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Abstract
In this paperwe consider the problemof the approximation of definite integrals onfinite
intervals for integrand functions showing some kind of “pathological” behavior, e.g.
“nearly” singular functions, highly oscillating functions, weakly singular functions,
etc. In particular, we introduce and study a product rule based on equally spaced nodes
and on the constrainedmock-Chebyshev least squares operator. Like other polynomial
or rational approximation methods, this operator was recently introduced in order to
defeat the Runge phenomenon that occurs when using polynomial interpolation on
large sets of equally spaced points. Unlike methods based on piecewise approximation
functions, mainly used in the case of equally spaced nodes, our product rule offers a
high efficiency, with performances slightly lower than those of global methods based
on orthogonal polynomials in the same spaces of functions. We study the convergence
of the product rule and provide error estimates in subspaces of continuous functions.
We test the effectiveness of the formula by means of several examples, which confirm
the theoretical estimates.
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1 Introduction

The paper deals with the numerical computation of integrals of the type

I ( f , y) :=
∫ 1

−1
f (x)K (x, y)w(x)dx, y ∈ S ⊂ R, (1)

where f is a sufficiently smooth function, w(x) = (1 − x)α(1 + x)β is a Jacobi
weight of parameters α, β > −1, and the kernel K (x, y) defined in D = {(x, y) : x ∈
[−1, 1], y ∈ S}, contains some peculiar drawbacks. The topic is of interest in many
applications, and in particular useful in numerical methods for functional equations
(see e.g. [8, 16, 26, 29]), which model problems arising in a large variety of fields:
mathematical physics, electrochemistry, crystal growth, biophysics, viscoelasticity,
heat transfer model, etc. Because of the large variety of applications, great attention
has been posed in literature and several numerical methods for solving these equations
have been proposed (see [1, 4] and the references therein).

Weakly singular functions, such as log|x − y|, |x − y|μ,μ > −1, or highly
oscillating functions, such as sin(yx), cos(yx) for |y| � 1, are only examples of
possible kernels for which the accurate computation of I ( f , y) can be successfully
performed by means of the so-called product integration rules, i.e. formulae based on
the approximation of the “smooth” function f and the exact computation of the rules
coefficients. Product rules of interpolation type based on the zeros of orthogonal poly-
nomials are well known in literature, also for the case of unbounded intervals and/or
double integrals (see e.g. [15, 18, 21–25, 28, 30, 33]). These methods produce very
satisfactory results, since the quadrature error depends essentially on the smoothness
of the function f , and usually behaves like the best approximation error by polyno-
mials of the function f . However, in many applications f is known only on a set of
equally spaced points, or more in general the integrals have to be computed starting
from scattered data. In these cases other procedures involving composite quadrature
rules can be used, but this approach leads to a low degree of approximation, showing
saturation phenomena. In this setting, we propose a product integration rule, based on
the approximation of f known on a set of equispaced nodes, by using the constrained
mock-Chebyshev least squares linear operator P̂r ,n( f ) [9, 12]. Such operator has
been recently used for deriving an efficient quadrature rule [10, 11] based on equidis-
tant points, for integrals of the type (1), with K (x, y) ≡ 1. As we will show, the
product formula we introduce here is convergent in suitable subspaces of C([−1, 1]),
providing in these cases estimates of the quadrature error.

The outline of the paper is the following. In Sect. 2 we briefly recall the main
results concerning the product formula and the constrained mock-Chebyshev least
squares interpolant. In Sect. 3 we introduce the constrained mock-Chebyshev product
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formula, with estimate of the error in Sobolev-type subspaces, and provide some
implementation details for a selection of kernels. In Sect. 4 are given some numerical
tests, and comparisons with the results achieved by the product rule on Chebyshev
zeros.

2 Preliminaries

Fromnowon,Cwill denote any positive constant having differentmeanings at different
occurrences and the writing C �= C(a, b, . . . ) has to be understood as C not depending
on a, b, . . . . If A, B > 0 are quantities depending on some parameters, we write
A ∼ B, if there exists a constant C �= C (A, B) such that C −1B ≤ A ≤ C B.

Furthermore, we denote by Πm the space of the algebraic polynomials of degree less
than or equal tom. Finally, for any bivariate function h(x, y), we denote the projections
of the function h(x, y) on one variable as hy(x) and hx (y) respectively.

