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ABSTRACT (EN) 
 

Spatial planning is a crucial discipline for the identification and implementation of sustainable development 

strategies that take into account the environmental impacts on the soil. In recent years, the significant 

development of technology, like remote sensing and GIS software, has significantly increased the 

understanding of environmental components, highlighting their peculiarities and criticalities. Geographically 

referenced information on environmental and socio-economic components represents a fundamental 

database for identifying and monitoring vulnerable areas, also distinguishing different levels of vulnerability. 

This is even more relevant considering the increasingly significant impact of land transformation processes, 

consisting of rapid and frequent changes in land use patterns. In order to achieve some of the Sustainable 

Development Goals of the 2030 Agenda, the role of environmental planning is crucial in addressing spatial 

problems, such as agricultural land abandonment and land take, which cause negative impacts on 

ecosystems. Remote sensing, and in general all Earth Observation techniques, play a key role in achieving 

SDG 11.3 and 15.3 of Agenda 2030. Through a series of applications and investigations in different areas of 

Basilicata, it has been demonstrated how the extensive use of remote sensing and spatial analysis in a GIS 

environment provide a substantial contribution to the results of the SDGs, enabling an informed decision-

making process and enabling monitoring of the results expected, ensuring data reliability and directly 

contributing to the calculation of SDG objectives and indicators by facilitating local administrations 

approaches to work in different development and sustainability sectors. In this thesis have been analyse the 

dynamics of land transformation in terms of land take and soil erosion in sample areas of the Basilicata 

Region, which represents an interesting case example for the study of land use land cover change (LULCC). 

The socio-demographic evolutionary trends and the study of marginality and territorial fragility are 

fundamental aspects in the context of territorial planning, since they are important drivers of the LULCC and 

territorial transformation processes. In fact, in Basilicata, settlement dynamics over the years have occurred 

in an uncontrolled and unregulated manner, leading to a constant consumption of land not accompanied by 

adequate demographic and economic growth. To better understand the evolution and dynamics of the 

LULCCs and provide useful tools for formulating territorial planning policies and strategies aimed at a 

sustainable use of the territory, the socio-economic aspects of the Region were investigated. A first phase 

involved the creation of a database and the study and identification of essential services in the area as a 

fundamental parameter against which to evaluate the quality of life in a specific area. The supply of essential 

services can be understood as an assessment of the lack of minimum requirements with reference to the 

urban functions exercised by each territorial unit. From a territorial point of view, the level of peripherality 

of the territories with respect to the network of urban centres profoundly influences the quality of life of 

citizens and the level of social inclusion. In these, the presence of essential services can act as an attractor 

capable of generating discrete catchment areas. The purpose of this first part of the work was above all to 

create a dataset of data useful for the calculation of various socio-economic indicators, in order to frame the 

demographic evolution and the evolution of the stock of public and private services. The first methodological 

approach was to reconstruct the offer of essential services through the use of open data in a GIS environment 

and subsequently estimate the peripherality of each municipality by estimating the accessibility to essential 

services. The study envisaged the use of territorial analysis techniques aimed at describing the distribution 

of essential services on the regional territory. It is essential to understand the role of demographic dynamics 

as a driver of urban land use change such as, for example, the increase in demand for artificial surfaces that 

occurs locally. Social and economic analyses are important in the spatial planning process. Comparison of 
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socio-economic analyses with land use and land cover change can highlight the need to modify existing 

policies or implement new ones. A particular land use can degrade and thereby destroy other land resources. 

If the economic analysis shows that the use is beneficial from the point of view of the land user, it is likely to 

continue, regardless of whether the process is environmentally friendly.  It is important to understand and 

investigate which drivers have been and will be in the future the most decisive in these dynamics that 

intrinsically contribute to land take, agricultural abandonment and the consequent processes of land 

degradation and to define policies or thresholds to mitigate and monitor the effects of these processes. 

Subsequently, the issues of land take and abandonment of agricultural land were analysed by applying 

models and techniques of remote sensing, GIS and territorial analysis for the identification and monitoring 

of abandoned agricultural areas and sealed areas. The classic remote sensing methods have also been 

integrated by some geostatistical analyses which have provided more information on the investigated 

phenomenon. The aim was the creation of a quick methodology that would allow to describe the monitoring 

and analysis activities of the development trends of soil consumption and the monitoring and identification 

of degraded areas. The first methodology proposed allowed the automatic and rapid detection of detailed 

LULCC and Land Take maps with an overall accuracy of more than 90%, reducing costs and processing times. 

The identification of abandoned agricultural areas in degradation is among the most complicated LULCC and 

Land Degradation processes to identify and monitor as it is driven by a multiplicity of anthropic and natural 

factors. The model used to estimate soil erosion as a degradation phenomenon is the Revised Universal Soil 

Loss Equation (RUSLE). To identify potentially degraded areas, two factors of the RUSLE have been correlated: 

Factor C which describes the vegetation cover of the soil and Factor A which represents the amount of 

potential soil erosion. Through statistical correlation analysis with the RUSLE factors, on the basis of the 

deviations from the average RUSLE values and mapping of the areas of vegetation degradation, relating to 

arable land, through statistical correlation with the vegetation factor C, the areas were identified and mapped 

that are susceptible to soil degradation. The results obtained allowed the creation of a database and a map 

of the degraded areas to be paid attention to. 

 

ABSTRACT (IT) 
 

La pianificazione territoriale è una disciplina cruciale per l'identificazione e l'attuazione di strategie di sviluppo 

sostenibile che tiene conto degli impatti ambientali sul suolo. La pianificazione territoriale è una disciplina 

cruciale per l'identificazione e l'attuazione di strategie di sviluppo sostenibile che tengano conto degli impatti 

ambientali sul suolo. Negli ultimi anni il notevole sviluppo tecnologico, come il telerilevamento e software 

GIS, ha notevolmente aumentato la comprensione delle componenti ambientali, evidenziandone le 

peculiarità e le criticità. Le informazioni georeferenziate sulle componenti ambientali e socio-economiche 

rappresentano un database fondamentale per l'identificazione e il monitoraggio delle aree vulnerabili, 

distinguendo anche diversi livelli di vulnerabilità. Ciò è ancora più rilevante se si considera l'impatto sempre 

più significativo dei processi di trasformazione del suolo, costituiti da rapidi e frequenti cambiamenti nei 

modelli di uso del suolo. Al fine di raggiungere alcuni degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030, 

il ruolo della pianificazione ambientale è cruciale nell'affrontare i problemi territoriali, come l'abbandono dei 

terreni agricoli e il consumo di suolo, che causano impatti negativi sugli ecosistemi. Il telerilevamento, e in 

generale tutte le tecniche di Osservazione della Terra, giocano un ruolo chiave nel raggiungimento degli SDG 

11.3 e 15.3 dell'Agenda 2030. Attraverso una serie di applicazioni e indagini in diverse aree della Basilicata è 



6 

 

stato dimostrato come l'ampio utilizzo del telerilevamento e l'analisi spaziale in ambiente GIS fornisce un 

contributo sostanziale per il raggiungimento degli Obiettivi SDG dell’Agenda 2030 consentendo un processo 

decisionale informato, migliorando l'accuratezza dei dati, garantendo l'affidabilità dei dati e contribuendo 

direttamente al calcolo degli obiettivi e degli indicatori SDG, facilitando, infine,  gli approcci delle 

amministrazioni locali a lavorare in diversi settori di sviluppo e sostenibilità. In questa tesi sono state 

analizzate le dinamiche di trasformazione del suolo in termini di consumo di suolo ed erosione del suolo in 

aree campione della regione Basilicata, che rappresenta un interessante caso esemplificativo per lo studio 

del cambiamento di uso del suolo (LULCC). I trend evolutivi socio-demografici e lo studio della marginalità e 

della fragilità territoriale sono aspetti fondamentali nell'ambito della pianificazione territoriale, in quanto 

importanti driver dei LULCC e dei processi di trasformazione del territorio. In Basilicata, infatti, le dinamiche 

insediative nel corso degli anni sono avvenute in maniera incontrollata e non regolamentata, determinando 

un costante consumo di suolo non accompagnato da un'adeguata crescita demografica ed economica. Per 

meglio comprendere l'evoluzione e le dinamiche dei LULCC e fornire strumenti utili per formulare politiche e 

strategie di pianificazione territoriale finalizzate ad un uso sostenibile del territorio, sono stati indagati gli 

aspetti socio-economici della Regione. Una prima fase ha riguardato la creazione di una banca dati e lo studio 

e l'individuazione dei servizi essenziali sul territorio come parametro fondamentale rispetto al quale valutare 

la qualità della vita in un determinato territorio. L'erogazione dei servizi essenziali può essere intesa come 

una valutazione della mancanza dei requisiti minimi con riferimento alle funzioni urbane esercitate da 

ciascuna unità territoriale. Dal punto di vista territoriale, il livello di perifericità dei territori rispetto alla rete 

dei centri urbani influenza profondamente la qualità della vita dei cittadini e il livello di inclusione sociale. In 

questi la presenza di servizi essenziali può fungere da attrattore in grado di generare bacini discreti. Lo scopo 

di questa prima parte del lavoro è stato soprattutto quello di creare un dataset di dati utili al calcolo di diversi 

indicatori socio-economici, al fine di inquadrare l'evoluzione demografica e l'evoluzione dello stock di servizi 

pubblici e privati. Il primo approccio metodologico è stato quello di ricostruire l'offerta dei servizi essenziali 

attraverso l'utilizzo di dati aperti in ambiente GIS e successivamente stimare la perifericità di ciascun comune 

stimando l'accessibilità ai servizi essenziali. Lo studio ha previsto l'utilizzo di tecniche di analisi territoriale 

volte a descrivere la distribuzione dei servizi essenziali sul territorio regionale. È essenziale comprendere il 

ruolo delle dinamiche demografiche come motore del cambiamento dell'uso del suolo urbano come, ad 

esempio, l'aumento della domanda di superfici artificiali che si verifica a livello locale. Le analisi sociali ed 

economiche sono importanti nel processo di pianificazione territoriale. Il confronto delle analisi socio-

economiche con l'uso del suolo e il cambiamento della copertura del suolo può evidenziare la necessità di 

modificare le politiche esistenti o implementarne di nuove. Un particolare uso del suolo può degradare e 

quindi distruggere altre risorse del suolo. Se l'analisi economica mostra che l'uso è vantaggioso dal punto di 

vista dell'utilizzatore del suolo, è probabile che continui, indipendentemente dal fatto che il processo sia 

rispettoso dell'ambiente. È importante comprendere e indagare quali driver sono stati e saranno in futuro i 

più determinanti in queste dinamiche che contribuiscono intrinsecamente al consumo di suolo, 

all'abbandono agricolo e ai conseguenti processi di degrado del suolo e definire politiche o soglie per mitigare 

e monitorare il effetti di questi processi. 

Successivamente sono stati analizzati i temi del consumo di suolo e dell'abbandono dei terreni agricoli 

applicando modelli e tecniche di telerilevamento, GIS e analisi territoriali per l'individuazione e il 

monitoraggio delle aree agricole abbandonate e delle aree impermeabilizzate. I classici metodi di 

telerilevamento sono stati integrati anche da alcune analisi geostatistiche che hanno fornito maggiori 

informazioni sul fenomeno indagato. L'obiettivo era la creazione di una metodologia veloce che permettesse 

di descrivere le attività di monitoraggio e analisi dei trend di sviluppo del consumo di suolo e il monitoraggio 
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e l'identificazione delle aree degradate. La prima metodologia proposta ha consentito il rilevamento 

automatico e rapido di mappe LULCC e Land Take dettagliate con un'accuratezza complessiva superiore al 

90%, riducendo costi e tempi di elaborazione. 

L'identificazione delle aree agricole abbandonate in degrado è tra i processi di LULCC e Land Degradation più 

complicati da identificare e monitorare in quanto guidato da una molteplicità di fattori antropici e naturali. Il 

modello utilizzato per stimare l'erosione del suolo come fenomeno di degrado è la Revised Universal Soil Loss 

Equation (RUSLE). Per identificare le aree potenzialmente degradate, sono stati correlati due fattori del 

RUSLE: il Fattore C che descrive la copertura vegetale del suolo e il Fattore A che rappresenta l'entità della 

potenziale erosione del suolo. Mediante analisi statistica di correlazione con i fattori RUSLE, sulla base degli 

scostamenti dai valori medi di RUSLE e mappatura delle aree di degrado vegetazionale, relative ai seminativi, 

mediante correlazione statistica con il fattore vegetativo C, sono state individuate e mappate le aree che 

sono suscettibili al degrado del suolo. I risultati ottenuti hanno consentito la creazione di una banca dati  delle 

aree degradate da attenzionare. 
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Foreword 
 

1.1 Introduction 
 

In last decades, due to the growth of the global population and the rapid development of urbanization, a 

significant proportion of rural regions are being transformed into urban areas, leading to an increment in 

land take[1–3]. The population moves from rural areas to cities, equipped with more services and 

opportunities, as stated in the World Urbanization Prospects, "the percentage of the world's population living 

in urban areas is expected to increase, reaching 66% by 2050” [4]. As a result, the land rush for the expansion 

of urban areas and the resulting land consumption and abandonment of agricultural areas has emerged as a 

critical problem in recent decades. The United Nations’ adoption of the 17 sustainable development goals 

(SDGs), under the 2030 Agenda for Sustainable Development, urged the scientific community to generate 

sound information with the aim of supporting planning and monitoring of socioeconomic development 

interlinking with environmental sustainability dimensions [5–9]. SDGs 11 and 15 refer to targets which 

commend direct consideration of land resources. 

In particular SDG 11.3 refers to one of the goals of Sustainable Development Goal 11, which focuses on 

making cities and human settlements more sustainable. The specific goal of SDG 11.3 is to improve 

urbanization and make it sustainable by 2030 [5]. In other words, this goal aims to ensure that urban areas 

are developed in a sustainable, inclusive and participatory way, counteracting land take[1,10,11]. This 

includes efforts to reduce urban sprawl, improve access to basic services, and ensure that urban planning 

takes into account the needs and perspectives of all community members. This includes efforts to reduce 

urban sprawl, improve access to basic services, and ensure that urban planning takes into account the needs 

and perspectives of all community members. 

SDG 15.3 refers to the third target under Sustainable Development Goal 15, which aims to protect, restore, 

and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, 

halt and reverse land degradation, and halt biodiversity loss [5,7,8,12].  This target recognizes the importance 

of protecting and restoring terrestrial ecosystems and halting land degradation, which are essential for 

achieving sustainable development and addressing climate change. The target calls for efforts to combat 

desertification, restore degraded land and soil, and achieve a land degradation-neutral world, where the 

amount of degraded land is balanced by an equal or greater amount of land that is restored or improved. To 

achieve this target, actions should focus on preventing and reversing land degradation, improving soil health 

and fertility, promoting sustainable land use and management practices, enhancing resilience to drought and 

other natural disasters, and supporting sustainable livelihoods for local communities. This will require 

coordinated efforts at all levels, from local communities to national governments and international 

organizations, and the participation of all stakeholders, including local communities, landowners, 

governments, civil society, and the private sector. Mainly the methods of evaluation and monitoring of land 

take and the neutrality of land degradation, for the achievement of the SDGs, provide for a multidisciplinary 

analysis approach which involves the use of territorial indicators and analyses. 

The monitoring of the SDGs can be disaggregated into different aspects: study of urban sprawl, land 

consumption and abandonment of agricultural areas, soil degradation and land transformation dynamics, 

and socio-demographic dynamics. For the aspects concerning the Land Use Land Cover Change (LULCC), the 

use of the different algorithms and remote sensing techniques available, can provide synoptic views in space 

and time for the periodic monitoring of the territory. A variety of remote sensing data can provide sources 
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of land use data. There are many studies in the literature that have seen the analysis of these issues applied 

to different territorial contexts: from megalopolises and large industrial areas to provincial areas[1,11,13–

18]. For the second aspect, the determination of the exact population within a built-up area requires the 

existence of updated databases and metadata that follow the trend of the expansion of the built-up area 

that takes into account the evolutionary trends of the population and of all the socio-economic aspects that 

represent the drivers of the transformation processes of the territories with direct impacts on the soils[19–

22]. The doctoral activities outlined in this thesis fit into this context, which involved a first phase of cognitive 

analysis on research topics focused on the dynamics of changes in the LULCC. The research project proposes 

the application of combined remote sensing and spatial analysis techniques for the assessment of relevant 

environmental components with respect to the construction of spatial governance tools. Anthropogenic land 

use and land cover change (LULCC) is a major cause of global environmental change [23]. The conversion of 

natural lands to human-dominated landscapes has accelerated dramatically over the past two to three 

decades and is expected to continue to increase dramatically. The transition of forests and grasslands to 

cropland and pasture is the most important of these changes, linked to increasing demand for food with 

impacts on climate. Land use and land cover are interconnected intrinsically, but are nevertheless 

conceptually distinct; drawing clear distinctions between the two is not easy, as there are multiple 

relationships within and between land cover and land use categories [24]. Land use and land cover are two 

extremely interrelated areas in the analysis of the phenomena and processes that characterize land 

evolution. These transformations have substantial consequences on human well-being and the state of the 

environment at global, regional and local levels, so there is a need for the development of monitoring support 

tools capable of supporting the implementation of appropriate sustainable land governance and 

management policies[25]. In this sense, although some dynamics, such as land take and agricultural land 

abandonment, are well known, the availability of an integrated monitoring and assessment system for the 

status and evolutionary dynamics of land cover and land use has historically been limited in our country.  The 

growing need for high spatial temporal and thematic resolution information, which is essential for the 

description of complex contemporary land dynamics, has led to the creation of numerous independent 

products at the global, European, national and local levels, characterized by specific classification systems, 

different level of geometric detail and based on different relationships between land use and land cover. 

There are many papers in the literature by authors who have published investigations in the field of LULCC. 

Over the decades, scientific literature has defined 'land use' and 'land cover' in various ways, depending on 

the specific area of interest [22,24,26–30]. Generally, land use and land cover can be defined separately, 

where land use refers to the purpose for which the land is used, e.g., agricultural or recreational use.  In 

contrast, land cover indicates specific landscape patterns and characteristics. While the terminologies for 

LULCC can be used interchangeably, the definition focuses on human use, over time and space, of the various 

physical, chemical and cultural factors of the soil resource.  Land use and land cover are key physical elements 

that observe the earth's surface and classification systems are needed to differentiate them. These 

classification models and algorithms provide the tools for classifying and identifying spatial data. The use of 

remote sensing data is a consolidated approach in this field of research [27,31,32], particularly due to its 

ability to provide regular data (spatially and temporally) over large areas. Satellite images, therefore, offer 

the opportunity to extract significant information and study the territory, especially regarding the impacts of 

human activity on land use and land cover. One of the main problems associated with the use of Earth 

observation systems, however, is related to the quantitative interpretation of the signal and the time gap of 

the images due, for example, to the presence of clouds that do not allow for analysis. In the literature, 

different types of classification have been applied for mapping LULCC using satellite images [33–39]. Some 
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of these classifications are based on mono-temporal images[40], multitemporal [10,14]) or in combination 

with auxiliary data (e.g., [11,15,16]). Single date classification is widely used in the literature (e.g. 

[6,12,17,18]); this analysis focuses on a single date image for LULCC mapping. The processing of a single-date 

image is faster than multi-temporal classification. In multi-temporal classification, bands of multiple dates, 

seasons or years are combined and classified [19]. Free satellite imagery, such as Landsat, MODIS or Sentinel, 

is also increasingly used because it offers a wide range of options and possible applications. In addition, the 

constant supply of images with the same spatial and temporal resolution ensures highly relevant standard 

processing in spatial and ecological studies. However, the use of these data and methodologies is often 

limited to the academic or national arena and little is done locally. This happens because there is a lack of 

technical expertise, but also because the methodologies are often too complex and time-consuming to be 

exploited at the practical level in local planning. Remote sensing (RS) technology obtains geographic data 

through satellite images (optical and/or radar) or aerial photographs that can be examined in a GIS 

environment. Land use and land cover are important aspects in spatial planning. In fact, LULCC data are 

essential in environmental studies, decision making, land use planning and design, and the definition of 

natural resource management policies. Urban and territorial planning and the decision-making process for 

sustainable development need high spatial resolution data to study the relationships between the socio-

economic performance of the urban and territorial system and their impact on the land cover. Land use 

changes are deeply connected to social and economic determinants, thus also depending on the territorial 

policies and financial incentives put in place by government bodies, also in implementation of EU regulations. 

In Italy in the last thirty years, among the actions that have had the greatest impact on land use and land 

cover phenomena, we find the Community economic policy such as the Common Agricultural Policy (CAP). 

The CAP, through the disbursement of funds through the Rural Development Programmes, has profoundly 

influenced the choices of agricultural entrepreneurs. 

Among the different dynamins and types of land use and land cover change, in this thesis we have chosen to 

analyse two types of LULCC: land take and the degradation of abandoned agricultural land in the form of 

erosion. Land take from soil sealing is the leading cause of soil degradation in Europe, the negative impacts 

of which on the environment lead to an increased risk of flooding, threatens biodiversity, causes the loss of 

fertile agricultural land and natural and semi-natural areas, contributes together with urban sprawl to the 

progressive and systematic destruction of the landscape, especially rural landscapes, and to the loss of the 

capacity to regulate natural cycles and mitigate local thermal effects. (European Commission, 2012). Detailed 

analysis of land transformations resulting from land take is the main planning reference and the fundamental 

tool for achieving the goal of zero land take. Soil degradation, on the other hand, is the phenomenon of 

altered soil conditions due to the reduction or loss of biological or economic productivity due primarily to 

human activity. In addition to productivity, other factors such as water erosion can be used to assess soil 

degradation. The present research concerns practical studies on the time series of land consumption, land 

abandonment and erosion, carried out through remote sensing data from the Landsat and Sentinel Mission, 

with the objective of providing accurate information of the phenomena in Basilicata and relating them to 

demographic dynamics, settlement by taking a look at government actions acting on the territory. The 

methods used in this thesis work are mainly based on the use of historical land use data to derive time series 

of changes in the LULCC. These information series were then used to feed classification models to estimate 

changes in the LULCC. Finally, the results were compared with population data. The study of the main 

territorial changes was accompanied by the evolution of demographic dynamics linked to changes in the 

regional production system, in the various sectors, highlighting and understanding any implications with the 

degree and type of pressures in terms of land consumption and land degradation soil and trying to grasp any 
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connections between economic activities and demographic aspects with the increase in soil degradation and 

the consequent territorial marginalization. 

 

1.2 Main research objectives 
 

The research project proposes the application of combined techniques of remote sensing and analysis spatial 

for the assessment of relevant environmental components with respect to the construction of spatial 

government tools. 

The state of the research proposes a series of applications based on change detection techniques to 

significant domains that characterize the contemporary urban and land use planning debate: land take, land 

abandonment and degradation. Applications referring to sample spatial domains take into account the 

availability of data spatial organized also with respect to time series useful for recording evolutionary trends 

of the phenomena considered. Both the choices of case studies, the organization of applications compose a 

heterogeneous pool of results that has been useful to test the applicability of techniques at different scales 

of land assessment in order to consolidate an analytical competence and thick ex-ante transferability to 

broader contexts in order to achieve a unified and integrated reading of the territory. 

Contexts of interest for the development of the research are: the regional dimension referred to for 

landscape planning actions in the context of the Basilicata Region; the urban areas of the Lucanian capitals 

and the main sites of industrial settlement for the reading of the relationships between anthropic settlements 

and climatic forcings and land use alterations; areas with a specific agricultural vocation, in which to assess 

relationships between forms of land degradation and agricultural uses related to the programming of 

regional rural development policies; rural and urban-agricultural interface areas in which to assess the 

phenomenon of soil erosion as a form of land degradation due to anthropogenic actions.  

The choice of the study area was dictated by the fact that in the Basilicata region the phenomenon of land 

abandonment is very present, while the phenomenon of land take in the main cities shows an increasing 

trend in contrast with the demographic dynamics.  

The research consisted of several stages, the preliminary stages consisted of a territorial framework from the 

socio- demographic point of view where the issues of depopulation, endowment of essential services and 

territorial fragility of the analysed area were analysed. The first part of the work involved a great deal of work 

in the research and construction of spatial data to assess the dynamics of LULCC in the Basilicata region from 

the 1990s to 2020. 

Subsequently, the issue of land take and agricultural land abandonment was analysed by applying remote 

sensing, GIS and spatial analysis models and techniques for the identification and monitoring of abandoned 

agricultural areas and sealed areas. The classical remote sensing methods were also complemented by some 

geostatistical analyses that provided more information about the investigated phenomenon. Geostatistics 

represents a possibility of exhaustive reading of the territory, the techniques of spatial statistics and 

autocorrelation methods were used, through global and local indicators, for a more detailed analysis of the 

investigated phenomena. 

It is critical to understand, investigate, and monitor what have been and will be in the future the most 

influential drivers on these dynamics that inherently contribute to land consumption and land degradation 

and to define directions to curb the associated degradation phenomena.  
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1.3 General structure of the thesis 
 

The thesis was organized as follows: 4 chapters introduced by an abstract presenting the main objectives and 

main results obtained, as well as continuity with the previous chapter. Specifically, the research consisted of 

several phases of work, the results of which are reported in the chapters of which this thesis is composed. 

The first cognitive phase is aimed at defining the scientific frame of reference on the topic of land use land 

cover (Chapter 1). This is a topic of particular interest in the field of land use planning, partly as a result of 

European strategies and regional guidelines aimed at limiting land consumption and land degradation, as 

well as the urban planning instruments that currently regulate land management at the national and 

European levels. The characters and dynamics of population, territorial marginalization as expressed through 

accessibility analyses have been flanked by substantial sets of historiographic, sociological, political and 

economic data that have been summarized in Chapter 2. The compendium of these qualitative elements will 

then also serve as the basis for determining suitable indicators for measuring the processes analysed. 

The second part of the thesis work consists of a methodological and experimental phase involved the 

application of models and techniques for the qualitative - quantitative estimation of land transformations of 

land take (Chapter 3) and the qualitative and quantitative estimation of agricultural abandonment and its 

consequences on land degradation (Chapter 4).  Finally, the last chapter on the conclusions of the thesis and 

considerations on the issues addressed. The thesis includes an appendix that consists of methodological and 

technical attachments, as well as a glossary with definitions of the key terms used throughout the text, which 

are emphasized in bold italics. 

 

1.4 Results in brief  
 

The research project conducted during the PhD proposed an innovative methodological approach to land use 

change issues (land occupation and abandonment), based on a solid spatial and landscape study. The overall 

research was based on the use and integration of spatial analysis and remote sensing techniques for the 

study of land transformation processes. 

The main results obtained are: 

 

• The data collection process led to the identification of about 19,000 activities and services on the 

regional territory and the creation of a territorial dataset that allowed for the collection, analysis and 

organization in a synthetic form of territorial data on the stock of services present on the territory, 

useful for the planning and management of urban tools; 

• The regional territory is mainly characterized by smaller centres that offer limited accessibility to 

essential services due to the significant distance from the main centres that provide essential services 

(education, health and mobility) and the poor road and infrastructure network; 

• Between 1981 and 2021, the depopulation index in Basilicata is about 6%, with higher values in the 

province of Potenza (14.24%). In 2021, there are 67 municipalities in the region with a population 

under 2,000 and 40 with a resident population below 5 thousand inhabitants; 

• Economic activities also record a decrease in the period between 2002 and 2021; 



13 

 

• The municipalities recording an inverse trend of socio-economic depopulation are the municipalities 

of Melfi and Policoro, the former being the hub of the region's main industrial centre and the latter 

the centre of agricultural and tourist activities in the Metapontine area; 

• The Land Use and Land Cover classification model implemented involved the use of supervised 

classification algorithms (SVM) with the integration of auxiliary data (orthophotos, ground truth 

data). The LULCC maps obtained show an overall accuracy greater than 92%. The results show that 

the increase of impermeable areas (built-up areas) has occurred predominantly in areas away from 

urban centres, especially near industrial areas and rural areas; 

• The installation of new renewable energy plants has produced a further increase in land take with a 

consequent increase in territorial fragmentation; 

• Clustering of the RUSLE data, via Getis and Ord. autocorrelation algorithm, highlighted the areas 

showing permanent erosion during the period considered; 

• The NDVI time series surveys for the period 1990-2020 identified areas that experienced agricultural 

abandonment (formerly agricultural areas) or agricultural transition; 

• Through statistical correlation analysis with the RUSLE factors, on the basis of the deviations from 

the average RUSLE values and mapping of the areas of vegetation degradation, relating to arable 

land, through statistical correlation with the vegetation factor C, the areas were identified and 

mapped are susceptible to soil degradation. The results obtained were compared with data from 

various agricultural censuses and policy actions acting on the territory in order to identify the likely 

drivers of degradation and analyse their impacts (soil erosion). 
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Chapter 1: Land Cover/Land Use and Land Cover Change: 

an overview 
 

Soil is a natural resource that performs a fundamental role in providing environmental, social and economic 

functions, that humans have utilized for life and various activities. Soil provides food, biomass and raw 

materials essential for human life and activity, it is a central element of the landscape and cultural heritage 

of a country. Soil is a limited resource whose formation times are extremely long, and for this reason we can 

define it as a substantially non-renewable resource. Soil is an essential, complex, multi-functional and vital 

ecosystem of critical environmental and socioeconomic importance, performing many key functions and 

providing services vital to human existence and ecosystem survival for current and future generations to 

meet their own needs (European Parliament, 2021).  Due to these peculiarities, natural soil must be protected 

and conserved for future generations. The importance of protecting the soil, taking into account the 

persistent degradation of this non-renewable resource, also derives from the costs of inaction regarding soil 

degradation, with estimates that in the European Union exceed 50 billion euros per year (European 

Parliament, 2021). According to estimates between 60% and 70% of soils in the EU are not in optimal 

conditions, in fact soils and soils continue to be subject to processes of strong degradation such as erosion, 

compaction, reduction of organic matter, pollution, biodiversity loss, salinisation and sealing (European 

Commission, 2021). Europe, key LULC changes consist in land abandonment (sometimes with forest 

recovery), agricultural intensification and rapid (and often uncontrolled) expansion of urban areas [41]. The 

human use of terrestrial resources gives rise to the "land use", which varies according to the purposes such 

as food production, the extraction and processing of materials, the creation of new infrastructures and 

homes, as well as the biophysical characteristics of the territory itself [42]. Thus, land use is shaped under 

the influence of human needs and environmental characteristics and processes. The changes in land use that 

occur at various spatial levels and in various periods of time are the material expression of environmental 

and human dynamics and their interactions through the territory. These changes have impacts and effects, 

beneficial and harmful; the latter affect human well-being and health in various ways and are the subject of 

attention and study. The extent of land use change varies according to the time period examined and the 

geographical area concerned[43]. Knowledge of land use and land cover is essential for understanding land 

development, loss and degradation and energy security for the growing population, to simulate water and 

carbon cycles, learn about ecosystem dynamics and climate change, assess the environmental effects 

associated with land use and the impact on service provision ecosystems, consider land management that 

accounts for land cover change, change sensing analysis (e.g. where change occurs, what type of change and 

how it occurs), using monitoring tools for policy change, landscape monitoring and natural resource 

management of the environment. These activities have contributed to the observation, research, planning 

and implementation of policies that find a balance between the management of local resources, such as 

agriculture and urbanization[44]. United Nations Convention to Combat Desertification Aims for Land 

Degradation Neutrality by Addressing Sustainable Development Goals to Strengthen National Capacity and 

Quantitatively Assess Land Degradation. There are many works in the literature that have investigated the 

field of LULC; over the decades the scientific literature has defined “land use” and “land cover” in various 

ways. Depending on the specific area of interest Land Use and Land Cover can be defined separately, where 

land use refers to the purpose for which the land is used, for example, agricultural or urban use. In contrast, 

land cover indicates specific landscape patterns and features and focuses on human use of the land resource 

over time and space. LULC terminologies can be used interchangeably, they are key physical elements that 
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observe the Earth's surface. To distinguish between land use and land cover classification systems are needed 

which provide the essential functions of structuring tools for classifying, naming and identifying objects on 

land [45]. Classification systems have incorporated mapping and spatial data as an essential function for the 

analysis and evaluation of land observations. 

