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1   |   INTRODUCTION

Accommodation zones are a common feature of rift sys-
tems where offset is transferred along strike between 
adjacent normal faults (Childs et al., 1995; Gawthorpe & 
Hurst,  1993; McClay et al.,  2002; Morley,  1995; Morley 
et al., 1990; Peacock & Sanderson, 1994; Rosendahl, 1987). 
They comprise of two main types: (1) synthetic accommo-
dation zones, or relay ramps, where overlapping normal 
faults dip in the same direction; and (2) conjugate relay 
zones where faults have opposing dip direction. Conjugate 
relay zones are divided into graben-type, where normal 
faults dip towards each other to form a subsiding graben 

in the zone of fault overlap (Figure 1), and horst-type relay 
zones where crust is uplifted between normal faults that 
dip away from each other (Childs et al.,  2019). Graben-
type and horst-type relay zones are also designated with 
terms ‘convergent’ and ‘divergent’ respectively (Childs 
et al.,  2019). Conjugate relay zones commonly display 
high lateral strain gradients and vertical-axis rotations 
related to slow lateral propagation of overlapping faults 
(Acocella et al., 1999, 2000; Childs et al., 2019; Ferrill & 
Morris, 2001; Imber et al., 2004).

The Messina Strait (Southern Italy) sits in a seismi-
cally active region where ongoing NW-SE extension is 
driven by southeastward rollback and retreat of the Ionian 
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Abstract
Messina Strait is a narrow fault-bounded marine basin that separates the 
Calabrian peninsula from Sicily in southern Italy. It sits in a seismically active 
region where normal fault scarps and raised Quaternary marine terraces record 
ongoing extension driven by southeastward rollback of the Calabrian subduction 
zone. A review of published studies and new data shows that normal faults in 
the Messina Strait region define a conjugate relay zone where displacement is 
transferred along strike from NW-dipping normal faults in the northeast (south-
ern Calabria) to the SE-dipping Messina-Taormina normal fault in the southwest 
(offshore eastern Sicily). The narrow marine strait is a graben undergoing active 
subsidence within the relay zone, where pronounced curvature of normal faults 
results from large strain gradients and clockwise rotations related to fault interac-
tions. Based on regional fault geometries and published age constraints, we infer 
that normal faults in southern Calabria migrated northwest while normal faults 
in NE Sicily migrated southeast during the past ca. 2–2.5 Myr. This pattern has 
resulted in tectonic narrowing of the strait through time by inward migration of 
facing normal faults and rapid mantle-driven uplift.
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subduction zone and Calabrian forearc crust (Figure  2) 
(Faccenna et al., 2003; Gutscher et al., 2016; Rosenbaum & 
Lister, 2004). The Strait forms a narrow hook-shaped con-
striction where daily exchange of water masses between the 
Ionian and Tyrrhenian seas produces strong tidal currents 
that erode, mobilize and deposit sediment (e.g. Longhi-
tano, 2018a; Martorelli et al., 2023). Numerous studies have 
documented active faults, earthquakes, tsunamis, sedimen-
tation and uplift in this region (Aloisi et al., 2013; Antonioli 
et al., 2021; Barreca et al., 2021; Doglioni et al., 2012; Fu 
et al., 2017; Gallen et al., 2023; Ghisetti, 1981, 1992; Longhi-
tano, 2018a, 2018b; Longhitano & Chiarella, 2020; Meschis, 
Roberts, et al., 2022; Meschis, Teza, et al., 2022; Monaco & 
Tortorici, 2000; Ridente et al., 2014), but uncertainty per-
sists regarding the long-term evolution of active faults over 
the past 2–3 Myr, vertical crustal motions, growth of topog-
raphy and seafloor bathymetry in this region.

This article integrates information from previous stud-
ies with new data to examine active extensional kinemat-
ics and structural controls on topography, bathymetry and 
sedimentation in the modern Messina Strait. We find that 
normal faults in this area define a conjugate relay zone 
(c.f. Childs et al., 2019), where displacement on opposed-
dipping normal faults is transferred through a zone of 
overlap near the fault tips. The distinctive plan-view hook 
shape and strong curvature of basin-bounding normal 
faults reflect large strain gradients and clockwise rota-
tions near the interacting faults. These fault interactions 
are part of a rapidly evolving 4D strain field related to on-
going extensional breakup of the Calabrian forearc region, 

as tear faults in the subducting Ionian slab propagate into 
the overlying forearc lithosphere.

2   |   TECTONIC AND GEOLOGIC 
SETTING

2.1  |  Regional geology and tectonic 
stratigraphy

The central Mediterranean region has a complex history 
of Cenozoic thrusting and mountain building related 
to subduction at the Iberian margin, followed by rifting 
and opening of the Tyrrhenian Sea during rapid rollback 

Highlights

•	 Normal faults in the Messina Strait define an 
active extensional conjugate relay zone.

•	 Strain is transferred between opposed-dipping 
normal faults in southern Calabria and north-
east Sicily.

•	 Plan-view fault curvature results from large 
strain gradients and rotations related to fault-
tip interactions.

•	 Messina Strait has narrowed in the past ~2.5 
Myr by inward migration of facing normal 
faults.