2.1 Function spaces and orthogonal basis

Let us denote by C0([−1, 1]) the space of continuous functions in [−1, 1] equipped
with the norm ‖ f ‖∞ := max

x∈[−1,1]| f (x)|. For any f ∈ C0([−1, 1])

Er ( f ) = inf
Qr∈Πr

‖ f − Qr‖∞ (2)

is the error of best polynomial approximation of f in uniform norm. As well-known,
by the Weierstrass Theorem [6],

f ∈ C0([−1, 1]) ⇔ lim
r→∞ Er ( f ) = 0.

By denoting with AC(−1, 1) the space of functions in [−1, 1] which are absolutely
continuous on every closed subset of (−1, 1) and by setting φ(x) = √

1 − x2, let

Ws =
{
f ∈ C0([−1, 1]) : f (s−1) ∈ AC(−1, 1) and ‖ f (s)φs‖∞ < ∞

}
,

be the Sobolev space of order s ∈ N, s ≥ 1, endowed with the norm

‖ f ‖Ws = ‖ f ‖∞ + ‖ f (s)φs‖∞.

To estimate the error of best polynomial approximation, we recall the Favard inequal-
ity [14], which holds for each f ∈ Ws,

Er ( f ) ≤ C ‖ f ‖Ws

rs
, C �= C (r , f ). (3)

We also set
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wC (x) := 1√
1 − x2

,

Ti (x) := cos(i arccos x), i ∈ N0,

‖Ti‖2,√wC :=
(∫ 1

−1
Ti (x)

2wC (x) dx

) 1
2

=
{√

π, n = 0,√
π
2 , n �= 0,

and we denote by
{
pi (wC )

}
i∈N0

the sequence of orthonormal polynomials w.r.t. the

1-st kind Chebyshev weight wC

pi (w
C , x) := Ti (x)

‖Ti‖2,√wC

, i ∈ N0.

2.2 A product integration rule on the zeros of 1-st kind Chebyshev polynomials

Let {z1, . . . , zr+1} be the zeros of the (r +1)-th orthonormal polynomial pr+1(w
C , ·)

with respect to the 1-st kind ChebyshevweightwC (x) = 1√
1−x2

and denote by {λi }r+1
i=1

the corresponding Christoffel numbers. Let Lr (w
C , f ) ∈ Πr be the interpolating

polynomial of f at the zeros {zi }r+1
i=1 of pr+1(w

C ), i.e.

Lr (w
C , f , zi ) = f (zi ), i = 1, 2, . . . , r .

It can be represented as (see e.g. [22], Chapter 4)

Lr (w
C , f , x) =

r+1∑
i=1

f (zi )�i (w
C , x) =

r+1∑
i=1

f (zi )λi

r∑
k=0

pk(w
C , x)pk(w

C , zi ),

A class of interpolating product rules is based on the approximation of the function f
in (1) by Lr (w

C , f ) (see e.g. [22] and the references therein), i.e.
∫ 1

−1
f (x)K (x, y)w(x)dx =

∫ 1

−1
Lr (w

C , f , x)K (x, y)w(x)dx + er ( f , y)

=: Σr ( f , y) + er ( f , y), (4)

where

Σr ( f , y) =
r+1∑
i=1

f (zi )λi

r∑
k=0

pk(w
C , zi )

∫ 1

−1
pk(w

C , x)K (x, y)w(x)dx,

and

er ( f , y) =
∫ 1

−1
( f (x) − Lr (w

C , f , x))K (x, y)w(x)dx .

The rule is exact for polynomials of degree r , i.e.
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er (Qr ) = 0, ∀ Qr ∈ Πr .

As it is well known, the accuracy of the product rule is based on “exact” evaluation of
the modified moments

Mk(y) :=
∫ 1

−1
pk(w

C , x)K (x, y)w(x)dx, k = 0, . . . , r . (5)

Depending on the kernel K and on the weight function w, a standard computation
of Mk(y), k = 0, . . . , r can be obtained by recurrence relations (see, e.g., [32]).
Besides this approach, other strategies can be thought, as long as modified moments
are computed with high accuracy. About the error estimate, from a more general result
by Nevai [27], the following theorem holds

Theorem 1 Let f ∈ C0([−1, 1]). Under the assumption

sup
y∈S

∫ 1

−1
|K (x, y)|w(x) log (2 + |k(x, y)|w(x)) dx < +∞, (6)

the following estimate holds true

sup
y∈S

|er ( f , y)| ≤ CEr ( f ), C �= C(r , f ). (7)

2.3 Constrainedmock-Chebyshev least squares interpolant

Let Xn = {ξi }ni=0 be the set of n + 1 equally spaced nodes of [−1, 1], i.e.