 

1.1 Land Use - Land Cover Definition 
 

Generally, land is usually classified with respect to its use or its cover. In addition to its use in landscaping, in 

planning, this information is used in predictive models of environmental protection (e.g., biodiversity, habitat 

fragmentation) and in economic planning. In cartographic implementations, the choice between Land Use 

(LU) and Land Cover (LC) is determined by the specific end use of the cartography produced, although in most 

cases hybrid classifications are adopted [29,46,47]. The terms “land use” and “land cover” are widely used, 

they are not synonymous and the literature draws attention to their differences, so use them correctly. 

Indeed, confusion between the two concepts has existed in the literature for at least 30 years [29,48]. The 

lack of a universally recognized definition of LU and LC is certainly the main cause of this confusion. The most 

common definitions of LU and LC are those adopted in the Land Cover Classification System by FAO [49,50]. 

LU is the intended use of a specific area of land by humans, i.e., its socio-economic function. LC is the 

observed biophysical coverage of the Earth's surface, the type of surface layer of a specific area of land, 

including vegetation, bare soil, open bodies of water and artificial surfaces observable in the field and 

recorded by orthophotos. Both definitions are consistent with Directive 2007/02/EC. In fact, while the 

definition of LC coincides with that of the Directive, according to the definition of LU, the classification of a 

territory should be based on the functional dimensions or on the socio-economic intention and on the plan 

for the future, as indicated by the Directive. Land use implies the way in which the biophysical attributes of 

the territory are manipulated, states that land use is the way and the purpose with which human beings use 

the territory and its resources [23,29]. FAO states that “land use concerns the function or purpose for which 

soil is used by the local human population and can be defined as human activities which are directly related 

to the soil, which use its resources or that have an impact on them”[50]. Land use, therefore, is a reflection 

of the interactions between man and land cover and constitutes a description of how the land is used in 

human activities. Directive 2007/2/EC defines it as a classification of the territory based on the functional 

dimension or socio-economic destination present and planned for the future (for example: residential, 

industrial, commercial, agricultural, forestry, recreational). A land use change (and even less a land use 

change envisaged by an urban planning instrument) could have no effect on the real state of the soil, which 

could keep its functions and its ability to provide services intact ecosystems. While the definitions of land use 

previously reported mostly refer to wider territorial scales, on an urban scale the interest is concentrated on 

other aspects of the term. In the words of Chapin and Kaiser [51]: "At spatial scales involving large areas, 

there is a strong predisposition to think of soil in terms of the yield of the raw materials needed to sustain 

people and their businesses. At these scales, 'land' is a resource and 'land use' means 'use of the resource' 

On the contrary, at the urban scale, instead of characterizing the territory in terms of the productive potential 

of its soils, the emphasis is more on the potential of use of the land surface for the location of various 

activities". This connotation of the term "land use" is implicit in many other texts dealing with land use in the 

context of urban and regional planning and analysis. Therefore, by land cover we mean the biophysical cover 

of the earth's surface, including artificial surfaces, agricultural areas, woods and forests, semi-natural areas, 

wetlands, water bodies, as defined by Directive 2007/2/CE. Land use refers to land cover in various ways and 
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affects it with various implications, “A single land use can correspond quite well to a single land cover. On 

the other hand, a single cover class can support multiple uses (forest used for timber combinations, slash-

and-burn agriculture, hunting/gathering, firewood collection, recreation, nature preserve, and watershed 

and soil protection) and a single land use system may involve maintaining several distinct covers (because 

some agricultural systems combine farmland, woodland, improved grazing, and settlements). Land use 

change is likely to cause land cover change, but land cover may change even if land use remains unchanged' 

[51,52]. The importance and need to distinguish between land use and land cover is most evident in analyses 

of the environmental impacts of land cover changes. The distinction between land use and land cover, 

therefore, although it is relatively simple in concept, is not so simple in practice since it is not always possible 

to distinguish clearly between use and cover. LU and LC changes are dynamic processes that are closely 

connected to direct or indirect human activities. These changes are able, among other things, to influence 

the climate at a regional and global scale[53,54] . Knowledge of transitions between different categories of 

LU and LC is essential for addressing issues such as urban sprawl, loss of croplands and, more generally, all of 

the changes entailing the alteration of the balance and functionality of ecosystems. 

In analysing land use and land cover change, it is first necessary to conceptualize the meaning of change in 

order to be able to identify it in real-world situations. At a very basic level, land use and land cover change 

are understood to mean (quantitative) changes in the areal extent (increases or decreases) of a given land 

use or land cover type, respectively. It is important to note that the detection and measurement of change 

depends on the spatial scale; the higher the level of spatial detail, the more changes in areal extent of land 

use and land cover that can be detected. However, both in the case of land cover and land use, the meaning 

and conceptualization of change is much broader. In the case of land cover change, the relevant literature 

distinguishes two types of change: land conversion and land modification [23,29,52].  

Land cover conversion involves changing from one cover type to another. Land cover modification involves 

alterations of structure or function without a total change from one type to another; could result in changes 

in productivity, biomass or phenology. Land cover changes are the result of natural processes such as climatic 

variations, volcanic eruptions, changes in river channels or sea levels, etc. to land uses for production or 

settlement. The modification of a particular land use can lead to changes in the intensity of that use and 

alterations of its characteristic qualities/attributes. In the case of agricultural land use, land use changes: 

consist of intensification, extensification, marginalization and abandonment.  

The reason why the link between land use and land cover change is emphasized is that the environmental 

impacts of land use change and their contribution to global change are mediated, to a considerable extent, 

by land cover changes. Therefore, their analysis requires examining how land use relates to land cover 

changes at various levels of spatial and temporal detail. The specification of the spatial and temporal levels 

of detail is of crucial importance for the analysis of both changes, because: 

 

• guides the selection of land use and land cover types that will be analysed; 

• determines the drivers and processes of change and the level of spatial and temporal detail of the 

changes that can be detected; 

• it affects the identification and explanation of links between land use and land cover within particular 

spatial-temporal frames. 

 

As regards the latter aspect, the point is that land use changes at the local level may not produce significant 

land cover changes (and, consequently, significant environmental impacts). However, they can accumulate 

over space and/or time and produce significant land cover changes at higher levels (e.g., regional or national). 
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This is the case, for example, with the conversion of agricultural land to urban uses, which results from the 

decision of individual land owners to convert agricultural land to non-agricultural uses. Similarly, changes in 

land use may be more qualitative than quantitative at the lowest levels of spatial and temporal detail, but 

manifest as quantitative changes at the highest levels and over the long term. For example, gradual and 

incremental changes in farm-scale crop types or in the quality of land management can lead, in the long run, 

to farmland abandonment or severely degraded farmland (in other words, a change in category from 

productive to non-productive land). A simplified scheme for classifying the possible land cover 

transformations is the one proposed and described by the European Environmental Agency, through the 

image of the transition triangle, shown below (Fig. 1) in the reworking of the National Observatory on Soil 

Consumption (ONCS, 2009), which later became the Research Centre on Soil Consumption (CRCS) 

Information sources for monitoring land take. 

 

 
Figure 1. Transition triangle by ONCS (2009).  

 

At the vertices of the triangle are the three macro-categories of land cover (natural, agricultural, urban), 

while the possible changes in the use of the cover "transit" along the sides, distinguished by type, duration 

(temporary-permanent) and outcome (agricultural-urban-natural) and indicated by the arrows. The circular 

arrows represent homologous transformations, i.e., those occurring in the same macro-classes of land cover; 

the linear arrows represent transitions from one macro-class to another. The dashed arrows represent 

transitory transformations and the continued arrows represent permanent/irreversible transformations 

[43,55]. 

On the basis of the three variables considered, the transformations assume different characters and can 

therefore be classified differently. For example, the transition from an agricultural cover to an urban cover is 

classified according to this scheme as a non-homologous transformation (i.e., one that does not occur within 

the same category), permanent and artificial, while the transition from a natural cover to an agricultural one 

will be catalogable as a transitory, non-homologous and semi-natural transformation. Strictly speaking, only 

in the first case should we speak of soil consumption both for the duration of the (permanent) transformation 

and for the impacts deriving from it. The transition triangle represents an absolutely simplified scheme that 

needs to be integrated by other qualitative-quantitative measures that are able to characterize the soil 

transformation processes in greater detail and therefore support the territorial government choices. At 
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national and European level, the offer of land cover/land use data is vast but extremely fragmented; the 

main, and often only, land-use information available is censuses, while land-cover information is usually 

deduced from cartographies derived mainly from aerial photos or satellite images[24,56–58]. The purpose 

of the Copernicus program is to collect information on the earth's surface and organize it according to criteria 

that allow different data to be compared, to exchange data between EU countries and to increase the number 

of users. The Copernicus Land Monitoring Service (CLMS) allows researchers to obtain geographic 

information about soils and numerous related variables (such as the state of vegetation or the water cycle), 

supporting applications in a wide variety of sectors, such as spatial planning, management of water and forest 

resources, agriculture and food security. CORINE Land Cover is one of the main products belonging to CLMS. 

It has guaranteed information for the whole European territory since 1990, with 44 land cover and use classes 

and geometric detail of 25 hectares. It aims to provide detailed information on environmentally critical areas, 

which require specific and detailed monitoring. Currently, this Copernicus component offers land cover and 

land use maps in vector format, with high spatial resolution and 6-year update frequency for four area 

categories. The Urban Atlas refers to the CLC classification system, which describes in more detail the land 

cover and land use characteristics of urban areas, while the Riparian Zone and Natura 2000 use the ecosystem 

types defined in the Mapping Assessment of Ecosystems and their Services (MAES) [59]. In order to 

coordinate data flows from a thematic point of view, the EAGLE group (EIONET Action Group on Land 

monitoring in Europe) was created. It aims at defining a conceptual methodology to describe land cover and 

land use information in a consistent data model. EAGLE is not a classification system but a tool to describe 

classes of a given classification system by tracing them to the segments related to the three categories. This 

allows to better understand the characteristics, the overlaps and the possible conversions between different 

classification systems and provides a basis to define new ones. The EAGLE model aims at separating the land 

cover and land use components through data modelling systems applicable at different scales and in different 

contexts, while maintaining compatibility with existing databases. The problem of interoperability and non-

homogeneity between data is also evident at a national level. The National Land Consumption Map offers 

national coverage, with annual update and EAGLE compliant classification system, while most of the data 

available at the regional level are inconsistent, not updated and difficult to relate to each other. Despite the 

large amount and variety of land cover and land use data available at national and European level, currently 

CLC is the only product capable of supporting an assessment of LULCC on a national scale [59,60], since it 

guarantees the mapping of the entire national territory and has a thematic detail suitable for the purpose. 

However, the low spatial resolution and the presence of mixed classes reduce the reliability of the 

assessments based on them. 

  

1.2 Land Use – Land Cover Change: Drivers and Impacts 
 

Land use/land cover change (LULCC) has aroused great concern over the years in many countries also due to 

the negative impacts on the environment and the consequent repercussions on the economies and social 

dynamics in the various nations [23,61–63].  

The analysis of land use change revolves around two central and interconnected questions: "What drives and 

causes land use change?" and "what are the (environmental and socio-economic) impacts of land use 

change?". This section addresses the first of these questions. The precise meaning of the 'drivers' or 

'determinants' or 'driving forces' of land use change is not always clear. Often, some driving forces are 

emphasized over others and there is confusion as to the semantic categories to which these causes of land 

use change belong. Two principal distinctions are made in the following. The first regards the origins of the 
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drivers of land use-cover change. It is almost unanimously accepted that there are two main categories: 

biophysical and socio-economic drivers and they are extremely interconnected: the former cause the latter 

which then affect biophysical factors potentially causing successive cycles of land use change. A common 

example of a domino effect of environmental and socio-economic impacts of land use change is that of 

itinerant farmers: the sequence of land use change begins with forest clearing; follows cultivation, intensive 

grazing and finally land abandonment and movement to another location where the sequence is repeated 

[64]. Biophysical drivers include the characteristics and processes of the natural environment, such as: 

climatic and meteorological variations, landform, topography and geomorphic processes, soil types and 

processes, drainage patterns, availability of natural resources. Socio-economic drivers include demographic, 

social, economic, political and institutional factors and processes such as population and demographic 

changes, industrial structure and changes, technology and technological changes, etc. It should be noted that 

biophysical factors usually do not directly cause land use change, whereas anthropogenic one’s cause land 

cover change(s) which, in turn, can influence land use decisions. The second central issue that land use 

change analysis deals with concerns the impacts (environmental and socio-economic) of land use change. 

Five main types of driving forces can be identified: socio-cultural, economic, natural, demographic and 

agricultural driving forces (Fig 2). 

 

 
Figure 2. Principal drivers of land use - land cover change. 

 

Usually, the anthropic development of the Land Use Land Cover Change (LULCC) consists of two main macro-

groups: direct actions and indirect ones, consequence of the first ones. The former explains the direct action 

of man on local territorial coverage and include the expansion of agriculture, the unsustainable exploitation 

of forest resources and the development of infrastructure[65]. Indirect forces, such as economic, 

institutional, technological, cultural and demographic changes, accelerate man's effect on the use of natural 

resources.  

Land cover change refers to the change of some continuous land characteristics, such as vegetation type, soil 

properties, etc., while land use change consists of an alteration in the way in which a given area of land is 

used or managed by humans. Interestingly, this change is responsible for a number of local and global effects, 

including biodiversity loss and associated effects on human health, as well as loss of habitat and ecosystem 
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services. The phenomenon is mainly driven by urban growth and is particularly important today for 

developing and underdeveloped countries. However, natural causes can result in land cover change, but land 

use change requires human intervention[24]. Land use change causes a multitude of environmental impacts 

at lower spatial levels in urban, suburban, rural areas and spaces widely studied by the scientific community. 

Particularly important are land use changes occurring in the periphery of large urban concentrations that are 

subject to the pressures of urbanization and industrialization and often result in losses of agricultural raw 

land and tree cover. Their environmental impacts include changes in the hydrological balance of the area, 

increased risk of floods and landslides, air pollution, water pollution, etc. Other local impacts of land use 

changes include soil erosion, sedimentation, contamination and salinization of soil and groundwater, erosion 

and coastal pollution. The significance of these impacts is not restricted to the local area of concern as they 

are often cumulative resulting from the decisions of many individual land and property owners to act in their 

narrow self-interest, the environmental impacts of which may also play out in distant areas. For example, the 

urbanization or tourist development of an area increases the demand for water which, however, is supplied 

by another territory. Excess water abstraction reduces the water available for agriculture and plant growth 

in the latter area and can induce saltwater intrusion into coastal areas[19,66]. 

In addition to the environmental impact, the socio-economic impacts of land use change are equally 

significant and raise serious concerns at all territorial levels. The global socio-economic impacts concern food 

security issues, water scarcity, population displacement and, more generally, the problem of human security 

and vulnerability to natural hazards. Problems related to food security and water scarcity can arise from the 

reduction of agricultural land area and the decrease in available water resources that result from soil erosion, 

land degradation, desertification, industrialization, urbanization, from suburbanization and, above all, from 

the mismanagement of environmental resources. The regional socio-economic impacts of land use change 

are more diverse and reflect the variety of regional contexts in which these changes occur. Even these, 

however, derive from the same processes discussed above and evolve around issues such as land availability 

for regional food production, changes (reduction) in land productivity and, consequently, (reduced) 

profitability and changes in industrial structure, employment/unemployment, poverty and quality of life. 

 

1.3 LULCC Classification and Monitoring 
 

The LULCC analysis is critically dependent on the chosen land use and land cover classification system. The 

extent and quality of land use change is expressed in terms of specific land use or land use/land cover types. 

The assessment of the environmental and socio-economic impacts of land use change is only possible when 

the particular environmental and socio-economic characteristics of the chosen land use/cover types are 

specified. If this requirement is not met, then, the analysis will be of limited value in guiding policy and 

decision-making, especially at smaller scales. Hence, the need to discuss the available land use and land cover 

classification systems and consider their suitability for the analysis of land use change at various spatial and 

temporal levels. Land use change models can play an instrumental role in assessing the environmental and/or 

socio-economic impact of past or future activities. This use has two facets; on the one hand, it may concern 

the assessment of qualitative and/or quantitative changes in land use caused by autonomous or planned 

changes of one or more of its determinants; on the other hand, it may concern the assessment of the 

environmental and socio-economic impacts of land use changes (such as land degradation, desertification, 

food security, health and safety risks, unemployment, etc.). Land use change models have been and are 

currently being used to prescribe "optimal" land use models for sustainable use of land resources and 
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development, in general. In this case, they are usually based on optimization techniques used to produce 

land use configurations that meet specific objectives as well as a variety of environmental and socio-

economic constraints. One such constraint is the availability of land. Optimization models are commonly used 

in planning and management contexts. Evaluation is an end use of the model associated with the last three 

uses mentioned: forecasting, impact assessment and prescription. Land use change models for assessment 

purposes per se do not exist as assessment is an activity that can be performed on any set of alternatives 

that need to be assessed against specific criteria. Therefore, in the particular case of land use change analysis, 

the model-generated land use alternatives (for forecasting, impact assessment or prescription purposes) can 

be evaluated using any of the available evaluation techniques. 

LULCC assessment is much needed to sustain, monitor and plan natural resource use [34,67]. Indeed, the 

LULCC classification has a direct impact on the atmosphere, soil erosion and water, while it is indirectly 

related to global environmental problems [37,68,69]. To this end, remote sensing images and their 

processing have helped to provide large-scale and up-to-date information on surface conditions. LULC 

classification is the process of naming land cover classes to pixels and classifying them. For example, water, 

subways, woodlands, horticulture, buildings, woodlands, agriculture, grasslands, mountains, and highlands 

[70,71]. The overall goal of image grouping is to naturally arrange all pixels of an image into land cover classes 

or subjects. That is, different types of components exhibit a distinctive blend of dependence on their inherent 

otherworldly reflectance. LULC maps play a significant and primary role in planning, managing and 

monitoring programs at the local, regional and national levels. It is necessary to monitor the ongoing process 

of LULC models for a certain period of time. In recent years, land-use and land-cover (LULC) classification 

using remote-sensing imagery plays an important role in many applications like land use planning (growth 

trends, suburban sprawl, policy regulations and incentives), agricultural practice (conservation easements, 

cropping patterns and nutrient management), forest management (harvesting, health, resource-inventory, 

reforestation and stand-quality) and biological resource (fragmentation, habitat quality and wetlands) [72].  

Successful remote sensing classification is an essential source for many application processes, because many 

environmental, social and economic applications rely on classification results [73]. Also, to achieve successful 

classification, a proper classification system is required. Therefore, the presentation of research objectives, 

questions and problems is required by the end user before using the classification. On the other hand, there 

are many factors that need to be taken into consideration when choosing a classification method to use, such 

as the spatial resolution of remote sensing data, different data sources, a classification system, and the 

availability of classification software. Appropriate. In general, the purpose of image classification is to predict 

any entered image category using its characteristics [74]. Remote sensing is a well-known alternative to 

evaluate the LULCC process on a large scale. Much progress has been made in land use and land cover change 

(LULCC) mapping using geographic information systems (GIS) and remote sensing, e.g., with the multi-year 

30m Landsat, RapidEye or Sentinel high-resolution [75,76] and moderate resolution MODIS images [77]. LULC 

classification methods and classification techniques for extracting accurate land use and land cover data from 

remote sensing images are very versatile. The accuracy of classification techniques is influenced by factors 

such as the choice of test preparation, the heterogeneity of the study area, the sensors, the number of classes 

to be characterized [78]. Classifiers can be classified into different classes based on the methodology and 

technologies used, for example, supervised and unsupervised classification, hard and soft (ambiguous) 

classification, or pixel-based classifications. Image processing and classification approaches can affect 

classification success, because remote sensing classification is a complex process and requires consideration 

of a number of factors. Various types of algorithms are used to provide adequate classification accuracy. In 

the past two decades many advanced classification approaches have been applied for image classification 
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such as artificial neural networks (ANN) [79], support vector machine [80,81], decision trees (DTs) [82], 

spectral angle classifiers and rule-base evidential reasoning for building expert and decision making system.  

These methods are non-parametric classifiers, which do not use statistical parameters to calculate class 

separation. The ideal map is one which has been well validated and implemented and which should take into 

consideration a number of factors such as methods for collecting landmarks, classification scheme, sampling 

method collection, size and sample units and calculation of accuracy rating. Additionally, other important 

elements of accuracy evaluation can be derived from the confusion matrix such as manufacturer accuracy, 

user accuracy, and overall kappa statistics. However, getting the accuracy assessment is more difficult than 

classification. MLC, SVM and RF are some of the most widely used classification methods to classify 

multispectral images. 
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Chapter 2: Assessing the spatial marginality of Basilicata 

Region to support land use planning 
 

 

Land use planning, in the context of land use and land cover change, is the systematic evaluation of land 

potential, land use scenarios and economic and social conditions in order to select and adopt the best land 

use options. Its aim is to select and implement land uses that best meet the needs of the population while 

safeguarding resources for the future. All types of land use are involved in the process: agriculture, forestry, 

wildlife conservation, urban and industrial expansion, tourism and services. We can understand it as an 

iterative and continuous process, the aim of which is to make the best use of land resources. Research in this 

field requires intensive fieldwork and a wide range of tools such as information management, systems 

analysis, decision support systems, multi-criteria analysis, geographic information systems, remote sensing, 

image analysis, modelling techniques, neural network technology, land evaluation. All these tools need to be 

considered as part of a broad and integrated approach related to rational land use planning, resource 

conservation, environmental impact and socio-economic effects. The goal is to create the conditions for 

obtaining a form of land use that is ecologically correct, socially and economically appropriate. It is estimated 

that more than 50% of the world's population lives in urban areas, and this percentage will reach 69.6% by 

2050 (United Nations, 2010) [4]. This implies an increase in demand for land for various uses such as 

urbanization and industrial development, infrastructure, and agricultural activities. Population structure and 

dynamics are important factors in land use. Rapid and intensive urbanization is an example of human-induced 

land use/land cover change (LULCC), which has exacerbated ongoing impacts on the climate system [83]. For 

this reason, land use changes have become an important part of spatial planning, as it is based on an 

interdisciplinary approach which pays attention to all the functions of the territory and involves all users 

through participatory processes. It is essential to understand the role of demographic dynamics as a driver 

of urban land use change such as, for example, the increase in demand for artificial surfaces that occurs at 

the local level. Social and economic analyses are important in the spatial planning process. Comparison of 

socio-economic analyses with land use and land cover change can highlight the need to modify existing 

policies or implement new ones. A particular land use can degrade and thereby destroy other land resources. 

If the economic analysis shows that the use is beneficial from the point of view of the land user, it is likely to 

continue, regardless of whether the process is environmentally friendly. To formulate and implement spatial 

planning policies and strategies it is essential to collect, process and disseminate timely and reliable 

information and to use modern land evaluation technologies, in order to create solid scientific knowledge for 

adequate decision support. This section presents some analytical applications for the investigation of time 

series of different demographic and socio-economic trends at the regional scale to discuss, in the following 

chapters, the relationships between LULCC, urban sprawl and demographic trends. In the following chapters, 

in fact, the territorial transformations that involve a significant change of intended use and land cover will be 

analysed, such as the increase in sealing and the transitions that bring natural and semi-natural land to 

artificial and/or degraded land. Knowing the changes in land use and land cover, for example from natural to 

artificial, is important to understand the interactions between human activities with the environment.  
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2.1 Evaluation of territorial variables connected to the provision of 

essential services in the Basilicata Region 
 

Demographic change and the study of territorial marginality and fragility are becoming increasingly 

important in policy and planning discussions, as they are considered important factors for the future 

development of land use and urbanization across Europe. Through the years, the topic of 'inland areas' has 

also become central in the European debate on inequality and territorial fragmentation, which focuses on 

inequalities and opportunities to exploit the territory's potential linked to the availability of primary 

resources and land [84–86]. The definition of the inner area in an urban settlement, officially introduced by 

Barca (2009), is related to the idea of distance and marginalization from a principal attracting pole [87]. Inland 

areas are, therefore, those settlements that are significantly distant from the central poles, rich in natural 

and cultural resources but lacking in services (e.g., high schools or medical centres), and characterised by 

emigration flows. Inland areas have been officially defined as sensitive contexts eligible for specific planning 

by the Italian National Agency for Territorial Cohesion (2014). The national strategy of internal areas (SNAI) 

[88] describes and identifies a vast set of areas that occupy about 60% of the Italian territory united by a vast 

marginalization compared to the centres offering essential services and by a low population density. In order 

to better understand the dynamics of the LULCC and the regional demographic trend and produce the first 

considerations in terms of impact on the soil of it is useful to frame the regional peculiarities from the point 

of view of settlement dynamics in the broader national context. 

The national settlement dynamics over the years have occurred in an uncontrolled way, in fact the wild 

sealing has led to dynamics of fragmentation of the natural and artificial landscape, transforming vast areas 

into smaller isolated and not interconnected environments and habitats [65–67]. 

This phenomenon, a consequence of the uncontrolled and unregulated use of the territory, is associated with 

the excessive transformation of natural and semi-natural areas into artificial ones, for example passing from 

a semi-natural use of the territory to artificial use of a residential type not accompanied by an effective 

demand for new housing. In the literature, there are many authors who affirm the negative consequences of 

fragmentation on the distribution of essential services, infrastructure costs and landscape changes that also 

affect and fragment very often abandoned farmland, also increasing the risk of hydrogeological disruption 

[68–70]. Low-density urban forms associated with the geographical expansion of cities also tend to result in 

lower accessibility to local services and higher average transport distances [71,72]. 

 

2.1.1 Study Area 
 

 The Basilicata region is representative of the inland areas described by SNAI since it is characterized by 

various factors of fragility, such as, for example, the high territorial fragmentation and the constant 

demographic contraction. From a settlement point of view, Basilicata is characterized by the presence of 

small centres, even at high altitudes, poorly connected to each other and even less to the main regional and 

extra-regional road and railway junctions. 

The national settlement dynamics over the years have occurred in an uncontrolled way, in fact the wild 

sealing has led to dynamics of fragmentation of the natural and artificial landscape, transforming vast areas 

into smaller isolated and not interconnected environments and habitats [89–91]. 

This phenomenon, a consequence of the uncontrolled and unregulated use of the territory, is associated with 

the excessive transformation of natural and semi-natural areas into artificial ones, for example passing from 

a semi-natural use of the territory to artificial use of a residential type not accompanied by an effective 
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demand for new housing. In the literature, there are many authors who affirm the negative consequences of 

fragmentation on the distribution of essential services, infrastructure costs and landscape changes that also 

affect and fragment very often abandoned farmland, also increasing the risk of hydrogeological disruption 

[92–94]. Low-density urban forms associated with the geographical expansion of cities also tend to result in 

lower accessibility to local services and higher average transport distances [95,96]. 

In Basilicata, in fact, the historical trend of urban and territorial development has led to the formation of 

medium-small urban centres (with a resident population of less than 5.000 units) geographically 

decentralized with respect to the main urban poles and dispersed in rural areas [97].  

In addition to the several factors of territorial fragility linked to geomorphologic aspects, the Region's 

marginality and spatial peripherality are reflected in the poor endowment and accessibility to essential 

services of the various centres, most of which are small municipalities located in hilly and mountainous areas.  

