conclusion that the uncertainty in predicting RZSM from SSM increases as 

the water content of the surface layer decreases. 

Thus, using soil moisture distribution (i.e., the SM probability density function) we 

could better characterize ecoregion behavior based on the relationship between SM 

dynamics, vegetation, and water availability. Using the approach of Manfreda et al. 

(2007), we expected to better describe those ecoregions characterized by dry soil 

conditions, being able to infer information about the conditional probability of 

deep layer saturation. Indeed, in those ecoregions, the increased microwave 

penetration depth should allow us to obtain information from deeper layers (Singh 

et al., 2019; Lakhankar et al., 2009). On the other hand, ecoregions where soil is 

extremely wet or “normal” conditions are present, might not be clearly described 

by this approach. In any case, because measurements of RZSM and SSM are 

correlated, we could assume that the probability distribution of SSM saturation 

values is similar to that of RZSM, and therefore we can associate the surface layer 

with a Gaussian distribution under normal conditions and a distribution with 

strong right skewness under wet conditions. 

Assuming these three behaviors based on SSM (dry/normal/wet), we evaluated 

the ASCAT SM probability distribution for each ecoregion by considering the 
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whole period under investigation as well as the growth and dormancy phases to 

better assess the relationship between phenology and soil moisture dynamics.  

Plant growth stage was obtained by combining information about the start time of 

the vegetation growing season in the period 2000-2016 

(https://www.eea.europa.eu/data-and-maps/data/annual-start-of-vegetation-

growing) with data about the length of the vegetation growing season for the same 

temporal period (https://www.eea.europa.eu/data-and-maps/data/annual-above-

ground-vegetation-season). The dormancy phase was considered the remainder of 

the year.  

The start of the growing season 2000-2016 (SVGS) is a time series of daily raster 

files separated on the basis of the corresponding day of the year (DOY) and the 

derived linear trends (in day/year). This time series is based on the time series of 

the Plant Phenology Index (PPI) value, a vegetation index derived from the 

MODIS BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR)(Jin and 

Eklundh, 2014). The PPI index is optimized for efficient monitoring of vegetation 

phenology and is derived from the acquired MODIS data using radiative transfer 

solutions applied to the reflectance in visible-red and near-infrared spectral 

domains. The product provides reflectance data for the MODIS “land” bands (1-

7) adjusted using a bi-directional reflectance distribution function. This function 

models values as if they were collected from a nadir-view to remove so-called cross-

track illumination effects. The start of season indicator is based on calculating the 

start of the vegetation growing season from the annual PPI temporal curve using 

the TIMES AT software for each year between 2000 and 2016. Vegetation growing 

season length 2000-2016 (VGSL) is a time series of raster files of the annual above-

ground growing season length and the derived linear trends for the period 2000-

2016. In this case, the considered signal is the PPI. The VGSL helped to detect the 

end of the growing season (EOS). 

Finally, once we obtained the growth and dormancy phases, we tested the ASCAT 

SM distributions by applying the excess mass test, which assumes the multimodality 
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of the distribution as the null hypothesis, following the formulation of Ameijeiras-

Alonso et al. (2019) in R programming language.  

 

3.5 SCAT-SAR SWI SMAR application 
The principal core of our work made during the period at TU Wien englobed the 

merging of ASCAT and enhanced S-1 SSM to produce the daily SCAT-SAR SWI 

dataset and the subsequent application of the SMAR model (SCAT-SAR SWI 

SMAR). The SCAT-SAR SWI SMAR is four-dimensional SM information with a 

daily temporal resolution and a 1 km spatial resolution for the surface and the root 

zone (30 cm). As said, it is required for many applications since the extreme and 

most relevant effects of climate change on natural hazards are directly linked to SM 

variability, whose spatiotemporal evolution can only be analyzed using information 

with adequate resolution. In fact, currently, there are no satellite SM products 

capable of providing indications with high temporal and spatial resolution, 

especially when studying large-scale areas and RZSM.  

Thus, our SCAT-SAR SWI SMAR could address this gap by merging a high-

temporal-resolution product (low spatial resolution) with a high-spatial-resolution 

product (low temporal resolution) to obtain high spatiotemporal resolution 

information to integrate into a physically based model. The SMAR application to 

go inside the soil profile is chosen since it is related to the soil properties (Section 

2.7.3.3), which are essential to the hydrological-hydraulic processes. The 

potentiality of this framework will also rely on the use of open-source data to 

provide a product with the characteristics that are freely available.  

Fig. 19 reports the workflow of the fusion with the SWI formulation and the 

subsequent application of SMAR. 
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Fig. 19: Workflow of the SCAT-SAR SWI SMAR 
creation. 

3.5.1 Fusion of ASCAT and SAR SSM 
The concept of temporal stability in SM (Section 3.1; Section 3.3) is crucial, 

involving a strong correlation between a local signal and a regional signal from the 

surrounding area. Bauer-Marschallinger et al. (2018) based their algorithm 

modifications on this principle, as discussed in Section 2.7.3.2, building on the 

algorithm proposed by Wagner et al. (1999). As previously mentioned, their 

algorithm begins by assessing the matching parameters using CDF matching 

(Klaus Scipal et al., 2008). This step considers and corrects systematic biases that 

may arise from sensor and retrieval specifics, as well as complexities at the original 

scale that resemble land cover patterns (Fig. 20b). Subsequently, Eq. 30 is applied 

for fusion, followed by the masking of certain pixels, such as those corresponding 

to ice cover. In the work of Bauer-Marschallinger et al. (2018), ASCAT data (H101, 

https://hsaf.meteoam.it/Products/Detail?prod=H101 and H16, 
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https://hsaf.meteoam.it/Products/Detail?prod=H16) were resampled to a 

distance of 500 m to achieve a nominal spatial resolution of 1 km, matching that 

of S-1 SSM. This resampling was accomplished using the thin plate spline from the 

Python SciPy library.  

However, our study involved a different approach. We have developed a code that 

initially operated at a point scale and was subsequently modified to adapt the data 

to a regional scale, operating on all the pixels of the specified area. The point-scale 

algorithm took the enhanced S-1 data (Section 3.2) in terms of N, normalized 

(using mix e max of the series) it to derive the improved S-1 SSM, and employed 

this as input alongside ASCAT H119-H120. The decision to utilize ASCAT as an 

input was supported by its utilization of the MW band (band C, similar to S-1) and 

the application of a change detection method (Section 2.5.1) to extract SSM 

information from backscattering.  

In more detail, following the normalization of enhanced S-1 N to obtain the 

improved S-1 SSM, each pixel in the Equi7grid (x, y) was associated with the 

nearest ASCAT data record based on the grid point locator (GPI, 

https://dgg.geo.tuwien.ac.at/) corresponding to the pair (x, y), obviating the need 

for resampling. Consequently, moving from a point scale to a regional scale, we 

made the same step of N normalization and then generated the ASCAT time series 

of reference for each pixel, employing an average of its four neighboring GPIs 

weighted by their inverse distances, doing something similar to the resampling. Fig. 

20 reports all the steps of the process (a) and the description of the utility of cdf-

matching (b). 
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Fig. 20: Summary of the methods (a) and focus on 
the concept of CDF-matching for two time series at 
one pixel location (b). Data Source: 
CGLOPS1_ATBD_SWI1km-V1_I1.30.pdf. 

3.5.2 SMAR model application 
The application of the SMAR model, as discussed in Section 2.7.3.3, used physically 

based parameters (𝑠௪ଶ, 𝑠ଵ, 𝑎, 𝑏), which can be empirically defined using soil 

texture. Specifically, 𝑠ଵ, 𝑠௪ଶ, and n are parameters that are closely linked to the 

characteristics of the soil texture. In the context of a two-layer soil profile, these 

parameters can be defined for both the surface soil (subscript 1) and the deeper 

soil (subscript 2). 