F I G U R E  1   Major 3D geometries, idealized cross-sections and kinematics of interacting normal faults in a graben conjugate relay zone. 
Large strain gradients are commonly observed in the area of overlap (relay zone) where offset decreases along strike towards the fault tips.
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and retreat of the Ionian subduction zone (Rosenbaum 
& Lister,  2004; Rosenbaum et al.,  2002; Wortel & Spa-
kman,  2000). Forearc crust in Calabria and NE Sicily 
has translated ca. 800 km to the southeast over the past 
ca. 30 Myr in response to rollback of the highly arcuate 
Ionian subduction zone (Figure 2) (Faccenna et al., 2003, 
2004; Gutscher et al., 2016; Loreto et al., 2021; Romagny 
et al.,  2020; van Hinsbergen et al.,  2020). The Calabria-
Peloritani terrane is a belt of Palaeozoic to Mesozoic 
plutonic and metamorphic rocks in southern Calabria 
and NE Sicily that form a stack of thrust nappes and 

ophiolite-bearing tectonic units of the Alpine internal 
zone (Cirrincione et al., 2015; Rossetti et al., 2001; Vitale 
& Ciarcia, 2013). Irregular retreat of the subduction zone 
has produced tear faults in the subducting slab that pro-
mote mantle upwelling, decompression melting, basaltic 
volcanism and NW-striking strike-slip faults that parti-
tion the crust into zones of upper-plate extension and 
oblique transtensional deformation (Figure 2) (Faccenna 
et al., 2004, 2011; Gallais et al., 2013; Jolivet et al., 2021; 
Maesano et al.,  2020; Pirrotta et al.,  2021, 2022; Scarfì 
et al., 2018; Sgroi et al., 2021).

F I G U R E  2   Regional tectonics of southern Italy showing major subduction zones and faults (compiled from Polonia et al., 2011; Gutscher 
et al., 2016; Scarfì et al., 2018; Maesano et al., 2020). SCRZ is the Siculo-Calabrian Rift Zone. Topography and bathymetry from GeoMap App.
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Crystalline rocks of the Calabria-Peloritani terrane are 
unconformably overlain by Cenozoic sedimentary deposits 
that record a change from subduction-related compression 
and shortening to crustal extension, rifting and strike-slip 
faulting due to rollback and retreat of the Ionian subduc-
tion zone (Cavazza et al., 1997; Monaco et al., 1996; Tripodi 
et al., 2013; Van Dijk et al., 2000). Late Oligocene to middle 
Miocene shallow-marine deposits of the Stilo-Capo D'Or-
lando Formation, olistostrome deposits of the Argille Vari-
colori and intra slope deposits of the Motta San Giovanni 
Formation accumulated in thrust-bounded accretionary 
trench-slope and wedge-top basins and along a transform 
margin (Cavazza & Ingersoll,  2005; Critelli & Martín-
Martín,  2022; Critelli et al.,  2017; Rohais et al.,  2021). 
Middle to late Miocene normal faults and rift basins were 
initiated by the onset of extension in western Calabria at the 
southeast margin of the Tyrrhenian Sea, while subduction-
related shortening and sedimentation continued in east-
ern Calabria. By late Miocene time, the entire Calabrian 
forearc terrane was affected by extension and opening of 
NE-striking rift basins cut by coeval NW-striking strike-slip 
faults (del Ben et al., 2008; Tripodi et al., 2013). Strike-slip 
faults in this region represent the upper crustal expression 
of tears in the subducting Ionian slab (e.g. Jolivet et al., 2021; 
Sgroi et al., 2021), which have segmented the upper plate of 
the retreating Ionian subduction zone since middle to late 
Miocene time (Civile et al., 2022; and references therein). 
NW-striking strike-slip faults display right-lateral offset in 
the southwest and left-lateral offset in the northeast (Brutto 
et al., 2016; del Ben et al., 2008; Longhitano et al., 2014; Tansi 
et al.,  2007), consistent with microplate kinematics pre-
dicted for southeastward extrusion of the subduction zone 
and highly arcuate offshore accretionary wedge (Figure 2) 
(Serpelloni et al., 2010; Viti et al., 2021; Zecchin et al., 2015).

Pliocene-Pleistocene deposits of southern Calabria and 
NE Sicily are divided into four tectono-sedimentary se-
quences (P1 to P4; Figure  3) that record fault-controlled 
phases of subsidence and uplift related to retreat and frag-
mentation of the Ionian subduction zone (Di Stefano 
et al.,  2007; Tripodi et al.,  2018; Zecchin et al.,  2015). Se-
quence P1 overlies Messinian evaporites and consists of 
lower Pliocene coccolith-foraminiferal marls and marly 
rhythmites of the Trubi Formation that accumulated in 
low-energy offshore marine basins. Sequence P2 includes 
upper Pliocene fine-grained marine sandstones, marls and 
mudstones of the Monte Narbone Formation and correla-
tive units (Bonardi et al., 2001; Cavazza et al., 1997; Di Ste-
fano et al., 2007), which record continued offshore marine 
deposition with increasing input of fine-grained siliciclastic 
sediment from distal sources (Cavazza & Ingersoll, 2005). Se-
quence P3 is composed of early Pleistocene mixed bioclastic-
siliciclastic cross-bedded sandstones and calcarenites of the 
Calcareniti di Vinco Formation (Vinco Calcarenites) and 

equivalent mudstones and conglomerates that accumulated 
in tidal straits during early development of the modern fault 
system (Chiarella et al., 2021; di Stefano & Longhitano, 2009; 
Longhitano,  2011, 2018b; Longhitano et al.,  2012, 2021; 
Rossi et al.,  2017; Zecchin et al.,  2015). The Pellaro paleo-
high is a fault-bounded horst in the footwall of the south-
ern Armo fault, east of the Messina Strait (Figure 4), that 
underwent uplift during deposition of the Early Pleistocene 
(Gelasian) Vinco Calcarenites (Chiarella et al., 2021; Long-
hitano,  2018b). Paleocurrent data record transport north 
and south, away from the Pellaro paleo-high, indicating that 
the horst formed a structural high on the flank of the paleo-
Messina Strait during deposition (Longhitano, 2018b). Tidal 
deposits north of the paleo-high display stratal wedge geom-
etries and fanning dips produced by syn-tectonic tilting away 

F I G U R E  3   Generalized Pliocene—Pleistocene stratigraphy of 
the Messina Strait region (compiled from Di Stefano et al., 2007; 
Longhitano et al., 2012; Zecchin et al., 2015). P1 to P4 are 
tectono-stratigraphic sequences of Zecchin et al. (2015). MNN, 
Mediterranean Neogene Nannoplankton zone (Rio et al., 1990).
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from the uplifting horst during early stages of fault growth 
(Chiarella et al., 2021; Longhitano et al., 2021).