In this context, providing an appropriate definition of a spatial model is a challenge, since spatial data and 

information must be managed in order to understand the mechanisms that determine, on a local scale, the 

demand and supply of services. It consists of an interpretative approach to the dynamics of settlement, 

territorial, infrastructural endowments and organisational models of the territory that condition, for 

example, territorial accessibility, which lead citizens to self-determine residence and systematic movements 

according to criteria of optimising the ways of using space and territory.  

 

 

 

Figure 3. Geographic overview. On the left the map of Italy with the distinction of the Basilicata Region. On the right Basilicata with 
the identification of the inner areas and all the municipalities. 
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In recent decades, in Basilicata, spatial transformations connected to traditional settlement components 

have been associated with new types of land use and land cover. As a consequence of the global challenges 

on climate change and the related framework of international agreements on the reduction of CO2 

emissions, a local policy has been promoted at different scales. Renewable energy sources (RES) represent 

an important component of the package of solutions adopted by public and private actors to address global 

climate change issues, orienting land development towards a low-carbon economy and sustainability 

principles [98].  This chapter includes the main elements of an initial experimentation of a methodology 

aimed at identifying and highlighting the marginality and high degree of isolation of the centres of the most 

inland areas located mainly in the south of the Region and to relate them to the socio-demographic aspects. 

 

 

2.2 Material and Methods 
 

2.2.1 The Stock of Services and Accessibility Estimation 
 

The provision of essential services in a territory is a fundamental parameter against which to evaluate the 

quality of life in a specific territory. It can also be understood as a deficit assessment, i.e., the absence of 

minimum requirements for the supply of essential services with reference to the urban functions exercised 

by each territorial unit. From a spatial point of view, the level of peripherality of the territories with respect 

to the network of urban centres, home to a vast plurality of services, profoundly influences the quality of life 

of citizens and the level of social inclusion. In these, the presence of essential services can act as an attraction 

capable of generating discrete catchment areas [99–101]. The centre of the supply of essential services is 

identified in that municipality capable of simultaneously supplying all the school supplies, at least one 

hospital and one railway station[21,97,100,102,103]. The purpose of this chapter was first of all to create a 

dataset of data useful for the calculation of various socio-economic indicators, in order to frame the 

demographic evolution and the evolution of the stocks of public and private services. The first methodological 

approach was to reconstruct the supply of essential services through the use of open data and tools present 

in the Google suite in a GIS environment and subsequently estimate the peripherality of each municipality 

by estimating the accessibility to essential services. The study involved the use of spatial analysis techniques 

aimed at describing the distribution of essential services over the regional territory. The main categories of 

services examined for each study area (Fig 4), were extrapolated from Google My Maps using the Points of 

Interest function. The stock of services was also obtained by consulting online searchable public databases, 

business websites, lists of associations and/or public authorities. The service centroids were imported into 

the GIS environment and reclassified into 9 main categories.  

Each category, in fact, has been divided into subcategories identified with the code L2: 

• Commerce: CM01-Mini Market Shops; CM02-Supermarket; CM03-Butcher, CM04-Clothes Shop; 

CM05-Electronic Shops; CM07-Jewellery; CM08-Furniture; CM09-News Kiosk; CM10-Book Shop; 

CM11-Car and Motorcycle dealer shop; CM12-Bakeries; CM13-Florist, etc. 

• Education: IF01-Nursery School; IF02-Elementary School; IF03-Secondary School; IF04-High School; 

IF05-Nursery; IF06-University; IF08-Musical School; IF09-Private training School; IF10-Research 

institute; IF11-Tecnology Park; IF14-Driving School; IF15-Language School. 

• Services: S1-Refueling Station; SR02-Carpenters; SR03-Hardware store; SR04-Hydraulic; SR05-

Elettrician; SR06-Graphical Designers; SR07-Beauty center; SR09-Freight transport; SR10-Estate 
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agency; SR11-, Professional Study (engineers, geologist, architets, etc); SR12-Lawers; SR13-Notaries; 

etc. 

• Public Services: SP01-City Hall; SP02-Post office; SP03-Library; SP04-Public Office; etc. 

• Turism: TR01-Hotel 5stars; TR02-Hotel 4 stars; TR03-Hotel 3 stars; TR04-Hotel 2 stars; TR05-Hotel 1 

star; TR06-Farm Holidays; TR07-B&B; TR08-Camping; TR09-Restaurants; etc 

• Culture and art: CA01-Teathre; CA02-Cinema; CA03-Museum; etc. 

• Sport and free time: ST01-Stadium; ST02-Gym; ST03-Pool; ST04-Bar and pubs; ST05-Sport 

associations; ST06-Bar; ST08-Night club; etc; 

• Healt: HE01-Hospital; HE02-Clinics; HE03-Emergency Room; HE04-Pharmacy, etc; 

• Safety: SA01-Army; SA02-Traffic Police; SA03-Carabinieri; SA04 Financial guard; etc; 

• Financial service: FR01-Bank; FR02-ATM/Bancomat; FR03-Insurance Agencies; etc. 

 

The urban services that guarantee an elementary level of performance at the basic centre are reclassified by 

subdividing each macro-category, identified with the Level 1 code, into sub-categories assigned the Level 2 

code, as summarised in the table (table 1). 

 

Table 1: List of services and equipment. 

REFERNCE CODE 
Level 1 

 TYPE OF SERVICE  
Level 1 

       REFERENCE CODE 
       Level 2 

CM Commerce (CM) 
∑ 𝐶𝑀

∞

𝑛=0

 

CU Culture and Art (CU) 
∑ 𝐶𝑈

∞

𝑛=0

 

ED Education (ED) 
∑ 𝐸𝐷

∞

𝑛=0

 

HE Healt (HE) 
∑ 𝐻𝐸

∞

𝑛=0

 

S Services (S) 
∑ 𝑆

∞

𝑛=0

 

FS Financial Services (FS) 
∑ 𝐹𝑆

∞

𝑛=0

 

PS Public Services (PS) 
∑ 𝑃𝑆

∞

𝑛=0

 

SA Safety (SA) 
∑ 𝑆𝐴

∞

𝑛=0

 

SF Sport and free time (SF) 
∑ 𝑆𝐹

∞

𝑛=0

 

TR Turism (TR) 
∑ 𝑇𝑅

∞

𝑛=0

 

< 
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Figure 4. Main categories of services investigated. 

 

The endowment index is an indicator that measures the level of availability of public or private services in a 

given geographical area. In essence, it provides a quantitative estimate of how easy it is for citizens in an area 

to access essential services, such as healthcare, education, public transportation, recreation, and more. The 

index is calculated on the basis of a series of variables, such as the resident population and the presence of 

services in each municipality. 
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The service endowment index is an indicator that makes it possible to evaluate the presence and accessibility 

of public and private services in a specific geographical area. To calculate the IDS, we started from the 

calculation of the resources available for each service, i.e., the number of services available in each 

municipality divided into categories. These resources were then compared to the resident population. In this 

way, an estimate of the quantity of resources available for each inhabitant of the area is obtained, i.e. the 

service endowment index.[97,104–106]. (See Appendix A2). The analysis on spatial accessibility, in the 

different centres of the SNAI classification, is mainly based on the estimation of spatial distances and travel 

times that a resident citizen must make in order to use the services in the area. This was made possible by 

using the site and the plug in "openrouteservice”, which offers navigation services using free geographic data, 

and which allows isochrones to be mapped. Accessibility has been estimated in terms of the time distance 

from the urban centre to the main services in the municipal area. The services identified were reclassified 

into three main macro classes: upper secondary education, health care and mobility, choosing in the latter 

case the main connecting infrastructures such as airports, train stations and highway toll booths. ORS Tools 

provides access to most of the functions of openrouteservice.org, based on OpenStreetMap. The tool set 

includes routing, isochrones and matrix calculations, either interactive in the map canvas or from point files 

within the processing framework. Extensive attributes are set for output files, including duration, length and 

start/end locations. The analysis of the road distance was carried out through the use of the ORS Tools plugin 

(openrouteservice routing, isochrones and matrix calculations for QGIS), able to generate isochronous lines, 

i.e., the locus of points having the same spatial or temporal distance, with respect to a fixed point entered as 

input. The distance between the initial starting point and the arrival points is not linear but, by setting a value 

in meters or minutes in the plugin, it is calculated according to the possible real routes that can be travelled 

within the OpenStreetMap road network. In this study we have chosen to use a point belonging to the historic 

centre as a starting point, symbolically identifying it as the town hall. For the purposes of the study, it was 

deemed appropriate to set and select the option for choosing the fastest route. Starting from the information 

available in the dataset of the services, the elements of the vector files of the services have been reworked 

by associating the information relating to the distance range to which each element belongs. 

 

2.2.2 Socio-economic and demographic trend in Basilicata Region  
 

The inland areas, therefore, are defined as territorial areas that present conditions of peripherality, defined 

in terms of distance from the fundamental services of education, health and transport, and in which 

significant phenomena of shrinking human presence are recognised. These are manifested, in particular, in 

depopulation trends, an increase in the ratio of elderly people in relation to the resident population, a 

reduction in the number of employed people and in the level of local capital development. At the same time, 

the relevance of these inland areas, due both to their extension - equal to 60% of the entire surface area of 

the country, including 52% of the municipalities and 22% of the population as indicated in the framework of 

the National Strategy for Inland Areas (SNAI) - and to the significance of the environmental and cultural 

resources located there determines the centrality of governance and planning actions aimed at reversing 

depopulation trends, through measures to increase social inclusion, sustainable economic growth, health 

and quality of life, and building sustainable communities, consistent with the principles of the Sustainable 

Development Goals (SDGs) established by the United Nations. This paragraph studies the demographic trends 

of the Basilicata Region, the variables related to the demographic component are fundamental indicators for 

the evaluation of the critical conditions to which the mitigation and local development strategies must refer 

in order to define intervention priorities and scenarios of sustainable transformation of the territory. The 
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objective of the study of demographic trends is to build cognitive frameworks of the trends of the local 

context useful to define and promote shared and participated strategies of mitigation of natural and 

anthropic risks related to land use. The study of the demographic trends relating to the Municipalities of the 

Basilicata Region was structured as follows: 

• reconstruction of the resident population in the period 1981 – 2021; 

• estimate of the population change, in absolute and percentage terms, in the periods 1981-2021 and 

estimation of the population change on an annual basis for the period 2011-2021; 

• classification of the Municipalities of the Basilicata region into categories representing levels of 

demographic consistency, determined according to the resident population at the beginning of the 

time period considered; 

• estimation of the distribution of the resident population among the identified categories and analysis 

of the population variation; 

• evaluation of the Percentage of elderly resident population (age > 65 years), adult population (35> 

age < 65); youth population (19> age < 34) and child population (age < 18) on the total resident 

population, calculated in the years 1981, 2021. 

The data are derived from the Database of the National Institute of Statistics (Istat) and from the indicators 

developed within the framework of the National Strategy for Internal Areas (SNAI)[103,107]. The considered 

area of analysis is the municipal context. This unit is identified in order to construct databases and to derive 

indicators that give an accurate, exhaustive and synthetic picture of the various trends and the consequent 

conditions of specificity, inequality and imbalance between the distinct areas of the Basilicata Region. The 

analysis focuses on the period 1981-2021, as the study of this time span makes it possible to discern the long-

term demographic dynamics and, therefore, to grasp the effects of the settlement policy. The first aspect 

that appears when dealing with the demographic theme of Basilicata is that of the reduction of its population. 

In fact, according to ISTAT sources, Basilicata is among the Italian regions with a high rate of depopulation 

resulting from migration processes and territorial conditions of marginality. At this stage the research has 

focused on reconstructing the demographic structure of the resident population in the period 1981 - 2021 

using ISTAT data as a reference. In the following paragraphs, the methods and techniques for analysing the 

data in relation to the purposes of the research are specified for each component. This study is based on 

tools for the basic analysis of census variables, identified in order to construct a methodology that is, on the 

one hand, useful to allow the comparison of distinct areas within the study area and, at the same time, 

transferable to other contexts. Population variation is quantified in percentage terms, with reference to 

different temporal dimensions. More precisely, the analysis determines the demographic dynamics in 

relation to the period 1981-2021, in relation to the periods between two consecutive census surveys (1981-

1991, 1991-2001, 2001-2011, 2011-2021), and on an annual basis for the period 2011-2021. The 

demographic dynamics calculated for the municipalities of the Basilicata Region are compared with the 

population variations measured on a national, macro-area and regional scale. A further consideration 

concerns the definition of a set of categories to which the municipalities of the Basilicata Region are ascribed. 

These categories are defined according to the resident population in each municipality at the beginning of 

the period considered (table 2). In particular, category 1 includes municipalities whose population at the start 

of the reporting period exceeds 50,000 inhabitants. Category 2 includes municipalities whose population is 

between 10000 and 50000 inhabitants. Category 3 includes municipalities whose population is between 5000 

and 10000 inhabitants. Category 4 includes municipalities whose population ranges between 2000 and 5000 
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inhabitants. Municipalities whose population ranges between 1000 and 2000 inhabitants make up Category 

5 and, finally, Category 6 refers to municipalities with a resident population of less than 1000 inhabitants. 

 

Table 2. Classification of municipality related to the number of inhabitants. 

CLASS N° INHABITANTS 
1 > 50000 

2 10000 - 50000 

3 5000 - 10000 

4 2000-5000 

5 1000 - 2000 

6 <1000 

 

The cut-off values identifying the six categories are derived by combining the definitions of municipality types 

proposed by the Association Nazionale Municipalities Italian (ANCI) and ISTAT. More precisely, the threshold 

value of 1000 inhabitants define a demographic category comprising municipalities to which specific 

investments are addressed. The limit value of 5000 identifies smaller municipalities, according to the 

definition proposed by ANCI and SNAI. Finally, the limit values of 2000, 10000, and 50000 inhabitants are 

identified by ISTAT to define the Categories of Municipalities that constitute the unit of analysis of specific 

statistical indicators, relating to the macro-environments Culture and Communication and Economic 

Condition of Families and Inequalities.  

Starting with the categories of municipalities, for the periods 1981-1991, 1991-2001, 2001-2011, and 2011-

2021, the frequency, understood as the number of municipalities included, the cumulative resident 

population, and the calculated population change for each of the municipalities included was determined for 

each category. The purpose of this analysis is to describe the population dynamics of each category of 

municipality. The aim is to verify whether there is a relationship between the demographic dynamic, 

measured in a specific period, and the resident population at the beginning of the period. Lastly, for each 

category of municipality, defined as of 2021, the historical series of data on the resident population, recorded 

in the general censuses, was reconstructed for each year in the period 2011-2021. The aim is the restitution 

of the demographic trend that determined the frequency distribution of the municipalities according to the 

categories determined by the resident population. 

The series concerning the natural balance, the internal migration balance and the foreign migration balance, 

the incidence of the cumulative balances was calculated for the period 2002-2021, for the period 2002-2011 

and for the period 2011-2021. These variables were determined by dividing the cumulative balance for the 

reference period by the resident population at the beginning of the period. The analysis of the natural 

balance and migratory balances focuses on a more limited period of time, in order to construct a more precise 

interpretation of the demographic phenomena that contribute to determining the more general 

demographic dynamics, outlined by the change in resident population, and in particular to assess in the 

recent period, to what extent the natural balance, and the internal migratory balance affect depopulation 

phenomena and to what extent external migratory flows moderate this trend. 

Concerning the historical series on the change in the incidence of the elderly population on the resident 

population, the temporal dimensions investigated include the periods between two consecutive census 

surveys (1981-1991, 1991-2001, 2001-2011, 2011-2019), the entire 1981–2019-time span, and the periods 

2018-2019 and 2019-2020. The analysis focuses on the period 2018-2019 and the period 2019-2020, and 
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identifies 2019 as the limit of the time series in order to capture the impact of the COVID-19 pandemic on 

the most vulnerable age group, i.e., people over 65. The analysis of the dynamics of the share of the elderly 

population is based on the definition of two types of indicators: a static indicator, aimed at describing the 

incidence of the elderly population at a specific point in time, measured as the ratio between the number of 

inhabitants over 65 and the total number of inhabitants; and a dynamic indicator, measuring the change in 

the incidence of the elderly population over a specific time period. These indicators are aimed at discerning 

and describing the trend towards a general increase in the proportion of the elderly population, which is 

particularly significant in inland areas, and at identifying the centres in which this trend becomes such as to 

jeopardise the endogenous capacity of a municipality to maintain an adequate demographic vitality. The 

analysis of this dynamic also becomes a criterion to be evaluated in determining new forms of basic services, 

aimed at these areas, particularly with regard to health and transport services. 

 

 

2.3 Results and Discussions 
 

2.3.3 The Stock of Services and Accessibility 
 

The data collection phase resulted in the identification of approximately 19,000 activities and services 

throughout Basilicata, as shown below (table 3): 

Table 3: Service and equipment classes in 2021. 

TYPE OF SERVICE NUMBER OF 
ACTIVITIES 

Commerce 4697 
Culture and Art 1574 
Education 1137 
Healt 1810 
Services 4265 
Financial Services 738 
Public Services 437 
Safety 540 
Sport and Free Time 2061 
Turism 1973 

  
 

The final result was the preparation of the 'Service Charter of the Basilicata Region', which is useful for 

assessing the distribution of services throughout the region, so as to be able to define the equipment of each 

individual municipality (See Appendix- A1). 

The map in the Figure 5 shows that there are few municipalities in the region that have a significant supply 

of services, in fact, in most cases, the supply of services is very low or almost none. The two provincial capitals 

and the municipalities of Policoro and Melfi are an exception. This index can be used to evaluate the quality 

of life in a given area and to identify any deficiencies or gaps in the services present, in order to plan 

interventions and improve the situation. Furthermore, it can be compared between different geographical 
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areas, making it possible to identify the differences in terms of accessibility to public and private services and 

to promote improvement interventions in those areas with a lower service endowment index. 

The creation of this territorial dataset has made it possible to collect, analyse and organise in a synthetic form 

the territorial data relating to the stock of services present in the territory, which are useful for the planning 

and management of urban planning tools. 

A large part of the regional territory is characterised by a spatial organisation based on minor centres which, 

in many cases, are able to provide limited accessibility to essential services. The characteristics of these minor 

centres consist in a significant distance from the main centres providing essential services (education, health 

and mobility). These inland areas represent a very variegated territory, the result of the dynamics of different 

territorial processes and anthropization processes that have occurred. 

 

 

Figure 5. Endowment Index of Basilicata Region. 

 

From a spatial point of view, the level of remoteness of territories with respect to the network of urban 

centres, home to a vast plurality of services, profoundly influences the quality of life of citizens and the level 

of social inclusion.  In these, the presence of essential services can act as an attractor capable of generating 

discrete catchment areas. The centre of the offer of essential services is identified in that municipality capable 

of simultaneously providing all the schooling, at least one hospital and one railway station. This is where the 
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concept of accessibility starts to come into play [108–110].  The concept of accessibility is widely used even 

though there are many definitions that can be attributed to it and which give it a changing and undefined 

outline. We can understand it as a right and an essential condition of living in cities and the territory 

[21,103,108,111,112]. 

All too often, however, this concept is only taken into account at the end of the planning and design stages, 

thus not responding to the real needs of those who live in the area. This is the result of a methodological 

approach that is objective and not centred on individual subjects; indeed, spatial planning focuses not on the 

individual and his or her needs-possibilities, but on following standard ideals that do not guarantee equitable 

liveability. It moves from an approach strictly related to the productive and economic sector to take root in 

that of services of social interest such as education, health and recreational areas. Among the variables that 

most influence the way accessibility is understood is the territorial context to which it refers. The latter can 

aggravate or bring out forms of social inequality in terms of equal opportunities and accessibility of services 

or, even more, isolate and marginalise certain urban contexts. Recent studies have highlighted the 

correlation between social exclusion and use of the city, showing monotonous and single-place combinations 

of city use [113–117]. This is the case in the Basilicata Region characterised by a serious development delay 

and a centuries-old infrastructure deficit, especially in rural and mountainous areas.  The poor accessibility 

to essential services is also negatively affected by the infrastructural endowment of the Lucanian territory. 

The figure 6 shows the degree of infrastructure, what emerges is a region lacking in important infrastructure 

such as airports and high-speed railway stations. 

 

 

Figure 6. Infrastructure Index of Basilicata Region. 

The main network of roads is represented by a few arterial roads that criss-cross the entire region and from 

which a system of secondary roads develops, whose function is to connect individual centres to higher-level 
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roads, providing access to suburban roads and farmland. Analysing the network of infrastructures and 

services that can be used in the regional territory, an indispensable and fundamental component for full and 

active participation in social life, significant shortcomings are highlighted that specifically concern the railway 

and motorway networks. The regional railway network runs on a 365 km discontinuous line that divides the 

region into two sectors. The entire territory is also devoid of a motorway network and its tollbooths; the only 

points of entry to a fast road are in the municipalities of Lagonegro and Lauria, which are crossed by the 

Salerno-Reggio Calabria (Fig. 7). 

 

Figure 7. Transport system localization. 

 

The estimation of time travelled to a particular service is aimed at highlighting areas lacking services, thus 

definable as peripheral and generating significant travel demand to central areas. For the calculation of 

accessibility, the municipal administrative headquarters was taken as the starting point, from which travel 

time from the urban centre of each municipality to the service considered closest has been calculated. 

In GIS environment, the time distance travelled by car using the fastest route was taken as a parameter, 

creating isochrones every 10 minutes on the basis of route calculations, isochrones and matrices, interactive 

in the map area or from point files within the OpenStreetMap suite processing framework. The estimation of 

the kilometres travelled is intended to highlight the areas lacking services, which can therefore be defined as 

peripheral and generating a significant demand for travel to the central areas [118]. 

The SNAI (National Strategy for Inland Areas) [16] divides the Lucanian territory into four inland areas: Alto 

Bradano; Marmo Platano; Mercure Alto Sinni Val Sarmento and Montagna Materana, a territory comprising 

119 municipalities out of 131. Figure 8 shows two maps: the map on the left shows SNAI's classification of 

2020 with the location of the regional hospitals; figure two shows the accessibility of each individual 

municipality to the nearest hospital.  
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Figure 8. Map of the distance in terms of travel time from municipal centres to hospital medical centres. 

 

It can be observed that the inland areas of the region are more distant from the hospitals, in fact on average 

it takes a citizen living there between 30 and 50 minutes to reach the nearest hospital.  

Generally, from this analysis it has been found that the smaller centres provide services that only find an 

outlet in local demand as a result of limited economies of scale and are insufficient in infrastructures and 

services, even primary ones, while the larger centres accommodate a greater number of services diversified 

in terms of type, despite the lack of road infrastructures connecting them to the smaller centres.  

In Basilicata, residential and productive settlements are not evenly distributed in space[119], but tend to 

cluster in centres, where the main productive activities and residential areas are clustered. The results of this 

research discussed so far are useful for interpreting the territory's peculiar characteristics, and in order to 

define a polycentric organisation scheme they must be integrated with an assessment of the levels of 

territorial accessibility. The work carried out has thus made it possible to highlight the gap between 

municipalities in the same region in terms of accessibility and provision of essential services, showing how 

this is one of the parameters affecting regional development. Improving the accessibility of these territories 

means, for example, bringing essential services back to the most isolated areas, enhancing the mobility offer 

and acting on local territorial capital. Although the improvement of infrastructure endowment is a difficult 

prospect to achieve, forms of territorial cooperation oriented towards the efficient organisation of the supply 

of the main public services should be undertaken on the basis of a strongly contextualised territorial 

organisation model.  
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2.3.4 Socio-Demographic Evolution in Basilicata Region 
 

The analysis of demographic trends over the period 1981-2021 shows how, in the context of a modest 

increase in population, equal to 4%, in the national context, the macro-area of southern Italy shows a marked 

decrease in resident population (-40.4%). Trends in the regional context indicate, over the same period, a 

decrease in resident population of 11.6% (Potenza Province -15.24% and Matera Province - 5.22%). The 

resident population amounts to 539,999 inhabitants, distributed between the two provincial territories of 

Potenza (348,336 inhabitants) and Matera (191,663 inhabitants) for a total of 131 municipalities (ISTAT 

2021), with 54 inhabitants per square kilometres.  As regards the variation in population over the period 

1981-2022, depopulation trends are particularly marked in the municipalities of San Paolo Albanese (-411 

inhabitants, equal to a 65.10% contraction), Calvera (-516 inhabitants, equal to a 59.40% contraction), San 

Mauro Forte (-1749 inhabitants, -57.60%). Marsicovetere (+2167 inhabitants, equal to an increase of 64.2%), 

Policoro (+5615 inhabitants, +46.2%), Pignola (+2775 inhabitants, +69.3%), Tito (+2301 inhabitants, +47.6%) 

are in contrast.  The two provincial capitals show opposite demographic trends: Potenza shows a slight 

demographic decrease (-208, - 0.3%), while Matera (+8766, +17.2%) shows an increase in demographic 

variation (Fig 9).  

 

 

Figure 9. Depopulation Index. 

Referring to distinct categories of municipalities, it can be seen that in Category 6 municipalities, with a 

resident population of less than 1,000 inhabitants as of 01/01/2021, the phenomenon of depopulation over 

the period 1981-2021 is extensive and significant.  The municipalities of Carbone, San Paolo Albanese, San 

Chirico Raparo, Armento and Calvera, in which the highest demographic decrease reported for the entire 

Region of Basilicata is found, are included in this category. Similarly, for municipalities with a resident 

population between 1,000 and 2,000 inhabitants (Class 5), there is a constant and significant drop in the 

resident population, which is most evident in the municipalities of San Mauro Forte (-1749 inhabitants, -

57.5%), Terranova di Pollino (-993 inhabitants, -49%), and San Giorgio Lucano (-947 inhabitants, -46.9%). In 

the Municipality of Sarconi alone, there was an increase in resident population of 18 (+216 inhabitants).     
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On the contrary, less uniform trends are to be found among the municipalities of Category 4, where there 

was a significant demographic contraction, most marked in the municipalities of Marsico Nuovo (-2185 

inhabitants, - 63.9%), Stigliano (-3577 inhabitants, -50.7%), and Irsina (-2032 inhabitants, -60.9%). The data 

for the municipalities of Baragiano, Francavilla in Sinni, Rapolla, Satriano di Lucania, Atella and Viggiano 

emerges, where the population has remained stationary or increased slightly. The heterogeneity of 

demographic trends is, however, even more marked in the case of municipalities with a population between 

5000 and 10000 inhabitants. Finally, in the two provincial capital municipalities, there is a negative trend in 

Potenza (- 211 inhabitants, -0.35%) and a positive one in Matera (+8766 inhabitants, +17. 2%). With reference 

to the period between 2011 and 2021, there is a general contraction of the resident population, particularly 

evident in the municipalities of San Paolo Albanese (-97 inhabitants, equal to a demographic decrease of 

30%), Oliveto Lucano (-126 inhabitants, -25.2%), San Mauro Forte (-410 inhabitants, -23.8%), Carbone (-160 

inhabitants, -22.5%), San Costantino Albanese (-173 inhabitants, -21.7%). A slight demographic increase can 

be seen in the municipalities of Marsicovetere, where a population increase of 176 inhabitants (+ 3.3%), 

Sarconi (+49 inhabitants, + 3.6%), Viggiano (+150 inhabitants, + 4.8%), Scanzano Jonico (+528 inhabitants, + 

7.4%). More significant is the figure 14 for Policoro, with 1809 new residents, an increase of 11.3%. In the 

Capital Municipalities, there is a modest decrease in the resident population in Potenza (-1636 inhabitants, -

2.4%), and a stationary condition in Matera (-19 inhabitants, -0%). During the period 1981-2021, there was a 

significant increase in the number of municipalities in category 6, i.e., with a population of less than 1,000 

inhabitants. This category comprised only 10 municipalities in 1981, the number of which increased to 14 in 

1991, to 20 in 2001, to 24 in 2011 and to 32 in 2021, thus showing a constant negative demographic dynamic 

in smaller municipalities. In general, an increase of 12.9% of municipalities with a population of between 

1,000 and 2,000 inhabitants is noted over the period under consideration.  These trends are followed by a 

consistent decline in the number of municipalities with a population between 2000 and 50000 inhabitants. 

Class 1 includes only the municipalities of Potenza and Matera since 1981, thus showing an almost unchanged 

trend (Fig. 10) (See Appendix A1). 

 

 

Figure 10. Trend of population classes in the period 1981 - 2021. 



39 

 

It can be seen that the population residing in class 6 municipalities (table), i.e., with a population of less than 

1,000 inhabitants, increased from 8554 inhabitants in 1981, to 21881 inhabitants in 2021.  As a result, in 

2021, 4% of the population of the Basilicata Region resides in municipalities with a population of less than 

1,000 inhabitants. In 2021, therefore, about 13% of the regional population is distributed among 

municipalities with a population between 1000 and 2000 inhabitants. In the case of classes 4 and 5, there is 

a decrease in the cumulative resident population in both classes. 

 

Table 4. Distribution of resident population divided into classes, years 1981 and 2021. 

Class 1981 2021 

6  8554 21881 

5 50004 50026 

4 170446 137231 

3 148467 87035 

2 119573 123743 

1 116110 125214 

 

Whereas in 1981 the resident population in the Basilicata region was mainly concentrated in municipalities 

with a population between 2000 and 5000 inhabitants (27.8%) followed by municipalities with a population 

of over 5000 inhabitants (24.2%), in 2021 a significant increase in the population of municipalities with a 

population between 1000 and 2000 inhabitants (classes 6 and 5) and in capital municipalities (23%) can be 

observed. The last demographic consideration concerns the percentage development of the resident 

population divided into the four categories: elderly, adult, young and child population. By comparing the 

percentages of the population divided into these 4 macro-categories in the two years taken into 

consideration (1981 and 2021), it was possible to identify a large and significant increase in percentage terms 

of the resident elderly population (Fig. 11). (See Appendix A1). 