At the point scale level, this distinction can be made when in situ measurements of 

porosity, WP or FC are available for both layers. However, for the sake of 

simplicity, we extracted these parameters (or the missing parameters among 

available) empirically from Table 3 of the Section 2.7.1, using USDA soil texture 

data (https://ldas.gsfc.nasa.gov/gldas/soils) for our area of interest. Consequently, 

we assumed that both layer 1 and layer 2 shared the same characteristics. With sc, 

sw, and n known, we can then derive the parameters 'a' and 'b' (as defined in Eq. 

33). The parameter 'a' is derived under the assumption that all precipitation (mean 

annual precipitation) contributes to losses, while also considering a minimum rate 
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of 2 ௬. This assumption was already used by Baldwin et al., 2019  as starting 

value to calibrate SMAR parameters in the Shale Hills Catchment. 

𝑉ଶ =  (𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛[𝑐𝑚]/365 + 2)                              Eq. 39 

At regional scale, precipitation data are obtained from the ERA5-Land dataset and 

oversampled at a 1 km resolution using the Python language. Once obtained these 

parameters, the SMAR algorithm is implemented within the cascade framework 

(Python language) of the previously mentioned fusion algorithm SCAT-SAR SWI 

(Section 3.5.1). 
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C h a p t e r  4  

RESULTS AND DISCUSSION 

In the previous chapter, we analyzed in detail the methodology applied in this work. 

We studied currently available SM measurement techniques on Eurasia to 

encompass the entire Mediterranean area. With the expertise acquired in the field 

of active sensors in the MW spectrum, we developed a high spatial and temporal 

resolution product over some areas of southern Italy. This estimation could 

contribute to mitigating the effects of climate change by intervening in the 

forecasting phase. 

To emphasize the value of utilizing a physically based model, we will contrast the 

application of SMAR to acquire RZSM information with the use of SWI to obtain 

RZSM information. 

This chapter is divided into three sections: 

- Results of the intercomparison of SM satellite products versus ISMN ground-

based measurements in the European ecoregions, covering Europe and some parts 

of Asia. This part involved data from the period 2015-2020. 

- Building on the preceding results, we further investigate specific ecoregions that 

exhibit distinct patterns with a focus on seasonality. Our approach involves initially 

eliminating these patterns and subsequently analyzing them in the context of the 

phenological cycle, as outlined in Chapter 3. The datasets used in this section are 

consistent with those employed in the earlier phase of this study. 
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- Initially, we operate at a point scale using Alento COSMOS stations. 

Subsequently, we extended our analysis to a regional scale, leveraging data provided 

by TU Wien, which have not yet been made public. The temporal scope of this 

analysis spans from 2017 to 2022. 

4.1 Intercomparison on European ecoregions: the performance assessment 
The performances of SMAP L4, ESA CCI, SMOS-IC, ASCAT (H115 & H116) 

and the CGLS SSM 1 km with respect to in situ measurements from ISMN by 

ecoregions are shown in Fig. 21 in terms of median values of r, bias and ubRMSE 

using as refence period 2015-2020.
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Fig. 21: Satellite products performances for each ecoregion: top panel r, middle bias and low ubRMSE. 
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The overall analysis demonstrated that the performances of each satellite product 

are strongly influenced by ecoregions' spatial heterogeneity, climatic conditions and 

land cover. All satellite products show weak performances for all metrics on i) the 

Pontic steppe ecoregion (735) and ii) the Central European mixed forest (654). It 

is worth mentioning that the ecoregions 735 and 654 are contiguous.  In the 

following, we present the results of intercomparison between different RS products 

detailed for each metric. In terms of Pearson Correlation Coefficient, SMAP L4 

showed the best performance in the most part (i.e., eleven) of ecoregions, ESA 

CCI in four and ASCAT performed better than the other satellite products on the 

Pontic steppe ecoregion (735), providing a correlation value of 0.36. On the other 

hand, CGLS SSM 1km showed the lowest correlations with ground data in the 

most part (i.e., ten) of ecoregions, SMOS-IC on five ecoregions and ESA CCI on 

the ecoregion 654 (where, as we said above, all SM products have weak 

performances). The CGLS SSM 1 km did not show any correlation in Sarmatic 

mixed forests (679) and Scandinavian and Russian taiga (717) ecoregions, obtaining 

an r close to 0. The SMOS-IC had variable correlations, with a value greater than 

0.5 only on four of the 16 ecoregions considered in this study. Moreover, it is 

necessary to clarify that ESA CCI did not provide SM measurements for the 

considered period on the Celtic broadleaf forests ecoregion (651), where generally 

all SM satellite retrievals had unsatisfactory correlation except SMAP L4 (r = 0.62); 

and that we obtained meaningful correlation (r>0.5) for all satellite products in the 

Balkan (646) and Baltic (647) mixed forests.   

SMAP L4 exhibited the lowest values of bias (in absolute terms ranging 0.03-0.05) 

on eight ecoregions, except for Balkan mixed forests (646), East European Forest 

steppe (661), Pannonian mixed forests (674), and Pontic steppe (735) where its 

performance fairly decreases until reach the worst performance in 735 respects to 
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all other satellite products. However, SMAP L4 confirmed its good performance 

also on Celtic broadleaf forests (651), i.e., the bias value was around 0.03, where 

other remote sensing products showed higher bias values. On three ecoregions 

(i.e., 646, 686 and 795) ESA CCI showed a complementary behavior to SMAP L4, 

obtaining the lowest value of bias. ASCAT achieved an overestimation on all 

ecoregions and had a better bias (i.e., close to 0) than the others on the Pontic 

steppe ecoregion (735) but it obtained the worst bias (- 0.26) in Celtic broadleaf 

forests (651). SMOS-IC achieved the best performance in terms of bias only in 

four ecoregions (648, 661, 674, 793), while CGLS SSM 1 km had the worst values 

in most part of ecoregions, with a maximum value of – 0.37 on Central European 

mixed forest (654). More in general, a negative bias for all products was found for 

Sarmatic mixed forests (679) and Western European broadleaf forests (686). 

Instead, all remotely sensed products have a bias close to 0 in Cantabrian mixed 

forests (648). 

In terms of ubRMSE, ESA CCI showed the best performance in most part of 

ecoregions as reported in Table 9; the SMAP L4 maintained a ubRMSE always 

comparable to ESA CCI, achieving the lowest ubRMSE in the 651 and 679 

ecoregions. SMOS-IC achieved the worst bias in the most part (eleven on 16) of 

the ecoregions, while ASCAT and the CGLS had variable performances according 

to the ecoregions.  

Furthermore, we also evaluated the correlation between SM anomalies (rANOM) 

computed using a moving window of 35 days, both calculated on situ and satellite 

data, to assess whether seasonality could have affected results in the different 

ecoregions. SMAP L4 achieved a meaningful correlation on anomalies (rANOM>0.5) 

in five ecoregions (644, 646, 648, 654, 674). ESA CCI had a positive correlation on 

three of ecoregions (647,648,795), ASCAT on one (664), and the others had non- 
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meaningful correlation. The SMOS-IC and the CGLS SSM 1km had a nonpositive 

correlation. 