The Pleistocene Messina Gravels and Sands Forma-
tion formed by progradation of Gilbert deltas away from 
emerging topography on both sides of the Messina Strait 
(Barrier,  1986; Barrier et al.,  1986; di Stefano & Longhi-
tano, 2009; Lentini et al., 2000; Longhitano, 2018b; Long-
hitano et al., 2021). Messina Gravels and Sands are capped 
by thin red soils that record the onset of uplift and aban-
donment of the terrace surface. Sequence P4 is a sequence 
of middle to late Pleistocene marine and fluvial terrace 

deposits in southern Calabria and NE Sicily that have 
been uplifted to elevations up to 1.0–1.2 km in the past  
ca. 1.0–2.5 Myr (Figures 3 and 4) (Antonioli et al., 2006, 
2021; Roda-Boluda & Whittaker, 2017).

2.2  |  Active tectonics of the Messina 
Strait region

The Siculo-Calabrian Rift Zone is a ca. 350-km long belt 
of seismically active, north to NE-striking normal faults 

F I G U R E  4   Topographic and bathymetric map showing major faults, location of profile transects in Figure 5 (white lines with letters) 
and uplifted marine terraces (from Catalano & De Guidi, 2003; Roda-Boluda & Whittaker, 2017; Monaco et al., 2017; Antonioli et al., 2021) 
(faults compiled from Antonioli et al., 2006; Doglioni et al., 2012; Ridente et al., 2014; Pavano et al., 2016; Tripodi et al., 2018; Sgroi 
et al., 2021). Yellow surfaces are early Pleistocene marine terraces at elevations of ca. 1.0–1.2 km; light blue surfaces are ≤730 ka at lower 
elevations. The Messina Strait conjugate relay zone is the area of overlap between opposite-dipping normal faults between the red dashed 
lines, where strain is transferred from SE-dipping faults in the southwest to NW-dipping faults in the northeast. Fault plane solution for 
the 1908 M7.1 Messina earthquake is from Boschi et al. (1989), epicentre of Gasparini et al. (1982). AEF, Alfeo–Etna fault; AF, Armo fault; 
M, Messina; NGFZ, Nicotera-Gioiosa fault zone; P.H. Pellaro paleo-high; RC, Reggio Calabria; and SCRZ, Siculo-Calabrian Rift Zone. 
Topography is SRTM 1 arc-second DEM downloaded from USGS website (https://earth​explo​rer.usgs.gov/), bathymetry is 1/16 arc-minute 
data from EMODnet (https://portal.emodn​et-bathy​metry.eu/) displayed in QGIS version 3.24.
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F I G U R E  5   Fault-perpendicular 
topographic-bathymetric profiles showing 
major faults and related onshore–offshore 
morphology. Location of profiles in 
Figure 4. MTF is Messina-Taormina fault.
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in Calabria and eastern Sicily that accommodate NW-
SE extension in the upper plate of the Ionian subduc-
tion zone (Figures 2 and 4) (Brutto et al., 2016; Catalano 
et al., 2003, 2008; Jacques et al., 2001; Monaco et al., 1997; 
Monaco & Tortorici,  2000; Palano et al.,  2012, 2017; Pi-
rrotta et al.,  2021, 2022; Presti et al.,  2019; Tortorici 
et al.,  1995, 2003; Valensise & Pantosti,  1992; Westa-
way,  1993). Well-preserved normal fault scarps, marine 
terraces, river channel profiles and low-temperature ther-
mochronology record Pleistocene footwall uplift at rates 
of ca. 0.2–2 mm/year in Sicily (Catalano & De Guidi, 2003; 
Catalano et al., 2008; Meschis, Roberts, et al., 2022; Pavano 
et al., 2016; Tortorici et al., 1995) and southern Calabria 
(Antonioli et al., 2006, 2021; Catalano et al., 2003; Gallen 
et al., 2023; Meschis, Roberts, et al., 2022; Miyauchi et al., 
1994; Monaco et al.,  1997; Montenat et al.,  1991; Quye-
Sawyer et al.,  2021; Roberts et al.,  2013; Roda-Boluda & 
Whittaker, 2017). The Cittanova, Calanna, Scilla and Armo 
faults dip northwest and terminate to the northeast at the 
Coccorino and Nicotera-Gioiosa fault zones (Figure 4). An 
en-echelon array of north- to NNE-striking faults in south-
west Calabria bound the eastern margin of the Messina 
Strait (Figure 4). In NE Sicily, NW-SE extension is accom-
modated primarily on the 50 km long offshore Messina-
Taormina fault, which dips SE towards the Ionian Sea and 
terminates in the southwest against strands of the Aeolian-
Tindari-Letojanni right-lateral strike-slip fault zone.

The Messina-Taormina fault is an enigmatic structure 
that may have ruptured during the catastrophic 1908 
M7.1 Messina earthquake. Some studies conclude that 
this fault was the source of the earthquake (e.g. Meschis 
et al., 2019; Pino et al., 2000, 2009; Serpelloni et al., 2010), 
while others place the rupture on farther offshore SE-
dipping normal faults (Barreca et al.,  2021) or west-
dipping normal faults in Calabria (Aloisi et al.,  2013; 
Argnani,  2021, 2022). Submarine slope failures, slides 
and slumps are common at the steep western margin of 
the Strait, in the immediate hanging wall of the fault 
and may have contributed to production of tsunamis 
during the 1908 earthquake (Billi et al., 2008; Goswami 
et al.,  2014, 2017; Schambach et al.,  2020). Although 
the Messina-Taormina fault is implicated as a major ac-
tive normal fault based on a narrow linear shelf, steep 
seafloor bathymetry and regional patterns of uplift and 
erosion in northeast Sicily (Catalano & De Guidi, 2003; 
Catalano et al.,  2003, 2008; De Guidi et al.,  2003; Mo-
naco & Tortorici, 2000; Pavano et al., 2016), to date, the 
fault has not been clearly imaged with marine seismic 
data causing some workers to question the existence 
of an active SE-dipping normal fault in this position 
(Argnani,  2021, 2022; Argnani et al.,  2009; Argnani & 
Pino, 2023). However, published offshore seismic lines 
in Messina Strait (Argnani et al., 2009) stop just short of 