 

 

Figure 11. Regional resident population in percentage terms, divided into macro-categories (elderly, adult, young and child 
population) in the two periods considered. 
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The graph shows an increase in the resident elderly population in 2021 compared to 1981 of almost double 

in terms of percentage value, while the other categories analysed show a significant decrease. This incidence, 

in 2021, is 23.5 per cent in the national context, 22.0 per cent with reference to the Mezzogiorno macro area, 

and 24.1 per cent with reference to the regional context (Fig. 11). 

Most municipalities have values above 30 per cent of resident elderly population, a value identified as the 

demographic no-return point, i.e., a limit value that identifies a condition whereby a municipality loses the 

endogenous capacity to maintain an adequate demographic vitality. 

Through the data provided by the Basilicata Chamber of Commerce, it was also possible to investigate the 

trends in the economic activities registered and active in the 131 municipalities over the 2002 - 2021 period. 

The figure 12 shows the percentage change in economic activities on a municipal basis, out of 130 

municipalities, 120 show a negative trend synonymous with a decrease in enterprises over the period 

considered, only 11 municipalities show the opposite trend, a growth in enterprises in the municipal area. 

 

 
Figure 12. Spatial distribution of the variation of Economic Activities in the period 2002 - 2022. 

 

2.4 Conclusions 
 

The work carried out illustrates the distinction that exists between the different centres in Basilicata, showing 

how the endowment and location of essential services, considered as a fundamental parameter for the study, 

is an index of the marginality and fragility of these territories. The low population density, the decrease in 

economic activity, and the fragmentation of the peripheral areas limit the possibility of a reconfiguration of 

the service system that meets the requirement of proximity, and that also favours the use of alternative 

forms of mobility. In conclusion, the analysis of demographic trends, reveal the peculiar phenomena of 

peripheral and ultra-peripheral municipalities: the demographic contraction and the increase in the share of 

population over 65 years old, such as to determine, the loss of endogenous ability to maintain adequate 

demographic vitality. The demographic decline, which is mainly observed in the peripheral and ultra-

peripheral areas, seems to accompany the economic decline; in fact, even the only regional hub registers a 
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loss of population. Thus, both population contraction and aging are likely to be influenced by the rate of 

migration than by natural population growth, despite the communities' efforts to attract young people. 

Basilicata is characterised by obvious structural gaps between municipalities: those located in the hinterland 

of the two regional capitals, which enjoy the presence of services and facilities, are in a more favourable 

position than those in the hinterland, which are difficult to connect due to a poor road network that is often 

rutted or interrupted by landslides and landslips and sometimes lack basic services. These gaps can be 

considered as a form of insularity effect, which shows a gap in connections and accessibility and therefore 

needs extraordinary instruments to support development territorial development. The research shown in 

this chapter essentially provides a case study of the application of statistical and geo-statistical tools to map 

the marginalisation effects of insularity in inland areas and then relate them to the dynamics of LULCC in the 

following chapters. Constant negative demographic trends and reduced opportunities for access to primary 

and secondary public services are indeed the factors contributing to a weak territorial profile. However, the 

extensive academic debate and institutional policy proposals have not yet led to an adequate clarification of 

how the planning and development process of inland areas can be effectively implemented. The report 

prepared by Barca (2009)[84,87] calls on all governmental institutions, from the national to the local level, 

to focus on inland areas and to direct their policies towards sustainable development strategies.  

Making the most of inner area village and towns is essential for sustainable development of the region. 

However, the actions to be take are complex. In fact, the widespread distance form City, the lack of adequate 

infrastructure, the absence of basic services, the absences of concrete employment opportunities, 

incentivizing the population, especially younger people, to prefer metropolitan life. Therefore, actions 

capable of capturing social, economic and environmental aspects are needed [120]. Nevertheless, it is 

possible to outline guide-lines and good practices for the sustainable planning of inner areas. 
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Chapter 3: Application of Remote Sensing for Land 

Use/Land Cover Change Analysis: Land Take Assessment 
 

Land use is one of the factors determining Land Cover Change (LCC) and represents the conversion of natural 

to artificial land cover. This chapter describes the activities to monitor land use and to analyse development 

trends in test areas of the Basilicata region. This section presents some analytical applications to investigate 

the time series of land consumption at municipal scale, to discuss the relationship between urban expansion 

and demographic trends, to quantify land consumption at temporal scale. Land transformations involving 

increased soil sealing and, more generally, transitions from natural and semi-natural soils to artificial soils 

have been investigated. These changes in land use and land cover have, fragmented the territory, moving 

from a natural and artificial landscape often characterized by sprawl and sprinkling [15,94,119] direct 

consequence of uncontrolled and unregulated land take. In many cases, land take is associated with an 

increase in urbanised areas that are not accompanied by adequate housing demand and affects fragile land 

areas that are not suitable for transformation, such as hydrogeological risk areas. Remote sensing is the main 

technique for extracting land use and land cover (LULC) data. In this chapter, a new methodology is proposed 

to classify Landsat (TM - OLI) and SENTINEL 2 data to automatically detect land cover information and identify 

soil sealing to perform a multi-temporal analysis. Furthermore, within the defined model, it is essential to 

use the spatial information layers of the geotopographic database (GTDB) for the detailed definition of the 

territory. All steps of the classification process were developed using the Support Vector Machine (SVM) 

supervised classification algorithm, change detection analysis, integrating geographic information system 

(GIS), remote sensing data and adopting free and open-source software and data. The application of the 

proposed method enabled the rapid extraction of detailed land-use maps with an overall accuracy of over 90 

per cent, reducing processing costs and time. Through a spatial-temporal analysis, the land consumption due 

to the creation of new buildings, infrastructure and renewable energy facilities and more generally all land 

cover classes were estimated. The results show an increase of sealed soils not only due to traditional urban 

and rural sprawl caused by the construction of new buildings, but, especially in the last decade, by the 

unregulated installation of renewable energy plants on the territory with the consequent construction of 

additional road infrastructure in a spatial context of high landscape value and generally negative 

demographic rates. This chapter is organized as follows: the first part is dedicated to an overview of land take 

and a focus on Basilicata. The second part on the methodological framework describes an initial methodology 

applied to the study of historical trends in the estimation of land take from urbanisation, the second 

methodological part concerns the case study of the Melfi area where a focus on land take from renewable 

energy sources was carried out.  

 

3.1 Land Take Overview 
 

Land Take can be defined as the increase of artificial areas over time (EEA, 2021). Land take is the growth of 

areas with artificial land cover (soil sealing), not necessarily urban, but also industrial. It is associated with 

soil loss, defined as the change from non-artificial to artificial land cover. In literature, the change of soil from 

natural to artificial cover is referred to in many ways, such as land take, soil consumption, soil sealing, 

impermeable soil, etc [16,17,121,122]. 
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Land take is thus defined as the change from non-artificial land cover (non-consumed soil) to artificial land 

cover (consumed soil), with the distinction between permanent land consumption (due to permanent 

artificial land cover) and reversible land consumption (due to reversible artificial land cover) [25]. The 

European Union has adopted the Thematic Strategy for Soil Protection [123,124], which recognizes soil 

sealing as one of the main threats to soil health and promotes the prevention of soil sealing through the use 

of sustainable land-use planning techniques, reduction of urban pressure on soils, promotion of sustainable 

construction techniques, and citizen awareness of the importance of soil protection. Land take is monitored 

under the name of Land Take and Soil Sealing at the European scale, by the European Environmental Agency, 

in its report it states the long-term changes over the period 2000–2018 show that the area of artificial 

surfaces in Europe has changed the most, with an increase of 7.1% [125]. Whereas 'land take' refers to areas 

taken for purely artificial uses involving total soil sealing, 'land consumption' refers to the consumption of 

land cover, including areas consumed for new expansion (sealing), for intensive land use due to agriculture, 

forestry and other economic activities, as well as other intensive uses such as pastures [59,60]. The 

characteristics and impacts of land take are well known in the scientific literature [91,126,127] . In the 

European Union (EU), the greatest part of the population lives in cities, towns and suburbs and further 

urbanisation is expected. It is predicted that by 2030 there will be 3 per cent of the land area occupied.  In 

Europe, the rate of occupied land is one of the highest on the globe, the increase of artificial surfaces for new 

expansions often causes the compromise or disruption of important soil ecological functions, such as biomass 

supply, soil biodiversity and soil carbon pool or water infiltration potential. All these factors contribute to the 

negative impacts of climate change, decreasing the potential for carbon storage and sequestration or 

increasing surface runoff during floods. Land cover with impermeable materials (soil sealing) is probably the 

most impactful use that can be made of the soil resource, as it results in the total loss or permanent 

degradation of its biological functions. Knowing the changes in land use and land cover, from natural to 

artificial, is important to understand the interactions between human activities with the environment. Within 

the European framework, several policies are aimed at land protection and degradation reduction, although 

none of them has a binding legislative function on the planning policies of the different Member States. The 

European Commission has legislated on soil protection with the EU's 7th Environmental Action Programme 

to 2020 (7th EAP)) setting the target of having zero net soil consumption by 2050 [128] while the UN's Agenda 

for Sustainable Development has established, through its Sustainable Development Goals (SDGs), two 

indicators to track land take issues such as land degradation and urban growth. This can be achieved by 

aligning the increase in land take with actual population growth by 2030.  In recent years, bills on soil 

monitoring and protection have followed one another without ever completing the discussion and approval 

process, postponed, sometimes depreciated in their basic principles, and completely covered by 

modification. According to ISPRA, the rate of soil consumption in Italy has been steadily increasing since 2012 

and is moving us even further away from the goals of zero net soil consumption, showing a worrying inversion 

of the trend. The data confirm that we are continuing to increase the level of artificialisation and soil sealing, 

causing the loss, often irreversible, of natural and agricultural areas. These areas have been replaced by new 

buildings, infrastructures, commercial, logistical, productive and service settlements and other artificially 

covered areas inside and outside existing urban areas. Urban areas are of key importance in the analysis of 

evolution dynamics and in the study of land consumption. In fact, urbanisation processes are among the main 

causes of the increase in soil and habitat degradation and the increase in the degree of fragmentation of 

natural areas, with consequences on the state of land cover, ecosystems, the hydrological cycle and in 

general on the capacity of territories to respond positively to climate change risks. In recent decades, the 

evolution of urban areas has been characterised by a gradual acceleration and significant evolution leading 
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to a new era of urban processes. Urban areas are larger and show a trend towards expansion. Today, cities 

are home to almost half of the world's population and this share is expected to reach 55 per cent by 2050. 

Urbanisation is occurring with increasing intensity on the fringes of the established city and in agricultural 

and natural settings with high ecological value. The trend of consolidated urban expansion has been 

accompanied by new forms of urban sprawl that are discontinuous, heterogeneous and fragmented, 

generating dispersed areas that cannot be properly defined in terms of either urban or rural areas, and 

difficulties in delimiting them [15]. Demographic trends are crucial in the process of urban expansion of a 

territory. Urban areas have expanded mainly at the detriment of agricultural land and, in recent decades, 

urban sprawl has not matched population growth [129,130], in fact, in many low-density and continuously 

depopulating urban contexts, urban expansion is accompanied by a negative demographic trend [119]. The 

National Environmental Protection System (SNPA) monitors soil consumption and ISPRA publishes an annual 

study on the state of the art of soil consumption in Italy. Urban transformations in recent years have changed 

the relationship between urban centres and rural areas with an increase in land fragmentation[93,131]. The 

principal processes related to land take include settlement dispersion such as urban sprawl [132] and urban 

sprinkling [133]. These processes, in fact, lead to an increased infrastructure of the territory with the 

consequent exploitation of agricultural or natural areas and an increase in the running costs of technological 

and transport networks, proving to be environmentally, socially and economically unsustainable. In several 

territorial contexts, such as the Basilicata Region, urban sprawl is strongly present, resulting in extensive land 

sealing [134,135]. These trends have been driven by weaknesses, or the total absence, of measures and 

policies to limit land take, increasingly promoting the occupation of vacant land away from urban centres 

rather than reconstruction or redevelopment within established urban areas [136]. For many years in Italy, 

the regional regulatory framework has been evolving on the specific issue of soil consumption and through 

regulatory instruments aimed at encouraging urban regeneration, all in the absence of a national-level 

reference. The result is a rather heterogeneous and overall, poorly effective landscape that includes 

provisions. There are 21 observatories in the country to date, including, for example, Valle D'Aosta, 

Piedmont, Campania and Lombardy. 

 

3.1.1 Land Take Assesment in Basilicata Region 
 

To date, Basilicata still has no regional law regulating land take and has not yet set up a regional observatory. 

The weak and confusing regulatory framework has contributed to the spread of soil sealing processes, such 

as the unrestrained installation of wind farms, resulting in an increasing fragmentation of the territory with 

associated soil degradation developments. The creation of a regional observatory would support public 

bodies in defining policies, strategies and actions aimed at containing the phenomenon and would also 

implement measures to limit, prevent, monitor and mitigate it. The National System of Environmental 

Protection (SNPA) monitors land take and the Superior Institute for the Protection and Environmental 

Research (ISPRA) every year elaborates a study of the state of the art of land take in Italy.  

According to the ISPRA, in 2022 in Italy artificial cover has been estimated at 69 km2, an average of 9 hectares 

per day, of which the total sealed areas amount to 25 km2[25]. An increase that shows a clear acceleration 

with respect to the reduction trend of recent years and makes Italy lose 2.2 square metres of soil every 

second. In Basilicata in 2021, the soil consumed amounts to approximately 317 km2, of which 225 km2 in the 

province of Potenza and 91.95 km2 in the province of Matera. per capita soil consumption amounts to 

approximately 582 m2/inhabitants[25].  
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Numerous experiences have been carried out in defining criteria to identify the spatial dimension of urban 

areas, with reference to the Italian context but also on a European and global scale. The different 

methodologies differ first of all in the approach used, in some cases referring to a characterisation based on 

the observation of the presence and density of the built-up area alone (as in the case of Copernicus data), 

while in other cases the information on land use and land cover is integrated with demographic data or with 

economic information with reference to the OMI mapping of the Italian Revenue Agency.  

Nowadays, remotely sensed data with high spatial and spectral resolution, along with GIS software tools, 

have become increasingly available and used to quantify and monitor land use and land cover change from 

a local to a global and urban scale [24,31]. Remote sensing data provides detailed information and an 

overview of landscape features and changes in urban and rural areas. Land cover mapping and assessment 

is one of the main areas of application of remote sensing data [32,137]. This issue has been addressed in 

numerous studies using different applications, multispectral data and classification methods [27,138,139].  

Appropriate classification techniques are essential to derive reliable information from satellite data 

effectively. The careful choice of the classification method influences the results of the land use/cover 

mapping [140,141]. Several classification methods have been developed for satellite image processing in 

recent years. A general overview of such methods includes both non supervised classification algorithms (i.e., 

K-means algorithms, Isodata, etc.) and traditional supervised classification algorithms (i.e., maximum 

likelihood) and machine learning algorithms such as support vector machines (SVM), k-Nearest Neighbors 

(kNN), decision trees (DT), and random forest (RF) [142,143]. Haydary et al.  [144–146] used Landsat images 

applying several classification algorithms (kNN, SVM and Artificial Neural Network) to compare the accuracy 

of results obtained using different classifiers and sampling methods heterogeneity of images, distribution of 

classes in space [68]. This chapter concerns a practical study on land take time series, carried out through 

remote sensing data by the Landsat Mission, aiming to provide accurate information for selected sample area 

in Basilicata Region from 1994 to 2014. The choice of analyzing land take starting from 2014 and then 

continuing backward in time is mainly related to updating the cartography present on the regional geo-

topographic database. The information layers of the GTDB relating to urban/impermeable areas represent 

the ancillary reference data of our work, with which to compare, using map algebra, the map obtained from 

the classification process. Landsat images were classified using an automatic classifier [80,147]. All process 

steps have been developed integrating Geographical Information System (GIS) and remote sensing and 

adopting free and open-source software QGIS. This aim of this part of thesis regard to create and use an 

expeditious methodology for classifying multitemporal Landsat imagery, using the semi-automatic 

classification algorithm in a GIS environment for mapping land use. The method developed has the potential 

of SVM based on machine learning theory to produce a synthetic map of land take provides valuable and 

detailed information to improve the accuracy of land cover mapping in complex landscapes and 

environments such as urban peri-urban areas. 
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3.2 Material and Methods 
 

3.2.1 Land Take Historical Trend Identification 
 

3.2.1.1 Study Area 
 

The morphology of the Basilicata Region is prevalently mountainous and hilly, with a single wider plain in the 

Metaponto area (Ionian coast) and four valleys that lift the main rivers from the south towards the northern 

part of the region. Urban centers are mainly located in the highest parts of the region for historically 

defensive reasons. They are generally delimited by large uninhabited areas and scattered houses or small 

civil or industrial agglomerations. Thirty per cent of the territory is affected by areas subject to environmental 

constraints; this fact further highlights the need for a prudent and more sustainable use of the natural 

territory.  Basilicata is among the Italian regions with a high depopulation rate; according to the National 

Institute of Statistics (ISTAT), the region's resident population will decrease from about 600.000 in 2000 to 

about 547.500 in 2021. The municipalities with the highest land consumption based on surface area are 

Potenza (10.7%), Melfi (8.6%) and Policoro (8.4%). In terms of absolute values of soil consumed in 2020, the 

municipalities with the highest values are Matera (21850 m2), Potenza (18690 m2) Melfi (17590 m2). 

According to the information processed by ISPRA, the historical trend of soil consumption in the 

municipalities with the highest values was analyzed. The municipal areas investigated are Potenza and 

Matera and the municipalities of Pignola, Melfi, Policoro and Scanzano Jonico (Fig.13). 

 

 

 
Figure 13. Location map of study areas. 
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Potenza is the main town located in the central-western part of the territory. The municipal area has an 

extension of about 175 km2; the morphology is mainly mountainous. The capital city, with about 65.000 

inhabitants, is the political and administrative center of the region. Despite being the fulcrum of the 

administrative and commercial life of the region, it too suffers, like the whole region, from depopulation; the 

resident population has decreased by about 3 thousand units in the last seven years. Over the years, urban 

expansion has taken place in a disorderly and uncontrolled way towards peripheral areas combined with a 

decline in population density. Pignola is a small municipality (approximately 56 km2 of territorial extension) 

of about 7. 000 inhabitants, close to Potenza. It is one of the municipalities with the most significant 

interaction with the city as the territorial development of the two municipalities is often shared. 

Matera, the other provincial capital, is located in the eastern part of the region, on the border with the Puglia 

region. As invested with the role of European Capital of Culture 2019, it is interesting to evaluate an increase 

in tourist flows and a potential increase in accommodation facilities and infrastructures in order to outline a 

trend of land take. The city is one of the few urban centres in the region to show a constant growth in resident 

population (in 2021, about 60.000 inhabitants). The morphology of the city of Matera is purely hilly, featuring 

the karstic gorge carved into the limestone by the Gravina stream and the presence of evident superficial 

karstic forms; it is one of the largest municipalities in the region (388 km2). 

Policoro (which is the third most populous municipality in the Region of Basilicata with about 18.000 

inhabitants) and Scanzano Jonico (about 7.600 inhabitants) are located in the Ionian area of Basilicata in the 

fertile Metapontum plain; their territorial extension is about 67 km2 and 71 km2. The coastal area, 

characterised by strong tourist pressure, especially in the summer season with the opening of bathing 

establishments, is one of the most relevant areas for analysing changes in land use. Both municipalities, in 

fact, have significant tourist flows in the summer period, with a consequent increase in land consumption 

related to the construction of tourist infrastructures. The resident population has shown a positive trend in 

recent years, probably due to the increase in commercial activities related to the strong tourist presence. 

The municipality of Melfi (about 204 km2) is located in the northern part of the region, on the border with 

the Puglia region. The city is another critical urban centre of great interest due to the territorial evolution 

linked to the construction of the Stellantis automobile industrial district, whose production began in 1994. It 

is characterised by a settlement structure based on two main components: the historic city surrounded by 

post-World War II residential expansion and a vast industrial area where the most important Stellantis 

production plant in Italy is located. A series of supporting activities have developed around the factory, 

leading to a significant increase in land consumption in recent decades. The rest of the municipal territory is 

characterised by a solid agricultural vocation and widespread areas of high natural and environmental value, 

already fragmented by three railway lines and a high-speed road. The resident population, after a slight 

increase in the decades 1990-2000, has experienced a negative trend in recent years with a small decrease 

in inhabitants. 

 

3.2.1.2 Data Set and Pre-processing Image 
 

The use of multispectral and multitemporal satellite imagery with medium and high spatial resolution is 

highly appropriate for land-use assessment and monitoring. Landsat 4 - 5 TM and Landsat 8 OLI images, for 

the years 1994 - 2004 - 2014, were used to classify LULC classes and to derive urban land use. The historical 

Landsat dataset (years 1994, 2004 and 2014) was downloaded from the United States Geological Survey 

(USGS); images were selected based on cloud cover conditions. The scan line error of the Landsat ETM+ 
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sensors affected data availability in the 2000s. Orthophotos produced from aerial images were made 

available by the national geoportal of the Ministry of the Environment and the Military Geographic Institute 

(IGMI). These images were used as a dataset for the definition of classification training areas and accuracy 

assessment. The regional geo-topographic database (GTDB) of the Basilicata Region's Regional Spatial Data 

Infrastructure (RSDI) represents auxiliary data used for the implementation of urban areas. These data 

sources are open and generally provide basic information; this approach allows the replicability of the study 

in other territorial contexts. The processing and analysis of the collected data were carried out with the QGIS 

software. The satellite images used in this research come from Landsat 4-5 and Landsat 8 missions-based 

cloud-free data. The images chosen concern the month of May in the years 1994 - 2004 – 2014. The 

downloaded remote sensing images were provided as L2 level data, were clipped with the mask of the 

municipal boundaries of each test area, and then a check was made to realign any saturated pixels. The 

reference system used is UTM projection (zone 33 N). Landsat data provide thirty-year time series data, 

helpful in achieving an accurate temporal analysis. Landsat-4 and Landsat-5 Missions equipment a multi-

spectral scanner and a Thematic Mapper, with spatial resolution at 30 meters, while the Landsat-8 has an OLI 

sensor and a thermal sensor, the first with a resolution of 30 meters, the second at 100 meters. The bands 

used for this study are summarized in the following table (table 5).  

 

Table 5. Landsat 4-5 and Landsat 8 bands used. 

Landsat 4 – 5 TM Landsat 8 OLI 

Band1- Blue (0.45-0.52µm) Band2- Blue (0.450-0.51µm) 

Band2 – Green (0.50-0.60µm) Band3 – Green (0.53-0.59µm) 

Band3 – Red (0.63-0.69µm) Band4 – Red (0.64-0.67µm) 

Band4 – Near Infrared (NIR) (0.76-0.90 µm) Band5 - Near Infrared (NIR) (0.85-0.88µm) 

Band5 – Shortwave Infrared (SWIR) (1.55-1.75 µm) Band6 – Shortwave Infrared (SWIR) (1.57-1.65µm) 

Band6 – Mid – Infrared (MIR) (2.08-2.35 µm) Band10 – Thermal Infrared (TIR) (10.6-11.19µm) 

 

The images for each year are then prepared by layer stacking the relevant bands of Landsat images and 

further cropped to the study areas for image classification using Semi-automatic Classification Plugin (SCP).  

The satellite images classification process allows identifying pixels with similar spectral responses and 

grouping them into categories representing the classes recognized on the soil. The techniques of 

classification can be divided into supervised and non-supervised. The non-supervised classification does not 

require the a-priori knowledge of the elements to be discriminated. Still, it is based only on the reflectance 

of the image pixels. In contrast, supervised classification implies the role of the operator who chose an a-

priori number of test areas (“training areas”) representative of the "regions of interest.” Input spectra can be 

obtained from Region of Interest (ROIs) carefully identified with the help of GIS techniques; from technical 

or thematic cartography of the investigation area in the same reference system and superimposed on the 

image. Support vector machines (SVM) is a supervised automatic algorithm based on machine learning theory 

for data analysis [38]. The DZETSAKA plug-in is a powerful classification plugin for QGIS software that supports 

several classification algorithms (e.g., Random Forest, kNN) and SVM [148,149]. The SVM classifier has been 

selected for the land cover classification of Landsat time-series data. This algorithm has proven to be a potent 

tool to handle a segmented raster input or a standard image SVM can map the original data input into a 

higher-dimensional feature space.  The algorithm finds the optimal hyperplanes: subspace capable of 

identifying distinct classes with minimum classification errors. For this purpose, the training sample is 
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selected at the class distribution margins in a n-dimensional space. It is possible to use SVM to achieve high 

classification accuracy using a small number of training areas. In literature, several previous studies showed 

that SVM could generalize unseen data with a small training dataset [81,143,145,150]. Therefore, using the 

SVM algorithm allows to manage of high-dimensional data with a limited training area set. A detailed 

description of the SVM algorithm can be found in Burges [81]. Many aspects allow evaluating the 

classification result of a satellite image, e.g., the visualization of the map output, the query of the data on the 

GIS desktop, and the use of accuracy algorithms. The analytical procedure adopted in this work is oriented 

to discriminate the change detection of land take based on differences in territorial patches at different 

dates. The overall methodology of the study is illustrated in Figure 14. 

 

 

 

Figure 14. Flowchart of classification methodology. 
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The Landsat images were classified using an SVM algorithm to derive land use and land cover maps of 1994, 

2004, and 2014. The training areas mainly include four typical classes: built-up (including roads, buildings, 

quarry, dump and artificial areas), vegetation (including cultivated areas, forest, etc.), bare soils, and water. 

To facilitate the identification of the ROIs, the use of ancillary data from the GTDB (Geo-Topographic 

Database) of the Basilicata Region and orthophotos were used. GTDB is composed of different classes of 

information layers in shapefile format. Informative layers related to traffic (roads, railways, cycle paths, etc.), 

buildings, and artificial areas (buildings, quarries, support works, landfills, etc.) have been adopted in this 

study. All the elements present in these informative layers have been merged in a single vector layer and 

then converted into a binary raster with a spatial resolution of 30x30 meters, whose pixels represent the 

artificial areas. The analytical approach is characterized by a backward process starting from the 2014 data 

(available in Basilicata Region GTDB and considered the most accurate datasets on urbanized features) and 

comparing it with previous information ranging from 2004 and 1994. 

3.3 Results and Discussions 
 

3.3.1 LULCC and Land Take Classification 
 

Applying a supervised classification with the integration of auxiliary data (orthophotos, ground truth data), 

the land cover map is obtained and subsequently used as input for the estimation of land take in the test 

areas. The land cover map is finalized to obtain four classes: Built-up, Vegetation, Bare soil and Water (Fig. 

21; table 6). 

Table 6. Class definition for training areas 

 

 

 

 

The ROIs were defined by identifying these four macro-categories called Macro-classes /Identifier (MC_ID) 

associated with them (Table 2). The geographical areas under consideration are particularly large; therefore, 

it was necessary to define a large number of homogeneously distributed ROI on the entire image to obtain a 

better response in terms of classification. Once the classification was obtained, to assess the accuracy of the 

classification, the "Accuracy" tool of the SCP plug-in was used in a GIS environment. In the SCP plug-in, several 

statistics are calculated: overall accuracy, user’s accuracy, producer’s accuracy, and Kappa hat coefficient. In 

particular, these statistics are calculated according to the area-based error matrix, where each pixel 

represents the estimated area proportion of each class. This allows for evaluating the user’s accuracy and 

producer’s accuracy, the unbiased area of classes according to reference data, and the standard error of area 

estimates. The confusion matrix confirms the results’ reliability with overall accuracy values greater than 92% 

and K coefficient just below 0.93 (Table 3). Accuracy indicates the number of pixels correctly classified 

according to the classes corresponding to the soil. The accuracy matrix is generally composed of overall 

accuracy, user accuracy, producer accuracy, and Kappa coefficient. Overall Accuracy indicates the number of 

correctly classified pixels divided by the total number of pixels analysed. User’s Accuracy is the ratio between 

MC_ID Definition Description 

1 

2 

3 

4 

Urban 

Vegetation 

Bare Soil 

Water 

Built-up, Streets, Industrial buildings  

Forest, Cultivated Areas, Grassland 

Rocks 

Lake, river  
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correctly classified pixels in the considered class and the total number of pixels assigned to that class. The 

user accuracy indicates the probability that a pixel assigned to a given class corresponds to that class. 

Table 6. Example of accuracy statistics for the pixel-based classification algorithm of Matera LULC 

Classification (2014). 

 

Overall 

Accuracy (%) 

Kappa Hat  

Coefficient 
Classes  

User 

Accuracy 

(%) 

Producer Accuracy (%) 

94.28% 

 

 

 

0.9281 

Class 1 (Built – up)  

Class2 (Vegetation) 

Class 3 (Bare Soil)  

Class 4 (Water) 

89.213 

94.237 

93.434 

100 

92.989 

95.660 

91.735 

99.759 

 

Producer's Accuracy is the ratio between the number of pixels correctly classified in the considered class and 

the total number of reference pixels in that class. The Kappa coefficient provides a parameter that considers 

that the correct part of the classification is due to chance or compares the error generated by the 

classification obtained with that of a classification performed in a completely random manner. The Kappa 

coefficient has a value between 0 and 1; the more significant the agreement between real data and classified 

data, the closer the value of the coefficient will be to the value 1 [149,151,152].  