Focusing specifically on comparing r and rANOM (hereafter referred to as r/rANOM), 

Table 8 displays the Pearson Correlation Coefficients achieved for anomalies 

(rANOM) for each sensor in each ecoregion, in comparison with those achieved on 

the original time-series data (r). It's worth noting that the r values in Table 8 may 

differ slightly from those in Fig. 21, as they were recalculated after removing 

outliers with the quartiles’ method (as described in methodology section). Previous 

studies (Brocca et al., 2011, Scipal et al., 2008) have shown that, when high 

seasonality is present, r tends to be greater than rANOM. As expected, removing the 

seasonal effect typically resulted in a decrease in correlation, with rANOM being lower 

than r (as shown in the white rows of Table 8). On the other hand, an increase in 

the correlation between rANOM and r is indicative of high signal variability or poor 

sensor quality in detecting SM-related signals (as shown in the dark gray rows of 

Table 8), considering the adopted screening out of anomaly-outliers. In Table 8 we 

have also reported the values of r and rANOM for each satellite aggregated at the EU 

continental scale, aggregating correlations by median. Examining this median value 

of the r and rANOM by satellite, the effect due to the procedure of screening out 

anomaly-outliers, was lost on the aggregation at European scale (see last line of 

Table 8). It confirms that the ecoregion scale is optimal for obtaining valuable 

information about the performance of satellites that would otherwise be lost. 

Probably, this is due both to the scale, neither too large nor too small but also to 

the combination of the factors from which the ecoregion originates (e.g., climate 

or vegetation
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Table 8: Performance obtained on each ecoregion in terms of r and rANOM. The increasing in the correlation 
between rANOM and r is colored in dark gray. 

  ASCAT CGLS ESA CCI SMAP L4 SMOS-IC 

Ecoregions r rANOM r rANOM r rANOM r rANOM r rANOM 

644 0.6121 0.3629 0.3576 0.2112 0.6788 0.4204 0.71 0.5177 0.3905 0.3209 

646 0.642 0.4058 0.5762 0.4163 0.6577 0.4842 0.7111 0.5466 0.5868 0.3496 

647 0.6532 0.4435 0.5443 0.2468 0.7602 0.5467 0.6685 0.4547 0.5293 0.3165 

648 0.721 0.5907 0.4663 0.424 0.7991 0.6105 0.7364 0.5866 0.6957 0.5079 

651 0.2919 0.3228 0.037 0.3589 No data available No data available 0.6224 0.4311 0.1536 0.1993 

654 0.1892 0.3586 0.1636 0.2695 0.0446 0.313 0.343 0.5462 0.1771 0.4713 

661 0.3988 0.4834 0.2801 0.4592 0.4806 0.4814 0.5797 0.4899 0.2726 0.3763 

664 0.5773 0.4121 0.3565 0.3085 0.7132 0.4781 0.6341 0.4359 0.4626 0.2466 

674 0.4576 0.4156 0.4564 0.3988 0.4903 0.4477 0.5394 0.5056 0.379 0.3113 

679 0.2946 0.1712 0 0.3657 0.3125 0.2821 0.5514 0.3718 0.2362 0.1796 

686 0.351 0.2202 0.3417 0.113 0.6107 0.357 0.6262 0.3772 0.3876 0.2175 

717 0.0409 0.0859 0 0.0915 0.4043 0.3705 0.5845 0.4175 0.3162 0.3473 

735 0.3551 0.2198 0.3422 0.1061 0.3467 0.4258 0.3129 0.3863 0.2611 0.3797 

793 0.6014 0.364 0.4513 0.2298 0.7083 0.4576 0.6681 0.4458 0.6669 0.3662 

795 0.5443 0.479 0.0353 0.3431 0.7331 0.5038 0.7551 0.4286 0.4166 0.3876 
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799 0.2233 0.1167 0.1582 0.1598 0.5365 0.2344 0.6618 0.3385 0.46 0.2359 

Median at 
EU scale 0.4282 0.36345 0.34195 0.289 0.6107 0.4477 0.63015 0.44085 0.38905 0.3341 
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Table 9 shows the RS product that obtains best performance when comparing with 

in-situ measurements for each ecoregion using the different metric investigated. 

The overall results (please see last column)  show a slightly higher performance of 

SMAP L4 and ESA CCI, probably due respectively to the use of ancillary data such 

as meteorological forcing and parameterization schemes (Tavakol et al., 2019) 

within advanced models or due to the combination of different satellite data. The 

overall lowest performance of SMOS-IC and of the high spatial resolution product 

CGLS SSM (1km) could be influenced by the strong RFI in Europe (Mohammed 

et al., 2016; Oliva et al., 2012) as reported in the literature by Bircher et al. (2012), 

El Hajj et al. (2018) and  Ma et al. (2019), as well as surface effects (i.e., surface 

roughness, land-cover heterogeneity within the pixel) usually smoothed when 

observing at larger scale. 

As showed in Fig. 21 and Table 8 (and in their summary in Table 9), in terms of 

Pearson’s correlation coefficient, it was highlighted the complementarity SMAP L4 

and ESA CCI in agreement with those found by Ma et al. (2019) at the global scale. 

However, we found in line with Cui et al. (2017) that SMOS-IC had good and 

comparable correlation over the REMEDHUS network used to describe the 793 

ecoregion and in Denmark within the 647 ecoregion.  

Table 9: Summary results of all performance (r, bias, 
ubRMSE, comparison between r and rANOM). 

Ecoregions r bias ubRMSE     r/rANOM   Overall 

644 SMAP L4 SMAP L4 ESA CCI SMAP L4 SMAP L4 

646 SMAP L4 SMOS-IC ASCAT    
ESA CCI SMAP L4 SMAP L4 

647 ESA CCI SMAP L4 ESA CCI ESACCI ESACCI 
648 ESA CCI SMOS-IC ESA CCI ESACCI ESACCI 
651 SMAP L4 SMAP L4 SMAP L4 SMAP L4 SMAP L4 
654 SMAP L4 SMAP L4 CGLS - - 
661 SMAP L4 SMOS-IC CGLS SMAP L4 SMAP L4 
664 ESA CCI SMAP L4 ESA CCI ESACCI ESA CCI 
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674 SMAP L4 SMOS-IC CGLS SMAP L4 SMAP L4 
679 SMAP L4 SMAP L4 SMAP L4 SMAP L4 SMAP L4 

686 SMAP L4 ESA CCI SMAP L4    
ESA CCI SMAP L4 SMAP L4 

717 SMAP L4 SMAP L4 ESA CCI SMAP L4 SMAP L4 
735 ASCAT ASCAT CGLS - - 
793 ESA CCI SMOS-IC ESA CCI ESACCI ESA CCI 
795 SMAP L4 ESA CCI ESA CCI ESACCI ESA CCI 
799 SMAP L4 SMAP L4 ESA CCI SMAP L4 SMAP L4 

 
In terms of ubRMSE, in line with the concept of complementarity, ESA CCI was 

superior to the SMAP L4. Consistent with Al-Yaari et al. (2019) who obtained 

lower performances of most remotely sensed SM products in “cold climate” areas 

(e.g., Koppen-Geiger D), we observed in Fig. 21 for ecoregion 679 an ubRMSE 

greater than 0.1 for all satellite products, as expected due to the effects of snow, 

frozen conditions and landscape. However, we should mention that the 

concurrence of disturbing factors, such as dense vegetation or mountains, could 

further alter the analysis performance in some of the ecoregions.  

Concerning to the bias, SMAP L4 and ESA CCI tend to overestimate the in situ 

ISMN SM, SMOS-IC and CGLS is prone to underestimate in situ SM. It is worth 

noting that the use, in our study, of Gleeson’s porosity map to rescaled CGLS and 

ASCAT measurement units for a consistent comparison with other satellite 

products, as highlighted by Fascetti et al. (2016), can influence the results.  

