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Abstract: The cytochrome P450 (CYP) enzyme family is the major enzyme system catalyzing the phase
I metabolism of xenobiotics, including pharmaceuticals and toxic compounds in the environment.
A major part of the CYP-dependent xenobiotic metabolism is due to polymorphic and inducible
enzymes, which may, quantitatively or qualitatively, alter or enhance drug metabolism and toxicity.
Drug–drug interactions are major mechanisms caused by the inhibition and/or induction of CYP
enzymes. Particularly, CYP monooxygenases catalyze hydroxylation reactions to form hydroxylated
metabolites. The secondary metabolites are sometimes as active as the parent compound, or even
more active. The aim of this review is to summarize some of the significative examples of common
drugs used for the treatment of diverse diseases and underline the activity and/or toxicity of
their metabolites.
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1. Introduction

Cytochrome P450 enzymes (CYPs or P450s) represent a superfamily of heme-containing
proteins, predominantly present within the endoplasmic reticulum of hepatocytes, responsi-
ble for the oxidative metabolism of a broad range of endogenous substances and xenobiotics.
Many members of the CYP class are currently known, and the numbers continue to grow as
more genomes are sequenced. Until now, 57 human CYP isoforms have been recognized [1]
and progresses in the development of molecular probes for human CYPs have been recently
reviewed [2]. CYPs are present in many tissues, such as the liver, intestine, lung, heart, and
brain, and catalyze the phase I metabolism of conventional drugs (Figure 1) [3,4]. Indeed,
drug metabolism involves the (bio)chemical modification of a drug that may occur in the
body [5] and plays a crucial role in pharmaceutical development and clinical practice,
and contributes to toxicology, carcinogenesis and endocrinology [6]. Drug metabolism
consists mainly of two phases, phase I and phase II [7,8]. Phase I metabolism reactions
generally do not determine a significant modification in the molecular weight or aqueous
solubility of the substrate. At this stage, a functional group, generally a polar group, such as
–OH, –SH or NH2, is unmasked or introduced into the parent molecule, thereby rendering
it accessible to further metabolism. Phase II metabolism occurs directly on the parent
compounds that incorporate specific structural motifs, or, more often, on the functional
groups added or exposed by phase I oxidation. Phase II conjugation generally results in
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a significant enhancement in molecular weight and aqueous solubility, thus favoring the
process of elimination.
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improved metabolism and plasma concentrations of the concurrent drugs. On the con-
trary, CYP inhibition by several drugs provides high therapeutic drug levels and drug-
induced toxicity, preventing CYPs from fulfilling their protective role in detoxification 
[11]. Moreover, metabolic reactions may be often directly related to food, with some foods 
exerting their activity by interacting with CYPs. For instance, St. John’s wort deeply in-
duces CYP3A4 [12] and, therefore, it lowers drug bioavailability and exposure. Pomegran-
ate (Punica granatum L.) juice, grapefruit and cranberries effectively inhibit both CYP3A4 
and/or CYP2C9 [13–15]. Moreover, interindividual variability in CYP-mediated drug me-
tabolism may exist, with some isoforms, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, 
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Most common CYPs are represented by monooxygenases, which bind and reductively
activate molecular oxygen, O2, splitting it into its two atoms, one of which is then inserted
into the substrate RH that is bound in the P450 active site, contiguous to the heme cofactor.
Thus, they are called monooxygenases as they use one oxygen atom to obtain the product
ROH and reduce the second oxygen atom to water, following the general reaction:

RH + O2 + 2e− + 2H+ → ROH + H2O

CYP monooxygenases play a pivotal role in drug pharmacokinetics and are frequently
involved in drug–drug interactions [9]. CYPs metabolize many xenobiotics including
several environmental carcinogens. Particularly, among the 57 known human CYPs,
12 metabolize 90% of xenobiotics [10] and 6 CYP isoenzymes are able to metabolize the most
common drugs used in therapy, namely CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19
and CYP1A2. CYPs are often upregulated by their own substrates, leading to improved
metabolism and plasma concentrations of the concurrent drugs. On the contrary, CYP inhibi-
tion by several drugs provides high therapeutic drug levels and drug-induced toxicity, pre-
venting CYPs from fulfilling their protective role in detoxification [11]. Moreover, metabolic
reactions may be often directly related to food, with some foods exerting their activity
by interacting with CYPs. For instance, St. John’s wort deeply induces CYP3A4 [12] and,
therefore, it lowers drug bioavailability and exposure. Pomegranate (Punica granatum L.)
juice, grapefruit and cranberries effectively inhibit both CYP3A4 and/or CYP2C9 [13–15].
Moreover, interindividual variability in CYP-mediated drug metabolism may exist, with
some isoforms, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and
CYP3A4/5, being highly polymorphic [16]. The influence of CYPs on drug toxicity may be
mainly exerted by either reducing the exposure to the parent compound or by transforming
the drug into a toxic compound [17]. Several factors involved in this mechanism are repre-
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sented by enzyme induction or inhibition, reversible or irreversible, and pharmacogenetics.
Interestingly, in some cases, the metabolites deriving from a drug are even more active
than the parent compound. In this case, a “metabolite switch”, i.e., the choice of an active
metabolite as a substitute for the parent compound may be proposed, when the former has
more advantageous properties than the latter (Figure 1). “Metabolite switch” is a term that
resembles the better known ”chiral switch”, which refers to the replacement of a formerly
approved racemate with its active enantiomer on the market. The benefits of the chiral
switch are a higher therapeutic index related to its higher potency, selectivity and fewer
side effects, as well as a faster-action onset and lower drug dosages in patients. Moreover,
the chiral switch is an approach that allows manufacturers to keep market exclusiveness
for the chiral drugs for which the patent has expired, even though the pure enantiomers
have not shown a higher efficiency or better safety profile compared to racemates [18,19].
Recently, the identification of bioactive metabolites, by using activity metabolomics, has
been proposed [20], and further studies are also addressed to the gut microbiota and related
metabolites in several diseases, such as ulcerative colitis for treatment with mesalamine [21].
Bioinformatic studies are often addressed to develop new compounds with CYP activator
or inhibitor profiles. Recently, more attention has been paid to P450 oxidoreductase, which
transfers electrons from nicotinamide adenine dinucleotide phosphate-oxidase to CYP
enzymes, inducing their expression and affecting the metabolism of various drugs [22]. The
regulation of P450 oxidoreductase is related to several diseases, including cancer [23,24],
and alcohol intoxication [25] and brain injury [26]. Finally, the expression of CYPs and their
activity is considerably influenced by the immune response; indeed, modifications in CYP
expression and/or function in COVID-19 [27,28] have likely played a role in the pathophys-
iology of this disease and in the metabolism of drugs used to treat this disease [29]. In this
review, we tried to report some significative examples of metabolites derived from drugs in
various fields of therapy, highlighting their activity and/or toxicity.

2. Examples of Drugs Metabolized by CYPs

Some significative examples of drugs metabolized by CYPs with diverse activities
were chosen and are summarized in Table 1.

Table 1. Drugs metabolized by CYPs described in the review.

Drug Activity CYPs Biotransforming
the Drug

CYPs Inhibited by the
Drug

CYPs Induced by the
Drug

Voriconazole Antifungal CYP2C19, CYP2C9,
CYP3A4

Mexiletine Antiarrhythmic CYP2E1, CYP2D6,
CYP1A2

Sonlicromanol Antioxidant CYP3A4
Sorafenib Anticancer CYP3A4 CYP2C8

Cyclophosphamide Anticancer CYP2B6, CYP2C9,
CYP3A4

Triclocarban Antibacterial CYP1A1
Sunitinib Anticancer CYP1A2, CYP3A4

Hydroxychloroquine Antimalarial CYP3A4, CYP2D6,
CYP2C8 CYP2J2, CYP3A4

Abrocitinib Antipsoriatic CYP2C19, CYP2C9,
CYP3A4, CYP2B6

Omeprazole Proton-pump inhibitor CYP2C19, CYP3A4 CYP1A1, CYP1A2

Tamoxifen Anticancer CYP3A4, CYP3A5,
CYP2D6

Nifedipine Antihyperthensive CYP3A4, CYP2C76

Vonoprazan Acid blocker
CYP3A4, CYP2B6,
CYP2C19, CYP2C9,
CYP2D6

Quetiapine Antipsychotic CYP3A4, CYP3A5
Atorvastatin Antihyperlipidemic CYP3A4, CYP3A5
Abemaciclib Anticancer CYP3A4
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2.1. Voriconazole