the likely trace of the fault, located at the top of a steep 
slope with abundant submarine slides and debris cones 
(Figure 4), and thus do not provide a definitive test of 
this fault. Moreover, GPS data and modelling point to 
the Messina-Taormina fault as a major structure bound-
ing the west side of the Strait that accommodates rapid 
NW-SE extension (Serpelloni et al., 2010). We therefore 
treat this as a large active normal fault that remains 
poorly imaged and requires more work to assess its role 
in the 1908 earthquake (e.g. Argnani & Pino, 2023).

GPS velocities reveal NW-SE extension across the 
Siculo-Calabrian Rift Zone at rates of 3–4 mm/year 
(Palano et al.,  2012; Serpelloni et al.,  2010). The NNW-
trending Malta Escarpment and related strike-slip faults 
east of Sicily connect north to a system of right-stepping 
dextral faults in the Aeolian-Tindari-Letojanni fault zone 
(Figures 2 and 4) (Gutscher et al., 2016, 2017; Maesano 
et al., 2020; Palano et al., 2015; Scarfì et al., 2018). This 
fault system represents a diffuse lithospheric boundary 
located above a tear in the Ionian slab that accommo-
dates differential motion between the Ionian and Sic-
ily microplates, providing a conduit for mantle-derived 
magmas of Mount Etna (e.g. Faccenna et al., 2011; Goes 
et al., 2004). The Peloritani Mountains in northeast Sic-
ily represent a semi-independent crustal block east of the 
Aeolian-Tindari-Letojanni fault zone, and northwest of 
the Messina-Taormina normal fault, that accommodates 
northwest motion away from southern Calabria (Figure 4) 
(Catalano et al., 2003; Pavano et al., 2015, 2016). Slip on 
the Messina-Taormina fault produces hanging-wall sub-
sidence in the Strait and footwall uplift in the Peloritani 
Mountains that may be enhanced by mantle doming in 
the upper plate of the Ionian subduction zone (Barreca 
et al., 2021; Meschis et al., 2019; Serpelloni et al., 2010).

2.3  |  Modern Messina Strait

The present-day Messina Strait is a marine connection 
between the Tyrrhenian Sea in the north and the Ionian 
Sea in the south (Figure 4) (Doglioni et al., 2012; Long-
hitano, 2018a; Martorelli et al., 2023). The sill is a shal-
low narrow constriction, 3–5 km wide and <100 m deep, 
which formed a narrow land bridge for several thou-
sand years during the last glacial maximum sea-level 
lowstand ca. 25–20 ka (Antonioli et al.,  2016). A tidal 
elevation difference of ca. 35 cm between the two ma-
rine basins produces a water surface gradient and conse-
quent gravity-driven water mass transfers every 6 h per 
day (Defant,  1940; Vercelli,  1925). This tidal difference 
stimulates collinear tidal currents moving axially along 
the Strait that accelerate up to velocities of >3 m s−1 as 
they traverse the shallow constriction across the strait sill 
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(Brandt et al., 1999). Although waves are present in the 
Strait, tidal currents represent the major element control-
ling net sediment transport along two principal directions 
away from the strait centre (Longhitano,  2018a; Mar-
torelli et al., 2023). Because of high shear stresses exerted 
by strong tidal currents, the sill is a by-pass zone where 
most of the sediment load is transported in suspension 
and coarse-grained deposits are locally entrapped within 
topographic lows of the sill (Longhitano,  2013, 2018a). 
Fast current velocities maintain a rocky marine substrate 
at the sill, and sediment is swept into wider, deeper depo-
sitional zones to the north and south where it accumu-
lates in large-scale tidal dune fields (Santoro et al., 2004).

3   |   FAULT ZONE ANALYSIS

3.1  |  Conjugate relay zone

The Messina Strait conjugate relay zone (c.f. Childs 
et al.,  2019) is defined here as the zone of overlap and 
strain transfer between two sets of opposed-dipping nor-
mal faults: (1) NW-dipping faults in southwest Calabria; 
and (2) the SE-dipping Messina-Taormina fault and as-
sociated normal faults in NE Sicily (Figure 4). Both fault 
sets are present within the relay zone and dip towards 
each other to form a graben where subsidence maintains 

the basin floor below sea level. The width of the strait de-
creases to ca. 3 km and water shallows to <100 m depth 
in the narrow constriction at the sill. Closely spaced 
normal faults strike perpendicular to the major strait-
bounding faults across the sill in a zone of broad doming 
relative to deeper offshore basins to the south and north 
(Figure  4), similar to the along strike pattern of subtle 
uplift see in classic conjugate relay zones (Figure 1d).