What particularly stands out from the r/rANOM comparison, as showed in Table 8, 

was the confirmation of the best results in addition to other performance metrics 

for all the remote sensing products in the case of the Baltic mixed forests (647) or 

Balkan mixed forests (646) but also Iberian sclerophyllous and semi-deciduous 

forests (793).  

On the other hand, all SM satellite products showed the high signal variability due 

to the screening of anomaly outliers (rANOM greater than r) in the central European 

mixed forest ecoregion (654). Moreover, SMAP L4, which has proved to be the 
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most accurate SM product in our analysis, showed a similar effect in performance 

also for the Pontic steppe (735) ecoregion, as well as it has been shown in the case 

of ESA CCI. This indicates that Central European mixed forest ecoregion (654) 

and Pontic steppe (735) ecoregions are critical areas to obtain accurate SM 

assessment via the selected satellite products. 

Focusing on all results metrics of SMAP L4 (Fig.22), it achieved correlation around 

0.7, the best values of ubRMSE and the highest performance in terms of r/rANOM 

on the ecoregion group (cluster 1) constituted by 644, 646, 647 and 648. Similarly, 

the ecoregions of Mediterranean area (cluster 2: 793, 795 and 799) showed all a 

quite high performance with r around 0.66, ubRMSE around 0.07 and r > rANOM. 

Meanwhile, as said above, on the group (cluster 3) of 654 and 735, SMAP L4 

reached low performances. Due to similar performances and as geographically 

contiguous areas, 679 and 717 could be considered as another group (cluster 4), 

shown in Fig. 22. In the rest part of ecoregions, it demonstrated also significative 

performances (r> 0.5 and r > rANOM) but without a particular common pattern 

(cluster 5). 
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Fig. 22: Ecoregions grouped by clusters derived 
from performances (especially r using the top 
performer SMAP L4). 

 
Hence, we used the ERA5-Land data, a reanalysis dataset providing at ~9km grid 

spacing and covering the period from 1950 to 2-3 months before the present, to 

find similarity inside each cluster or dissimilarity from one cluster to other that can 

support performances’ results. The core of ERA5-Land, i.e., a reproduction of the 

land component of the ERA5 climate reanalysis, forced by the ERA5 weather 

fields, is the Tiled ECMWF Scheme for Surface Exchanges over Land that 

incorporates land surface hydrology (H-TESSEL). It uses the CY45R1 version of 

the IFS (https://confluence.ecmwf.int/display/CKB/ERA5-

Land%3A+data+documentation). In particular, we have downloaded the data for 

each month of the period 2015-2020 for air temperature (2m_temperature: 

temperature of air at 2m above the surface of land, sea or in-land waters), 
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precipitation (total_precipitation: sum of large-scale precipitation and convective 

precipitation), evaporation (total_evaporation: accumulated amount of water that 

has evaporated from the Earth's surface) and Leaf Area Index of high and low 

vegetation (leaf_area_index_high_vegetation, leaf_area_index_low_vegetation). 

Thus, we have computed for each variable the annual mean, maximum and 

minimum.  

The first cluster of ecoregions (644-646-647-648), where SMAP L4 showed the 

highest performance for most part of the metrics, was characterized by heavy rain, 

intermediate vegetation level and moderate evaporation (the air temperature did 

not give additional information). The ecoregions 793,795 and 799, were all in the 

Mediterranean and were characterized by low precipitation and evaporation and 

high temperature. 

The remaining part of ecoregions presents a diversity of results in terms of metrics 

without a common pattern in the ERA5-Land data. An exception is the cluster 4 

(679-717), in which only SMAP L4 obtained fair good results and the ERA5-Land 

indicates the coldest climates among all ecoregions (3-6 degrees average) and 

lowest evaporation. In addition, in those areas, there are few stations to characterize 

large areas where soils are cold and sparsely vegetated. 

The Central European mixed forest (654) and Pontic steppe (735) ecoregions 

(cluster 3) were areas in which we cannot obtain accurate SM assessment via the 

selected satellite products, and apparently, they seem to do not have any common 

characteristics in terms of vegetation and climate. However, if we look at the 

comparison in terms of SM using SMAP L4 satellite product with both in situ and 

ERA5-Land SM (volumetric_soil_water_layer_1: volume of water in soil layer 1 

for a depth that goes from 0 to 7cm), as showed in Fig. 23, we highlighted that 

SMAP L4 and ERA5-Land SM were good correlated in these ecoregions  (graph 

in the middle). But similar to SMAP L4 vs ISMN correlation (on the left of Fig. 
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23), the ERA5-Land vs ISMN correlation (on the right of Fig. 23) was very low. 

This can suggest a possible inconsistency or a high uncertainty in the in-situ data. 

Moreover, there could be additional climatic and physical factors, e.g., subsurface 

scatterers, which may be the causes of uncorrelation. Wagner et al. (2022) recently 

demonstrated how in more temperate climatic regions, strong subsurface scatterers 

(e.g., karstic rock) may become detectable during dry spells, especially when they 

are near the soil surface, adding uncertainty in the retrieved SM value. Our results, 

indeed, indicate for sure problems in some areas that affected the continental scale 

analysis performed (please see last row of Table 9). In fact, the inclusion of these 

areas can affect the overall performance of SM products, hence producing the 

variegate results that several past studies have found in Europe. 

It was nothing as for some of the ecoregions was more complicated to extract a 

clear picture of their behavior since an ecoregion is for its nature a combination of 

climate, soil, vegetation and results of remote sensing inter-comparison does not 

show a marked trend or a singular direction. However, this part of the work 

provides useful insights about SM products performance not achievable when 

regional, continental or global scale are considered and should support future 

studies in ranking various SM products for various application in different location 

of Europe.  
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Fig. 23: Comparison of Pearson Correlation 
Coefficient across ecoregions on SM values between 
SMAP L4 and ISMN (on the left), SMAP L4 and 
ERA 5 LAND (in the middle), and ERA 5 LAND 
and ISMN (on the right). 

4.2 The impact of seasonality  
The results of the intercomparison have shown that there are some ecoregions 

which are undescribed regardless of satellite even if they shared the same ISMN 

network with other ecoregions which highlighted good performances. For these 

reasons, we focused on the effect of seasonality in the intercomparison on 

ecoregions covered by the RSMN network (Fig. 24). 
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As anticipated in Chapter 3, the seasonality was investigated following two parallel 

lines: first, completely removing the seasonality using the RST approach (rALICE); 

and then considering SM distribution and the phenological cycle.  

Note that to provide an overview of the influence of short-term versus long-term 

variations, the first analysis we made was the comparison in terms of the Pearson 

Correlation Coefficient on raw data (r), on short-term SM anomalies as detected 

by using the 35-day moving window (rANOM), and by the RST approach (rALICE), as 

described in Section 3.4.1. 

Once known the ability and inability of SM satellite retrievals in raw data, short- 

and long-term variation, we focused on the effect of seasonal variations on the 

dynamic behavior of the ASCAT SM retrievals.  

Fig. 24: Ecoregions analyzed in this part 
of the study and the Romanian Soil 
Moisture Network (RSMN). 
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4.2.1 The remotion of long-term variation in SM 
Table 10 compares the performance of each considered product in terms of r 

between SM ISMN in-situ data and SM satellite data, SM anomalies (rANOM) 

evaluated on a moving window of 35 days, and the ALICE index (rALICE). The 

correlation already achieved considering the long-term series SM measurements 

(i.e., rANOM), after outlier removal, as done in the previous part of the work is 

presented. Those ecoregions where an increase in correlation was observed moving 

from the historical series analysis to the anomalies (both on the ALICE index 

and/or on the 35-day moving window) are highlighted in dark grey. As stated in 

Section 4.1, such an increase is unexpected, because seasonality increases the 

correlation, hence its occurrence should indicate a poor capability of the sensor 

and/or product to detect SM-related signals. 