Voriconazole (Figure 2) is a broad-spectrum second-generation antifungal triazole fre-
quently used for the prophylaxis and treatment of invasive fungal infections [30]. It is widely
metabolized via the CYP isoenzyme CYP2C19 and, to a lesser extent, CYP2C9 and CYP3A4,
to hydroxylated metabolites. Voriconazole N-oxide is the most abundant circulating metabo-
lite [31], followed by 4-hydroxyvoriconazole and dihydroxy-voriconazole [32], which, in turn,
then undergo phase II reactions. Voriconazole N-oxide forms during the fluoropyrimidine
N-oxidation reactions via CYP2C19 and CYP3A4, while 4-hydroxyvoriconazole is formed
through the methyl hydroxylation via CYP3A4 [33]. Currently, voriconazole is also recom-
mended as a first-line therapy for COVID-19-associated pulmonary aspergillosis, which has
recently aroused concerns due to increased mortality [34]. High intra- and interindividual
variability in voriconazole’s pharmacokinetics has been demonstrated. This compound has a
relatively narrow therapeutic range; nevertheless, its metabolism has not yet been completely
elucidated [35]. As a matter of fact, voriconazole overdoses are frequently observed, leading
to a high risk of adverse effects. Inflammation may be a possible risk factor of voriconazole
overdose in hematological patients, as well [36]. It has also to be considered that grape-
fruit juice likely increases the oral bioavailability of this drug in children, as it selectively
inhibits the intestinal CYP3A4; thus, an efficient quantification of voriconazole and its N-oxide
derivative is strongly desired, and an ultra-performance liquid chromatographic method
with tandem mass spectrometry detection has recently been developed [37]. Furthermore,
much evidence shows cutaneous side effects related to voriconazole, such as photosensi-
tivity and skin cancer [38]. In fact, it has been demonstrated that voriconazole enhances
oxidative stress in human keratinocytes and facilitates UV-induced DNA damage through
catalase inhibition [39]. Therefore, long-term voriconazole therapy can enhance the risk of
cutaneous squamous cell carcinoma (cSCC), mainly in patients receiving immunosuppressive
therapy [40]. Some authors suggest that actinic keratosis related to the use of voriconazole
may precede the occurrence of cutaneous SCC and voriconazole-related SCC may lead to a
worse prognosis in immunosuppressive conditions [41].
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2.2. Mexiletine

Mexiletine (Figure 3) is an antiarrhythmic drug, which belongs to class IB agents and
exerts its activity in ventricular arrhythmias, by acting on cardiac voltage-gated sodium
channels (hNav1.5) [42], and in myotonic syndromes, given its ability of also blocking the
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skeletal muscle voltage-dependent sodium channels (hNav1.4) [43]. It is metabolized to hy-
droxylated metabolites by CYPs, particularly, CYP1A2 and CYP2D6, which are implicated
in the formation of para-hydroxymexiletine (PHM) and hydroxy-methylmexiletine (HMM).
Together with CYP2E1 and CYP2D6, CYP1A2 induces the N-hydroxylation of mexiletine
to form N-hydroxy-mexiletine (NHM). The CYP1A2-mediated hydroxylation is ten times
faster for the R-isomer compared to the S-one [44]. These compounds showed activity as
skeletal muscle sodium channels blockers [45,46]. Interestingly, the minor metabolite of
mexiletine, meta-hydroxy-mexiletine (MHM), was demonstrated to be more active (~2-fold)
than the parent mexiletine in displaying a sodium channel blocking activity in cardiac
tissues, thus it was suggested for a metabolite switch [47].
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2.3. Sonlicromanol

Sonlicromanol (KH176, Figure 4) is an antioxidant agent targeting the thioredoxin redox
systems [48]. Recently, it obtained an orphan drug designation for maternally inherited
diabetes and deafness [49] and it is now in phase IIB clinical trials for mitochondrial disease
treatments [50]. Sonlicromanol is a chiral drug [51] that, after metabolization, retains the same
stereochemistry and it has been suggested to be a substrate for CYP3A4 [52,53]. The in vivo
active metabolite of sonlicromanol, KH176m, is also active as an ROS-redox modulator and
recent studies evidenced that KH176m may act as an mPGES-1 inhibitor; thus, it has been
suggested as a treatment for prostate cancer patients bearing a high mPGES-1 expression [54].
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2.4. Sorafenib