The morphological expression of normal faults in the 
Messina Strait is revealed in a series of fault-perpendicular 
(Figure 5) and fault-parallel (Figure 6) profiles that were 
constructed from topographic and bathymetric data and 
integrated with published fault maps (Figure 4) (Antonioli 
et al., 2006; Critelli et al., 2016; Doglioni et al., 2012; Ferranti 
et al., 2008; Pavano et al., 2016; Ridente et al., 2014; Tripodi 
et al., 2018, 2022). Fault-perpendicular profiles (Figure 5) 
show large displacements with structural relief up to ca. 
1200 m on individual normal faults. The Scilla fault forms 
a precipitous NW-facing escarpment with ca. 1000 m of 
vertical relief northeast of the constriction (Figures 4 and 
5b,c). Fault-parallel profiles (Figure  6) reveal systematic 
along-strike decrease in footwall elevation and hanging-
wall water depth, which collectively represent fault throw, 
in the zone of fault overlap where strain is transferred from 
the NW-dipping Scilla fault to the SE-dipping Messina-
Taormina fault. The Messina-Taormina fault reveals ca. 
1100 m of throw (Figure 6b) and up to 2200 m of combined 

F I G U R E  6   Longitudinal, strike-
parallel profiles of footwall topography 
and hanging-wall bathymetry for the two 
major facing normal faults of the Messina 
Strait conjugate relay zone. (a) Scilla 
fault. (b) Messina-Taormina fault. 
Vertical separation between smoothed 
footwall elevation and hanging-wall 
water depth (red dashed lines) represents 
approximate fault throw, which likely are 
minimum values due to footwall erosion 
and hanging-wall sedimentation. Throw 
decreases along strike in the zone of 
fault overlap and strain transfer near the 
fault tips. Reference locations shown in 
Figure 7a.
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total offset on the master fault and adjacent smaller nor-
mal faults in NE Sicily (Figure 5h). Transfer of fault dis-
placement is also reflected in elevations of Quaternary 
marine terraces on both sides of the relay zone:in addition 
to stepped profiles that reveal older terraces at higher el-
evations due to regional uplift, individual terraces in the 
footwall of normal faults in southern Calabria and NE Sic-
ily dip gently towards fault tips in the zone of fault overlap 
(Barreca et al., 2021; Monaco et al., 2017), mimicking the 
overall decrease of elevation seen in longitudinal profiles 
of footwall topography (Figure 6).

Figure  7a shows the distribution of major active 
faults, Pleistocene deposits and modern seafloor bathym-
etry of the Messina Strait region. The linear coastline of 
northeast Sicily is controlled by uplift in the footwall of 

the Messina-Taormina fault along a strike distance of ca. 
50 km (see also Figure 4). Co-seismic surface displace-
ments during the 1908 earthquake form a characteristic 
pattern of footwall uplift and hanging wall subsidence 
produced by slip on an active normal fault (Figure 7b) 
(Meschis et al., 2019). In contrast to the linear western 
margin, the irregular eastern margin of the strait hosts a 
north-trending en-echelon array of shorter active NNE-
striking faults and fault segments that control the shape 
of the coastline. West-facing promontories are produced 
by footwall uplift near southern fault terminations, and 
scallop-shaped bays form in areas of hanging-wall sub-
sidence (Figure 7a). The oldest fault in this en-echelon 
set is the Armo fault, which formed the active margin 
of the paleo-constriction during deposition of early 

F I G U R E  7   Faults and bathymetry 
of Messina Strait. (a) Map of sea floor 
bathymetry (modified from Martorelli 
et al., 2023) and active faults. Red line is 
approximate position of transect in part 
B. P.H. is Pellaro paleo-high; RCF is the 
Reggio Calabria fault. (b) Profile view of 
surface displacements associated with the 
1908 M7.1 Messina earthquake, showing 
close agreement between observed surface 
motions (filtered data) and modelled 
geometry of flexural slip on a normal fault 
with hanging-wall subsidence greater 
than footwall uplift (Meschis et al., 2019). 
Submarine slides and debris cones fill the 
proximal hanging wall of the Messina-
Taormina fault.
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Pleistocene tidal strait deposits (Chiarella et al.,  2021; 
Longhitano, 2011, 2018b).

A distinctive feature of the conjugate relay zone is pro-
nounced plan-view curvature of normal faults adjacent 
to the central sill (Figures 4 and 7). Outside of the relay 
zone, the regional strike of normal faults is 030°–035°. 
Faults curve progressively along strike into the relay zone 
where strike values increase to 070°–075°, deviating from 
the regional fault strike by 40°–45° (Figure 7). The area 
of greatest strike deviation coincides with minimum fault 
offset and subdued footwall topography near the tips 
of the overlapping faults (Figures  5d,e and 6). The off-
shore Capo Peloro fault (Figure 7) is marked by a prom-
inent NW-striking bathymetric lineament and truncated 
Plio-Pleistocene deposits with growth strata in the sub-
surface (Doglioni et al.,  2012). Figure  8 shows seafloor 

bathymetry and an aerial view of Messina Strait, illustrat-
ing the influence of active faulting on local topography, 
submarine morphology and sedimentary processes. The 
Messina Strait relay zone is thus characterized by strong 
fault curvature where fault offset, footwall elevation and 
water depth all decrease along strike towards the tips 
of facing normal faults in the area of extensional strain 
transfer and maximum reorientation of fault strike.

3.2  |  Normal fault initiation and  
migration

Figure 9 depicts the evolution of topography and migrat-
ing shorelines in response to initiation and migration of 
normal faults in southwest Calabria (Pirrotta et al., 2016) 

F I G U R E  8   (a) Detailed multibeam 
bathymetric map of Messina Strait 
showing active fault controls on seafloor 
bathymetry and sediment transport 
processes, with depositional zones of 
Longhitano (2013). MSF is Messina Strait 
fault. (b) Oblique aerial photo looking east 
at Messina Strait and bounding normal 
faults of the conjugate relay zone. Photo 
Credit: Longhitano et al. (2020), Field Trip 
Guide FT1, Tidalites Conference 2022.
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(faults from Atzori et al., 1983; Ghisetti, 1992; Jacques 
et al., 2001). The reconstruction is based on quantitative 
morphometric analysis that highlights the relative ages 
of river channel features, which are controlled by—and 
preserve a record of—progressive initiation and migra-
tion of normal faults through time (Pirrotta et al., 2016). 
Older faults in the southeast are still active today, likely 
with slower slip rates than the most active faults at the 
modern coastline. During early Pleistocene time (Gela-
sian, Figure 9a), a first phase of uplift was controlled by 
slip on the Cittanova, Delianuova and Gambarie faults, 
producing footwall uplift and erosion in the southeast. 
The western Aspromonte and Montalto faults were 

also active during this time, and areas northwest of the 
Cittanova fault formed a subsiding marine realm that 
included the Gioia and Villa basins. In a second stage 
(Calabrian; Figure 9b), the Calanna fault was initiated, 
slip on the Cittanova fault likely slowed, the former 
marine shelf was uplifted and the margin of the paleo-
Messina Strait shifted ca. 5–8 km to the northwest. Bi-
ostratigraphic data show that the Calanna fault was 
activated ca. 1.7 Ma (Longhitano et al., 2012). During the 
middle Pleistocene (Figure  9c), initiation of the Palmi 
fault led to early uplift and inversion of the Gioia and 
Villa basins as normal faults shifted again to the north-
west. In late Pleistocene time (Figure 9d), activation of 