Our purpose was to verify if the SM satellite performance assessment changed 

when long-term variation was considered instead of short-term variation for the 

case study ecoregions. Overall, the results are in line with those reported in Section 

4.1, since the SMAP L4 was the top performer, followed by the ESA CCI while 

the CGLS SSM was the worst.  

In focusing on the long-term variation, we found that SMAP L4 and ESA CCI 

each obtained rALICE ≥ 0.5 in two ecoregions and ASCAT and CGLS SSM in one. 

All four products had rALICE ≥ 0.5 in the Balkan Mixed forests (646).  

SMOS – IC was not able to describe any of the considered ecoregions (always rALICE 

< 0.5), maybe due to strong radio frequency interference (RFI) over Europe (de 

Nijs et al., 2015; Kerr et al., 2012; Naeimi et al., 2012; Parinussa et al., 2011). There 

were additional ecoregions in which one satellite reached a value of correlation 

greater than 0.5, (e.g., SMAP L4 for the Central European mixed forests (654), but 

these ecoregions were distinct since r < rALICE. 
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A correlation performance inversion (i.e., when r is lower than rALICE or r is lower 

than rANOM), occurred in two regions with SMAP L4 and ESA CCI; and in three 

regions with ASCAT, CGLS and SMOS -IC. In all cases, these included the Central 

European mixed forests (654) and the Pontic steppe (735). Thus, rALICE enhanced 

a particular behavior in ecoregions already underlined for the active sensors 

(ASCAT/CGLS). 

Taking into account both r≥ rANOM and r ≥ rALICE, SMAP L4 and SMOS – IC 

similarly described short- and long-term variation by ecoregions. In fact, we see the 

inversion in both comparisons (r vs rANOM and r vs rALICE) and for the same 

ecoregions. We expected the active SM products, i.e., ASCAT and CGLS would 

better describe the short-term variation in the Pontic steppe (735). 

Interestingly, the Balkan Mixed forests (646) were well-described in both short and 

long-term variation (r≥rALICE and r≥rANOM) regardless of SM satellite retrievals. In 

addition, it achieved rALICE ≥ 0.5 for all products except SMOS – IC.  

These results are in line with another study on the RSMN network (Ontel et al., 

2021), which demonstrated that the correlation between C-band satellite products 

i.e., SWI (Https://land.copernicus.eu/global/products/swi) and the RSMN 

network, is high on the Getico Plateau, corresponding to ecoregion 646. Very low 

correlation values were observed close to the Romanian Plain and the Dobrogena 

Plateau, corresponding to the Pontic Steppe (735) and the Central European mixed 

forests (654). Generally, a good correlation was detected for those stations located 

on soils with a high percentage of sand and a low percentage of clay. Hydraulic 

phenomena due to soil texture, in addition to the possible presence of vegetation, 

may be the reason for this behavior. Soil texture influences the availability of soil 

particle surfaces for adsorption as well as the number of pores, and therefore, the 

availability of free water, the parameter which affects microwave emissivity. The 

ALICE index and the subsequent r computation among the ALICE index applied 
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to satellite SM retrievals and ground-based measurements allowed us to obtain a 

complete description of the intercomparison of SM products and confirmed the 

results reported in Section 4.1.
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Table 10: Comparison between r, rANOM and rALICE. 

 ASCAT CGLS ESA CCI SMAPL4 SMOS-IC 

Ecoregions r rANOM rALICE r rANOM rALICE r rANOM rALICE r rANOM rALICE r rANOM rALICE 

646 0.642 0.4058 0.505 0.5762 0.4163 0.5245 0.6577 0.4842 0.568429 0.7111 0.5466 0.5759 0.5868 0.3496 0.4401 

654 0.1892 0.3586 0.3144 0.1636 0.2695 0.2602 0.0446 0.313 0.367018 0.343 0.5462 0.5004 0.1771 0.4713 0.3356 

661 0.3988 0.4834 0.4226 0.2801 0.4592 0.4681 0.4806 0.4814 0.500792 0.5797 0.4899 0.4598 0.2726 0.3763 0.358 

674 0.4576 0.4156 0.4087 0.4564 0.3988 0.4226 0.4903 0.4477 0.470375 0.5394 0.5056 0.4948 0.379 0.3113 0.3252 

735 0.3551 0.2198 0.4157 0.3422 0.1061 0.4671 0.3467 0.4258 0.457066 0.3129 0.3863 0.4624 0.2611 0.3797 0.3786 
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4.2.2 Effect induced by the phenological cycle on SM dynamics  
In the previous section, we analyzed the different behaviors of the considered SM 

products by removing the dependence on seasonality and considering SM 

anomalies. Overall, results corroborated that there could be particular hydraulic 

conditions or effects e.g., subsurface scatterers, in the Central European mixed 

forests (654) and Pontic steppe (735). This analysis relied exclusively on satellite 

data, was free from ground-based inaccuracy, and assisted in the discovery of new 

issues, i.e., ecoregions undescribed independently by satellite. To have a different 

look at the role of seasonality, we combined information from the analysis of SM 

distribution with information related to plant phenology. 

As described in Section 3.4.2, the two main phenological phases, namely the 

growing and dormancy phases, were examined for each ecoregion using 

information provided by the European Environmental Agency (EEA). 

 

Fig. 25: Growth (blue) and dormancy (light gray) 
phases in each ecoregion. 

Each phenological stage was identified for each RSMN station and then aggregated 

to calculate the median at the ecoregion scale during 2000-2016 (Fig. 25). From a 

phenological point of view, the dormancy phase, when water is not used by 

vegetation for growth, can be associated with a wet period, and the growing phase 

is therefore associated with a dry period.  For each ground-based station, we first 

calculated the correlation between the SM measurements in the growth phase and 
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then in the dormancy phase. Box plots of the Pearson Correlation Coefficient 

(overall, growth and dormancy phases) computed among ASCAT timeseries and 

ISMN measurements by ecoregion are shown in Fig. 26.  

 

Fig. 26: Boxplot of Pearson Correlation Coefficient 
computed among ASCAT timeseries and ISMN 
measurements on Balkan mixed forests (646), 
Central European mixed Forests (654), East 
European forest steppe (661), Pannonian mixed 
forests (674) and finally on the Pontic steppe (735). 

The correlation increased in the dormancy phase in the 646 and 674 ecoregions 

(Fig. 26). In the case of the Balkan Mixed Forests (646) there is a clear correlation 

increase (mean from 0.5 to 0.7) and a reduction in variability, with the first and 

third quartiles of the boxplot very close to the average values. This was well in 

agreement with the Balkan Mixed Forests (646) ecoregion description 
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(https://ecoregions.appspot.com/). The area is indeed characterized by a strongly 

seasonal climatological spatiotemporal variability, with northern areas experiencing 

high temperatures and rainfall in June, and the Thracian and Danubian Plains 

somewhat drier with slight peaks in rainfall in early summer and winter 

(https://www.oneearth.org/ecoregions/balkan-mixed-forests/). This result 

indicates a fairly clear relationship between phenology and soil moisture variability 

that we used in combination with information about the soil dynamics in terms of 

soil saturation, to better explain ecoregions behavior.  

Focusing only on the ASCAT timeseries, we tried to find the behaviors based on 

SSM (dry/normal/wet) as described in Section 3.4.2.  