Sorafenib (Figure 5) is an oral multikinase inhibitor, involved in tumor proliferation
and angiogenesis, belonging to the class of diarylureas [55,56]. It undergoes oxidative
biotransformation by human CYP3A4 to its main pharmacologically active metabolite
sorafenib N-oxide. It also inhibits several CYP enzymes mediating drug metabolism, such
as CYP2C8 [57], which in turn takes part in the elimination of major anticancer drugs,
such as paclitaxel and imatinib. Thus, it is being increasingly used in association with
other anticancer agents including paclitaxel, and recent studies demonstrated that this
co-administration may increase the potential for drug toxicity, probably related to the active
sorafenib N-oxide. It has been demonstrated to impair the elimination of co-administered
therapeutic agents that are substrates of CYP2C8, and mediate toxic side effects, probably
in those individuals where the active metabolite is formed extensively [58].
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2.5. Cyclophosphamide

Cyclophosphamide (Figure 6) is a commonly used antitumor drug in clinical practice for
different types of cancer, such as breast cancer, lymphoma and myeloma [59]. Particularly, it
is a prodrug primarily metabolized by the hepatic CYP2B6, CYP2C9 and CYP3A4 enzymes
to its main metabolite 4-hydroxycyclophosphamide, which interconverts with its tautomer
aldophosphamide, and is spontaneously transformed into the active agent responsible for
alkylation, the phosphoramide mustard. This compound is ionized at a physiological pH and
cannot enter the cell, unlike 4-hydroxycyclophosphamide, which can easily diffuse into cells,
leading to the plasma concentration responsible for the therapeutic effect [60].
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2.6. Triclocarban

Triclocarban (TCC, Figure 7) is a ubiquitous antimicrobial agent found in consumer
and personal care products [61,62]. Although its application in over-the-counter hand and
body washes was banned by the U.S. Food and Drug Administration (FDA) in 2016, it is still
used in other countries and concerns about the widespread emergence of antibiotic-resistant
pathogens were raised [63]. TCC is biotransformed by CYPs in hydroxylated species, which
can be conjugated with glucuronic acid and sulfate [64]. In mammals, TCC undergoes large
oxidative metabolism, leading to three monohydroxylated metabolites (2′-hydroxy-TCC, 3′-
hydroxy-TCC, 6-hydroxy-TCC) and the 3,4-dichloro-4′-hydroxy-carbanilide (DHC), result-
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ing from dehalogenation and hydroxylation. DHC, 2′-hydroxy-TCC and 6-hydroxy-TCC
can be further converted into the corresponding glucuronides probably by CYP1A1 [65].
The toxicity of TCC may be related to the metabolites, indeed it has been reported that
they may bind endogenous macromolecular proteins, acting as a disruptor of physiological
homeostasis. Moreover, phase I hydroxylation increases the solubility of TCC in water,
leading to the enhancement of hepatotoxicity [66].
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2.7. Sunitinib

Sunitinib (Figure 8) is an effective inhibitor of multiple tyrosine kinase receptors
approved by the U.S. FDA on 26 January 2006, for the therapy of metastatic renal cell
carcinoma (mRCC) and gastrointestinal stromal tumor (GIST) [67]. The major routes of the
oxidative metabolism of sunitinib are represented by N-deethylation, N-oxidation, hydrox-
ylation, oxidative defluorination and conjugation by direct glucuronidation; moreover, the
sulfation of hydroxylated metabolites has also been reported [68]. CYP3A4 is the isoform
that produces its primary active metabolite, desethyl sunitinib, which possesses the same
activity of the parent compound and is then further metabolized by the same isoenzyme.
Other metabolites, including mono-oxygenated metabolites, defluorinated sunitinib and
glucuronide conjugates, have been described. Given the extreme nature of the toxicity, the
CYP3A4 polymorphism was explored but deserves further investigation [69]. Recently,
a putative quinoneimine–GSH conjugate, formed by CYP1A2 and CYP3A4, that may be
likely responsible for the hepatotoxicity of the drug has been studied [70].
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2.8. Hydroxychloroquine

Hydroxychloroquine (HCQ, Figure 9) is a well-known drug used for the therapy
of malaria, systemic lupus erythematous, rheumatoid arthritis and for the prevention of
thrombosis among patients affected by antiphospholipid antibody syndrome [71,72]. It is
mainly biotransformed into three active metabolites in humans: desethylhydroxychloro-
quine (DHCQ), desethylchloroquine (DCQ) and didesethylchloroquine (DDCQ). CYP3A4,
CYP2D6 and CYP2C8 participate in the metabolism of HCQ to various degrees and it has
been recently suggested that HCQ and its metabolites are reversible competitive inhibitors
of CYP2D6 and that they are mixed-type inhibitors of CYP2J2 and time-dependent CYP3A
inhibitors [73]. During the first stages of the COVID-19 pandemic, HCQ was one of the
mainly used repositioning drugs [74,75], and the safety and efficacy of this drug may be
affected by the co-administration of CYP inhibitors, substrates or inducers [76].
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2.9. Abrocitinib