Xn =
{
ξi = −1 + 2

n
i : i = 0, . . . , n

}
,

and let the function f be known only at the points of Xn . The main idea of the con-
strained mock-Chebyshev least squares method [9, 13] is to construct an interpolant of
f on a proper subset of Xn , formed bym+1 nodes, chosen as “closest” to Chebyshev–
Lobatto nodes, and use the remaining n − m points of Xn to improve the accuracy of
approximation by a process of simultaneous regression of degree p ≥ 0. To be more

precise, let m =
⌊
π

√
n
2

⌋
, and denote by XCL

m the set of Chebyshev–Lobatto nodes of

order m + 1

XCL
m =

{
ξCL
i = − cos

(
π

m
i

)
: i = 0, . . . ,m

}
.

For any i = 0, . . . ,m, let us define the node ξ ′
i ∈ Xn as

∣∣∣ξ ′
i − ξCL

i

∣∣∣ := min
ξ j∈Xn

∣∣∣ξ j − ξCL
i

∣∣∣ ,
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then X ′
m := {ξ ′

i : i = 0, . . . ,m} ⊂ Xn is the mock-Chebyshev set of order m related
to Xn [2, 19, 20]. Despite X ′′

n−m := Xn � X ′
m is not an equispaced grid, in [9] it is

proven that, for n sufficiently large, it is possible to approximate an equispaced grid
of q = �n/6� internal nodes of [−1, 1] with nodes of X ′′

n−m . We denote such grid of

q elements by X̃ ′′
n−m . The degree p =

⌊
π

√
n
12

⌋
of the least-squares polynomial is

selected so that there is a subset of cardinality p + 1 of the equispaced set which is
close, in the mock-Chebyshev sense, to the p + 1 Chebyshev grid

cos

(
2k − 1

2p + 2
π

)
, k = 1, . . . , p + 1. (8)

Set r = m + p+ 1 and let Br = {u0(x), . . . , ur (x)} be a basis of Πr . The constrained
mock-Chebyshev least squares interpolant P̂r ,n( f ) ∈ Πr is

P̂r ,n( f , x) =
r∑

i=0

aiui (x), (9)

where the vector a = [a0, a1, . . . , ar ]T is computed by solving the KKT linear sys-
tem [3, 12] [

2V T V CT

C 0

] [
a
z

]
=

[
2V T b
d

]
, (10)

with

V = [u j (ξi )]i=0,...,n
j=0,...,r

, C = [u j (ξi )]i=0,...,m
j=0,...,r

, (11)

b = [ f (ξ0), . . . , f (ξn)]T , d = [ f (ξ0), . . . , f (ξm)]T and z = [ẑ1, . . . , ẑm+1]T the
Lagrange multipliers vector. In defining V and C in (11) the assumption is that the
nodes ξi have been reordered so that ξi = ξ ′

i , i = 0, . . . ,m, and the polynomials
u0, . . . , um span Πm . In the following we denote by

M =
[
2V T V CT

C 0

]
, (12)

the KKT matrix and by κ(M) = ‖M‖1‖M−1‖1 its condition number in l1-norm.

Remark 1 We note that the approximant P̂r ,n( f ) is uniquely determined by the eval-
uations of the function f at the set of equispaced nodes Xn . Consequently,

P̂r ,n( f ) = P̂r ,n(Ln( f )) (13)

where

Ln( f , x) =
n∑

i=0

f (ξi )�i (x), �i (x) =
n∏
j=0
j �=i

x − ξ j

ξi − ξ j
, i = 0, . . . , n. (14)
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is the Lagrange polynomial interpolating f at the nodes of Xn .

The constrained mock-Chebyshev least squares operator

P̂r ,n : C0([−1, 1]) → Πr

f (x) �→ P̂r ,n( f , x)

reproduces polynomials of degree ≤ r (cf. [9]) and interpolates the function f at the
mock-Chebyshev subset of nodes, that is

P̂r ,n( f , ξ
′
i ) = f (ξ ′

i ), i = 0, . . . ,m.

Denoting by

R̂r ,n( f , x) := f (x) − P̂r ,n( f , x), x ∈ [−1, 1], (15)

the approximation error by means of the constrained mock-Chebyshev least squares
interpolant and by setting

Bn = D
(
2(r + 1)κ(M) + (m + 1)‖M−1‖1

)
(16)

where D := max
j=0,...,r

∥∥u j
∥∥∞, the following theorem holds [13]

Theorem 2 Let be f ∈ C0([−1, 1]), then
∥∥∥R̂r ,n( f )

∥∥∥∞ ≤ (1 + Bn) Er ( f ) (17)

where Er ( f ), introduced in (2), is the error of best uniform approximation of f by
polynomials of Πr .