F I G U R E  9   Maps showing initiation and migration of normal faults in southwest Calabria based on river channel evolution and 
fault analysis, modified from Pirrotta et al. (2016). Bold red lines are faults that became active in each stage of structural and geomorphic 
development. Older faults in the southeast (black fault lines) are still active today, likely with slower slip rates than the most active faults 
at the modern coastline. (a) During early Pleistocene Stage 1 (Gelasian), an early phase of fault slip on the Cittanova, Delianuova and 
Gambarie faults produced uplift and erosion in the southeast. (b) In a second stage of the Early Pleistocene (Calabrian), the Calanna and 
Santa Eufemia Faults were activated to initiate uplift of the Piani d'Aspromonte High, while the Gioia and Villa basins continued subsiding. 
(c) During Middle Pleistocene time, initiation of the Palmi fault led to early uplift and inversion of the Gioia and Villa basins; the Solano and 
Reggio Calabria faults also were activated at this time. (d) In Late Pleistocene time, activation of the Scilla fault zone caused depocentres to 
migrate into their present location during continued uplift of the Piani d'Aspromonte High.  
Abbreviations: CAF, Calanna fault; CAPF, Cappuccini fault; CF, Cittanova fault; DEF, Delianuova fault; GAF, Gambarie fault; MF, Montalto 
fault; PF, Palmi fault; SEF, Santa Eufemia fault; SF, Scilla fault; SOF, Solano fault; VB, Villa Basin; and WAF, Western Aspromonte fault.
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the modern Scilla fault zone caused depocentres to shift 
northwest into their present location. Thus, the configu-
ration of the modern Messina Strait rift zone was estab-
lished in Late Pleistocene time (Pirrotta et al., 2016).

Figure  10 is an oblique view looking southeast at a 
flight of uplifted and faulted Pleistocene marine terraces 
in southern Calabria (Antonioli et al., 2021), providing fur-
ther evidence for a history of northwest fault migration in 
this region. Terrace ages are estimated from radiocarbon 
dating, biostratigraphy, thermoluminescence dating and 
glacio-eustatic shoreline modelling (Antonioli et al., 2021; 
Miyauchi et al., 1994; Monaco et al., 2017; Roda-Boluda & 
Whittaker,  2017; Westaway,  1993). The timing of earliest 
fault motion is uncertain because the oldest Pleistocene 
marine terraces at elevations up to 1.2 km (named ‘SCA’ 
terraces after the Serre-Cittanova-Armo faults that cut 
them; Roda-Boluda & Whittaker, 2017) are not well dated. 
Regardless of absolute age constraints, the morphology 
and elevation of offset marine terraces show that the rela-
tive age of the faults decreases from southeast to northwest 

(see also Discussion below). A history of fault migration 
can similarly be inferred for en-echelon normal faults east 
of Messina Strait (Figure  7a). The Armo fault, oldest in 
the en-echelon array, formed the southeast margin of the 
paleo-Messina strait during deposition of the early Pleisto-
cene Calcareniti di Vinco Formation (Chiarella et al., 2021; 
Longhitano, 2011, 2018b). The Reggio Calabria fault to the 
north is inferred to be younger than the Armo fault based 
on the younger age (≤ 730 ka) of marine terraces in its foot-
wall. The northernmost faults of the en-echelon fault array 
are active strands of the Scilla fault zone directly adjacent 
to the central sill of the modern strait (Figures 7a and 8).

In summary, fluvial geomorphology and biostratigraphic 
data suggest a history in which NE-striking normal faults in 
southwest Calabria migrated northwest into the Tyrrhenian 
Sea during the same period (past ca. 2.5 Myr) that initiation 
of faults in the en-echelon array on the east margin of Mes-
sina Strait migrated north (Figures  9–11). Fault activity is 
currently focused at the narrow central sill of the modern 
strait, where normal faults display the strongest curvature in 

F I G U R E  1 0   Flight of uplifted and faulted marine terraces in southern Calabria (modified from Antonioli et al., 2021). ‘SCA’ terraces 
are Serre–Cittanova–Armo terraces, named for the faults that cut them (Roda-Boluda & Whittaker, 2017). The relative ages and elevations 
of faulted marine terraces suggest northwest migration of normal faults through time. The timing of the start of this sequence is uncertain 
because the high SCA marine terrace (early Pleistocene) is not well dated. See text for discussion.
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plan view and local fault strikes deviate up to 40°–45° from 
the regional fault strike (Figure 7a).

4   |   DISCUSSION

4.1  |  Significance of the conjugate relay 
zone

Based on the preceding synthesis of regional fault data, 
we propose a kinematic model for development of the 
Messina Strait conjugate relay zone (Figure 11). As seen 
in other examples (Childs et al., 2019), faults in this region 
display a distinctive pattern of overlap and strain transfer 
between opposed-dipping normal faults (Figures 4 and 7). 
While the general pattern of facing faults has been recog-
nized in previous studies (e.g. Catalano et al., 2003, 2008), 
the tectonic significance of fault geometries, strain trans-
fer and fault migration history has not been fully explored.