Abrocitinib (Figure 10) is an oral selective Janus kinase 1 inhibitor in clinical develop-
ment for the therapy of moderate to severe atopic dermatitis [77], which has a metabolism
mediated by diverse CYP enzymes, such as CYP2C19 (~53%), CYP2C9 (~30%), CYP3A4
(~11%) and CYP2B6 (~6%) [78]. It is converted into four metabolites (M1−M4), two
of which are active. Among the two active polar monohydroxylated metabolites, M1
(3-hydroxypropyl) and M2 (2-hydroxypropyl), M2 has the same activity of abrocitinib
whereas M1 is less active than the parent drug [79,80]. The biological activity of abrocitinib
may be attributed to the parent molecule (about 60%) as well as M1 and M2 (about 10%
and 30%, respectively) in the systemic circulation [81,82].
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2.10. Omeprazole

Omeprazole (Figure 11) is a proton-pump inhibitor useful for the treatment of pa-
tients with ulcers or gastroesophageal reflux disease [83]. It has a stereogenic center and
is used as a racemic mixture of the (S)- and (R)-enantiomers. The (S)-isomer, esomepra-
zole, is used for the therapy of symptomatic gastroesophageal reflux disease and in the
triple-drug regimen for Helicobacter pylori infection [84]. Omeprazole is metabolized both
by the CYP2C19 and CYP3A4 pathways to 5-hydroxy-omeprazole, omeprazole sulfone
and 5-hydroxy-omeprazole sulfone [85]. (R)- and (S)-omeprazole show stereoselective
disposition due to the enzyme-catalyzed metabolism that determines a lower metabolic
stability of its (R)-isomer and racemate with respect to esomeprazole [86]. Omeprazole is
strongly affected by the CYP2C19 genetic polymorphisms; indeed, several studies have
demonstrated that the latter affect the enzyme activity and generate large individual phar-
macokinetic variations [87]. Moreover, it is also an inducer of CYPs; specifically, it induces
human CYP1A1 and CYP1A2 in human hepatoma cells and hepatocytes [88].
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2.11. Tamoxifen

Tamoxifen (Figure 12) is a well-known anticancer drug belonging to selective estrogen-
receptor modulators (SERMs) used in the treatment of early and metastatic hormone
receptor-positive breast cancer [89]. It is a prodrug, which is metabolized via the CYP
enzymes to the more active primary metabolites N-desmethyl-tamoxifen, 4-hydroxy-
tamoxifen and the secondary metabolite endoxifen (N-desmethyl-4-hydroxy-tamoxifen)
that are responsible for the anticancer activity [90]. The main route of phase I tamox-
ifen metabolism is its demethylation to N-desmethyl-tamoxifen, catalyzed essentially by
CYP3A4/5 [91], whereas the 4-hydroxy-tamoxifen is mainly produced by the action of
CYP2D6. However, the formation of N-desmethyl-tamoxifen has also been reported to be
catalyzed by CYP2D6 [92]. Single-nucleotide polymorphisms (SNPs) of CYP2D6 play a
crucial role in the rate of tamoxifen metabolism, since they have a potential effect in the effi-
cacy of tamoxifen-based therapies. It was recently suggested that pharmacogenomics may
play essential roles in the advancement of adjuvant therapies with tamoxifen. The investi-
gation of further SNPs and epigenetic changes of CYP2D6 affecting tamoxifen metabolism
may be envisaged, which may enable the design of precision medicine [93]. The involve-
ment of other CYPs, including CYP2C19, CYP1A1, CYP2A6 and CYP3A4, has also been
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reported [94]. Endoxifen and 4-hydroxy-tamoxifen have 100-fold higher affinity for the
target estrogen receptor and 30- to 100-fold higher potency than tamoxifen. The secondary
metabolite, endoxifen, is mostly responsible for the tamoxifen’s anticancer activity [95].
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2.12. Nifedipine