Corollary 1 Let f ∈ Ck([−1, 1]), k = 0, . . . , r . Then we have

∥∥∥R̂r ,n( f )
∥∥∥∞ ≤ (1 + Bn) ω f

(
π

r + 1

)
, k = 0, (18)

∥∥∥R̂r ,n( f )
∥∥∥∞ ≤

(π

2

)k
(1 + Bn)

∥∥ f (k)
∥∥∞

(r + 1)r · · · (r − k + 2)
, 0 < k ≤ r , (19)

where ω f (·) is the modulus of continuity of the function f (cf. [5]).

Proof The proof follows by combining Theorem 2 and Jackson Theorem (see for
instance [5, Ch. 4]). ��
In what follows we are going to choose the basis Br as

{Ti (x) : i = 0, . . . , r} , (20)
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and hence the constrained mock-Chebyshev least squares polynomial takes the form

P̂C
r ,n( f , x) =

r∑
i=0

ai‖Ti‖2,√wC pi (w
C , x). (21)

Moreover, in [13] it has been shown that

Bn ≈ e3.66n2.03. (22)

3 Themain result

From now on we assume that the function f is known only on the set of equis-
paced nodes Xn . As we announced in the introduction, the product integration rule
we are going to introduce is based on the approximation of the function f by P̂C

r ,n( f )
expressed in the Chebyshev polynomial basis as in (21) and on the “exact” evaluation
of the coefficients of the quadrature method. Indeed, by (1) we get

I ( f , y) =
∫ 1

−1
P̂C
r ,n( f , x)K (x, y)w(x)dx + êr ,n( f , y) (23)

=
∫ 1

−1

(
r∑

i=0

ai‖Ti‖2,√wC pi (w
C , x)

)
K (x, y)w(x)dx + êr ,n( f , y) (24)

=:
r∑

i=0

ai‖Ti‖2,√wC Mi (y) + êr ,n( f , y) = Σr ,n( f , y) + êr ,n( f , y) (25)

where w(x) = (1 − x)α(1 + x)β, α, β > −1,

Mi (y) =
∫ 1

−1
pi (w

C , x)K (x, y)w(x)dx

are the modified moments defined in (5) and

êr ,n( f , y) =
∫ 1

−1
( f (x) − P̂C

r ,n( f , x))K (x, y)w(x)dx (26)

is the quadrature error.

Theorem 3 The quadrature sum Σr ,n( f , y) in (25) takes the following expression

Σr ,n( f , y) =
n∑

i=0

ŵi (y) f (ξi ), (27)

where

ŵi (y) =
∫ 1

−1
P̂C
r ,n(�i , x)K (x, y)w(x) dx, i = 0, . . . , n. (28)

Proof By the property (13) we get
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P̂C
r ,n( f ) = P̂C

r ,n(Ln( f )) = P̂C
r ,n

(
n∑

i=0

f (ξi )�i

)
=

n∑
i=0

f (ξi )P̂
C
r ,n(�i ), (29)

where Ln( f ) is defined as in (14). By substituting (29) in (23), we obtain

Σr ,n( f , y) =
∫ 1

−1
P̂C
r ,n( f , x)K (x, y)w(x)dx

=
∫ 1

−1
P̂C
r ,n(Ln( f ), x)K (x, y)w(x)dx

=
n∑

i=0

f (ξi )
∫ 1

−1
P̂C
r ,n(�i , x)K (x, y)w(x)dx

=
n∑

i=0

ŵi (y) f (ξi ).

��
Remark 2 Equation (27) and (28) show that the weights of the quadrature rule
Σr ,n( f , y) depends on y and therefore, changing y, they must be recomputed. Note
that the dependence on y is typical of the product integration rules, that, in the face
of fast convergent rules, requires more computational effort. The same happens in the
case of product rules based on the zeros of orthogonal polynomials.

Remark 3 When K (x, y) ≡ 1 the quadrature rule (27) with weights (28) reduces to the
stable quadrature rule from n+1 equispaced nodes with degree of exactness r already
introduced in [11]. As well known, this formula is based on the approximation of the
function f by P̂C

r ,n( f ) expressed in the Chebyshev polynomial basis as in (21) and
on the exact evaluation of the coefficients of the quadrature method by a Gaussian–
Christoffel quadrature formula of order m [17, Ch. 3]. It is worth noting that the use
of Clenshaw–Curtis quadrature rules with algebraic degree of precision equal to r ,
for which fast algorithms for computing the weights are well known [34, 35], will
produce another kind of quadrature formula from equispaced nodes, which is worth
of investigation.