Image classification has been performed with an overall accuracy of approximately 90% in 1994 and 2004 

and > 92% in 2014. In the literature, an overall classification accuracy of 85 per cent is generally considered 

acceptable for scientific use [35]. The accuracy of image classification depends on the classification 

methodology, the quality of the data, the spatial resolution of the satellite images and the purpose of the 

study. The urban landscape of the six areas studied is more heterogeneous and our methodology fulfils our 

purpose and is suitable for the 30-metre spatial resolution of the Landsat images. Overall, the Landsat OLI 

data performed better than the Landsat ETM+ data and performed satisfactorily in land cover classification 

in this study. 

 

 
 
Figure 15. Landsat 8 OLI image with ROIs and LULCC map 2014 obtained with the SVM (Support Vector Machine) algorithm (Example 
of classification referred to Matera Municipality). 
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The LULC images include four classes: agricultural land, built-up land, vegetation, bare soil and water bodies. 

The area of each land use class is shown in Fig. 15, based on the SVM algorithm. After that, the 2014 land 

cover map thus classified was analysed and compared with ancillary data, orthophotos, etc. The GTDB of the 

Basilicata Region (dated 2014) includes multiple information layers (urban areas, buildings, roads and other 

anthropic objects) in vector format, which represent important ancillary data used to validate the class of 

built-up area in the maps obtained. The GTDB vector layers related to urban/impermeable areas are 

rasterised into a 0-1 binary map (1 impermeable soil, 0 rest of land) (Fig. 16). In order to compare the resulting 

binary map with the LULC map obtained from the identification of the training areas, both maps must have 

the same spatial resolution; for this reason, the rasterised map of the GTDB vector layers was assigned the 

same spatial resolution as the LULC map of 30 metres. 

 

 
Figure 16. Example of rasterization process of GTDB vector layers relating to urbanized areas (Built Up Areas). 

This map is critical for identifying and removing, using map algebra, all class 1 pixels erroneously classified by 

the SVM. In this way, the 2014 map represents the land consumption footprint that delimits the area within 

which to develop analyses for previous years. The classification system used by ISPRA and SNPA provides for 

a division of land take into two categories: permanent and reversible land take. Irreversible classes are 

connected with soil sealing processes, such as the construction of new buildings, roads, airports, etc. The 

approach adopted assumes that the sealed soil will not turn into permeable soil over the years. This concept 

is not always true, as this can happen in some rare cases. Starting from this concept, we proceeded backwards 

from 2014 by analyzing 2004 and 1994, comparing this information with previous cartography and 

orthophotos. This comparison with the orthophotos, available as Web Map Service (WMS) on the National 

Geoportal of the Ministry of the Environment, allowed us to construct the spatial time series analysis based 

on the aero photogrammetric surveys. The built-up areas extracted from the LULCC 2014 layer (Fig.17) are 

used as an impermeable base map, which was used as a comparison and reference in the analyses performed 

for 1994 and 2004 for Landsat. 
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Figure 17. Correspondence between the LULCC map showing all the classes identified in 2014 in the Municipality of Matera (1) and 
the binary map of waterproof areas (Built Up) (2). 

The results show that the increase of impermeable areas (built-up areas) has occurred predominantly in areas 

away from urban centres, especially near industrial areas and rural areas. 

In the six municipalities described above, the historical development of land take due to the growth of 

impermeable (built-up/urbanised) areas was analysed. Analysing and comparing the binary land take maps 

obtained in the three different reference years (1994 - 2004 - 2014) showed a progressive intensification 

process of urbanised areas. The results show that the analysed municipalities have undergone a clear spatial 

transformation over the two decades considered, characterised by a steady increase in land take.  The graph 

in Figure 18 represents the increasing growth rate of all analysed built-up municipalities. The most significant 

amount of land take occurred between 2004 and 2014 in all analysed municipalities, suggesting that both 

socio-economic and natural characteristics drive the urbanisation of these areas. 

 

 

Figure 18. Observed built-up growth in square kilometers in the studies area from 1994 to 2014. 
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The towns of Potenza, Pignola and Melfi show slow growth in land take. Potenza and Pignola show a 

significant urban sprawl, characterized by disordered urban expansion. In particular, in the 20-year period 

analysed, land take in the capital city involved the development of commercial and residential areas near the 

historic centre. It is also significant to note the development and construction of new infrastructure and 

roads. In the area of the municipality of Pignola, the significant increase in land take occurred mainly with 

the construction of residential structures along the main provincial road connecting the town with the capital 

and surrounding municipalities. Land take in the Melfi municipality area is closely linked to industrial and 

urban expansion; as Figure 9 shows, the areas with the most significant increase of impermeable soil are to 

be found in the industrial area of the Stellantis plant and its allied industries and in the urban area where 

growth of the city has occurred. In addition, several roads connecting the urban centre with the peripheral 

and industrial areas have been built and extended.  

The municipalities of Policoro and Scanzano Jonico, like Potenza and Pignola, have a solid territorial and socio-

economic relationship; they have a consistent settlement spread throughout the municipal territory, but land 

take follows the structure of the territorial viability. The growth of land take in the two municipalities on the 

Ionian coast could be linked to the increase in tourist flows in the area in recent decades. Moreover, in this 

case, most of the impermeable soil is located near the settlements that have developed near the main road 

connecting the area with the neighbouring regions (Apulia and Calabria). The area of the two municipalities 

is characterised by a strong anthropic tourism pressure along the coasts, which has occurred in recent years 

as a result of the construction of tourist infrastructures; this has led to a fundamental waterproofing of the 

entire Ionian coast. The area in question is also intensively cultivated with various crops ranging from 

vegetables to the cultivation of fine fruits; over the years, there has been a progressive construction of 

greenhouses and roads that have contributed to an increase in land take in agricultural and rural areas. 

Matera displays an evident urban dispersion similar to the case of Policoro and Scanzano Jonico: new 

buildings are mainly located along the main roads. The construction of new buildings has been disorganised, 

both near the urban centre and in the suburbs. Moreover, in the case of Matera, an essential percentage of 

the increase in waterproof soil is linked to the presence of infrastructure. Matera was the European Capital 

of Culture in 2019. Consequently, in previous years, many services and infrastructures have been built 

throughout the municipality, increasing the sealed soil occurring. 

The examination of the maps shows the pixels that have changed in recent decades, highlighting an 

expansion of the urban area into areas that once belonged to open land. This just confirms that the territory 

of the analysed municipalities and their neighbourhoods have undergone substantial changes in recent 

decades. 

3.3.2 Discussions 
 

This methodology presents an innovative supervised classification approach to detect land use and land cover 

change from natural to impervious areas. 

The classification results for Landsat TM and Landsat OLI, presented in this paper, with SVM show an accuracy 

of more than 92%. The land use and land cover maps obtained from the classification were validated with an 

overall accuracy of more than 92% and a kappa coefficient of more than 0.90 (Tables 6) and represent the 

evolution of land occupation in the areas considered. The results of this study are in agreement with those 

of previous research [24,36,37,140,143,153,154]. The SVM algorithm keeps the spatial attributes of these 

landscapes, such as fragmentation, and is the most appropriate algorithm in the classification study of land 

cover analysis of an urban environment. Ghayour et al [138] used and evaluated different algorithms such as 

Support Vector Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood Classification (MLC), 
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Minimum Distance (MD) and compared them to generate a LULC map using Landsat 8 satellite data. They 

assessed that the SVM classifier produced a land cover analysis that retained the spatial characteristics of 

these landscapes, such as fragmentation, and is most appropriate for the study of land cover in urban 

environments. The SVM classifier produced the highest overall accuracy of 94%, performing better than the 

other methods. Agapiou [36] for his study on the city of Lanarca (Cyprus) used the CORONA satellite image 

and performed a land cover classification using the SVM. He selected five main land cover classes: land, 

water, vegetation and urban areas. The results show a classification accuracy > 85, with a kappa coefficient 

of 0.91. In another study, Adam et al [154] used two machine learning algorithms, SVM and Random Forest, 

to create a LULC map of a region on the East African coast using high-resolution RapidEye imagery. Using the 

training data, they classified the region with an overall SVM accuracy of 91.80%. Jia et al [155] classified the 

land cover of Beijing by comparing Landsat 7 and Landsat 8 images and using the supervised MLC and SVM 

algorithms. The SVM algorithm, with an overall accuracy of 91.03% and a Kappa coefficient of 0.89, is more 

accurate than the MLC algorithm. Therefore, the SVM algorithm performs better than other algorithms 

applied in other studies because it requires fewer training areas, reducing the possibility of classification 

errors. The overall accuracy values of each classification are always above 92%. The process of classification 

of satellite images can produce errors. These classification errors are mainly due to the detection of water 

(lake, reservoir) or bare ground (rocky outcrops with perennial absence of vegetation cover). In contrast, 

omission errors correspond to some mixed urban and vegetation patterns, such as residential subdivisions, 

where vegetation is particularly dense or even to the different types of vegetation present. These limitations 

are mainly due to the spatial and spectral resolution of the Landsat OLI and TM sensors. Both have a spatial 

resolution of 30 m, each pixel thus having an area of 900 m2. Furthermore, both sensors are multispectral 

and not hyperspectral, which leads to limitations in the detection of certain spectral signatures. In Fig 19, the 

observed changes are mainly identified as blocks of pixels in urban areas representing urban growth. 

 

 

Figure 19. Change Detection (1994 to 2014) of Land Take in Matera. Overview of the entire area and a zoom of black squared area. 

The change detection analysis showed an increase in impermeable areas and a decrease in other natural 

areas from 1994 to 2014. Although the land take process is generally non-reversible, rare cases of reversibility 

can be recognized. Therefore, the model is suitable to detect such areas; an example of this reverse 

transformation process was identified, from impermeable land (housing and roads) in 1994 to permeable 

land in 2014, following a landslide event (Figs. 20 – 21).  
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Figure 20. In reverse transformation: from impermeable soil to permeable. In red, in 1994 and 2004, it is possible to see the urban 
agglomerate, which was destroyed in 2013, due to a landslide (Bosco Piccolo street - Potenza Municipality). 

 

Figure 21. Detail of the urban agglomeration (Via Bosco Piccolo - Municipality of Potenza) destroyed by the 2013 landslide. In blue 
the information layers of the GTDB of the Basilicata region regarding the waterproof areas. 

 

In this research, both TM and OLI images were acquired in the same month to have a low margin of error in 

classification. The month of May, in fact, at these latitudes represents the period of the year when the 

vegetation is at its maximum vegetative development. So, using the Landsat OLI images, the methodology 

presented here provided the most accurate spatial shape and conformity of the classes, regardless of the 

input classification settings. The algorithm achieved better accuracy for Landsat OLI images for the same 

classes and using the same training and validation data. In contrast, Landsat TM image classification maps 

were less accurate and required more ROIs. Some confusion between the classes also existed in OLI results, 
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but not as much as in the case of TM. At the same time, the separation of bare soil and impermeable areas 

(artificial vs. natural) was performed with greater precision. 

It should be highlighted that the aim of the work is not to monitor the changes in land cover in the area but 

to identify the waterproofed areas in the years analyzed. In conclusion, by analyzing medium resolution 

imagery provided by Landsat TM and OLI, using advanced methods like the SVM and change detection 

analyses, it is possible to result in highly accurate classification maps. 

The layers of the impermeable areas present in the dataset used in this work are updated to 2014 and no 

future updates are expected, this represents a limitation for the study of the historical evolution of land take 

in Basilicata, as this dataset constitutes the fundamental reference data of the impermeable areas in the 

classification process. 

 

3.4 Land Take and Renewable Energy Sources: The Case of Melfi 
 

In recent years, spatial transformations related to land take have been associated, especially in Basilicata, 

with the installations of renewable energy sources (RES). After the global challenges on climate change and 

international agreements on the reduction of CO2 emissions and in line with the European policies aimed at 

increasing energy production from renewable sources, European states have promoted and encouraged the 

use and installation of photovoltaic panels and wind turbines. Renewable energy sources (RES) are an 

important element in the list of options adopted to address global climate change issues and the increasing 

demand for energy, directing land development toward a low-carbon economy and principles of 

sustainability [98,102,156]. The installation of renewable energy sources, from the point of view of 

environmental sustainability, helps to contribute to the decrease in the use of fossil energy sources, but 

introduces a new class of land take that has hitherto been ignored, in disagreement with the European 

Commission's goal of zero land take by 2050. In fact, RES installations can be considered as a real new 

component of land settlement, and if the resulting land take is analysed, it becomes clear how the 

uncontrolled development of RES installation represents a critical aspect for effective and sustainable land 

use planning. The installation and operation of RES represents a significant land transformation, producing 

effects on different land components: land use change, land take, fragmentation of natural habitats[157], 

noise, etc. The new territorial transformations due to RES plants are a consequence of the development 

policies of the energy sector, Basilicata and specifically the municipality of Melfi, for its low population 

density and its territorial characteristics represents a useful case to analyse the land take related to RES. The 

hypothesis underlying this paragraph is that in the last decade, as highlighted in several studies [158,159] in 

the area under investigation, there has been a reversal in the amount of land taken for the construction of 

new residential, industrial and infrastructure buildings, which has given way to new forms of land take due 

to the installation of renewable energy sources. In recent years, wind energy has established itself as an 

economically and technically more profitable source and as a renewable source [160]. According to the GSE 

2020-2022 report, the Basilicata region has the highest number of wind turbines, a supremacy that does not 

respect the energy output of the installed wind turbines. In fact, by comparing the number of wind turbines 

and the total installed power, Basilicata deviates from the national average by 1.01 MW/pale (Basilicata 

average 1.01 MW/pale). We wanted to investigate how much the installation of numerous renewable energy 

plants (and related road infrastructure) affected the land take in the period 2010, 2014 and 2018. The 2010 

- 2018 chronological section is significant for analysing the land take from renewable sources, especially wind 

power, because the first decade of the new millennium is indicative of the period in which the installation of 
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these wind power plants began, both in the municipality of Melfi and in the entire region of Basilicata, where 

they have grown disproportionately in number. 

 

3.4.1 Methodology 

 

This part of the research aims to develop a methodology capable of providing land cover and land cover 

change products for operational purposes due to the installation of renewable energy sources using Sentinel 

2 and Landsat data.  The study is in continuity with the analyses in the previous section on monitoring land 

take on a time scale.  As in the previous analyses, the SVM classification algorithm with the integration of 

ancillary data was used to obtain a detailed land cover map (orthophotos, GTDB data, GSE data), this map 

subsequently used as input for the estimation of soil consumption in the test area. 

The RES farm datasets were first constructed using data from the GSE website. The resulting vector file was 

subsequently edited and integrated through photointerpretation and integration of data available on the 

GTDB. Through comparison with orthophotos at different time intervals, the RES dataset was divided into 

three time periods: RES existing before 2010, RES existing in 2014 and installed between 2010 and 2014, and 

RES existing in 2018 and installed between 2014 and 2018. Based on the PIEAR classification, wind turbine 

data were grouped into three classes: small, medium, and large wind turbines. 

Based on the SNPA classification reference, the binary land take map obtained was classified as impermeable 

soil and unconsumed soil.  The supervised classification process is an iterative process that ends with the 

choice of the output map after a check of the photo-interpretation with orthophotos and data from the same 

period and the evaluation of the accuracy matrix (Fig. 22). 

After obtaining a binary land take map, a check was made with the SNPA map, classifying the impermeable 

soil (consumed soil) into two subclasses: reversible consumed soil and irreversible/permanent consumed 

soil. Considering that the land take map called bu_2017_utm33N by SNPA has a spatial detail that is not very 

high in some Italian territorial contexts, such as the one of Melfi, the final part of the map elaboration process 

involved several photo-interpretation phases through the use of updated orthophotos. Particular importance 

in the classification process was given to the identification and classification of land take by RES (Eolic pad 

and street). From this, the pixels associated with RES were analysed in detail for the years 2010, 2014 and 

2018.  
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Figure 22. Flowchart of classification methodology. 
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3.4.2 Results and Discussions  
 

The land cover map obtained presents indications of all land cover classes in the Melfi area (Fig. 23). From 

this, the pixels associated with renewable energies were analysed in detail for the years 2018, 2014 and 2010. 

 

Figure 23. Land Cover Map of Melfi (2018). 

 

In fact, a comparison with the SNPA map showed that, in the years considered by the study, the land cover 

classification type related to wind energy, which was assigned code 119, was not present. The table 7 

summarises the main types of reversibly and permanently consumed land identified by the classification 

process and the related SNPA coding, with the addition of the new land take class due to wind energy. 

 

Table 7. Land take classes used in Land Cover Map classification according SNPA CODE Classification. 

LAND TAKE CLASSES TYPE OF SEALED SURFACE SNPA CODE 

Equipped soil area (116, 122) Other area sealed 116, 122 

Road element (112, 121) Paved /Unpaved 112, 121 

Street (116) Street  116 

Buildings (111) Buildings  111 

Railway Network (113) Railway 113 

Photovoltaic field (125) Photovoltaic field area 125 

Eoilc (119) Eolic park  - 

 

The class of land take of wind power was reclassified by dividing the relevant street from the wind turbine 

pad; the table summarises in terms of km2 the land take for each land take macro class: urban, Eolic pad, 

eolic street and photovoltaic. Subsequently, through the GSE database and photo interpretation, the area 



61 

 

occupied by the wind turbines was reclassified according to the power of the turbines, in order to better 

discriminate the land take associated with each individual plant. 

Table 8. Land take due to RES installation and new Urban settlements.  

Land Cover Class CODE 2010 km2 2014 km2 2018 km2 
Urban  1 14,74 14,84 14,97 

Eolic Pad 119 0,0048 0,036 0,35 

Eolic Street  121 0,0059 0,056 0,19 

Photovoltaic 125 0,035 0,167 0,165 

 

Examining land take due to urbanization and renewable energy, it is evident that in the former the trend is 

steadily increasing, while in the latter there has been a sharp increase since 2014 due to the development of 

small and large wind farms as economic policies have promoted the installation of wind turbines (Fig. 24). 

 

 

Figure 24. Land take historical trend due to the implementation RES. 

 

The development of RES technologies has thus resulted in a deep transformation of the territory.  The 

implementation of energy and climate policies requires new multi-level governance models, in which local 

authorities play a key role in managing energy and environmental issues [159]. 
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3.5 Conclusions 
 

Nowadays, land use and land cover maps and the use of the information they contain are fundamental to 

spatial planning. The use of satellite imagery and appropriate classification algorithms, such as SVM, is the 

most appropriate strategy to create land use maps at detailed scales. Satellite data have proven to be useful 

to develop an accurate diachronic analysis of land take and impermeable soils. The integration of remote 

sensing and spatial data allows a detailed monitoring of anthropogenic land transformations.  

The methodology presented here made it possible to obtain summary maps useful for analysing land use 

changes and interpreting the evolution of urbanised areas (in terms of growth) and natural and semi-natural 

areas (generally decreasing in extent). The use of satellite imagery and remote sensing techniques in a GIS 

environment made it possible to define spatial parameters through a supervised classification to discriminate 

urban areas from other land use classes. The methodology adopted highlights a possible way of verifying land 

use using free data and software. The great advantage is that this methodology can greatly improve planning 

processes at any scale. The information obtained in this work for the analysis of built-up development paints 

a fragmented picture of the study area. Although applied to urban areas, the methodology can be used in 

any other land cover classification topic. 

Moreover, a quantitative analysis of land take due to the uncontrolled installation of RES is proposed in this 

chapter. The unordered spatial distribution of installations is a demonstration of the current urban planning 

weakness, where planning instruments are not able to keep up to date with rapidly changing anthropization 

categories. A fundamental assumption is to consider wind farms as a new component of spatial settlement 

whose effects in terms of land occupation are comparable to traditional settlement categories. Today, new 

energy transition policies on the national territory are needed to plan new clean energy installations in a 

sustainable way, as incentives for renewable energy production without any planning strategy led to an 

increase in land take. 

The critical point is that renewable energy sources (wind and photovoltaics) imply intensive land use and the 

relationship with land take and spatial dimension of installations is a key aspect to be taken into account for 

management  It should therefore be noted that the issue of land use and occupation and its relationship with 

the spatial dimension of renewable energy sources is an essential sustainability criterion for the management 

of renewable energy and the proper implementation of these technologies, regardless of their nature and 

size. Indeed, sectoral policies produce rapid changes in the anthropization categories to which traditional 

planning tools and urban laws are no longer able to respond because they are obsolete and unsuitable to 

support decision-making towards an effective and sustainable development scenario. Limiting soil sealing 

and stopping land take means stopping the conversion of natural or semi-natural land into artificial land. 

National and regional policies have the task of limiting, or better still stopping, uncontrolled urban 

sprawl[161]. Producing an extremely detailed analysis through the perspective of spatial planning is a 

fundamental step to plan renewable energy in rural areas and prevent impacts on occupation and land use. 

The debate on the renewable energy production model shows the need to control the implementation 

process of these technologies so as to avoid conflicts with land use/occupation in rural areas. 

The exploitation of renewable energy sources clearly represents a new form of competition for land, resulting 

in pressure on all territories from the need for urbanization while at the same time preserving forest areas, 

natural resources and land with agricultural characteristics. The implementation of renewable energy 

renewable energy sources therefore require the formulation of a new rural land zoning that is compatible 

with landscape protection, biodiversity conservation and is fully integrated within the municipal planning and 

management. Population density plays a central role in describing urbanization processes and spatial 
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dynamics. Analysing the population density in the three years considered, it is clear that the trend is 

increasing in all the municipalities analysed, only in the city of Potenza it is decreasing (Fig. 25). 

 

 

Figure 25. Population trend (1994- 2014). 

 

In order to analyse the evolution of land take it is interesting to relate it to population density, in the table 9 

we compare the absolute values of land take obtained with the per capita land take, it is interesting to note 

a rapid growth from 2004 to 2014.   

Table 9. Comparison of land use and population density. 

 Land 

Take  

1994  

(km2) 

Land 

Take/Inhabitant 

1994 (m2) 

Land 

Take  

2004 

(km2) 

Land 

Take/Inhabitant

2004 (m2) 

Land 

Take 

2014 

Land 

Take/Inhabitant 

2014 (m2) 

Matera 20,99 378,42 21,96 377,94 30,79 509,49 

Melfi 9,77 612,81 10,59 648,38 11,88 698,29 

Potenza 11,75 176,91 12,83 187,38 17,73 269,44 

Pignola 1,58 319,32 1,71 303,95 3,53 514,65 

Policoro 4,5 301,49 5,89 387,58 9,21 548,05 

Scanzano 

Jonico 

3,21 503,37 3,83 562,16 7,14 971,96 

 

Comparing the change in land take between 2014 and 2004 with the change in population we note that the 

municipality of Potenza shows a decoupling of values, population decreases while land take increases 

(Tab.10). 
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Table 10. Comparison between land take variation and population variation.  

 Land Take variation  

(2014 – 1994) 

Population Variation 

(2014 – 1994) 

Matera 0,318 0,090 

Melfi 0,178 0,067 

Potenza 0,337 -0,009 

Pignola 0,552 0,386 

Policoro 0,511 0,126 

Scanzano Jonico 0,550 0,152 

 

The analysis of land take, taking into account changes over the historical reference period, with the structural 

dependency index allows us to verify the relationship with a variable of economic and social 

relevance[109,117,162]. The dependency ratio represents the ratio of the population of non-working age (0-

14 years old and 65 years old and over) to the population of working age (15-64 age), multiplied by 100, 

indirectly providing a measure of the sustainability of a population structure. The denominator represents 

the segment of the population that is expected to support the segment indicated in the numerator. This ratio 

expresses the theoretical social and economic burden of the population of working age: values above 50 per 

cent indicate a situation of generational imbalance. 

The relationship between land take and the dependency ratio is useful for analysing how land use changes 

based on the distribution of the working population (Table 11). 

 

Table 11. Comparison between dependence Index e land take in hectares.  

 Dependence Index (See 

Appendix A2) 

Land Take (ha) 

Matera 51,19 3079 

Melfi 46,44 1188 

Potenza 50,19 1173 

Pignola 40,93 353 

Policoro 43,22 921 

Scanzano Jonico 43,48 714 

 

 

In the overall balance there is a growth in urbanization. Furthermore, land take is provided by differences in 

development on a spatial basis which at different geographical scales give rise to different migration flows. 

These flows create in the places of destination a housing demand that consumes land leading to a 

redistribution of land take, which is not compensated by any land gain in the places of origin due to the 

irreversible decrease in the value of housing and land that are often abandoned. It is the different way of 

thinking about city-countryside relations that drives large segments of the population to abandon the 

congestion of the urban centre and move to peri-urban locations. Moreover, these housing choices are 
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favoured by the increasingly intensive use of the car and the presence of a transport system strongly 

unbalanced towards the road and motorway network. Contributing to land take and increased housing 

demand is an increasingly individualistic living culture oriented towards independent living solutions. Equally 

harmful in terms of land take is the exploitation of coastal areas for tourism. The building of holiday homes, 

hotels and residences in these areas, which are often endowed with great landscape and environmental 

value, is a driver of land take that takes on particularly dramatic connotations, where it is only partially 

contained by the protection of landscape plans. This trend is mainly affected by the propensity to buy second 

homes in places with a high degree of naturalness. In addition to the above-mentioned reasons, there are 

others linked to political-legislative and governance issues and gaps[109]. 

Finally, from a technical-methodological point of view, satellite data have proved useful for modifying an 

accurate diachronic analysis of land take and impermeable soils. The integration of remote sensing and 

spatial data allows a detailed monitoring of anthropogenic land transformations. The methodology presented 

here made it possible to obtain summary maps useful for analysing land use changes and interpreting the 

evolution of urbanised areas (in terms of growth) and natural and semi-natural areas (generally decreasing 

in extent). The use of satellite imagery (Landsat TM 4-5, Landsat OLI 8 and Sentinel 2) and remote sensing 

techniques in a GIS environment made it possible to define spatial parameters through a supervised 

classification to discriminate urban areas from other land-use classes.  

This work confirmed that the SVM algorithm and the methodology presented here are the appropriate LCC 

classification tool. By analysing and comparing different years, the process of urban intensification and the 

increase in urbanised areas was observed. 

The methodology adopted highlights a possible way of verifying land occupation using free data and 

software. The great advantage is that this methodology can greatly improve planning processes at any scale. 

The information obtained in this work for analysing building development paints a fragmented picture of the 

study area. Although applied to urban areas, the methodology can be used in any other land cover 

classification topic. 
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Chapter 4: Land Cover Change and Abandoned 

Agricultural Land in Basilicata Region 
 

 

Land is a non-renewable limited resource characterised by a potentially very high rate of degradation and, at 

the same time, extremely slow regeneration processes. According to the ISPRA report [25], the national 

territory is undergoing a progressive degradation process as a result of artificialisation processes caused by 

an alteration of soil conditions due to the reduction or loss of productivity linked to the expansion dynamics 

of urban areas, infrastructures and industrial areas. Also, part of this process is the phenomenon of land 

degradation, which causes the progressive and irreversible shrinkage of natural and agricultural areas, often 

in favour of urbanised ones, with various environmental, economic and social impacts. One of the main 

negative impacts is the reduction of permeable surfaces, with effects on climate and hydrogeological 

structures, the contraction of the productive potential of agriculture, the reduction of biodiversity and the 

ecological functionality of the soil[163].  

Land degradation is one of the most negatively impacting ecological problems; in fact, it is found in the 

literature that due to the process of soil degradation, agricultural land becomes unproductive due to the loss 

of its capacity to produce crops and biomass. The causes are manifold but, especially in the inland areas of 

the Mediterranean regions, certain dynamics linked to agriculture have particularly influenced the 

degradation process. Specifically, agricultural overexploitation with unsustainable practices and land 

abandonment are leading to alterations at the ecological level that require contextual analyses to assess the 

medium- and long-term effects. In fact, some agricultural practices, which are geared towards over-

exploitation of soils, excessive mechanised tillage and the use of chemicals, are leading to a reduction in soil 

quality and subsequent degradation (erosion caused by water and wind, compaction, a decrease in soil 

organic carbon and soil biodiversity; salinisation, sodification and soil contamination by heavy metals and 

pesticides, or by excess nitrates and phosphates). The other phenomenon, i.e., the abandonment of 

agricultural activities and more generally of the land, is at the attention of the scientific community as it can 

produce environmental and landscape impacts, as well as socio-economic impacts [41,164,165]. 

The effects are highly variable in relation to territorial contexts and thus according to climatic, ecological, 

biological, soil and topographical differences. The causes and extent of the abandonment of agricultural 

activities also differ from region to region. In fact, in the marginal inland areas of southern Italy, there has 

been a constant and exponential abandonment since the 1970s and 1980s, which is causing a change in the 

ecological and soil balances of the territory. In these areas, following an increase in cereal cultivation 

favoured by the Agrarian Reforms for the Southern Italy and an increase in mechanisation, there has been 

an increase in the agricultural surface used even in marginal areas with little vocation for cereal cultivation. 

In the following decades, with the changes in socio-economic conditions, the crises in the agricultural sector 

that made cereal growing economically unfavourable for many areas, and some agrarian reforms linked to 

the Common Agricultural Policy (in particular the 'set-aside'[166,167]), there was a steady abandonment of 

agricultural activity[168,169]. These territories, give origin to different landscapes in relation to climatic 

conditions, age of abandonment, management before and after abandonment, and disturbances triggered 

afterwards. All the factors indicated condition vegetation successions and soil properties, often producing 

discordant ecosystems and landscapes. That said, the link between abandonment, soil erosion, and land 

degradation needs in-depth methodological and technical investigation as the factors, dynamics, and 
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correlations are highly varied and, often, discordant. Obviously, overuse and abandonment may have, in 

some particular land contexts, a close connection. In fact, some areas may be abandoned precisely because 

of problems following the agricultural overexploitation that occurred in the past. These causes of degradation 

may also be compounded by overgrazing, deforestation of certain types of environments, fires, and 

urbanization processes. There are many methods used to study and assess soil degradation. The most 

common are the application of spatial analysis through GIS, remote sensing and direct measurements on 

soils through sampling and laboratory surveys. In comparison with field analysis methods, the remote sensing 

technique is more flexible because it allows in a short time, to observe large areas using a range of spectral 

indices. Remote sensing data is a great help in supporting the planner to be able to study the phenomenon 

and monitor it. Land degradation can be addressed with the use of remote sensing and other spatial data. 