Nifedipine (Figure 13) is a calcium channel antagonist belonging to the 1,4-dihydropyridines,
clinically used for the therapy of blood-pressure-related diseases such as angina pectoris, hy-
pertension and Raynaud syndrome [96]. It is metabolized by CYP3A4 to dehydronifedipine in
humans [97] and studies on nifedipine in Macaca fascicularis demonstrated its high selectivity
for CYP2C76 (a CYP identified in the cynomolgus monkey), leading to its methylhydroxylated
metabolite [98]. It was also reported that the CYP2C76 cDNA contains the open reading frame
encoding a protein of 489 amino acids that is about 80% identical to any human or monkey
P450 cDNAs [99]. It is noteworthy that the nifedipine blood levels can fluctuate due to the
interactions with drugs and foods, such as ketoconazole, St. John’s wort and grapefruit juice. The
long-term treatment with oral ketoconazole extensively inhibits hepatic CYP3A activity and may
dramatically increase the bioavailability of nifedipine [100]. St. John’s wort, acting as an inducer
of CYP3A4, in healthy subjects considerably reduced the area under the concentration-time curve
(AUC0–∞) for nifedipine, which reflects the body’s exposure to the drug after administering
a single dose. A simultaneous significant increase in the AUC0–∞ for dehydronifedipine was
observed. This effect was mediated by the induction of CYP3A4 [101]. Moreover, nifedipine
pharmacokinetics have been reported to be impaired by the co-ingestion of grapefruit juice,
acting as an inhibitor of CYP3A4, leading to the irreversible inactivation of intestinal CYP3A4,
reducing the pre-systemic metabolism and enhancing the oral bioavailability of the drugs under-
going this metabolism pathway [102]. The single exposure to grapefruit juice affects intestinal
CYP3A4 activity with a half-time of about 24 h, which is completed within 3 days, whereas
large doses of this juice may also inhibit hepatic CYP3A4 [103,104]. Grapefruit juice markedly
reduces nifedipine metabolism by enhancing its AUC and bioavailability [105], even though
this effect was observed following the oral administration of nifedipine, and not after intra-
venous administration, and appears to be mitigated when smaller amounts of grapefruit juice
(250 mL vs. 400 mL or 500 mL) were administered [106].
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2.13. Vonoprazan

Vonoprazan fumarate (Figure 14) is a potassium-competitive acid blocker that pro-
duces a complete acid-inhibition action with a rapid onset, retaining the pH at the targeted
level (about 6–7) for over 24 h, and undergoes extensive metabolism. In Japan it has been
used for the therapy of H. pylori infection since 2014 [107]. Vonoprazan is metabolized to its
inactive metabolites, mainly by cytochrome P450 CYP3A4 and, to some extent, by CYP2B6,
CYP2C19, CYP2C9, CYP2D6 and sulfotransferase 2A1 (SULT2A1) [108–110]. The biotrans-
formation of vonoprazan fumarate leads to four major metabolites, namely M-I, M-II, M-III
and M-IV-Sul. M-I is formed by oxidative elimination of the methylamino moiety; then M-I
is metabolized to M-II by further elimination of the pyridinylsulfonyl moiety. M-III derives
from the oxidation of the secondary amino group to the nitron form, whereas M-IV-Sul
derives from the N-sulfation of the secondary amino group, following hydroxylation of the
fluorophenyl ring [111]. Recent molecular modelling studies suggested that CYP2B6 may
contribute to vonoprazan metabolism more than CYP3A4 [112]. Moreover, vonoprazan
inhibits CYP2B6 and CYP3A4/5 [113].
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2.14. Quetiapine

Quetiapine (Figure 15) is a short-acting atypical antipsychotic drug useful in the therapy
of schizophrenia or manic episodes of bipolar disorder [114]. Moreover, it is also generally
used off-label at low doses as an anxiolytic or hypnotic, even though its cardiovascular safety
at these doses is still unknown [115]. The production of the active metabolites quetiapine
sulfoxide, N-desalkylquetiapine, O-desalkylquetiapine and 7-hydroxy-quetiapine occurs via
CYP3A4/5 biotransformation [116–118]. Some authors also described 7-hydroxy-N-desalkyl-
quetiapine as a pharmacologically active metabolite [119].
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2.15. Atorvastatin