We observe that the construction of the proposed quadrature rule requires the same
modified moments of the product rule (4), i.e. it employs the same computational
effort. However, differently from the formula (4), the new rule (25) presents the main
advantage of using samples of f at equally spaced nodes. About the convergence of
the product rule, we are able to prove the following

Theorem 4 Under the assumption

U = sup
y∈S

‖Kyw‖1 < +∞, (30)

for any y ∈ S the following error estimate holds true

∣∣ên,r ( f , y)
∣∣ ≤ U (1 + Bn) Er ( f ).

123



24 Page 10 of 19 BIT Numerical Mathematics (2023) 63 :24

Proof From Theorem 2, in view of (26) and under the assumption (30), we have

|êr ,n( f , y)| ≤
∫ 1

−1
| f (x) − P̂C

r ,n( f , x)||K (x, y)|w(x) dx

≤
∥∥∥ f − P̂C

r ,n( f )
∥∥∥∞

∫ 1

−1
|K (x, y)| w(x) dx

≤ U (1 + Bn)Er ( f ).

��
Remark 4 Since Bn ≈ C n2.03, taking into account (3), the convergence of the rule is
assured for functions f ∈ W3. As one can deduce from (7), the “classical” product
formula (4) converges under less restrictive assumptions on the function f , which
is required to be only continuous in the integration interval. However, such a rule
requires the samples of f at the zeros of the Chebyshev polynomial Tr+1, and hence
is not reliable if one works on experimental data, usually obtained on equally spaced
nodes. For instance, in evolution equations of nonlocal diffusion type, the data can be
given at equally spaced points. To solve such a kind of equation, in [26] the authors
proposed a discretization procedure based on the application of the line method and
on quadrature formulae over equally spaced points.

3.1 Implementation details

Now we provide some details about the effective computation of the coefficients of
the product rule (25), for the following choices of kernels:

K1(x, y) = |x − y|λ, λ > −1, |y| < 1,

K2(x, y) = g(yx), g(·) = sin(·) or g(·) = cos(·), |y| � 1,

K3(x, y) = 1

(x2 + y2)μ
, 0 < |y| � 1, μ > 0,

and w(x) = (1 − x)α(1 + x)β .

Let us focus on the case K1(x, y) in order to compute the modified moments{
M (K1)

i (y)
}r
i=0

, where

M (K1)
i (y) =

∫ 1

−1
pi (w

C , x)|x − y|λw(x) dx . (31)

To this purpose we first split the integral as follows

M (K1)
i (y) =

∫ y

−1
(y − x)λ pi (w

C , x)w(x) dx +
∫ 1

y
(x − y)λ pi (w

C , x)w(x) dx .

Introducing the linear transformations
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Φ1(x) := 2
1 + x

1 + y
− 1, Φ2(x) := 2

x − y

1 − y
− 1,

and setting z = Φ j (x), j = 1, 2, we have

M (K1)
i (y) =

(
1 + y

2

)λ+β+1 ∫ 1

−1
pi (w

C , Φ−1
1 (z))(1 − Φ−1

1 (z))α(1 − z)λ(1 + z)β dz

+
(
1 − y

2

)λ+α+1 ∫ 1

−1
pi (w

C , Φ−1
2 (z))(1 + Φ−1

2 (z))β(1 − z)α(1 + z)λ dz,

where both the above integrals can be evaluated with high precision by means of
r−point Gaussian rules w.r.t. the weight (1− z)λ(1+ z)β and (1− z)α(1+ z)λ in the
first and second integrals, respectively. Note that the transformed integrand contains
factors of the type (1 ± Φ−1

j (z))ρ, ρ > −1, which are analytical functions, so that
the error of the Gaussian rule geometrically goes to zero.
Let us consider the modified moments

M (K2)
i (y) =

∫ 1

−1
pi (w

C , x)g(yx)w(x) dx . (32)

In this case the main problem is the oscillation of the integrand. In order to mitigate
this phenomenon, we propose to use a dilation technique introduced in [7, 30]. Setting
z = yx , we have

M (K2)
i (y) = 1

y

∫ y

−y
pi

(
wC ,

z

y

)
g(z)w

(
z

y

)
dz.

Moreover, we consider the following partition of the integration interval [−y, y] into
s := �y� subintervals of size d := 2y

s

[−y, y] =
s⋃

j=1

[−y + d( j − 1),−y + d j].

Hence, the modified moments (32) take the following expression

M (K2)
i (y) = 1

y

s∑
j=1

∫ −y+d j

−y+d( j−1)
pi

(
wC ,

z

y

)
g(z)w

(
z

y

)
dz.