Fig. 27 shows the SM distribution of ASCAT saturation data in the growth and 

dormancy stages and overall, for the considered ecoregions as well as examples of 

SM distributions taken from Manfreda et al. (2007). We emphasize our interest in 

the shape of the distribution; hence, in Fig. 27 we have employed a different 

maximum y-value depending on the distribution to avoid losing details of the 

shape. Analyzing the graphs on the left (i.e., those related to the overall and growth 

phase SM distributions), we see that the Balkan Mixed Forests (646), the East 

European forest steppe (661) and the Pannonian mixed forests (674) ecoregions 

seemed to show a Gaussian distributions. The Central European mixed forests 

(654) had two peaks in both graphs, while it is more difficult to classify the behavior 

of the Pontic steppe (735), as it shows an intermediate behavior with respect to the 

others. It could be an ecoregion borderline between dry and normal conditions. 

Moving to the analysis of the wet phase (i.e., the dormancy phase), the distributions 

show high frequency variability due to the greater presence of water (for all 

ecoregions). Generally, distributions have no predominant peaks in the 646, 661 

and 674 ecoregions; while in the 735 ecoregion there is a peak before a saturation 

of 0.75. Ecoregion 654 shows the same behavior regardless of the phenological 



 

117 | P a g .  
 

stage, confirming the multimodality, with a clearer separation of the two peaks 

during dry, wet and normal conditions. Such a feature seems to be confirmed by 

comparing the graphs on the basis of phenology. The comparison of the growth 

and dormancy phases was in line for all ecoregions except for the Pontic steppe 

(735): a clear multimodality but with a large peak to lower values is present in the 

growth phase, while in the dormancy phase a large peak to highest values has been 

identified. This means that the overall distribution was multimodal.   

One possible explanation for the multimodality (overall and growth phase) is that 

in dry conditions, the satellite products reflect the soil moisture of the root zone, a 

soil depth which is decoupled from the topsoil to which the ISMN measurements 

belong. 

 

Fig. 27: Overall, dormancy phase and growth phase 
surface soil moisture (SSM) dynamics in Balkan 
mixed forests (646), Central European Mixed 
Forests (654), East European forest steppe (661), 
Pannonian mixed forests (674) and the Pontic 
steppe (735). 
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Table 11 shows the excess mass test results, useful to statistically verify 

multimodality (Ameijeiras-Alonso et al., 2019), computed considering the growth 

and dormancy phases and the whole period. According to the null hypothesis, if 

the p-value is less than 0.05, the distribution is multimodal; in addition, a smaller 

p-value (p<<0.05) brought greater results significance. In the dormancy phase, all 

ecoregions except 661 exhibited a p-value lower than 0.05, making it easier to find 

a multimodality pattern even if in some cases it was not too strong (e.g., in the case 

of the Pannonian mixed forests).  

From the multimodality test, the Central European mixed Forests (654) had a 

strong multimodal distribution in both growth and dormancy phases (p-value < 

2.20E-16), as did the Pontic steppe (735). On the other hand, we cannot reject the 

null hypothesis in the other ecoregions. 

Table 11: Overall multimodality and multimodality 
test by stage of the five ecoregions. 

Ecoregions Overall (p-value) Growth (p-value) Dormancy(p-value) 

646 0.244 0.068 2.20E-16 
654 2.20E-16 2.20E-16 2.20E-16 
661 0.074 0.008 0.096 
674 0.032 0.002 0.014 
735 2.20E-16 2.00E-03 2.20E-16 

 

Taken together, these results suggest a relationship between the SM dynamic and 

the lack of correlation of SM satellite retrievals in certain ecoregions, i.e., the 

Central European mixed forests (654) and Pontic steppe (735).  

Overall, these results suggest that merging SM dynamics with phenology, revealed 

that the challenging SM detection issues within the Central European mixed forest 

(654) and Pontic steppe (735) might stem not solely from ground-based 
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measurement station issues (difficulties in probe calibration and validation), as 

hypothesized in Section 4.1, but also from specific conditions giving rise to 

prolonged drought phases. Thus, the proposed approach seems to detect problems 

that could be in the SM microwave remote sensing retrievals at a landscape scale. 

4.3 SCAT-SAR SWI SMAR results 
As clarified in Chapter 3, the SWI approach, serving as an algorithm for merging 

ASCAT (H119-H120) with improved S-1 SSM, was chosen for its ease of 

application. The reliance on a single parameter i.e., the pseudodiffusivity T, 

although challenging to determine, is inversely proportional to the depth of the soil 

under consideration. consequently, the choice for SSM products can be simplified 

to T = 1 since the soil reference layer goes from 0 to a maximum 10 cm. 

On the other hand, the SMAR approach, stemming from the same two-layer soil 

water balance but grounded in physical principles, enables the derivation of model 

parameters from soil properties. Therefore, the SWI-SMAR approach is expected 

to provide an accurate measure of Soil Moisture (SM) at the selected depths. 

This section illustrates the results of the fusion of SCAT-SAR SWI data and the 

subsequent development of the RZ SCAT-SAR SWI SMAR product at a 30 cm 

scale, initially at a point scale and then at a regional scale. 

4.3.1 Point-scale 
 
The outcomes presented in this section concern the two ground-based COSMOS 

stations in the ALENTO river basin. The overlap between the SM saturation 

histograms (%) obtained from the enhanced S-1 SSM product, ASCAT (H119-

H120), and the ASCAT product modified to the initial dataset using CDF-

matching through piecewise-linear matching (discussed in Sections 2.7.3.2 and 

3.5.1) is shown in Fig. 28 (for COSMOS Alento station of Gorga on the left and 
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COSMOS Alento Monteforte on the right). The primary objective of this 

operation is to bring the two data distributions into convergence, ensuring they 

share the same cumulative distribution function or are at least aligned. When 

distributions are aligned, it indicates that they exhibit the same fundamental 

behavior and can be considered similar or equivalent. Thus, this correction, which 

reduces sensor-induced noise changes, is essential for the SCAT-SAR SWI product 

creation, shown in Fig. 29. 

 
Fig. 28: Comparison between SSM distribution of 
the improved S-1 SSM, ASCAT (HH19-H120) and 
the ASCAT adjusted on the improved S-1 SSM for 
the two COSMOS stations in the Alento basin 
(Gorga on the left and Monteforte on the right). 
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Fig. 29: Comparison between SSM timeseries of the 
improved S-1 SSM, ASCAT (HH19-H120) and the 
derived SCAT-SAR SWI for the two COSMOS 
stations in the Alento basin (Gorga on the top and 
Monteforte on the bottom). 

Since both products (ASCAT and improved S-1 SSM) were given a weight of 1:1 

throughout the development of the SWI fusion algorithm, it follows that the 

ASCAT product should be given more weight in the result due to its sub-daily 

resolution. However, the improved S-1 SSM achieved greater peaks of saturation 

in timeseries respect to ASCAT, while the SCAT-SAR SWI is generally in between 

the two, as can be observed from Fig. 29 (for instance, have a look at Monteforte's 

graph in the area between 2019 and 2020). 

Once the daily 1 km SSM (SCAT-SAR SWI) was obtained using the measured 

parameters outlined in Table 3 of Chapter 3, the SMAR model was applied, 

resulting in the SCAT-SAR SWI SMAR product. Fig. 30 demonstrates the 

significant potential of this approach. The comparison between SCAT-SAR SWI 

and SCAT-SAR SMAR SWI revealed not only signal reduction but also 
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modification, with variations observed in the peaks. Moreover, SCAT-SAR SMAR 

SWI exhibited a plateau around 0.2, corresponding to the WP, due to the model's 

construction. The significance of incorporating physical parameters becomes 

further evident in Fig. 31, where the SCAT-SAR SWI SMAR was compared with 

the SCAT-SAR SWI SWI, i.e., the RZSM through the SWI model application, 

changing T. Specifically, results are depicted for T=10, T=15, and T=20. 