Atorvastatin (Figure 16) belongs to the class of “statins” and acts as a 3-hydroxy-
3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitor, producing an antihyper-
lipidemic activity. More recently, statins have been proposed, as well, as immunomod-
ulatory and anti-inflammatory drugs [120,121]. Atorvastatin is metabolized by CYP3A4
and CYP3A5 in the gut and liver [122] and its hydroxylated acid metabolites, 2-hydroxy-
atorvastatin and 4-hydroxy-atorvastatin, inhibit HMGCR and, consequently, reduce the
circulating low-density lipoprotein cholesterol levels, although 2-hydroxy-atorvastatin
represents the most abundant metabolite [123,124]. Lactone metabolites, formed from
the acid forms of atorvastatin by uridine 5′-diphospho-glucuronosyltransferases (UGTs),
do not determine the inhibition of HMGCR, but are unfortunately involved in statin-
induced muscle toxicity [125]. In addition, atorvastatin was demonstrated as an inhibitor
of CYP3A4 activity, by the means of the 4β-hydroxycholesterol to cholesterol ratio (4βHC:
C) measurement, but these data are not in agreement with previous in vitro and in vivo
studies [126]. Finally, a single nucleotide polymorphism in the CYP3A5 gene was associated
with atorvastatin-induced adverse effects, highlighting the importance of genotyping for
predicting its toxicity [127].
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2.16. Abemaciclib

Abemaciclib (Figure 17) is the third cyclin-dependent kinase 4/6 inhibitor that re-
ceived approval by the U.S. FDA for the treatment of breast cancer. It was developed
by Eli Lilly and Company. Moreover, it is now under investigation for other tumors,
including brain cancer [128]. Abemaciclib is mainly metabolized by CYP3A4 into three
active metabolites, N-desethylabemaciclib (M2), hydroxy-abemaciclib (M20) and hydroxy-
N-desethylabemaciclib (M18), which is subsequently formed by the combination of modifi-
cations of M2 and M20. These metabolites are likely relevant for abemaciclib efficacy and
toxicity [129]. Abemaciclib regulates several CYPs expression in vitro, but clinical studies
using different drugs did not confirm these data [130]. Moreover, even though CYP3A4
was shown as responsible for the transformation of abemaciclib and its metabolites, other
recent studies suggested that the drug does not affect the pharmacokinetics of CYP1A2,
CYP2C9, CYP2D6 and CYP3A4 substrates in patients with cancer [131].
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3. Conclusions

The CYP gene superfamily predominantly resides in the hepatocytes’ endoplasmic
reticulum, playing a central role in the metabolism of drugs. The biotransformation of
drugs to metabolites catalyzed by CYPs usually starts with the binding of a drug to the
enzyme’s active site, then the catalytic turnover of the drug to its metabolite(s) occurs.
It is ascertained that the drug binding and orientation depend on the hydrophobic and
steric interactions with specific amino acids that are present in the active site of the CYPs.
CYP monooxygenases catalyze hydroxylation reactions to form hydroxylated metabolites,
which are often responsible for the activity and toxicity of drugs. Very often, scientific
studies regarding the therapeutic use and toxic/side effects of drugs lack investigations
about the metabolites, which could be much more important than the drugs themselves.
This happens with sonlicromanol and mexiletine, where one metabolite is even more
active than the parent compound. Additionally, amongst the abrocitinib metabolites, only
two are active and, in addition, only one retains the same activity of the parent molecule.
Similarly, tamoxifen metabolites show a much higher affinity for the estrogen receptor,
on which revolves the anticancer activity. In this view, the “metabolite switch” from
the drug to its active metabolite, a phenomenon that is not uncommon and is mainly
due to the particular nature of the active site(s) of CYPs, is still rarely mentioned in the
scientific literature, although it could shed light on the understanding of the effects in living
organisms. It is also important to recall that drug metabolism is a fundamental component
of pharmaceutics discovery and development, which contribute to the identification of
new molecules and to the benefit of clinical practice. A deeper knowledge about the
multifactorial variables that could influence drug metabolism is a fundamental prerequisite
for predicting pharmacokinetics and drug response. It should be considered that many
drugs are metabolized at clinically relevant concentrations only by one or few CYPs and that
the limited data available on the interindividual genetic variability and gene polymorphism
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together with methodological limitations represent the major issues. Thus, studies directed
toward a better understanding of CYPs’ polymorphism and epigenetic regulation influence
in drug responses should represent a future trend. Finally, studies on metabolite formation,
therapeutic activity and toxicity are needed. The contributions of those studies should be
considered to design drugs targeting specific patient populations, in order to highlight the
safety and efficacy profiles.
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