The basic information to refer to is that of vegetation cover, rainfall, surface runoff and soil erosion. In 

addition, useful models can be established to define areas susceptible to degradation.  

Basilicata is particularly affected by the risk of land degradation; among these is the phenomenon of soil 

erosion with the development of typical morphological forms (gullies). An assessment of land degradation at 

a regional scale is of fundamental importance to identify the characterisation of the soil surface, its variations 

over time and the identification of the area’s most susceptible to degradation. A useful tool for studying the 

response of vegetation to climate change is the analysis of time series from satellite images. In many studies, 

multi-time series are used to highlight positive and/or negative vegetation anomalies. In this work, the 

analyses conducted involve the application of remote sensing techniques and spatial analysis to estimate 

land take related to land degradation phenomena and land use change dynamics for impact assessment and 

vulnerability estimation. In order to highlight and relate the phenomenon of land degradation to land cover 

over time, it was decided to exploit an established methodology, namely the RUSLE (Revised Universal Soil 

Loss Equation) model. Initially adopted to calculate and monitor the erosion of small agricultural areas, with 

the development of new calculation algorithms, it is now also used to investigate very large areas. The study 

area concerns a territorial context of the Basilicata Region that is particularly vulnerable to the phenomenon, 

due to the combination of anthropic and natural factors. The work was divided into several phases. The first 

phase concerned the bibliographic study and theoretical aspects of land degradation, land abandonment and 

soil erosion. Then the different spatial and satellite datasets were analysed and the various possibilities of 

integration and processing (after a careful study of the state of the art concerning the integration between 

GIS tools and Remote Sensing techniques). Finally, the RUSLE model was applied to the area under 

investigation along with spatial analysis techniques in order to assess land use changes in the area under 

consideration. Change detection and spatial autocorrelation techniques were also used in the work to 

characterise "aggregated" areas based on RUSLE values. The different methodologies used (qualitative and 

quantitative) contribute to the definition of the relationships between erosion, abandonment and land cover. 

 

4.1 Land degradation, land abandonment and soil erosion: 

overview 
 

Land degradation involves all processes of alteration of soil conditions due to the alteration of soil conditions, 

reduction or loss of biological and/or economic productivity. In general terms, it is a complex process 

triggered by a combination of combined phenomena such as aridity, soil erosion, land morphology and 

orography, vegetation cover, anthropogenic factors and climate[170–173]. One of the processes of land 

degradation is soil erosion, due particularly, but not exclusively, to the intensity of rainfall. When short, 
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intense rainfall occurs on land without vegetation cover, runoff removes the surface layer richer in organic 

matter from the soil. Arid, semi-arid and sub-humid areas that are exposed are generally at risk of short but 

intense rainfall, which instead of mitigating the effects of low rainfall, causes erosion. Slope orientation and 

land slope are also an important vulnerability factor in the climatic and geomorphological context, in 

particular for water-stressed areas. The slope reduces the absorption capacity but at the same time 

contributes to an increase in surface runoff. For example, southern hillsides, being exposed to a greater flow 

of solar radiation, have microclimatic conditions that are averse to the regeneration of more stable 

vegetation with a higher degree of cover (due to the absence of moisture) and thus promote erosion 

situations. In 2015, the UN Sustainable Development Agenda defined the Sustainable Development Goals 

(SDGs) and among the goals to be achieved by 2030 (target 15.3) is Land Degradation Neutral Word, as a 

target to be achieved to safeguard the essential functions of soils and ecosystem services [25,92]. In 2017, 

the United Nations Convention to Combat Desertification (UNCCD) adopted the strategic framework 2018 - 

2020 based on SDGs target 15.3 aimed at achieving degradation neutrality by 2030 (Land Degradation 

Neutrality)[174–176]. 

Climate change and the dynamics of land use and land cover change play a significant role in land degradation 

processes, since soil deterioration, loss of natural vegetation, anthropogenic pressure and unsustainable land 

management are responsible for large-scale land degradation, not only in semi-natural areas but also in 

agricultural and peri-urban areas [164,177]. Since World War II, land use change (LUC) has undergone rapid 

changes due to the acceleration of processes such as land abandonment, agricultural intensification, and 

uncontrolled expansion of urban areas. Agriculture is the dominant land use type on the Earth, currently 

covering about 40 percent of the Earth's land area, and abandonment in agriculture is one of the most 

important land use change processes in Europe [178]. In general, the request for land for food purposes is 

increasing globally, at the same time the process of agricultural abandonment has shown an increasing trend 

since the 1950s. Although the process of agricultural abandonment seems at  variance with the increase in 

agricultural production, it is often closely related to the intensification of land uses for agricultural purposes 

and stems from several physical, environmental, social and economic factors in an increasingly globalized 

agricultural economy [178]. Although the current extent of abandonment is unknown, European agricultural 

statistics and land cover maps show a clear decrease in agricultural areas in recent decades, especially for 

extensive and small-scale farming systems, and modelling studies predict significant levels of agricultural 

abandonment in Europe in the coming decades[179,180]. Agricultural land abandonment is defined as the 

cessation of agricultural management for more than two to five years. The land is first colonized by annual 

plant species and grasses, which after three or four years pass to perennial grasses and shrubs, five years 

after the abandonment, almost 30% of the trees sprout. Many authors who have studied the issue of 

agricultural abandonment in Europe have shown that agricultural abandonment occurs primarily in less 

productive areas, remote and mountainous regions, and areas with soil erosion or climatic conditions 

unsuitable for agriculture [181–183]. Secondary causes of agricultural abandonment include rural 

depopulation and region-specific factors related to land ownership and tax regimes [184–186]. An example 

of agricultural abandonment is the abandonment of agricultural areas around cities related to urban sprawl, 

which is often driven by rising land prices and farm fragmentation [187,188]. Agricultural policies also play 

an important role, as abandonment often occurs in areas where land productivity does not provide adequate 

income to farmers. In Southern Europe, low land productivity combined with small farm sizes, often 

consisting of dispersed agricultural parcels, has led to very low agricultural profitability, resulting in the 

abandonment of farming. Policy measures designed specifically for mountain areas have been established 

mainly to provide compensation for the disadvantages and low agricultural productivity of mountain areas. 
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Indeed, the EU's Common Agricultural Policy (CAP) recognizes the natural disadvantages of these areas and 

their association with depopulation and land abandonment through structural support for "less-favoured 

areas" (Regulation 950/97). 56 percent of the EU's utilized agricultural area (UAA) falls within the delimitation 

of less-favoured areas, much of which is classified as mountainous area. Much of this mountainous area is 

designated as Objective 1. The French, Austrian and Italian memoranda on mountain agriculture and forestry 

submitted to the EU Agriculture Council reflect continuing concern about the economic and social pressures 

facing mountain agriculture. However, despite the efforts of compensation policies, agricultural incomes in 

mountainous areas remain much lower than those in the lowlands, to the detriment of the resulting 

environmental impacts and agricultural decline [189]. Even with the support of subsidies such as support and 

agri-environmental payments, which are part of the rural development pillar of the Common Agricultural 

Policy (CAP), agriculture in these areas is often not competitive. Activities implemented to reduce support 

for agriculture and to decouple support from production within the CAP were therefore much debated within 

the EU, as member states feared that this could lead to several risks, including the abandonment of 

agricultural areas resulting in increased degradation [190].  Agricultural abandonment can have positive and 

negative impacts, although the consequences differ depending on location and scale [191]. Soil erosion is an 

example of the several impacts of abandoning agriculture. Agricultural activities and the abandonment of 

agriculture are both predisposing factors for soil erosion and land degradation. Other factors influencing 

erosion and sedimentation rates are lithology, topography and climate [182,192]. Intensification and 

extensification of land use (for agricultural purposes) are the main contributors to the abrupt changes in 

LULCC and are also determined by local and global socioeconomic[193]. Drought, loss of soil organic matter, 

soil erosion, overexploitation of groundwater and soils, and salinisation of agricultural fields are some 

examples of consequences of LULCC that can potentially lead to land degradation. The degradation rate of 

land depends on the deterioration rate of land cover, aggravated by land use management and climatic 

conditions. Vegetation cover, land use type and distribution, and land use management are the main factors 

influencing the rate of land erosion [173]. The causes of agricultural abandonment can be environmental, 

socioeconomic, political, and improper land management and maintenance. Negative environmental factors 

such as poor soil qualities, altitude, and a highly seasonal climate can reduce the suitability of land for 

agriculture. In addition, from a socio-economic perspective, low farm profitability and stability are considered 

as drivers of abandonment. After abandoned, soils can evolve in two ways: toward degradation and toward 

rinaturalization. Agricultural abandonment can lead to soil erosion when adequate management after 

abandonment is absent, especially when environmental conditions hinder the restoration of natural 

vegetation, e.g., due to degraded soils [182]. The CAP has influenced erosion processes and rates because of 

the set-aside policy. This requires farmers to keep their set-aside fields as fallow sown with non-food crops, 

or as unseeded fallow land with continuous ploughing to avoid plant colonization, if they want to receive if 

they want to receive subsidies [194]. Agriculture has modified the natural environment in many ways over 

the past centuries. 

Agricultural abandonment can be defined in different ways depending on the type of research approach used 

(administrative, ecological, social, landscape and environmental) and there are different ways to study 

it[195]. For example, some studies use a qualitative definition of abandoned land (describing the condition 

of the land), while others use a quantitative definition considering years without cultivation or grazing [195]. 

In all cases, agricultural land is considered abandoned when it no longer has agricultural functions. This type 

of analysis also requires the definition of agricultural land, which is always characterised by a dynamic change 

in land use and land cover over the centuries. The Food and Agriculture Organisation of the United Nations 

defines agricultural land as land use and land cover represented by arable land, permanent crops, permanent 
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grassland and permanent pasture. Arable land is associated with the cultivation of occasional crops and 

occasional meadows for mowing and grazing. Vineyards and orchards, or shrub plantations, belong to the 

land use type of permanent crops. Permanent meadows and pastures are grasslands used for mowing and 

grazing that are not part of the crop rotation system. As stated above, the abandonment of agricultural land 

is, therefore, one of the most significant land use changes, which has always attracted scientific and political 

attention due to its impacts and drivers.  Indeed, 11% of agricultural land in the EU is expected to be at high 

risk of abandonment by 2030[112,196]. As mentioned above, the Common Agricultural Policy (CAP) has 

further accelerated the dual process of agricultural intensification and farmland abandonment. This context 

has prompted scientific research to improve large-scale examinations of farmland abandonment in the EU 

[4-6], including forecasting and modelling for the near future [77,188,197]. Earth observation (EO) data and 

elaborate remote sensing methods, using data from various satellite platforms (Modis, Landsat, Sentinel), 

have been a crucial and continuously developing aspect of this type of research analysis[198,199]. Mapping 

agricultural land abandonment patterns and timing accurately is important for understanding its spatial 

determinants and environmental and socioeconomic consequences. 

 

4.2 Material and Methods 
 

The use of satellite data and GIS tools can provide useful data for the estimation of land degradation, land 

abandonment and soil erosion and for mapping and monitoring areas subject to degradation.     

These methos are based mainly on the use of indices obtained by combining of the different spectral bands, 

which emphasize and detect any change in the vegetation status. The integration of soil erosion models 

(RUSLE model) with GIS and remote sensing are effective tools for mapping and quantifying areas and rates 

of soil erosion for the development of better conservation and monitoring plans for the land. In addition, the 

use of spatially explicit geostatistical surveys allows a more accurate quantitative analysis of the various 

results obtained. In order for a more fluent understanding of the methodologies, techniques and analyses 

performed, the following below are listed and briefly described the different parts of the work: 

• Calculation of the RUSLE (Revised Universal Soil Loss Equation) for the estimate of the monthly 

erosion (of the months from October 2019 to September 2020) and of the total annual erosion of 

the period from October 2019 to September 2020; 

• General statistical investigation between land cover classes and RUSLE values on a monthly and 

annual basis; 

• Clustering of the RUSLE, through Getis & Ord. autocorrelation algorithm, in order to highlight areas 

that show continuous erosion month after month; 

• Time-series investigation of NDVI for the period 1990-2020 in order to establish a database on 

transitional land-cover dynamics; 

• Susceptibility to land degradation of areas classified as arable land and areas with post-crop 

vegetation based on deviations from average RUSLE values and mapping of areas of vegetation 

degradation, relative to arable land, through statistical correlation with vegetation factor C. 

 

 



71 

 

4.2.1 Dataset 
 

This phase of the research was based on the integration of remote sensing techniques and Geographic 

Information Systems (GIS) with open and freely available technologies and datasets. The methodologies 

identified are based on the use of Sentinel and Landsat satellite data to which other various data sources, 

map bases and orthophotos have been associated. Both are very useful for the construction of land 

characterisation models, for risk assessment and for the susceptibility of soils to erosion. A valuable 

contribution to the study and monitoring of the areas under study is given, for example, by the Sentinel 

products of the Copernicus Mission as they provide high resolution multispectral optical images using spatial 

resolution ranging from 10 m to 60 m. The Sentinel 2 satellite images were downloaded from the THEIA site, 

which re-processes the data by aggregating atmospherically corrected TOA bands using the MAYA (Multi-

sensor Atmospheric Correction and Cloud Screening) algorithm. In particular, FRE (Flat Reflectance) bands 

were used, which in addition to being atmospherically corrected, also have the suppression of reflectance 

variations due to slope. For images with cloud cover, the algorithm calculates relative masks with two 

resolutions at 10m and 20m. In our case, the CLM (Cloud Mask) band at 20m was used. The other reference 

satellite data is Landsat, which is used to calculate the NDVI (Normalized Difference Vegetation Index) time 

series. Landsat images represent a basic point for the historical analysis of terrestrial phenomena, in fact the 

database has remote sensing images from 1972 to the present day, a maximum spatial resolution of 30m 

and up to 11 spectral bands. Land cover classification was based on the Corine Land Cover 2018 (CLC) dataset 

and, for spatial and statistical analyses, the 2013 Nature Map at a scale of 1:50,000 in a format freely available 

from the ISPRA repository in the form of a shapefile. In addition, for the estimation of the RUSLE model 

parameters, in addition to Sentinel satellite data and weather data, the 'European Soil Map' and the Basilicata 

Soil Map were used. 

 

4.2.2 Territorial Framework 
 

The analyses and processing were carried out in an area of approximately 1554 km2 within the Basilicata 

Region, including the municipalities of Tricarico, Ginestra, Irsina, Acerenza, Cancellara, Albano di Lucania, 

Forenza, Maschito, Oppido Lucano, San Chirico Nuovo, Grassano, Palazzo San Gervasio, Tolve, Genzano di 

Lucania, Venosa, Pietragalla and Banzi. The area is characterised by a typical Mediterranean climate, with a 

pronounced two-seasonal regime with hot, dry summers and cold, wet winters. Natural hazards and 

anthropic activities make this area an interesting context for study because the combination of anthropic 

activities and natural hazards contribute to the establishment of degradation phenomena. The remote 

sensing data used for the first part of this work are part of ESA's Copernicus Mission. Specifically, the data 

used is Sentinel 2, the spatial coverage provided by the satellite swatch determined the extent of the study 

area (Fig. 26).  
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Figure 26. Overall outline of the study area with detail (bottom left) on the part actually considered in the methodology. 

The overall study area is interested by landslide phenomena of different nature, which differ according to 

the lithology of the outcropping soil. The IFFI Project (Inventory of Landslide Phenomena in Italy), carried out 

by ISPRA and the Autonomous Regions and Provinces, provides a detailed picture of the distribution of 

landslide phenomena on the Italian territory. The landslides surveyed by the IFFI Project, whose last update 

for the Basilicata region was in 2014, number 858 in the study area, distributed as in the Fig. 27. 

From the analysis of the land cover data with respect to the overall study area of all the Municipalities (Table 

12 and Fig. 28), it can be seen that the area is mainly occupied by agricultural areas of different types. In fact, 

considering arable land, heterogeneous agricultural areas, permanent crops (vineyards, olive groves, 

orchards and wood arboriculture) and stable meadows, agricultural activity affects just over 80% of the entire 

study area. On the other hand, natural areas (wooded, shrubby and grassy areas) occupy almost 18%. The 

study area can ideally be divided into two zones: the western part, corresponding to the zones with a more 

complex and diversified morphology, is the most heterogeneous from the point of view of land cover. In fact, 

it is also the portion in which there are more natural areas of different types and in which it is possible to find 

the typical characteristics of an agroforestry territory. The remaining part, on the other hand, in the light of 

different morphological and geological characteristics, is represented almost exclusively by arable land and 

the natural areas are linked to a few areas and to the watershed areas. For this analysis, reference was made 

to the Corine Land Cover at level II (2018). 

 

Table 12. Land cover based on the Corine Land Cover I Level expressed in hectares (ha) and percentage (%) 

with respect to the overall study area. 

Corine Land Cover 2018 Km2 % 

Agricultural Areas 1266,186 81,45 

Artificial Areas 12,44 0,8 

Forest and Seminatural Areas 271,4 17,46 

Water Bodies 3,772 0,24 

Wetlands 0,799 0,5 

TOT 1554,597 100 



73 

 

 

 

Figure 27. Geomorphological framework of the study area. Above: slope and aspect of the study area from the Digital Terrain 
Model. Bottom: landslide areas detected by the IFFI Project. 

 

 

 

Figure 28. Land cover map based on the Corine Land Cover II level of 2018. Source: CLC2018 Copernicus Land Monitoring Service 
data processing. 
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For a more complete and detailed analysis of the characteristics of the study area, the Nature Map (Fig. 29, 

Table 13) (2013) and the relative tabulation of the surfaces in ha and percentage with respect to the overall 

study area are also reported. Given the greater level of detail and accuracy, the Nature Map represents the 

reference dataset for all subsequent spatial and statistical analyses.  

 

Figure 29. Land cover map based on Nature Map. 
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Table 13. Land cover based on the Nature Map expressed in hectares (ha) and percentage (%) with respect to 

the overall study area. 

Nature Map 2014 Hectares % 
Mediterranean riparian poplar forests 1903,02 1,22 

Archaeological sites 12,29 0,01 

Tyrrhenian-submediterranean vegetation  3660,23 2,35 

Steppes of tall Mediterranean grasses 1922,04 1,24 

Other broadleaf plantations 283,18 0,18 

Fluvial mud banks with vegetation 3,4 0 

Xeric grasslands of the hilly plain 285 0,17 

Lowland and Mediterranean montane hillside willow forests 144,42 0,09 

Extensive crops and complex agricultural systems 30611,59 19,69 

Quarries 112,81 0,07 

Orchards 100,97 0,06 

Low scrub in Calicotome 163,63 0,11 

Olive groves 6643,4 4,27 

Parks 12,63 0,01 

Fertilized and grazed meadows; also abandoned and 
vegetation 499,44 0,32 

Middle European shrublands 707,5 0,46 

South Italian cerrete 3950,23 2,54 

Eastern submediterranean white oak forests  9848,93 6,34 

Ostrya carpinifolia thickets 10,94 0,01 

South Italian turkey oak and English oak groves 5284,43 3,4 

Mediterranean gallery forests with large willows 604,25 0,39 

Southern Italian and Sicilian ilexes  349,32 0,22 

Galleries with tamarisk and oleander trees  116,16 0,07 

Intensive and continuous arable land 71592,59 46,05 

Low olive and lentisk scrubland  2004,79 1,29 

Beech forests of southern Italy and Sicily 0,34 0 

Robinieti 19,34 0,01 

Mesic grasslands of the hilly plain 1185,35 0,76 

Vegetation of reed beds and similar species 283,42 0,18 

Conifer plantations 1791,12 1,15 

Mountain grasslands of the central and southern Apennines  89,3 0,06 

Beds of Mediterranean streams 332,19 0,21 

Oaks with deciduous oaks 21,23 0,01 

Garrigue and mesomediterranean calcicolous scrubland 316,82 0,2 

Cities, towns 1089,53 0,7 

Active industrial sites 180,35 0,12 

Supramediterranean ilexes of Italy 30,94 0,2 

Subnitrophilous Mediterranean meadows  5761,27 3,71 

Citrus groves 1,58 0 

Accelerated erosion clay areas  1504,8 0,97 

Mediterranean dry meadows 380,55 0,24 

Vineyards 1223,23 0,79 
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Reeded riparian communities 86,91 0,06 

Eucalyptus plantations 18,29 0,01 

Fresh waters (lakes, ponds) 342,19 0,22 

TOT 155485,94 100 

 

Even from this mapping, it can be seen that agricultural areas cover most of the territory. In particular, just 

over 65% is represented by arable land including the classes "Intensive and continuous arable land" (in a 

higher percentage) and "Extensive type crops and complex agricultural systems". The difference between the 

two classes refers to the structural and ecological characteristics. In fact, in continuity with what was 

expressed previously", the class of extensive crops refers to those highly fragmented cereal systems with 

small strips of hedges, woods, stable meadows, etc., characteristic of morphologically more heterogeneous 

areas. In fact, it is possible to identify them in the eastern and southern part of the study area. In particular, 

the southern area is the one with the smallest surface affected by arable land and a significant variability in 

terms of land cover. Forest areas, on the other hand, are mostly present in four areas at higher altitudes. For 

details on natural vegetation areas deriving from abandonment of agricultural activity, please refer to the 

specific paragraph. 

The areas of naturalistic interest for which two Natura2000 sites have been identified 2 are: "Bosco 

Cupolicchio" (between the municipalities of Tolve, Albano di Lucania and San Chirico Nuovo) and "Valle 

Basento Grassano Scalo" which affects the municipality of the same name. Furthermore, a limited area is 

affected by the “Lago Rendina” site in the Municipality of Venosa. Finally, as far as the landscape aspects are 

concerned, several landscape assets of regional importance and recognized at national level fall within the 

area. In particular, one of these assets is worth mentioning because a transformation of the territory due to 

processes of soil consumption, agricultural abandonment and land degradation can compromise its 

peculiarities. The asset subject to protection is represented by the entire municipal area of Irsina (Cod. 

BP136_024) which was subjected to protection with the DM 07 March 2011 (GU n 68 of 24 March 2011) for 

related reasons: <<... presents one of the most homogeneous and unaltered aspects of the agricultural 

landscape of Basilicata, characterized by the wide and uninterrupted expanse of wheat fields which, from 

the Bradano plain, cover the surrounding rolling hills without interruption. 

 

4.2.3 Rusle Model Processing 
 

The first part of work involved implementation methodologies useful for estimating and mapping areas with 

high erosion rates. Soil erosion was estimated using the RUSLE (Revised Universal Soil Loss Equation) [200], 

developed from the previous USLE model [201] by resampling all necessary parameters to the spatial 

resolution of Sentinel 2A (10 m). The estimate of annual soil loss according to the RUSLE model is a function 

of five variables related to rainfall regime, soil characteristics, soil topography, crop cover and management, 

and the conservation cultural practices, according to the following formula: 

 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃 
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Where is it: A = annual soil loss (Mg - ha -1 - year -1); R = precipitation erosion factor (MJ - mm - ha -1 - h -1 - 

year -1); K = soil erodibility factor (Mg - h - MJ -1 - mm -1); LS = slope length and slope factor (dimensionless); 

C = crop and cover management factor (dimensionless); P = crop or erosion control factor (dimensionless). 

The RUSLE is based on five variables related to rainfall patterns, soil properties, topography, crop cover and 

management, and conservation tillage practices. The result is an estimate of the amount of soil lost due to 

surface erosion and stream (canal) erosion. 

The reference period goes from October 2019 to September 2020. Among the various climatic factors that 

characterize a territory, rainfall has the greatest erosive impact. The precipitation erosivity factor R is an 

average index that measures the kinetic energy and intensity of precipitation to describe the effect of 

erosion, two parameters that have a significant influence on erosive processes. From the online database of 

the Functional Centre of the Basilicata Region, the cumulative monthly rainfall data of 6 meteorological 

stations were downloaded, namely Venosa, Albano di Lucania, Palazzo San Gervasio, Oppido Lucano, 

Grassano and Irsina.  

The R-factor equation is based on the rainfall intensity developed for the Basilicata region in the work of 

Capolongo [202]; in which only daily rainfall contributions with values greater than 10 are added up. 

 

𝑅 = 0.1087 ∗  [𝑑𝑎𝑖𝑙𝑦 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙 (1.86)] 

 

After having obtained the punctual values of R for all the months of the period considered for each rain 

gauge, the data were spatialized and using interpolation tools, thus obtaining a probable erosivity factor R 

for the entire study area.  

The soil erodibility factor K is the rate of soil loss per unit of the rainfall erosion index (t ha h ha − 1 MJ − 1 

mm − 1) as defined by newfoundland. The factor K is the long-term average response of soil and soil profile 

to the erosive power of storms. In particular, it represents the detachment and transport of part of the soil 

components due to the impact of rain and surface flow. It takes into account specific characteristics of the 

soil components, from abrasive effects due to transport and localized deposition of soil parts depending on 

the topography, as well as rainwater infiltrations in the soil profile. 

 

𝐾 =  [
2.1 ∗ 10−4 ∗ (12 − 𝑀) ∗ [(𝑆𝑖 + 𝑓𝑆) ∗ (100 − 𝐶)]1.14 + 3.25 ∗ (𝐴 − 2) + 2.5 ∗ (𝑃 − 3)

100
] 

 

M represents the organic matter expressed as a percentage (%) present in the soil, Si is the percentage of silt 

from 0.002 - 0.05 mm, fS the content of very fine sand with diameter 0.05 - 0.1 mm, and C the percentage of 

clay with diameter <0.002 mm. The K values thus obtained, were multiplied by the factor 0.1313 in order to 

be expressed in the unit of the International System. For the definition of the factor on the area of 

investigation the parameters were derived from the Pedological Map of the Basilicata Region and from the 

Basilicata Region soils database.  

The L and S factors represent the effect of topography on soil erosion rate. Slope length (L) in RUSLE is defined 

as the distance from the point where surface flow begins, to the point where storage occurs or runoff waters 

are channelized [203]. Soil loss increases if the slope length increases as a result of downward runoff 

accumulation. Slope (S) describes how erosion increases with slope angle. Soil erosion increases with slope 

angle due to the increasing velocity and erosivity of runoff [204]. The formula proposed by Mitasova [205] 
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was used to calculate the topographic LS-factor relative to a point r. The LS product factor is dimensionless 

and it was assumed to be constant over the entire period of observation. 

The C-factor is dimensionless and is calculated to consider the impacts of vegetation cover on erosion. There 

are several approaches to calculation in the literature as C can vary depending on the different parameters 

being considered. C depends on many sub-factors such as cover given by plants, soil moisture, leaf residue, 

which vary continuously throughout the year, so there is a need to be able to estimate an indicator to 

calculate both spatial and temporal vegetation status. For this purpose, the index of SAVI closely related to 

the NDVI index, which is less sensitive on sparsely vegetated or bare soils, by applying the following formula: 

 

𝑆𝐴𝑉𝐼: 
[(𝑁𝐼𝑅 − 𝑅𝐸𝐷) ∗ (1 − 𝐿)]

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
 

 

The equation defined by Kuo [206]  was used to calculate C factor: 

𝐶 =  −𝑎 ∗ 𝑆𝐴𝑉𝐼 + 1 

Where a value is land cover management factor and is assumed as a value of 1.18. Factor C will have values 

between 0 and 1; where 0 indicates complete coverage vegetation cover, 1 indicates no vegetation cover or 

bare soil. Therefore, a value of C close to zero is indicative of soil not exposed to erosion, while high values 

of C is indicative of soil exposed to erosion. 

Therefore, Sentinel 2 satellite images pre-processed by MUSCATE were used to calculate the C-factor. In 

consideration of the monthly and annual RUSLE calculation, one image was processed for each month. In the 

case of cloudy images, the C value of the previous and next month was averaged for missing pixels. The last 

factor (P) considers the effects of agricultural practices carried out to mitigate the erosion effect of rainfall. 

The P factor is dimensionless and values range from 0 (presence of agricultural practices for erosion 

mitigation) to 1 (absence of agricultural practices for erosion mitigation).  

The P factor was derived from a dataset freely available online at the ESDAC website [207]. All parameters 

calculated were resampled to spatial resolution of Sentinel- 2A (10 m) and summed to get the actual value 

of RUSLE expressed in Mg * ha −1 * year −1. The RUSLE values were calculated for the following months: 

October, November, and December 2019 and March, April, May, June, July, August, and September 2020. 