 

 
Fig. 30: Comparison between the SCAT-SAR SWI 
in terms of saturation and the SCAT-SAR SWI 
SMAR. 

In the case of the SCAT-SAR SWI SWI, there are no significant changes observed 

during the transition from one time series to another, despite the variations in T 
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that account for different depths. The shape of the time series remains consistent, 

with peaks shifting directly in proportion to the increase in T. 

 

 

Fig. 31: RZSM information in terms of saturation: 
comparison between SCAT-SAR SWI SMAR at 30 
cm and SCAT-SAR SWI SWI changing T (10,15,20). 
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Fig. 32: Comparison between the available RZSM 
from the COSMOS stations and data reported in 
Fig.31 clipped on the in Situ availability. On the left 
of each graph are reported the performance in terms 
of correlation and RMSD. 

Table 12: Performance in terms of R and RMSD 
between in situ RZSM and SMAR, SWI changing T 
(10;15;20). 

 GOR1 MFC2 

RZSM method r RMSD r RMSD 

SMAR 0.81 0.012 0.82 0.03 

SWI (T=10) 0.80 0.1 0.79 0.05 
SWI (T=15) 0.80 0.1 0.78 0.05 
SWI (T=20) 0.80 0.1 0.77 0.05 
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In Fig. 32 and Table 12, we show the comparison of Fig. 31 with the time series of 

in situ measurements. Note that we considered only the information available at 

the same time in order to calculate the r-correlation and RMSD. For both stations, 

the SCAT-SAR SWI SMAR had the lowest value of RMSD in comparison to the 

SCAT-SAR SWI SWI (T=10; 15; 20). On the other hand, considering r, both 

RZSM datasets exhibit a good correlation around 0.8. 

These results demonstrated that the SCAT-SAR SWI SMAR is a good source of 

daily information at 1 km using measured parameters. In the following section, we 

have derived the physical parameters using a coarse-resolution dataset and tested 

the results at a regional scale. 

 

4.3.2 Regional scale 
We opted to broaden the scope of our inquiry after showcasing the point-scale 

method's capabilities because area information is essential for SM applications. 

Finding a method to determine the parameters (n, a, b, sw, sc) was the next challenge 

we faced. In this section, we will begin by presenting the SCAT-SAR SWI product 

obtained at the Basilicata scale. Subsequently, we will discuss the parameters 

employed in the derivation of the SCAT-SAR SWI SMAR product at a 30 cm 

resolution. Finally, we will perform a comparative analysis between SCAT-SAR 

SWI SMAR and SCAT-SAR SWI SWI concerning variations in T. 

SCAT-SAR SWI 

The use of the modified recursive exponential filter required the selection of a 

parameter T. It was set to 1, as it should describe the surface layer of the soil, given 

that the pseudo-diffusivity should be inversely proportional to depth; thus, lower 

T is more representative of the surface. In this way, a time series of SCAT-SAR 

SWI images for Basilicata was generated from 2017 to 2022. Since the input data 
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is in terms of saturation, the output is also expressed in terms of saturation, ranging 

from 0 to 1. Fig. 33 shows the maps for the same day for each of the analyzed 

years. The algorithm also internally utilizes masks from the S-1 SSM product to 

exclude results in cases where an area is masked due to reasons such as frozen 

terrain or others. The histograms in each figure allow for an examination of the 

distribution trend, which appears quite Gaussian for the days considered, 

consistent with theoretical soil moisture distributions. This implies a good fusion 

between the two input products. 

 
Fig. 33: SCAT-SAR SWI on Basilicata for July 30 
(2017-2018-2019-2020- 2021-2022). 
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Despite the selection of a summer day (July 30), which typically experiences dry 

conditions (in fact, the saturation values are consistently maintained, peaking 

around 0.3 - 0.4), substantial year-to-year differences are evident, particularly in the 

western and south parts of the region. 

Gained an overall perspective on Basilicata, we extracted the time series at one of 

the points within the domain of interest: 

 

Fig. 34: SCAT-SAR SWI on the point (x,y) = 
(5160250,715750) 

Note that the point locations are expressed in terms of Equi7grid coordinates (x, 

y), which correspond to (lon, lat) = (16.121, 40.039) in the south part of Basilicata. 

For more detailed information about the grid, please refer to Chapter 3. The time 

series appears promising, with acceptable saturation values and a discernible annual 

seasonality pattern. 

We have used ERA5-Land 0 - 7 cm data as the ground truth for the SCAT-SAR 

SWI product. Fig. 35 shows the ERA5-Land 0 - 7 cm downscaled at 1 km for the 

same dates as Fig. 33. 
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Fig. 35: ERA5-Land SSM downscaled at 1 km on 
Basilicata for July 30 (2017-2018-2019-2020-2021-
2022). 

In general, Fig. 35 seems to return a drier part corresponding to the eastern part of 

the region and a wetter part corresponding to the western part of the region. 

Since ERA5-Land product is provided in terms of VWC, in order to compare it 

with the SCAT-SAR SWI product, we have transformed the ERA5-Land 0-7 cm 

surface product into saturation assuming that it represents the 95th percentile of 

measurements within a Gaussian distribution. Subsequently, the correlation is 

computed in Fig. 36: 
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Fig. 36: Correlation between ERA5-Land 0-7 cm 
and SCAT-SAR SWI. 

The mountainous region, corresponding to the western part of the area and also 

the wetter part, can be observed to exhibit a stronger correlation (Fig. 36). This is 

likely due to the more consistent precipitation patterns, as indicated by the 

following precipitation map (Fig. 37). 
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Fig. 37: Annual mean precipitation (2017-2022) on 
Basilicata from ERA5-Land dataset. 

SCAT-SAR SWI SMAR 

In order to utilize the SMAR approach to compute the RZSM from the SCAT-

SAR SWI product, it was necessary to estimate the physical parameters of the 

model, according to its description (Section 3.5.2). 

From Table 3 of Chapter 2, we have seen that the PTF proposed by to Rawls and 

Brakensiek, 1989 and Rawls et al., 1992 are associated with the FAO soil texture, 

some IDs. The world map of the soil texture at resolution of 0.1 degrees is available 

on the sites of NASA (https://ldas.gsfc.nasa.gov/gldas/soils). Thus, we have 

oversampling at a fine resolution (approximately 1 km), joined with the available 

particle size available online for the Basilicata region 

(http://dati.regione.basilicata.it/catalog/dataset/carta-granulometrica) 

subsequently using the Table 3 said before we have created new map of n, FC and 

WP. Combining this information with the mean monthly precipitation from 

ERA5-Land downscaled at 1 km we have obtained the parameter of losses “a”. 
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Finally, from both layers’ depth, n and WP parameters we derived the parameter 

“b”. Fig. 38 shows these parameters for the whole Basilicata. 

 

Fig. 38: Parameters required for the SMAR 
application: a) porosity; b) saturation at field 
capacity; c) saturation at wilting point; d) coefficient 
“b”; e) precipitation used to derive the losses 
coefficient “a”; f) coefficient “a”. 
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Focusing on the parameters, they seem to have the same cluster of soil properties. 

In addition, deriving the coefficient “a” from precipitation and soil properties gave 

us the possibility to consider the link with soil depth. This could lead to the option 

of deriving different “a” and “b” based on the changes in depth. Parameters 

reported in Fig. 39 have been evaluated, referring to a top layer around 5 cm and a 

deeper layer of 30 cm, following the hypothesis of two soil layer’s profiles. 