By setting

ϕ j (z) := 2

d
(z + y − d( j − 1)) − 1, j = 1, . . . , s,

and with the change of variable t = ϕ j (z), we get

M (K2)
i (y) = d

2y

{
c1

∫ 1

−1
pi

(
wC ,

ϕ−1
1 (t)

y

)
g(ϕ−1

1 (t))

(
1 − ϕ−1

1 (t)

y

)α

(1 + t)β dt
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+
s−1∑
j=2

∫ 1

−1
pi

(
wC ,

ϕ−1
j (t)

y

)
g(ϕ−1

j (t))w

(
ϕ−1
j (t)

y

)
dt

+c2

∫ 1

−1
pi

(
wC ,

ϕ−1
s (t)

y

)
g(ϕ−1

s (t))

(
1 + ϕ−1

s (t)

y

)β

(1 − t)α dt

}
,

where

c1 =
(

d

2y

)β

, c2 =
(

d

2y

)α

.

The above integrals are less oscillating and can be evaluated with high precision by
means of r−point Gaussian rules w.r.t. the weight (1 + t)β and (1 − t)α in the first
and last integrals and w.r.t. the Legendre weight in the others, respectively. Note that

the transformed integrand contains factors of the type g(ϕ−1
j (t)), w

(
ϕ−1
j (t)

y

)
and

(
1 ± ϕ−1

j (t)

y

)ρ

, ρ > −1, which are analytical functions, so that the error of the

Gaussian rule geometrically goes to zero.
The same dilation technique has been applied for “nearly” singular kernels of the type
K3(x, y) [30, 31]. In this case, we consider the modified moments

M (K3)
i (y) =

∫ 1

−1

pi (wC , x)

(x2 + y2)μ
w(x) dx, (33)

and we set z = x
y , obtaining

M (K3)
i (y) = 1

y2μ−1

∫ 1/y

−1/y

pi (wC , yz)

(z2 + 1)μ
w(yz) dz. (34)

We fix the parameter s :=
⌊
1
y

⌋
also in this case, in order to have d ∼ 2 and divide the

interval
[
− 1

y ,
1
y

]
into s subintervals of size d. Hence, we get

[
− 1

y
,
1

y

]
=

s⋃
j=1

[
− 1

y
+ d( j − 1),−1

y
+ d j

]
,

and
M (K3)

i (y) = 1

y2μ−1

s∑
j=1

∫ −1/y+d j

−1/y+d( j−1)

pi (wC , yz)

(z2 + 1)μ
w(yz) dz.

Denoting by

ψ j (z) := 2

d

(
z + 1

y
− d( j − 1)

)
− 1, j = 1, . . . , s,

and by setting t = ψ j (z) in each integral, we have
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M (K3)
i (y) = d

2y2μ−1

{
c3

∫ 1

−1

pi (wC , yψ−1
1 (t))(2 − ( t+1

2 )yd)α

((ψ−1
1 (t))2 + 1)μ

(1 + t)β dt

+
s−1∑
j=2

∫ 1

−1

pi (wC , yψ−1
j (t))w(yψ−1

j (t))

((ψ−1
j (t))2 + 1)μ

dt

+c4

∫ 1

−1

pi (wC , yψ−1
s (t))(2 + ( t−1

2 )yd)β

((ψ−1
s (t))2 + 1)μ

(1 − t)α dt

}
,

with

c3 =
(
yd

2

)β

, c4 =
(
yd

2

)α

.

Since the poles of the integrand functions are far away from the real axis, the above
integrals can be evaluated bymeans of r−pointGaussian rulesw.r.t. theweight (1+t)β

and (1 − t)α in the first and last integrals and w.r.t. the Legendre weight in the oth-
ers, respectively. Note that the transformed integrand contains factors of the type

1
((ψ−1

j (t))2+1)μ
, w(yψ−1

j (t)) and (2± ( t−1
2 )yd)ρ, ρ > −1, which are analytical func-

tions, so that the error of the Gaussian rule geometrically goes to zero.

Remark 5 The computation of the modified moments for the considered kernels is
attained by means of Gaussian rules. By doing so we introduce an error that is of
the order of the machine precision. This choice doesn’t have an impact on the per-
formance of our rule (25). For other choices of kernels the modified moments can be
evaluated exactly by means of recurrence relations that however can become progres-
sively unstable as r increases.