The plan-view curvature of facing normal faults in 
Messina Strait is observed in some but not all other ex-
tensional relay zones (Acocella et al.,  2000, 2005; Ebin-
ger, 1989; Morley et al., 1990; Peacock & Sanderson, 1994). 
Deviation of local fault strike within the relay zone from 
regional fault strike outside the relay zone (up to 40°–45°) 
overlaps the range of angular difference documented from 
active relay zones in Iceland, where fault curvature results 
from rotation of local extension direction due to interac-
tion with adjacent faults (Acocella et al., 2000). Degree of 
fault curvature is related to extension rate and magnitude 
(with faster extension producing more rotation), magni-
tude of far-field stress, orientation of inherited basement 
structures if present, and fault surface roughness (Aco-
cella et al., 2000). The NW-striking Capo Peloro strike-slip 
fault (Figure 7a) is oriented favourably to act as a transfer 
fault (e.g. Acocella et al., 2005), but the dextral sense of off-
set inferred by Doglioni et al. (2012), and confirmed here, 
is opposite to the left-lateral offset predicted for a simple 
relay zone. This apparent discrepancy likely reflects the 
complicating influence of an offshore normal fault that 
accommodates some extension north of Capo Peloro (Fig-
ures 7a and 12). The geometry of fault curvature suggests 
that clockwise rotation in the relay zone is related to ac-
tive fault interactions. The area of strongest plan-view 
curvature coincides with minimum values of fault offset, 
footwall elevation and water depth near the tips of facing 
normal faults in the area of fault overlap (Figures 5 and 6).  
Thus, the observed fault geometries and evidence for ac-
tive strain transfer between adjacent normal faults in Mes-
sina Strait are consistent with extensional conjugate relay 
zones worldwide (Childs et al., 2019).

The Messina Strait conjugate relay zone occupies a 
unique position within the Siculo-Calabrian Rift Zone, 
which accommodates regional extension in the upper 
plate of the Ionian subduction zone (Figure 2). The mod-
ern Strait is maintained as a shallow marine connection 
by active subsidence within the relay zone that results 
from extension and divergence between southern Ca-
labria and NE Sicily. This interpretation is supported by 
GPS data that indicate extensional opening of the Siculo-
Calabrian Rift Zone at rates of 3–4 mm/year (Catalano & 
De Guidi, 2003; Catalano et al., 2003; Palano et al., 2012; 
Pavano et al.,  2015, 2016; Serpelloni et al.,  2010). Some 
studies propose that southeastward retreat of the Ionian 
subduction zone and related extension stopped by ca. 2 Ma 
(e.g. Goes et al., 2004), but active extension across the Mes-
sina Strait suggests that rollback of the subduction zone 
continues today. Alternatively, extension in this region 
may be due to other mechanisms such as gravitational 
collapse or crustal block rotations (Palano et al.,  2012). 
Rapid Pleistocene to modern uplift is attributed to slab 
fragmentation and related changes in mantle dynamics 

F I G U R E  1 1   Proposed structural model for the Messina Strait 
conjugate relay zone. Strong fault curvature results from clockwise 
rotation in the area of active fault-tip interactions, where the 
strike of normal faults deviates from the regional fault strike by 
ca. 40°–45°. The dextral Capo Peloro fault accommodates transfer 
of some extensional strain from a SE-dipping offshore normal 
fault to northern strands of the Messina-Taormina fault system. 
The Pellaro paleo-high (P.H.) formed an early Pleistocene fault-
bounded structural high that separated north- and south-directed 
tidal currents (Longhitano, 2018b), suggesting that the narrow 
constriction of Messina Strait has migrated north ca. 20 km in the 
past ca. 2.0–2.5 Myr.
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and isostasy (Gallen et al., 2023), which counteract the ef-
fects of extension-related crustal thinning and subsidence.

4.2  |  Age of fault initiation and 
growth of topography

The age of initiation of normal faults in southern Calabria 
is poorly understood due to conflicting information about 
the age of marine deposits in the uplifted footwalls of 
the faults. Some studies (Quye-Sawyer et al., 2021; Roda-
Boluda & Whittaker, 2017) conclude that normal faulting 
and uplift of raised SCA (Serre-Cittanova-Armo) marine 
terraces started ca. 1.0 ± 0.2 Ma, based on the presence of 
‘northern guest’ faunas that are believed to have migrated 
into this region ca. 1 Ma (Catalano et al.,  2008; Dumas 
et al., 1981, 1987; Ghisetti, 1981; Miyauchi et al., 1994; Mo-
naco et al., 1996; Westaway, 1993). Because footwall up-
lift must post-date deposition of the marine deposits, it is 
logical to conclude that the normal faults initiated after ar-
rival of northern faunas. However, the timing of arrival of 
northern faunas in the central Mediterranean region is not 
well known. The start of the Pleistocene (base of Gelasian; 
Figure 3) is now placed at 2.58 Ma and is recognized as the 
start of major northern hemisphere glaciation and global 
cooling (Cohen et al., 2013; Gibbard & Head, 2010; Head 
et al., 2008). The first arrival of northern faunas (e.g. Arc-
tica islandica, Hyalinea balthica) due to climate deteriora-
tion is at least as old as the start of the Calabrian stage, ca. 
1.7–1.8 Ma (Bizzarri & Baldanza, 2020; Crippa et al., 2019; 

Crippa & Raineri,  2015; Gibbard & Head,  2010), earlier 
than the widely cited age of 1.0 ± 0.2 Ma. Biostratigraphic 
data from Vinco Calcarenites in the hanging wall of the 
Armo fault record syn-tectonic deposition during fault 
offset in early Gelasian time, ca. 2.4–2.6 Ma (Barrier, 1984, 
1986; Barrier et al.,  1987; Guarnieri et al.,  2004; Long-
hitano et al., 2012), and the Calanna fault was active by 
ca. 1.7–1.8 Ma (Longhitano et al., 2021). Thus, the age of 
onset of major normal faults and footwall uplift in south-
ern Calabria is loosely bracket between ca. 1.0 and 2.6 Ma.