 

Fig. 39: SCAT-SAR SWI SMAR on Basilicata for 
July 30 (2017-2018-2019-2020- 2021-2022). 
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With the dry conditions of the selecting period, i.e., July 30 across 2017–2022, we 

saw that the SCAT-SAR SWI SMAR exhibited values of RZSM lower than the 

SCAT-SAR SWI (SSM), as expected; in addition, it lost the difference between the 

west and eastern part of the region, following the soil property clusters, as shown 

in Fig. 39. Comparing it with the ERA5-Land 7-28 cm dataset still yielded excellent 

correlation (Fig. 40), but the potential of this approach becomes evident primarily 

when compared with the RZ SCAT-SAR SWI SWI products. We report the 

correlation between ERA5-Land 7-28 cm and two SCAT-SAR SWI SWI products 

corresponding to T= (10; 15) in Fig. 40. 

In terms of r, both the SCAT-SAR SWI SWI products exhibited a consistent trend. 

This implies that, like the at the Alento point scale, the use of SWI instead of SMAR 

to penetrate deeper into the soil profile led to an excessive adjustment, thereby 

flattening the surface SCAT-SAR SWI. 

In addition, their comparison with the SCAT-SAR SWI product showed the same 

pattern with a sort of difference between the west and eastern parts of Basilicata. 

The use of physically based parameters in Fig. 38 resulted in the SCAT-SAR SWI 

SMAR product having a better correlation with the ERA5-Land 7-28 cm dataset, 

keeping the area of water bodies visible, which we have removed from the 

computation of correlation.  

The proposed methodology has enabled the creation of a product sensitive to soil 

wetting and drying dynamics that can be used for monitoring soil water stress 

conditions.  This provides a solid basis for the study of vulnerability to climate 

change in the areas examined. The relevance of the obtained SCAT-SAR SWI 

SMAR is evident in the context of the UNSDGs, since it proposes an innovative 

method that specifically contributes to action against climate change (SDG 13). 
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Fig. 40: Correlation between ERA5-Land 7-28 cm 
and RZ from SMAR, SWI T=10, SWI T= 15. 
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C h a p t e r  5  

CONCLUSION 

The identification of SM content and its variability is a crucial action to better 

analyze and monitor the effects induced by climate change. SM is an important 

parameter that can provide valuable insights, at different temporal scales, for 

example by helping in the identification of the status of flood-prone areas as well 

as assessing areas at risk of drought and/or landslides. This work addresses the 

issue of estimating relative SM conditions through integrated techniques involving 

microwave satellite measurements and hydrological modeling.  

Its relevance is evident in the context of the UNSDGs, proposing an innovative 

method that specifically contributes to action against climate change (SDG 13). 

The advanced methodology enables the creation of an excellent product for 

monitoring soil water stress conditions, thus providing a solid foundation for 

studying the vulnerability to climate change in the examined areas. In fact, a detailed 

understanding of the pros and cons of remote sensing products paves the way for 

the subsequent development of studies aimed at improving crop resilience and 

adapting to extreme climatic events. 

In the first part of the work, we made a comparison of microwave SM products of 

NASA and ESA that encompass passive SM retrievals like SMAP L4, SMOS-IC, 

as well as combined ESA CCI or active (ASCAT, CGLS SSM) in Europe. 

ASCAT measurements (at 25 km resolution) have shown a good agreement when 

compared to ground measurements in European ecoregions, unlike the CGLS 

SSM measurements, which are less accurate due to being in an experimental phase. 
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Other microwave products such as SMAP L4 and ESA CCI have demonstrated 

higher reliability.  

Satellite measurements are strongly influenced by the presence of vegetation and 

stable water bodies within their field of view, especially when using coarse spatial 

resolution products. Therefore, it is essential improve temporal and spatial 

resolution. Thus, for the second part of the work, only data processed from 

Synthetic Aperture Radar (SAR) instruments, such as ASCAT on board MetOp 

satellites, and SAR on board Sentinel-1 satellites, a constellation of two polar-

orbiting satellites, has been used. The unique configuration of these active 

microwave satellites operating in the C-band, both able to provide SM information 

using the change detection method developed by TU Wien, has led us to choose 

ASCAT for its high temporal resolution, providing at least two daily measurements 

at the same location, and a derived product (SSM) from Sentinel-1 (SSM S-1), 

offering high spatial resolution with kilometer-scale measurements. The 

combination of the ASCAT revisit period and the spatial scale of SSM Sentinel-1 

allows for monitoring environmental emergencies and supporting monitoring 

services. 

Additionally, obtaining SM information at various depths can be challenging. These 

challenges were addressed and resolved by employing a Soil Water Index (SWI) 

fusion technique based on an exponential filter recursive formula, assigning 

weights to two 1:1 historical time series, and a SM Analytical Relationship (SMAR) 

hydrological modeling technique with empirically determined parameters. 

The potential of this new approach for monitoring spatio-temporal variations in 

SM has been verified initially by comparing the results with the time series of the 

COSMOS Alento stations and subsequently in the Basilicata region from 2017 to 

2022 through a comparison with the ERA5-Land dataset. 
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The study proceeded through several phases: the first phase that involved 

comparing freely available microwave SM products with ground measurements 

from the International SM Network on a European ecoregion scale has been 

developed at University of Basilicata. The second phase, conducted at the 

Department of Geodesy and Geoinformation (GEO) of Technische Universität 

Wien (TU Wien) in Vienna, focused on a deep analysis of ASCAT, the improved 

SSM S-1 product, and SWI as a fusion algorithm. The third phase has been the 

development of a SWI-SMAR framework with subsequent process and analysis 

thanks to skills acquired. Finally, the results were analyzed and interpreted. 

Regarding the capability to identify specific SM conditions, the technique 

developed in this thesis has demonstrated the following characteristics: 

 Scalability: The technique allowed for the estimation of SM values at 

intermediate depths (while current techniques provide values averaged 

over a meter), enabling a more realistic assessment of spatio-temporal SM 

conditions. 

 Sensitivity: It could recognize daily variations in both the wetting and 

drying phases. 

 Exportability: The approach can be immediately applied to other satellite 

sensors and in different geographical areas, as it relies entirely on available 

satellite data. 

In particular, its application in Basilicata has proven its high reliability when 

compared to the ERA5-Land dataset (maximum r ~ 0.7-0.8), providing insights 

into SM status with a pattern similar to precipitation regimes. The western part of 

the region showed a better correlation, as it experiences more regular precipitation. 
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The proposed work serves as a preliminary study with the potential for interesting 

future developments in the Mediterranean area, one of the areas most affected by 

the effects of climate change. It is important to highlight that in the SCAT-SAR 

SWI, both ASCAT and improved S-1 SSM have been assigned equal weights (1:1). 

However, ASCAT carries greater significance due to its higher frequency of 

temporal measurements (ranging from 2 to 6 per day). This situation is further 

compounded by the current operational status of only one Sentinel-1 satellite 

(Sentinel-1 B has been out of service since December 23, 2021). Consequently, the 

launch of the Sentinel-1 C satellite, with an augmented number of high-temporal-

resolution measurements, could represent a substantial improvement in the 

achieved results. In addition, a more precise derivation of SWI-SMAR model 

parameters would further refine its prediction. In a future perspective, the 

availability of soil macroporosity products with detailed studies of its alteration in 

response to climate change would meet the demand for more refined parameters. 

An example of this could be Hirmas et al., 2018, who demonstrated that continent-

scale changes in soil hydraulic properties can give rise to unexplored feedback loops 

between climate and the Earth's surface, thereby intensifying the water cycle. The 

combination of more precise parameters with machine learning techniques could 

yield additional benefits. 
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