4 Numerical experiments

In this section we present some numerical experiments to analyze the performance
of the constrained mock-Chebyshev product rule and compare it with other pro-
cedures. More in detail, we perform a direct comparison between the constrained
mock-Chebyshev product rule (25) and the classical product formula (4). To this pur-
pose, in each example, we consider the following functions

f1(x) = 1

1 + 8x2
, f2(x) = sin(x), f3(x) = log(x + 3), f4(x) = ex ,

and we focus on a particular kernel for different choices of y ∈ S.
Tables 1, 2, 3 display the absolute errors

|êr ,n( fi , y)| = |I ( fi , y) − Σr ,n( fi )|, y ∈ S, i = 1, 2, 3, 4,

|em( fi , y)| = |I ( fi , y) − Σm( fi , y)|, y ∈ S, i = 1, 2, 3, 4,

being the constrainedmock-Chebyshev product rule based on a grid of 1001 uniformly
distributed nodes in the interval [−1, 1]. In this setting, we have n = 1000, r =
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Table 1 Numerical results for integrals I ( fi , y) by means of the constrained mock-Chebyshev product rule

(top) and the classical product rule (bottom) with kernel function K (x, y) = |x − y| 3
10 and weight function

w(x) = wC (x)

|êr ,n( fi ,−0.8)| |êr ,n( fi ,−0.5)| |êr ,n( fi , 0)| |êr ,n( fi , 0.5)| CPU time

f1 6.33e−15 2.92e−14 8.66e−15 2.82e−14 0.7974

f2 1.11e−15 1.44e−15 1.24e−15 2.11e−15 0.2526

f3 8.88e−16 2.66e−15 1.33e−15 2.22e−15 0.2212

f4 8.88e−16 1.33e−15 0.00e+00 8.88e−16 0.2184

|em ( fi ,−0.8)| |em ( fi , −0.5)| |em ( fi , 0)| |em ( fi , 0.5)| CPU time

f1 5.22e−15 3.01e−14 7.66e−15 2.92e−14 0.0499

f2 1.33e−15 1.39e−15 1.01e−15 1.39e−15 0.0452

f3 8.88e−16 2.22e−15 4.44e−16 1.33e−15 0.0416

f4 2.66e−15 4.44e−15 2.22e−15 3.55e−15 0.0433

Table 2 Numerical results for integrals I ( fi , y) by means of the constrained mock-Chebyshev product rule
(top) and the classical product rule (bottom) with kernel function K (x, y) = 1

(x2+y2)2
and weight function

w(x) = wC (x)

|êr ,n( fi , ±0.2)| |êr ,n( fi ,±0.3)| |êr ,n( fi , ±0.4)| |êr ,n( fi , ±0.5)| CPU time

f1 5.68e−14 0.00e+00 3.55e−15 1.78e−15 0.8810

f2 4.58e−14 5.49e−15 4.83e−15 2.13e−15 0.2818

f3 5.68e−14 1.42e−14 0.00e+00 3.55e−15 0.2517

f4 1.14e−13 4.26e−14 3.55e−15 1.07e−14 0.2313

|em ( fi , ±0.2)| |em ( fi ,±0.3)| |em ( fi , ±0.4)| |em ( fi , ±0.5)| CPU time

f1 1.42e−13 2.13e−14 7.11e−15 7.11e−15 0.0738

f2 2.16e−15 5.72e−15 6.83e−16 6.59e−17 0.0689

f3 1.42e−13 4.26e−14 1.07e−14 1.24e−14 0.0650

f4 1.14e−13 5.68e−14 7.11e−15 1.07e−14 0.0646

98, m = 70. All the tests are carried out in MatlabR2022a on a MacBook Pro under
the MacOS operating system and in each table we report the CPU time required to
evaluate the considered integral in four different values of y. Moreover, since the
exact value of the integrals is not known, we assume as exact the values provided in
quadruple working precision by the built-in function NIntegrate of the Wolfram
Mathematica 13 software.
In our numerical tests we considered the following integrals:

Example 1

I ( fi , y) =
∫ 1

−1

fi (x)|x − y| 3
10√

1 − x2
dx, y ∈ (−1, 1), i = 1, 2, 3, 4,
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Table 3 Numerical results for integrals I ( fi , y) by means of the constrained mock-Chebyshev product rule
(top) and the classical product rule (bottom) with kernel function K (x, y) = sin(yx) and weight function
w(x) = wC (x)

|êr ,n( fi , 10)| |êr ,n( fi , 25)| |êr ,n( fi , 50)| |êr ,n( fi , 100)| CPU time

f1 4.51e−17 8.57e−18 1.41e−16 4.94e−17 1.1656

f2 1.94e−16 2.22e−16 6.11e−16 7.49e−16 1.0900

f3 1.04e−16 1.67e−16 2.22e−16 9.71e−17 1.0751

f4 1.39e−16 5.55e−17 1.11e−16 6.11e−16 1.0788

|em ( fi , 10)| |em ( fi , 25)| |em ( fi , 50)| |em ( fi , 100)| CPU time

f1 6.59e−17 8.10e−17 9.32e−18 8.67e−18 0.6217

f2 3.33e−16 1.67e−16 0.00e+00 1.39e−16 0.5744

f3 1.25e−16 2.50e−16 2.78e−17 2.78e−17 0.5654

f4 4.44e−16 3.89e−16 1.67e−16 1.11e−16 0.5749

in which K (x, y) = |x−y| 3
10 is a weakly singular kernel function andw(x) = wC (x).