Two hypotheses can potentially explain conflicting 
published estimates for the timing of earliest extension 
and uplift in southern Calabria. (1) Normal faults may 
have initiated in early Pleistocene time (ca. 2.4–2.6 Ma) 
as indicated by biostratigraphic data, but with little or no 
uplift in their footwalls until ca. 1 Ma (widely cited age for 
the onset of regional uplift). This explanation is consistent 
with evidence that during early stages of extension, the 
Armo fault was a blind fault that formed a basin-facing 
monocline above the propagating tip of the growing fault 
(Chiarella et al.,  2021), which may have involved slow 
footwall uplift. However, full suppression of footwall up-
lift is unusual for active normal faults, and there is abun-
dant evidence for early Pleistocene siliciclastic input from 
footwalls of the faults in question (Chiarella et al., 2021; 
Longhitano,  2011; Longhitano et al.,  2012, 2021; Rossi 
et al., 2017), which requires active footwall uplift and ero-
sion. (2) Alternatively, the high SCA marine terraces may 
be older than ca. 1 Ma if ‘northern guest’ faunas arrived 
in southern Calabria prior to 1.0 Ma. This hypothesis is 

F I G U R E  1 2   Hypothetical sketch maps showing kinematics of normal and strike-slip faults in a graben conjugate relay zone, to help 
evaluate behaviour of the Capo Peloro fault (CPF). (a) Simple relay zone with two normal faults and transfer of strain across a relatively 
small zone of fault overlap (white area). This geometry predicts left-lateral offset on the Capo Peloro fault. (b) Complex relay zone with three 
or more interacting faults and a larger area of strain transfer (white area). Fault 3 represents a SE-dipping offshore normal fault observed in 
seafloor bathymetry (Figure 7a). This geometry predicts observed right-lateral offset on the Capo Peloro fault, which acts as a kinematic link 
between normal faults 2 and 3.
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supported by recognition that northern boreal faunas (e.g. 
Arctica islandica, Hyalinea balthica) migrated south into 
the central Mediterranean region during early Pleistocene 
time (Gibbard & Head,  2010). If the oldest SCA marine 
terraces are early Gelasian (ca. 2.4–2.6 Ma), normal faults 
may have initiated in the southeast around that time and 
then migrated to the northwest (Figure  9). The second 
hypothesis is challenged by studies that find northern 
faunas arrived in the central Mediterranean region at the 
start of the Calabrian stage, ca. 1.7–1.8 Ma (Bizzarri & Bal-
danza, 2020; Crippa et al., 2019; Crippa & Raineri, 2015), 
not early Gelasian, so this explanation cannot fully resolve 
the age discrepancy.

Despite existing age uncertainties, the interpretation of 
northward migrating faults east of the Messina Strait is con-
sistent with evidence for northward migrating faults, ero-
sion and sedimentation in northeast Sicily during Middle 
to Late Pleistocene time (di Stefano & Longhitano, 2009). 
In addition, uplifted Pleistocene marine deposits in the 
footwall of the Messina-Taormina fault (Figure 7a; Lentini 
et al., 2000; di Stefano & Longhitano, 2009) indicate that 
normal faults in NE Sicily have stepped to the southeast 
in the past 1–2 Myr. Combined with northwest migration 
of normal faults in southern Calabria (Figure 9; Pirrotta 
et al.,  2016), this pattern indicates that the relay zone 
and Messina Strait have become narrower through time. 
Tectonic narrowing of the marine passage despite ongo-
ing extension is likely due to inward migration of facing 
normal faults and rapid regional uplift (Gallen et al., 2023; 
Meschis, Roberts, et al., 2022; Meschis, Teza, et al., 2022; 
Pavano et al., 2016; Quye-Sawyer et al., 2021; Roda-Boluda 
& Whittaker, 2017), suggesting that mantle-driven uplift 
has overwhelmed and now exceeds extension-related sub-
sidence in many areas where Pleistocene marine deposits 
are exposed above sea level.

5   |   CONCLUSIONS

This study identifies an active conjugate relay zone in the 
Messina Strait of southern Italy, where NW-SE exten-
sion results from rapid rollback and retreat of the Ionian 
subduction zone. This region is distinguished by a rich 
cultural legacy recorded in Homer's Odyssey (c. eighth 
century BC), and a modern record of major earthquakes 
and persistent seismic hazards. The relay zone is defined 
by an along-strike transfer of extensional strain from active 
NW-dipping normal faults in southwest Calabria to the 
SE-dipping Messina-Taormina normal fault offshore east-
ern Sicily (likely source of the 1908 M7.1 Messina earth-
quake). Strong curvature of facing normal faults in the 
active relay zone results from clockwise rotation related to 
ongoing fault-tip interactions. Integrated topographic and 

bathymetric profiles show that fault throw, footwall el-
evation and water depth, all decrease along strike towards 
the tips of facing normal faults in the area of extensional 
strain transfer and maximum reorientation of fault strike. 
The observed fault geometries and related processes exert 
a strong control on modern topography, seafloor bathym-
etry and active sedimentary processes of the Messina Strait 
region.

Published evidence from fluvial geomorphology and 
biostratigraphy shows that normal faults and footwall up-
lift in southern Calabria migrated northwest from early 
Gelasian time (ca. 2.4–2.6 Ma) to the present day, with the 
most active faults currently located at the modern coast-
line, though there is some uncertainty regarding the age of 
initiation of regional faulting and uplift. During the same 
period, basin-bounding normal faults in NE Sicily mi-
grated southeast to the modern Messina-Taormina fault. 
The net inward migration of facing normal faults has re-
sulted in progressive narrowing of the Strait through time. 
Tectonic narrowing of the marine passage despite regional 
extension suggests that mantle-driven uplift now exceeds 
extension-related subsidence in many areas. This pattern, 
if it continues in the geologic future, may eventually result 
in permanent closure of the Messina Strait.
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