For the monthly RUSLEs a specific model has been implemented by Graphical Modeler of QGIS to realize a 

batch processing in order to calculate the different parameters in a semi-automated way. Finally, the monthly 

values were summarized to have an annual RUSLE value. The months of January and February 2020 were not 

included in the calculation of RUSLE because cloudless satellite imagery is not available for C factor 

estimation. The integration of satellite imagery and geostatistical analysis is a very innovative approach for 

analyses and mapping that rely on factors known to be influenced by the spatial component. In the study of 

statistical variables representative of phenomena or processes acting at the land scale, the issue of spatial 

autocorrelation is key to assessing whether a particularly intense phenomenon in a specific area, implies the 

presence of the same in contiguous areas as well. Monthly and annual soil erosion maps, obtained from the 

application of the Model RUSLE, spatial autocorrelation indices were applied. The concept of spatial 

autocorrelation is one of the most important in the field of spatial statistics. It derives from the first law of 

geography introduced by Tobler in 1970 [208], “everything is related to everything else, but near things are 

more related than distant things.” Autocorrelation indicators measure whether and how much a dataset is 

autocorrelated across the study region. In the presence of positive spatial autocorrelation, similar values of 

the variable result in spatially clustered, while in the presence of negative spatial autocorrelation, spatially 
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clustered different values of the variable; the absence of spatial autocorrelation indicates a random 

distribution of values in space. After applying several indices to the monthly RUSLE values, the choice fell on 

using the Gi local autocorrelation index proposed by Getis and Ord [209,210]. Getis and Ord's algorithm is a 

local indicator of spatial autocorrelation; local indicators allow us to identify clustered pixels, measuring how 

homogeneous the features within the area are. In particular, a high value of the index means a positive 

correlation for high-intensity values, while a low value of the index means a positive correlation for low 

intensity values. In applying autocorrelation methods, it is important to define the nature of the events 

investigated and the geometric relationships involved. In image processing, the spatial event is associated 

with a pixel, and spatial autocorrelation statistics are usually calculated by considering the geographic 

coordinates of its centroid[211]. Intensity, on the other hand, should be chosen by strictly considering the 

empirical nature of the case study. The conceptualization of geometric relationships in the case of image 

processing is very simple because the distance between events is always equal or is a multiple of the pixel 

size. The application of spatial autocorrelation statistics to remote sensing images allows us to obtain a new 

raster that contains in each pixel a number expressing how much it is autocorrelated to another pixel. 

 

4.2.4 Spatial Analysis Between Land Cover and Rusle 
 

With the aim of evaluating and investigating regarding the relationships between agricultural transition 

phenomena and land degradation, several methodologies are proposed, based on existing datasets or on 

purpose-built classifications. One of the methodologies was based on preliminary mapping of areas 

susceptible to land degradation, which took into account the land cover classes of greatest interest (arable 

land and areas with post-crop vegetation) and the differences in erosion values in the months of greatest 

interest and the areas with the greatest "accumulation" of erosion in the year of analysis. For a preliminary 

statistical investigation between erosion and land cover, we evaluated how the RUSLE values (monthly and 

annual) vary for each land cover class. For the purpose of proper spatial analysis, the monthly RUSLE rasters 

(October 2019 through September 2020) and the annual RUSLE raster were re-processed by assigning each 

pixel a value equal to the average to the mean of the values resulting in a 3x3 cell. For land cover data and 

related changes, first the open datasets of Corine Land Cover 2018 and Nature Map 2013 from ISPRA were 

analysed. Considered the maps' characteristics, scale, classification techniques, the characteristics of the 

information contained and the level of accuracy, it was decided (after visual comparisons through 

photointerpretation) to use the Nature Map. This, although dated 2013, was produced using methodologies 

that ensured the production of a very accurate and reliable dataset. Considering that the objective of this 

section is to carry out a focus on land degradation processes for some specific land cover classes, a 

preliminary investigation was carried out on the classes related to arable land and areas with post-crop 

vegetation with respect to monthly and annual values of RUSLE. The classes " Arable crops " were derived 

from the aggregation of the classes: "82.1 Intensive and continuous arable crops" and "82.3 Extensive type 

crops and complex agricultural systems." In the former case, these are the arable crops (corn, soybeans, 

autumn-winter cereals, sunflowers, garden-crops) in which mechanized activities, vast and regular 

agricultural areas prevail. While the second includes traditional agricultural areas with arable systems 

occupied especially by low-impact autumn-winter cereals. These environments are highly fragmented, 

degraded and/or subject to land degradation. The class " post-crop vegetation " is the result of the 

aggregation of several Nature Map classes that present areas that were once cultivated and are now 

abandoned and/or characterized by the presence of post-crop vegetation. Specifically, the difference maps 
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between the March 2020 RUSLE map and the average RUSLE value calculated for the whole class in the same 

month were considered for arable land; while for areas with post-crop vegetation: same type of data but 

with reference to November 2019. The months indicated were chosen based on the analyses on the basic 

statistical parameters from which those with the highest average values were extrapolated. A normalization 

of the values was carried out according to a continuous range from 0 to 1 and considering only the positive 

ones as they are the most appreciable for erosion purposes. This step made it possible to transform the data 

in an analytically useful way to make comparisons between variables at different scales. The resulting 

normalization rasters were multiplied by the permanent erosion raster obtained from the clasterization 

process, which, being a discrete binary 0-1 raster, allowed only areas with permanent erosion to be included. 

 

4.2.5 Spatial investigations on historical series for the identification of 

abandoned arable land and areas susceptible to degradation 
 

A first step in analysing land degradation is to highlight which spatial and phenomenological aspects are 

closely related to this phenomenon. One of the most important indicators in defining the phenomenon is 

certainly the change in land cover followed by the loss of productivity. Soil and land degradation is a complex 

phenomenon caused by multiple factors that limit or inhibit productive, regulatory and utilitarian functions 

as well as the ecosystem services that a natural soil can provide. The United Nations Convention to Combat 

Desertification (UNCCD) has drafted a methodology aimed at qualitative assessment using an approach that 

involves the combined use of the following sub-indicators: 

• Land Cover Changes; 

• Productivity Loss: 

• Fragmentation; 

• Loss of ecosystem services. 

Productivity loss is estimated through the use of the normalized difference vegetation index (NDVI). 

normalized difference (NDVI). The NDVI index is an indicator that provides the health status of the crop based 

on the reflectance of the leaves. It is known as the most accurate indicator of ground-level biomass, as it 

reflects greenness density and photosynthetic activity [212–216]. 

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

 

The NDVI vegetation index takes into account the ratios of leaf reflectance at various wavelengths and gives 

us the health status of the crop. The higher the index, the more the crop is in an optimal state. Values can be 

around at in a range from -1 to +1. The index has been widely employed in multi-temporal approaches [217–

219] because a single image of the date is not always sufficient to differentiate crops solely on the basis of 

their signature’s spectral signatures. Vegetation dynamics can be defined on multiple time scales. In the short 

term, different crops have season-driven phonologies that typically follow annual cycles. Between years, 

phenological markers may respond differently; these changes are influenced by short-term climatic 
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fluctuations (e.g., temperature, precipitation) and/or anthropogenic forcings (e.g., extraction groundwater, 

urbanization, abandonment) [219]. 

 

Figure 30. Example of a phenological curve calculated on a historical NDVI series from October 2017 to October 2018 for an 
agricultural area with cereal crops and a natural grassland (abandoned agricultural area). For this example, the time series was 

calculated in the Google Earth Engine platform based on Sentinel-2 L2A images. 

 

In addition, the use of more than one year of data gives the opportunity to include information on interannual 

phenological changes [220]. However, the full potential of long-term NDVI time series is often hampered by 

poor quality data caused by instrumentation problems, weather conditions (e.g., clouds and haze), and soil 

conditions. These problems tend to create data gaps and make phenological markers difficult to identify. The 

applied methodology involved the use of LANDSAT 4/5 TM and LANDSAT 8 OLI satellite images available from 

1990 to 2020. Precisely, the useful images (devoid of clouds and distortions) used in this analysis are: 1990, 

1992, 1993, 1994, 1999, 2000, 2001, 2004, 2005, 2009, 2011, 2014, 2017, 2019, 2020). To create a realistic 

phenological curve, it was assumed that arable crops have an annual cyclicity, where we find a maximum of 

NDVI values in the spring periods (March and April) and a minimum in the fall months (October and 

November) (Fig. 30). No atmospheric correction was performed because, in this case, it does not significantly 

improve classification accuracy When multi-seasonal image dates are grouped into a single composite (layer 

stack) and classified according to NDVI values. In the absence of snow, the NDVI of the land surface rarely 

drops to zero, as woody vegetation and soil maintain positive NDVI throughout the year. Negative and zero 

values are typically caused by cloud contamination, water bodies or missing data. After calculating the NDVI 

difference (spring -autumn) for each year, the next step was to discriminate the images for each individual 

year, through change detection analysis, the NDVI difference values of the probable arable crop areas (equal 

to NDVI values greater than 0.5) from all other values. Cover density maps were elaborated according to the 

following formula: 

 

𝑑𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛 

 

where NDVImax and NDVImin represent the maximum and minimum NDVI value for each arable land 

signature. After calculating the NDVI difference for each year (spring - autumn), the next step was to 

discriminate the images related to each single year, through change detection analysis, the values the 
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difference of NDVI of probable arable land areas (equal to NDVI values greater than 0.5) from all other values. 

A binary raster was thus obtained, conventionally assigning value 1 to the pixels of likely arable land areas 

and 0 to all other areas. Then through raster and vector analysis operations, the historical series of the results 

obtained was analysed, quantifying in terms of km the areas that have not undergone any change in 

agricultural land use (areas always cultivated with arable crops and areas not cultivated with arable crops) 

and above all, those that show an agricultural transition, moving from arable farming to another type of 

agricultural land use and/or abandonment. The objective of this type of analysis was to be able to identify 

areas that underwent a probable change in agricultural land use and/or abandonment during the period 

analysed. The results obtained were subsequently cross-referenced with the classes of the Nature Map 

(2013) divided into agricultural and non-agricultural areas. The data obtained by overlaying the obtained 

rasters with Nature Map agricultural area maps were then divided into three decades (1990 - 2000; 2000 - 

2010 and 2010 - 2020). This made it possible to identify which Nature Map agricultural classes have 

undergone agricultural land use change and/or abandonment. Subsequently, these data were compared with 

the values for the soil erosion map obtained from the RUSLE analysis with the aim of relating and studying 

how agricultural abandonment or land use change may have affected current soil erosion over time. The 

same was done for the areas identified as continuously cultivated during the 30-year period under 

consideration. To study the phenomenon of large-scale soil erosion in even greater detail, an additional 

methodology referring specifically to agricultural areas was chosen to be implemented. This is based on the 

factors that make up the RUSLE; in particular, on the correlation existing between some of these and the 

overall erosion index so as to identify areas more exposed to the effects of degradation. In order to analyze 

the phenomenon of erosion in agricultural areas (arable land in particular), reference was made to factor C, 

which in RUSLE is the one that assesses the weight of management of areas in agricultural use on the erosion 

factor (A). Land covered with vegetation is definitely more protected from erosion because the leaf area 

present interposes a physical barrier to the impact of rainfall and the sliding effect of debris downstream. 

Identify cultivated agricultural areas where the erosion phenomenon is high, especially during periods of 

vegetation growth, implies that that area shows obvious problems caused by poor vegetation growth. 

Therefore, isolating the factor C, compared to the other factors and linking it to A during periods of maximum 

vegetation activity, it is possible to obtain degraded areas as they show a high erosion rate despite the fact 

that the soil is covered by vegetation. The month of March was chosen to be analyzed because it is the period 

when arable crop growth is considerable and the soil is largely covered by vegetation. In order to show how 

the C factor affects the A factor compared to the other parameters, it was chosen to set in a range consisting 

of 3 classes each, the slope factor (for the morphological part) and the R factor for erosivity given by rainfall. 

It is possible to construct a table of combinations based on the class of each factor as shown in the following 

figure (Fig. 31). 
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Figure 31. Flow Chart for the elaboration of a degradation map of Arable land. 

 

 

For each combination of the slope classes and the R factor of erosion given by rainfall, the value of A was 

selected only for the arable land obtained from the Nature Map, thus obtaining 9 distinct layers in the ranges 

of slope and erosivity R referred to March 2020. Since the objective is to look for the correlation between 

the erosivity of RUSLE A (dependent variable) and the factor C (independent variable), it was chosen to 

compare them through the tool of analysis of linear regression by which the map of residuals for each 

regr[A_(i,j),C] pair. The residual maps A_res(i,j) quantifies pixel by pixel the error Ɛ calculated on the 

difference between the value of estimated A and actual A. The direct proportionality Y=AX+B+Ɛ is given by 

the points closest to the regression line and thus the points at which the value of residuals Ɛ is small in 

absolute value. In order to select the values of A where the error can be considered minimal, a threshold 



84 

 

Ɛ=|YReal-Y Estimate|<2 was defined around the regression line in order to highlight all points that fall therein 

and to identify areas instead of only recurring to points that lie right on the line. The pixels thus obtained will 

be characterized by very obvious direct proportionality because they are close to the line as opposed to the 

more distant pixels, which instead do not give proportionality and consequently are not of interest for the 

purpose of analysis. Defined the areas where the vegetation factor weighs more on the value of A, all other 

things being equal, in order to define those showing a high erosion value, a threshold was placed on each 

layer A_res(i,j) excluding all pixels with values less than or equal to 5 Mg/ha^-1*year^-1. The result represents 

those areas that despite being covered by vegetation have a high erosion factor, areas where erosion could 

or already is causing low productivity and destined for abandonment. The nine A_res(i,j) maps were 

combined successively to compose a single map of areas of degradation. 

 

4.3 Results and Discussions 
 

4.3.1 Persistent Erosion Map 
 

The processing of the RUSLE model, as previously illustrated, goes through the creation of intermediate 

rasters representing different processes that may influence, to varying degrees, the overall erosion of soils. 

For a more accurate analysis, it may be useful to evaluate the individual factors individually so as to examine 

how each one influences and weighs on the final value of the RUSLE. One of the most important factors is 

that related to R, the rainfall erosivity. 

The histogram in Figure 32 highlights that the highest average values of the R factor during the October 2019 

- September 2020 observation period, occurred during the month of November and followed by March 2020 

and July 2020. 

 

Figure 32. Histogram of the trend in R values during the months of analysis (October 2019 to September 2020). 

 

Figure 33 shows the trend of the average C-factor with respect to the study area during the time span of one 

year (See Appendix). Being a factor related to vegetation cover, it can be seen that the highest values occur 

in the two summer months in consideration of the fact that the study area being mostly covered by crops 
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and therefore very little vegetation cover during that period. October and November, also present high 

values. In this case, the overall value still higher than average takes into account the absence of vegetation 

cover in forest areas. 

 

 

Figure 33. Histogram of the C values trend during the months of analysis (from October 2019 to September 2020). 

The calculation of monthly RUSLEs and, subsequently, of annual RUSLE (Fig. 34), made it possible to create 

rasters in which each pixel expresses the amount of soil potentially eroded expressed in Mg-ha -1 -year -1. 

 

 

 

Figure 34.Maps of monthly and annual RUSLEs expressed in Mg-ha -1 -year -1. 
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Statistical interpretation of the index allows values to be grouped on the basis of a hot spot (pixel values 

above the mean) or cold spot (values below the mean [210]. The index was applied individually to each month 

highlighting only pixels with positive autocorrelation and then subsequently cumulated into a final raster. 

This allowed the development of a map highlighting areas with persistent erosion rate based on clusters of 

hot spots (Fig. 35). 

 

 

Figure 35. Intermediate layers of Getis-Ord Gi applied to monthly RUSLEs. Values express positive or negative autocorrelation. 
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4.3.2 Results of Spatial Analysis Between Land Cover and Rusle 
 

The purpose of this part of the thesis work was to relate erosion data to land cover in order to assess how 

this process may influence degradation phenomena and the relationship between agricultural abandonment. 

At first, the average monthly RUSLE values were compared with the Nature Map principal classes in the study 

area so as to have an overall view of the erosion level. 

 

Figure 36. Histograms on the relationship between the average values of the monthly A [expressed in Mg ha −1 year −1] with 
respect to some classes of greater interest in the Nature Maps. 

 

The level of detail of the classes makes it possible to discriminate more accurately the relationships that may 

exist between erosion and land cover. Primarily, it allows us to identify, for the classes of interest, the months 

that contribute most to soil erosion. It is evident from the Figure 36 that the months that most have high 

average values are November 2019 and March 2020. Overall, the class with the highest average annual value 

is that of clayey areas with high erosion (Badlands). Next, the highest average values are recorded for all 

those areas in which vegetation types (herbaceous and shrubby) typical of post-crop processes resulting from 

the abandonment of arable land are present. These areas are included in the classes characterized by species 

and ecological successions typical of areas where agricultural activities (cereal cultivation and/or grazing) 

have been interrupted for quite some time and with some temporal continuity. The classes related to crop 

abandonment; all show mean values higher than the overall annual value. Areas covered with forest species, 

too, can present erosion problems in particular contexts (e.g., overgrazing in steeply sloping areas, reckless 

cutting in the past, and fires). 

Considering the aggregate classes of Arable Crops and Post-Crop Vegetation the actual study area is affected 

by slightly more than 9% (table 14, Fig. 47) by areas with post-crop vegetation which, affect the west and 

southwest portions, areas with morphological, soil and socio -economic characteristics different and less 

profitable for a certain type of agriculture. 
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Table 14. Area of abandoned agricultural areas and arable land in hectares and % of the actual study area. 

 Hectares (ha) Percentage (%) 

Agricultural Abandoned Area 13294.87 9.04 

Arable Land 96156.83 65.36 

Effective Study Area 147107.71  

 

 

Figure 37.Mapping of arable land and abandoned agricultural areas against the actual study area 

The investigation was based on statistics of average monthly and annual erosion values with respect to arable 

and post-cultivated areas. The data are shown in Table 15. 

 

Table 15. Average monthly and annual RUSLE values (expressed in Mg-ha -1 -year -1) for arable lands and post-

cultivation vegetation areas. 

Period Post-Cultivation Vegetation 
Area 

Arable Lands 

October 2019 1.81 2.10 

November 2019 8.81 8.84 

December 2019 0.42 0.34 

March 2020 7.22 3.94 

April 2020 0.90 0.35 

May 2020 0.37 0.39 

June 2020 1.95 2.19 

July 2020 1.85 1.96 

August 2020 2.29 1.33 

September 2020 0.69 0.48 

YEAR (2019 – 2020) 26.23 22.92 
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The analysis on annual values shows an erosion rate with same order of magnitude in two classes but with a 

slightly higher value in areas with post-crop vegetation. This small difference is extremely important to 

investigate because, generally high values are noted in arable crops as they have long periods of the year 

with bare soil. The reason could be that the areas with post-cultivation vegetation, present a type of cover 

(expressed by the C-factor) and the morphological context that could influence the erosion. Evaluating the 

arable crop classes, it can be seen that the month in which the highest values are present is November 2019. 

This is due to the amount of rainfall that has fallen and also that November is the month when arable land is 

without vegetative cover, as it is the transition period between the end of the agricultural year and the 

beginning of planting the following one. Since there is no vegetation cover, the month of March is ideal for 

investigating erosion-dependent soil degradation in arable land. In November, in fact, erosion is determined, 

with equal erosivity R due to rainfall, only by the stationary factors K and LS. This is called "natural potential" 

which does not consider the influence of vegetation. Areas where high erosivity values emerge can be 

referred to as those areas that are subject to greater susceptibility to land degradation and therefore should 

be given more attention. When considering areas of post-crop vegetation, it can be seen that the months of 

greatest interest are November and March. November has rather lower values than arable land, despite the 

difference in land cover in the two classes in this month. There could be many reasons for this, but require 

further investigation as several factors could be involved, related to morphological and physical factors as 

well as different stages of abandonment. In March the average value in the abandoned areas is almost 

double, presumably due to the fact that in this month the arable land already provides a certain degree of 

land cover and the herbaceous and shrub vegetation does not yet, since the growing season begins later than 

that of cereals and arable land. The application of Gi's local autocorrelation algorithm allowed us to identify 

areas for attention characterized by persistent erosion, which takes into account the spatial and geographical 

relationships that may exist between contiguous areas that emerge from monthly RUSLE calculations. The 

pixels marked in the map are spatially and geographically correlated with each other according to the 

intensity of the monthly RUSLE value. 

 

 
Figure 38. Map of permanent erosion between October 2019 and September 2020. On the right, two details on as many areas 

superimposed on the data from the Regional Technical Map (2013) of the Basilicata Region. 
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In this map (Fig 38.), the pixels have been reclassified so that they have only discrete 0-1 values. The areas of 

interest, which have value 1, are all those areas that during the period analysed, have positively 

autocorrelated RUSLE values. In these areas there is a constant erosional contribution during all months of 

analysis. To more clearly interpret this process, the results were related to land cover to evaluate which 

classes were most affected in terms of area by permanent erosion. The most significant classes (Table 16) 

are those related to arable land and grassland that have post-crop vegetation due to abandonment of 

agricultural activity. In addition, when relating the hectares in permanent erosion to the total land cover class 

area, it is possible to identify those most affected by a major erosion rate each month. From this analysis we 

note that the highest rates are found in classes that, given their own characteristics, are subject to erosion 

phenomena (Badlands, quarries and riverbeds); followed by land cover classes subject to agricultural 

abandonment processes. 

 

Table 16. Surfaces in hectares and as a percentage of areas in permanent erosion. 

Land Cover Classes Hectares (ha) in 

persisten erosion 

% of total persistently 

eroded area 

Arable Land 493.96 22.48 

Post-Cultivation Vegetation Area 1343.11 61.13 

Olive groves, vineyards and orchards 143.89 6.55 

Forests and shrublands 29.57 1.35 

Riparian vegetation area 18.52 0.84 

Gully area 149.48 6.80 

Urban area, quarries, industrial site 18.76 0.85 

 

The spatial statistical analysis shows that arable land and areas with post-crop vegetation are exactly those 

with higher erosion values than the others, with the latter in particular accounting for more than 61 percent. 

The results of these activities allowed to produce preliminary maps of susceptibility to soil degradation for 

arable land and areas with post-crop vegetation. The results of the mapping allow, in general terms, to 

identify large areas or clusters (Fig. 39) that need to be monitored both for further studies and for planning 

as they are precisely those areas that may be subject to land degradation. Areas currently under cultivation 

(arable land) which may be susceptible to land degradation are highly fragmented. Less than 95 per cent of 

the area falls into this band. These areas are susceptible because they have erosion values higher than the 

average of the most critical month (March 2020); variable but permanent erosion throughout the year of 

analysis. Finally, regarding the use of this information from a practical point of view, being arable land 

predominantly occupied by cereals, they are subject to different periods with bare soil and mechanized tillage 

types which would make these areas even more subject to soil degradation. As regards the areas with post-

crop vegetation, elaborations of areas that could be susceptible to soil degradation were evaluated on the 

basis of the RUSLE values of November 2019. 
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Figure 39. Four examples of mapping susceptibility to land degradation in as many different arable lands by territorial context. 
Orthophoto 2017 AGEA. 

 

4.3.3 Identification of Abandoned Arable Land 
 

The results showed widespread agricultural land abandonment in the study area (Fig. 40). However, such 

high classification accuracy requires multidata images, ideally one image for each spring, summer and fall 

and winter period for each individual year. However, some suboptimal combinations of image dates (data 

with fewer multi-seasonal image dates) can produce maps of farmland abandonment with high detail. In 

general, "abandoned arable land" was mapped more accurately than "abandoned managed grassland." We 

observed that the classifications for “abandoned arable land” were statistically significantly more accurate 

when Spring and Fall images. Having a spring image to accurately identify "abandoned arable land" was 

important for several reasons; in fact, the April months image distinguished between new vegetative growth 

of winter crops and senescent vegetation on fallow fields, and exposed soil after tillage for summer crops 

accounted for much of the total arable land area in 1990 and 2020. The summer image of July and August 

does not accurately distinguish arable land since at this stage of the year crops are advancing and mature 

and the land is worked by view. The autumn image captured the soil exposed after harvest and summer 

crops, and separated actively managed grasslands from abandoned farmland with abundant herbaceous 

vegetation. From the perspective of remote sensing, the change in reflectance that occurred when arable 

land is abandoned is very pronounced, making it easier to classify abandoned arable land than the more 

gradual transition of other land cover types from maintained to abandoned. To accurately monitor 

agricultural areas at the regional level with Landsat satellite images with 30m resolution, it is suggested to 

combine as many satellite images as possible with fall and spring images, especially when arable land is the 

dominant land cover. Usually, the abandonment of cultivated land a result in a succession of weeds or grasses 

and eventually in rinaturalization with the establishment of shrubs or trees. On the contrary, uncultivated 

land characterized by sparse herbaceous vegetation could be part of a crop rotation cycle (e.g., periods of 

alfalfa as a soil conservation tool), making it difficult to assess whether or not a land has truly been abandoned 

when only one season /year is taken into account [221,222].  
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Figure 40. Mapping abandoned farmland between 1990 and 2020. 

The investigation based on NDVI values calculated from 1990 to 2020 and the subsequent change detection 

analysis on the time series showed that from 1990 to the present, the areas that have never been cultivated 

with arable crops amount to about 595 km2 while those that have undergone any land use change and/or 

abandonment amount to about 430 km2 as shown in Figure 40 and in Table 17.  

 

Table 17. Agricultural land use in km2 resulting from the historical analysis of the NDVI series. 

Arable Land (km2) Other Land Cover (km2) Agricultural transition – abandoned (km2) 

432.93 596.512 40.76 

 

Areas reported as "Agricultural Transitions" indicate areas that have undergone agricultural abandonment 

or change from arable farming to another type of land use during the 30-year period 1990-2020. 

The results obtained were subsequently cross-referenced with those obtained in previous analyses. The data 

obtained from overlaying the maps of transitional agricultural areas, divided into 3 decades, with those of 

the Nature Map made it possible to identify which agricultural areas have been subject to agricultural land 

use change and/or abandonment.  It is more difficult to discriminate and evaluate abandonment from 2010 

to the present, as these areas may be subject to vegetative rest and/or crop rotation, and thus need further 

evaluative analysis. Sources of possible errors in the procedure for classifying and identifying areas defined 

as agricultural transition areas and/or agricultural abandonment are due to errors in identifying spectral 

signatures of arable land in the dNDVI. Additional sources of error need to be considered, which could be 

due to classification errors reported in official land use maps, as they are out of date. To address these 

classification errors, each map was checked through photointerpretation and photo correction using 

orthophotos. The areas considered "agricultural transition" intersecting the non-agricultural and non-forest 

classes of the Nature Map amount to about 185 km2. These areas were divided into decades, and for each 

individual decade the average value of soil erosion as of 2019-2020 was calculated, using the soil erosion 

map obtained by applying the RUSLE model from previous analyses.  From 1990 to 2020, continuously 
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cultivated areas amount to about 400 km2, these areas were intersected and compared with the agricultural 

classes of the Nature Map, and then with the average value of eroded soil for each individual class (Table 18). 

 

 

Figure 41. Example of abandoned agricultural area where the difference between abandoned 

agricultural area and agricultural area with cereal crops are clear. 

 

Overall, the average value of RUSLE in agricultural areas is about 19 (Mg-ha -1 -year -1), if we consider the 

erosion values only for the classes of arable land, we arrive at about 17 (Mg-ha -1 - year -1) and about 33 (Mg-

ha -1 -year -1) for extensive crops and complex agricultural systems. In conclusion, it is possible to deduce from 

the analyses carried out that the soils cultivated for arable land in the period considered show values of soil 

lost lower than those of the abandoned soils in the three decades analysed. This first analysis shows that the 

lands abandoned in the first decade have lower values of lost soil than in the following decades, this is 

because these areas have probably rinaturalized and stabilized over time. It is more difficult to discriminate 

and evaluate the abandonment from 2010 to today, as these areas may be subject to vegetative rest and/or 

crop rotation, and therefore require further evaluation analyses. It was possible to map the arable land, 

highlighting areas where the protective contribution of vegetation on the soil does not limit erosion by 

indicating that area as a likely area of degradation. 

 

Table 18. Average values of eroded soil in 2019-2020 in relation to the decade of probable abandonment. 

DECADES non-agricultural and non-forested 
classes. 

Average RUSLE (2019/2020) 

(Mg·ha −1 ·year −1) 
1 Decade (1990/2000)  22 

2 Decade (2000/2010) 37 

3 Decade (2010/2020) 31 

 

The areas analysed in March 2020 represent the areas where erosion is strongly correlated with factor C. In 

order to be able to define with good probability that these are throughout the year, it is necessary to 

supplement the data with the Getis Map of the entire area study area obtained through spatial 

autocorrelation, covering the areas under permanent erosion permanent from October 2019 to September 

2020. The intersection gives as final result a map of soil degradation related to arable land that not only 

shows values of RUSLE high during the growing season, but maintain it throughout the year. The usability of 

this methodology, in addition to scientific assessments, can be useful for monitoring and planning activities 

at different administrative levels (Fig 42). 
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Figure 42. Map of degradation areas. 

Table 19 summarizes the result obtained from the creation of a map for the identification of arable land areas 

strongly correlated to the vegetation factor C. The municipalities falling within the study area are shown in 

the first column. The second column shows the surface in hectares of degraded arable land for each 

municipality. In the third column the total area dedicated to arable land was reported, and in the following 

column the average value of erosion of the degraded areas was calculated for each municipality, and finally 

compared, the area calculated with the methodology and the arable area with respect to each municipality. 

Tolve is the area with the most hectares in degradation with an average A of 7.36 [Mg-ha -1 -year -1], and a 

percentage of the total area of around 0.97%. Another fact that is interesting to highlight is the area of San 

Chirico Nuovo which has the highest percentage of degraded area of 1.48% compared to the arable land area 

with an average erosion of 7.65 [Mg-ha -1 -year -1]. The data referring to the municipalities of Irsina and 

Grassano is partial because the study area does not include the entire municipal territory. 

Table 19. Extension of the areas subject to degradation cultivated with arable land in degradation with respect to the factor C. 