Example 2

I ( fi , y) =
∫ 1

−1

fi (x)√
1 − x2(x2 + y2)2

dx, y ∈ (−1, 1), i = 1, 2, 3, 4,

involving a nearly singular kernel function K (x, y) = 1
(x2+y2)2

and w(x) = wC (x).

Example 3

I ( fi , y) =
∫ 1

−1

fi (x) sin(yx)√
1 − x2

dx, y � 1, i = 1, 2, 3, 4,

with the highly oscillating kernel K (x, y) = sin(yx) and w(x) = wC (x).

Example 4

I ( f , y) =
∫ 1

−1

√
1 − x2 cos(yx)

1 + 25x2
dx, y � 1,

where f (x) = 1
1+25x2

is theRunge function, K (x, y) = cos(yx) is a highly oscillating

kernel and w(x) = √
1 − x2 is the 2-nd kind Chebyshev weight.

The results in Tables 1, 2, 3 highlight that the product rules (25) and (4) have
comparable performances. Nevertheless, the constrained mock-Chebyshev product
formula (25) is based on equally spaced data and this makes it the adequate tool to
choose in many practical applications, differently from the classical product rule (4)
requiring that the function f is knownanalytically or at least at the zeros of orthonormal
polynomial w.r.t. the weight function w.
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Table 4 Numerical results for integral I ( f , y) by means of the constrained mock-Chebyshev product rule

based on different equispaced grids with f (x) = 1
1+25x2

, K (x, y) = cos(yx) and w(x) =
√
1 − x2

n m p êrelr ,n( f , 17) êrelr ,n( f , 25) êrelr ,n( f , 34) êrelr ,n( f , 60) CPU time

50 15 6 9.20e−01 9.64e−01 1.89e−01 3.57e+00 0.1673

100 22 9 4.40e−02 8.97e−02 6.07e−01 4.78e+00 0.1068

500 49 20 4.45e−06 8.38e−05 6.46e−04 1.65e−02 0.3365

1000 70 28 2.31e−10 2.58e−08 5.34e−07 3.61e−04 0.7425

2000 99 40 3.61e−13 8.47e−13 2.33e−12 2.91e−10 1.7754

3000 121 49 2.82e−15 3.86e−14 5.51e−14 2.74e−12 3.0469

4000 140 57 1.33e−15 2.11e−14 3.58e−14 1.36e−12 4.5443
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Fig. 1 Benchmark analysis of the relative errors attained approximating the integral I ( f , y) by means of
the constrained mock-Chebyshev product rule based on different equispaced grids with f (x) = 1

1+25x2
and K (x, y) = cos(yx)

In Example 4 we test the performance of the constrained mock-Chebyshev rule for
different choices of equispaced grids in the integration interval [−1, 1]. In this context,
Table 4 reports the relative errors

êrelr ,n( f , y) := |I ( f , y) − Σr ,n( f , y)|
|I ( f , y)| , y ∈ S,

attained by the rule (25) for increasing values of n,m and p, namely for gradually
more dense equispaced grids of n + 1 points in [−1, 1], and for different values of y.

Table 4 and Fig. 1 show that themore dense the equispaced grid is, themore accurate
is the constrained mock-Chebyshev rule (25). However, we also observe a slight loss
of accuracy for increasing values of y. This can be attributed to the high oscillations of
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the kernel cos(yx) and to the Runge phenomenon that occurs when using polynomial
interpolation with polynomials of high degree over a set of equispaced interpolation
points.

5 Conclusions and future works

In this paper we proposed a new product rule, based on equispaced points, through the
constrained mock-Chebyshev least squares operator. Moreover, we provided an error
estimate and many numerical examples which confirm the accuracy of the proposed
formula. By the numerical results, the rule (27) on n nodes shows the same accuracy

of the product rule (4) on m =
⌊
π

√
n
2

⌋
nodes. Based on these satisfactory results, it

is our aim to extend this formula to the case of unbounded intervals or/and bivariate
domains.
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