Municipality Degradation of 
arable land 
(ha) 

Arable lands area 
(ha) 

RUSLE (A) 
Average 

Degradation 
Area/Arable 
land (%) 

Tolve 70.32 7255.93 7.37 0.97 

Genzano di Lucania 63.48 17918.36 6.95 0.35 

Tricarico 36.20 8520.47 9.07 0.42 

Irsina 19.48 14953.28 8.58 0.13 

Forenza 14.72 6461.10 7.33 0.23 

Acerenza 13.00 4497.24 6.87 0.29 

San Chirico Nuovo 12.52 841.49 7.65 1.49 

Venosa 6.44 11430.61 5.79 0.05 

Banzi 3.08 6786.59 6.46 0.05 

Oppido Lucano 2.68 3909.05 6.71 0.07 

Ginestra 2.24 536.66 5.94 0.42 

Cancellara 2.12 2205.97 7.61 0.10 

Palazzo San Gervasio 1.68 4584.13 6.93 0.04 

Albano di Lucania  0.76 1445.75 7.74 0.05 
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Maschito 0.48 3569.22 5.57 0.01 

Grassano 0 1231.17 0 0 

 

Figure 43 and 44 shows detailed examples over four different areas. Pixels overlapping the orthophoto 

identify the clusters where soil degradation is most likely to occur. There may be a variety of causes for this 

phenomenon, one of which could be, for example, intensive exploitation (excessive mechanization and use 

of chemicals), resulting in loss of organic content that leads to deterioration of soil structure and thus 

facilitating the initiation of erosion. 

 

Figure 43. Detailed examples of areas subject to land degradation on arable land in four different areas. arable land 1 and 2 are 
located in the municipality of Tolve - 3 (Genzano di Lucania), 4 - Municipality of Irsina. 
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Figure 44. Outline of the identified cluster with respect to orthophotos of different years (1988 - 1994 - 2000 - 2006 - 2008 - 2011 - 
2014 - 2017). 

 

4.4 Agricultural sector in Basilicata  
 

Rural areas in Basilicata have been subject to depopulation processes caused by progressive urbanization 

since the post-World War II period. This, as we saw in Chapter 2, is caused by the concentration of resources 

and services in urban areas. Consequences of this phenomenon include rural and agricultural marginality, 

which is reflected in the process of agricultural land abandonment with the occurrence of degradation 

phenomena such as erosion. Agricultural marginality is considered to be a process, induced by a combination 

of social, economic, political and environmental factors, due to which, in specific areas, agricultural activity 

stopped being economically profitable, given the present land use pattern and socio-economic structure. 
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Agricultural marginalization is, moreover, to be listed among the many causes of land use changes. As seen 

above, these can lead to major and often irreversible changes at the landscape level; therefore, there is a 

need for careful analysis and specific land-use monitoring in order to support future policy decisions and 

verify the effects of past actions. These two aspects of the problem led the European Commission to propose 

marginality as one of the indicators for integrating environmental concerns into the CAP (COM 2000/20) and 

to define the basis for its calculation and procedures for its use (COM 2001/144). The concentration of 

population at lower altitudes and in larger centres, followed by the displacement of productive activities, has 

greatly reduced anthropogenic pressure (e.g., agriculture-related productive activities) in inland areas. 

However, this has also aggravated the processes of agricultural marginalization in these areas, which have 

suffered processes of agricultural abandonment and spontaneous post-crop vegetation. At the same time, 

where anthropogenic pressure has increased significantly, processes of agricultural intensification and 

expansion of urbanized areas have increased, with significant ecological and sustainability implications[223] 

Basilicata from the nineteenth century to the early decades of the twentieth century was subject to massive 

deforestation linked mainly to population growth, but also to the deep social transformations of the last 

century. The transformation of the feudal system into a new landowner class led to a gradual reconversion 

of land for agricultural use. After this period of intense degradation, a law was signed in 1923 to stop the 

destruction of forests and promote land regeneration measures. At the same time, the "Battle of the Grain" 

led to further expansion of cultivated areas and a reduction in the impact of the measures promoted for land 

conversion. 

Agricultural activity, while representing the main industry at the regional level, was still a system of 

subsistence after World War II, featuring low investment, difficult access to credit and an ownership structure 

still linked to large landholdings. From an employment point of view, it was also a traditional system, centred 

on the direct activity of the owner and the labour force of his family. From a production point of view, there 

was a prevalence of cereal crops, in stark contrast to the morphological and climatic characteristics of a 

predominantly mountainous region. Specialization in cereal cultivation did not yield the economic results 

expected, not only because of the morphological and climatic conditions. However, the low level of 

productivity was not only due to the geomorphological characteristics of the region, but also to the way 

agricultural activities were carried out. In particular, the subsistence agricultural economy that marked 

Basilicata at least until the mid-1960s did not provide the availability of investment capital in equipment, 

fertilizer, appropriate for increasing cereal productivity. The low level of regional development, linked to 

conditions of geographic marginality, weakness of infrastructure provision, a quite low level of human capital 

(aggravated by substantial migration) and the region's marked and persistent isolation, were not the only 

regional territorial and economic disadvantages. In fact, a central factor for the low potential for 

competitiveness can be attributed to the land ownership system. The low competitiveness of small family 

farms, followed by the persistence of a low standard of living of the farming classes, has also been an element 

in amplifying the depopulation processes of inland and marginal areas. In fact, the agricultural activity, 

although family-based, of inland areas still represented a form of land protection, through water regulation 

activities and landscaping works. The gradual abandonment of these areas, aggravated after the second half 

of the 1960s by the occupational prospects of early industrial activities, set the stage for a renovated 

emergency in land management in depopulation areas. A marked increase in forested areas occurred in the 

1980s as a result of regional incentives to reforest erosion-sensitive areas. Parallel to the reforestation 

process, which affected many public areas, deforestation continued to affect private properties to allow for 

an increase in areas for agriculture. This was a direct consequence of the measures promoted by the EU to 

support the agricultural sector, which led to a continuous increase in areas devoted to arable land. In the 
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following decades there was a trend that saw a strong contraction of the Utilized Agricultural Area (UAA) and 

the number of farms. The development policies financed by the Cassa del Mezzogiorno had significant 

consequences for the agricultural sector as well; in fact, many planned interventions consisted of the 

development of water basins, substantial land drainage works and road infrastructure with which the region 

was poorly equipped. Spatial policies financed by the Cassa del Mezzogiorno thus assumed a fundamental 

role in redrawing the region's agricultural geography, because while it is true that hydrological and territorial 

works were carried out, it is also true that massive land reclamation works affected territories closer to the 

flat areas, such as the Metapontino and lower Materano or the Vulture areas. Certainly, the works carried 

out had an important social role, as they improved the living conditions of agricultural populations, although 

on the one side they contributed to increasing the advantages of some already more developed and dynamic 

areas. Already in the 1972 documents it is possible to find the outlines of the new regional agricultural 

geography, characterized by the abandonment of areas with more remote but less productive agricultural 

traditions. In addition to national programming, European programming actions have also been playing a key 

role, such as the CAP, which belongs to the Community's exclusive sphere of competence and was aimed at 

increasing the productivity of agriculture by developing technical progress, providing for the efficient 

development of agricultural production and better use of production factors (especially manpower), 

guaranteeing a reasonable standard of living for the agricultural population by improving the individual 

income of those working in agriculture; stabilizing markets and making security of supply; and providing just 

prices in deliveries to consumers. The CAP is one of the most important policies of the European Union 

(agricultural spending accounts for about 45 percent of the EU budget).  It initially allowed the Community 

to quickly achieve self-sufficiency, but over time its operation became increasingly expensive due to 

overproduction and the excessive level of European prices compared to world market prices. The 1992 Mac 

Sharry reform corrected the situation through the reduction of guaranteed agricultural prices offset by 

compensatory payments linked to inputs and the establishment of so-called "accompanying" measures. The 

1999 reform, based on Agenda 2000, consolidates the changes made in 1992 and identifies food security, 

environmental protection and the promotion of sustainable agriculture as priority objectives. Non-market 

policy objectives have been brought together in rural development, which has become the second pillar of 

the CAP. In addition, the reform aims to increase the competitiveness of EU agricultural products, the 

simplification of agricultural legislation and its implementation, the strengthening of the Union's position in 

World Trade Organization (WTO) negotiations, and the stabilization of spending. To this end, a reduction in 

intervention prices offset by an increase in aid to farmers was decided. The latest reform in June 2003, also 

known as the Fischler reform, includes several changes, such as simplification of market support measures 

and direct aid by decoupling direct payments to farmers from production; strengthening rural development 

by transferring funds from the first pillar of the CAP to rural development through modulation; and a financial 

discipline mechanism (limitation of market support expenditure and direct aid between 2007 and 2013). 

Community actions include set-aside, which is the laying fallow (fallow) of agricultural land, generally for the 

purpose of reducing the production of a particular crop. In Europe, set aside has been adopted under the 

CAP since 1988 (EEC Reg. No. 1094/88), with the aim of reducing cereal supply in a period of structural 

surplus. With the MacSharry reform (Reg. 1765/92), a compulsory set-aside quota was provided coupled with 

the possibility for farmers to voluntarily leave a portion of their farmland above the compulsory set-aside 

quota in exchange for aid. Subsequently, set-aside underwent numerous variations, which in fact 

strengthened its agri-environmental role: with the Fischler reform (EC Reg. 1782/2003), for example, cross-

compliance requirements were also applied to set-aside land. Set-aside was finally abolished in 2008 as part 

of the CAP reform known as "Health Check." The results produced by the analyses described in the previous 
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chapters described the innovative methodological approach to identifying and monitoring abandoned 

agricultural soils and the level of degradation due to soil erosion.  As described above, actions dictated by 

community and regional policies, including in agriculture, can affect the process of agricultural abandonment 

and the resulting erosion. Based on these considerations, it is interesting to compare these data with the 

information collected by ISTAT in the general agricultural censuses over the 30-year period studied. The 

general census of agriculture represents a snapshot of the agricultural sector in Italy; the information 

obtained concerns the number of farms, the title of land ownership and its use, the size of herds, the labour 

force employed and the activities carried out in parallel with agricultural production activity. Comparison 

with previous censuses confirms the ongoing process of contraction in the agricultural sector. Since 1982, 

more sustained contractions are observed in the number of farms than in UAA (Utilized Agricultural Area) 

and SAT (Total Agricultural Area). In Italy, farms decline by 30.1 percent, SUA by 2.5 percent and SAT by 3.6 

percent (the decline in UAA is in line with that observed in the previous 2010 decade) (Tab..20). 

 

Table 20. Farms, UAA and SAT in the last 5 agricultural censuses. 

YEAR FARMS SAU (he) SAT (he) 

1982 3133118 15833 16474 

1990 2848136 15026 17081 

2000 2393161 13181 18767 

2010 1615590 12856 21628 

2020 1133023 12535 22398 

 

ISTAT data on agricultural censuses show a decreasing trend in the number of mainly arable crop farms until 

2010, after which a slight increase in the number of farms was recorded at the regional level; the trend is 

also confirmed by the analysis of the data of the Chamber of Commerce of Basilicata (Fig.45-46). 

In summary, the signals that emerge from the provisional data from the comparison of the data of the general 

censuses of agriculture, which Istat has made available, represent the picture of an agriculture in which 

important processes of change are underway. 

 

 
Figure 45. Number of farms in Basilicata from 1990 to 2020. (Source: Istat Agricultural Censuses). 
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Figure 46. Number of farms present in the municipalities of the study area from 2002 to 2021. (Data source: Chamber of Commerce 

of Basilicata). 

 

If the data from previous censuses suggested a process of defragmentation of the Italian and regional 

agricultural reality, with a decrease in the number of farms specializing in cereal crops and UAA, starting in 

2010 a reversal of the trend begins to emerge, as we have seen in the number of farms. In fact, comparing 

the data from the last two agricultural censuses (Fig.47) we see that indeed the UAA is decreasing, while the 

number of hectares devoted to arable crops is increasing. This is probably due to all the forms of incentives 

of agricultural support actions promoted by the FEARS Community Funds. 

 
Figure 47. Comparison of agricultural census data (2010 - 2020). 
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Furthermore, land abandonment due to emigration has a strong social impact, because it leads to further 

isolation of the communities living in these marginal areas. In chapter two the theme of depopulation and 

marginalization of the regional territory was addressed. The results demonstrated a negative population 

trend in the period 1981 - 2021. Analysing the population data in the municipalities studied in this chapter, 

a similar result emerges (Fig.48). 

 

 
Figure 48. Evolution of the population in the 17 municipalities analysed. The graph shows a trend similar to other regional contexts 

characterized by depopulation. 

Over the course of history, regional agriculture has often experienced phases of expansion and contraction 

in terms of area. These phases resulted from the demographic changes that occurred over time, causing a 

higher percentage of the population employed in agriculture and a relative rigidity of agricultural yields, thus 

having a direct proportionality relationship: an increase in population corresponds to an increase in cultivated 

area. The most important factors of land abandonment are economic, demographic and sociocultural 

[224,225], while environmental, political and institutional factors play a minor role. Moreover, results have 

shown that land abandonment is driven by the complex interrelationship of these drivers of change [226]. 

 

 

4.5 Conclusions 
 

The abandonment of agricultural land is one of the most important manifestations of changes in the use of 

cultivated land. However, knowledge about the spatial distribution of abandoned land in the studied area is 

limited. This thesis work has produced the first maps describing the distribution of abandoned farmland and 

an initial analysis of the susceptibility of these areas to degradation and erosion. Therefore, this study 

provides a first insight into the state of farmland abandonment in the analysed municipalities. Our analysis 

showed that abandoned agriculture can be mapped by Landsat satellite images. The analyses applied in this 

work made it possible to assess the existing relationships between changes in agricultural land use and 

degradation processes, since erosion processes occur more in areas that have undergone changes in land use 

and/or abandonment, while in permanent agricultural areas the impact of the erosion process is less. With 

the methodologies applied in this study, it was possible to create different data sets, both tabular and in the 
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form of maps, for an assessment of the land degradation process related to land use and land cover dynamics. 

The transitional phase of these areas towards low-density urbanisation has a marginal influence on the 

degradation process compared to the phenomena of agricultural abandonment and/or transition (transition 

from one type of arable land cultivation to another). The implementation of the NDVI time series for arable 

land from 1990 to 2020 and the subsequent evaluation of the differences (ΔNDVI) made it possible to identify 

and map the areas that have undergone a process of agricultural abandonment during this time period as 

they have several consecutive years with no cereal crops. The total number of abandoned hectares is 

approximately 4033, distributed mainly in patches of the same size as the single pixel (0.09 ha), showing that 

the analyses must be supplemented with subsequent spatial analyses to better determine abandonment. 

Through random validation by photo-interpretation with orthophotos (1990 and 2020), the overall accuracy 

of the identified areas was verified. The procedure shows that time series and change detection are the 

benchmark for this type of investigation and that NDVI is certainly sensitive but must be supplemented with 

other spectral indices. One problem is due to the temporal resolution of the Landsat missions, which have a 

return time over the same area of 16 days, and this leads to gaps in the time series when cloud cover is high. 

In the future, the use of Sentinel-2, even if it allows time series from 2015, will be essential because the 

return time is reduced to 5 days.  Hence, land abandonment may be determined by the interaction of global 

causes such as migration, socioeconomic patterns and public policies, while local causes may determine the 

specific areas where abandonment occurs. Abandonment of agricultural land presents a policy challenge, as 

its management is debated because of interests related to the loss of agricultural landscapes and, most 

importantly, potential impacts on biodiversity, ecosystem services, and increased soil degradation. Land 

abandonment may be determined by the interaction of global causes such as migration, socio-economic 

patterns and public policies, while local causes may determine the specific areas where abandonment occurs. 

The process of abandonment poses a political challenge, as its management is debated due to interests 

related to impacts on biodiversity and ecosystem services, the presence of phenomena and forms of 

degradation such as erosion. However, most policies have addressed abandonment as an agricultural 

problem, rather than as a dynamic process driven by a variety of factors, including socio-economic, cultural 

and environmental trends, policy-related factors and spatio-temporal processes. As we have seen, most of 

the policy efforts applied to land abandonment have been through the Common Agricultural Policy (CAP) and 

its support for agricultural development. Among the impacts of the CAP Biodiversity loss and soil erosion 

have been called into question with policy recommendations focusing on the expansion of direct CAP 

payments to farmers for environmental services. The CAP has thus been conceptualised as a single-project 

action focused on agriculture, ignoring the social, cultural, political and economic factors that lead to land 

abandonment and rural degradation.  In order to preserve rural areas from degradation and abandonment, 

it is necessary to consider that current policy responses to land abandonment must move away from the 

agricultural-oriented programmes of the CAP and incorporate a series of independent rural development 

programmes orienting the rural environment towards multifunctionality. A particular example of initiatives 

aimed at promoting multifunctional rural landscapes is the Farm to Fork strategy, which aims to decrease the 

environmental footprint of food systems, ensure food security and create a circular economy [227]in which 

food systems to address climate change and land degradation to environmental degradation are considered 

a key aspect to be taken into account. Reutilising and reusing abandoned agricultural land is one way to 

achieve multifunctionality in rural areas. Since agricultural abandonment varies depending on the socio-

cultural context, a better understanding of the determinants, impacts and trade-offs of the activation 

processes is essential [228]. The Italian agroforestry territory, with its phases of expansion and reduction of 

forests, abandoned areas, and areas at hydrogeological risk, has undergone many changes over time. The 
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past scenarios of the territory and the transformations that have occurred on it, if not evaluated, may not 

allow a correct criticism and evaluation of the current dynamics. The erosive impact of abandoned and 

uncultivated land raises important questions about the implementation of soil conservation programmes. It 

is difficult to collaborate with those involved in soil conservation and land degradation prevention efforts 

and to involve farmers whose animals graze on unused land. Therefore, as many landowners choose to move 

to urban areas and seek more comfortable lifestyles or abandon land due to declining productivity, erosion 

accelerates by increasing topsoil losses. The abandonment of agriculture in some cases has had negative 

consequences, especially in economic and social terms, as marginal areas are increasingly isolated and far 

from services and increasingly victims of depopulation. Sustainable rural land use and management through 

integrated planning could mitigate this ongoing process and above all avoid negative impacts. In order for 

planning to be functional, it is necessary to implement replicable and updatable techniques and 

methodologies to quantify and analyse the abandonment of agricultural activities at the highest level of 

detail. Abandonment of agricultural land, therefore, is one of the most important manifestations of change 

in the use of cultivated land, and is a complex process that requires a multidisciplinary approach to study its 

causes and consequences. Agricultural land is generally abandoned due to a combination of economic 

aspects and natural factors that cause the area to be set aside for long periods of time. As introduced in 

Chapter 1, the terms 'land use' and 'land cover' are used extensively in the literature and the lack of a 

universal definition causes confusion. Land Use is defined as the use by man of a specific area of land, i.e., its 

socio-economic function. Land Cover, on the other hand, is the observed biophysical coverage of the earth's 

surface, the type of surface layer of a specific area of land, including vegetation, bare soil and artificial 

surfaces observable in the field and recorded by orthophotos. 
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Thesis Conclusions 
 

In order to achieve some of the Sustainable Development Goals of the 2030 Agenda, the role of 

environmental planning is crucial in addressing spatial problems, such as agricultural land abandonment and 

land consumption, which cause negative impacts on biodiversity. At the end of 2021, the European 

Commission approved the new EU Soil Strategy 2030 to reiterate how soil health is essential for achieving 

the climate and biodiversity targets of the European Green Deal [229–231]. This strategy sets out a 

framework and concrete measures to protect and restore soils and ensure their sustainable use.  The 

Commission is also committed to passing a new soil health law by 2023 to ensure a level playing field and a 

high level of environmental and health protection. Sustainable land use planning aims to integrate ecological 

principles with socio-economic principles for a comprehensive vision of sustainable land management for 

present and future generations. To implement land-use planning strategies, it is essential to collect, process 

and distribute timely and accurate data and apply advanced land assessment technologies to create scientific 

knowledge useful for appropriate decision support systems. It is essential to implement tools that provide an 

overview of the land, meeting the needs of public decision makers to verify past management policies and 

develop new strategies.  The approach illustrated in this thesis work allows the extrapolation of land cover 

and land use information from remotely sensed data and rapid analysis, could be the basic approach for the 

development of future studies. 

Data on land use and land cover are key resources to be able to conduct analyses of environmental impacts, 

define indices of well-being, assess human impacts, and monitor habitats and ecosystem services. Updating 

data on land characterization and the spatial distribution of changes in land use and land cover that are taking 

place is essential for proper and sustainable management of the soil resource, as it helps to better investigate 

the link between the physical environment and the socioeconomic aspects acting in that environment.  

In fact, LULCC data are fundamental in environmental studies, decision making, land use planning and design, 

and natural resource management policies because they can be used as input data for applying models and 

techniques to monitor and assess land changes such as land take, land degradation, agricultural land 

abandonment, and urban expansion. 

Assessing land use dynamics is a fundamental step in understanding land use and land cover change. The 

study of LULCC dynamics can suggest an alternative technical strategy to make land more liveable, with 

particular reference to natural resource management.  Without proper land resource management and 

policy intervention, land use patterns will act against the healthiness of the environment of urban and rural 

areas. The identification and allocation of land resources based on land use patterns is essential to this 

assessment. The application of geospatial tools such as remote sensing techniques and Geographic 

Information System tools contribute to multi-temporal satellite data processing and analysis of LULC changes 

in urban and rural areas. Land use and land cover are two interrelated fields in the analysis of phenomena 

and processes that characterise the evolution of the territory. These transformations have substantial 

consequences on human beings' welfare and on the state of the environment at a global, regional and local 

level. It is therefore necessary to develop monitoring support tools that can support the definition and 

implementation of adequate government and sustainable land management policies in an organic form.  In 

this context, although some dynamics, such as land take, are well known, the availability of an integrated 

monitoring and assessment system of the state and evolutionary dynamics of land cover and its use has 

historically been limited in our country. On the other hand, the increasing need for information with a high 

spatial, temporal and thematic resolution, which is indispensable for the description of complex 
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contemporary spatial dynamics, has led to the creation of numerous independent products at global, 

European, national and local level, characterised by different levels of spatial and temporal detail and based 

on different relationships between land use and land cover. Furthermore, when we talk about land use and 

land cover change, it is important to underline the difference between land consumption and land take. Land 

take has a different meaning than land take because it refers to all land cover transformation processes such 

as urban sprawl and land use for agricultural purposes. In this thesis work two aspects of land use and land 

cover change have been analysed: the sealing processes with the phenomenon of land take and agricultural 

abandonment and its impacts on land degradation in the form of erosion. Land use planning is the systematic 

evaluation of territorial land changes, land use scenarios and economic and social conditions of a territory in 

order to select and adopt the best land use options. The structure and dynamics of the population, and in 

general the socio-economic, political and legislative aspects are important drivers in the field of sustainable 

soil management. Comparison of socio-economic analyses with land use and land cover change can highlight 

the need to modify existing policies or implement new ones. In chapter two the socio-economic aspects of 

the Basilicata region were investigated, considered as drivers in land use changes. The joint assessment of 

socio-economic and environmental trends is increasingly required to provide an integrated and 

comprehensive analysis of territorial dynamics [85]. Providing an objective way to identify the drivers of 

socioeconomic disparities based on their potential for change and in relation to land use is relevant to 

regional science. The descriptive analyses in Chapter 2 illustrated the complex relationship between the 

multiple dimensions of a local and regional system that potentially informs policies aimed at inverting spatial 

inequality. This study confirms how the classical model based on a monotonic descending density function 

from the metropolitan centre seems to have been replaced by other models based on polycentric structures. 

Among the implications of this study, the application of other methodologies such as parametric and non-

parametric models could be used to better study sub-centres [232]. The proposed assessment tool is a first 

step in identifying and evaluating the spatial drivers that influence territorial divisions in several socio 

economic and environmental dimensions [233]. The methodology can be complemented with qualitative 

analyses and the use of local-scale indicators to more accurately identify regional differences resulting from 

spatial divisions by merging sustainable development issues with a traditional regional science perspective 

focused on spatial divisions and heterogeneity.[61,97,234]  Spatial indicators comparable over long period 

are essential tool for these studies. Historically, Basilicata lacks a consolidated urban network in terms of 

relations on a regional scale, the only lines of force that can be found in recent times were those oriented by 

the two provincial capitals, with a quite limited territorial scope, which lapped at most the areas immediately 

adjacent, and those in any case better interconnected with the main road axes. The isolation and 

mountainous features of the territory represent those basic factors on which historical evolution has failed 

to hinge forms of development suitable for producing an adequate urban framework and more generally 

services. These problems still represent elements characterizing the evolution of the regional system, which 

has experienced the growth of the tertiary sector in a small number of smaller towns, suitable for being able 

to communicate functionally with the two provincial capitals linked to changes in land use or infrastructure 

cannot be answered with universal validity. With a view to intensifying territorial relations on a regional scale, 

it is necessary to keep in mind the productive and economic specializations which the different territories 

have assumed to date. Specifically, we observe a strengthening of relations between the regional capital and 

Melfi, following the location of the FIAT factory. On the other hand, we observe the evolution of the 

Metaponto plain which seems to have by now defined its economic identity in the agro-industry, in tourist 

and cultural services. Another matter must be referred to Matera which seems to have further strengthened 

its extra-regional ties, seriously discussing the need for a greater strengthening of the bond between the two 
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capitals, above all in the context of the development of strategic enhancement strategies deriving also from 

the plans Europeans.[136,235,236] The development of innovative solutions and applications for the 

management of urban services is constantly growing, driven by technological progress (sectors such as IoT, 

Big Data, cloud-based services, etc.). The advantages in terms of service optimization, the efficiency in the 

use of resources and social inclusion are tangible. However, a problem that can not being underestimated 

concerns the not always availability of data that allows the integration and updating of the datasets built in 

order to enable the approach and the study of the economic dynamics of the centres in order to be able to 

relate them to the dynamics of transformation of the territory. This work has allowed a new vision of 

investigation of the urban and extra-urban framework as a system of heterogeneous service provider 

provided without adequate infrastructural support to guarantee its use [232,237,238]. Studies on city 

management show that increased use of urban services by citizens has great benefits for local governments, 

especially in economic terms. Greater use leads to economies of scale for many urban services[239] . 

Municipalities also benefit from economies of scope in providing local public services sharing fixed 

administrative costs, the benefits of introducing and sharing services, improving the networked and 

multimodal transport network, supported by an institutional resource plan and marketing actions are 

observed [95]. The current debate on urban sustainability often adopts a long-term relational perspective, 

based on the social, environmental and economic sustainability of urban management [240,241].In order to 

achieve both efficiency and sustainability, local authorities need programmes that enable the combination 

and sharing of services between different municipalities that can create closer relationships with citizens, 

oriented towards a more sustainable land and soil management.[95,242,243]  

The first part of the chapter 3 concerned an overview of land take at a regional level, underlining the 

distinction between land take and land consumption. Land take refers only to artificial soil sealing 

processes[244].Land take is irreversible, while soil consumption, based on the intensity of its transformation, 

could be reversible in the medium to long term. The aim of the chapter was to create an expeditious 

monitoring methodology for the identification and classification of the consumed soil. The first part was 

characterized by the implementation of an experimental methodology for the classification and historical 

analysis of the phenomenon based mainly on Landsat satellite data (analysis of the historical land take trend). 

It has been observed that the increase in urbanized areas is not accompanied by adequate population 

growth. The second part of chapter 2 research aims to develop a methodology capable of providing detailed 

maps of land take due to the installation of renewable energy sources using data from Sentinel 2 and Landsat. 

Renewable energy sources (above all wind farms) imply an intensive use of the land and the relationship with 

land consumption and the spatial dimension of the plants is a fundamental aspect to take into consideration. 

From 2010 to 2018, land consumption due to the presence of wind sources increased and the trend is 

continuously growing. The environmental effects of the land take are consequent to the conversion of 

agricultural land into built-up areas and the resulting impacts include the loss of the ecological functionality 

of the soil, the loss of ecosystem services and the phenomenon of soil degradation [54,170]. Land take that 

is not monitored and legislated has not only environmental impacts but also social costs. The social costs 

related to longer travel times to reach essential services, dependence on the use of own cars due to the 

absence of public transport, social marginalization. The construction of small centres distant from each other 

and from the main centres, to remedy the marginalization phenomena typical of inland areas, require the 

creation of new services, new road infrastructures accompanied by an adequate increase in population 

[94,245]. The particular geomorphological conditions of Basilicata and those of its economic system which 

even today, despite attempts at industrialization and weak tertiarization, remain strongly characterized by 

agricultural activity, have profoundly characterized the demographic evolution of the region. The two 
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provincial capitals can be identified as rural. In fact, on the basis of the population density criterion adopted 

by the National Strategic Plan, Matera with a population density of less than 150 inhab/km2 is identified as 

rural. The same goes for Potenza, which despite having a population density of more than 150 inhab/km2 is 

defined as rural on the basis of the predominance of agricultural use of the provincial area: about 70% used 

for agricultural and forestry use [246].  

The centrality of the role of the agricultural sector in Basilicata is certainly the main source of reflections on 

soil degradation (Chapter 4). In the previous paragraphs we have analysed the transformation of the territory 

deriving from European policies (CAP), highlighting the link between soil degradation, depopulation 

phenomena and policies. The approach followed in this contribution, in addition to creating a monitoring 

system of abandoned areas that can be replicated in other territorial contexts, tried to compare the 

transformations due to abandonment and to assess overall the negative impacts mainly due to erosion of 

policies that have acted on the land, exploring some relationships between land abandonment, the 

agricultural vocation of the land and public policies. In particular, it is noted that the provision of public funds 

from various community and national policy actions has not helped to combat land abandonment. In order 

to counter land take and agricultural abandonment, the creation of a multilevel governance system would 

be fundamental in which policies are no longer sectorised but multifunctional to sustainable development. 

In the rural sphere, the new CAP, with the important innovations in terms of greening, measures against land 

degradation can therefore be an opportunity for one new governance of the territory and the landscape 

[167]. Most of the works based on the evaluation of land take are related to the problem of the use of spatial 

data, which can be inhomogeneous and not replicable over time. This is because the data considered are 

often raster or vector cartography of different origins, scales, reference systems, etc. These are cartographies 

that often do not cover the entire study area and have different nominal scale values. Furthermore, 

replicating the study, also for the sake of monitoring the phenomenon, becomes problematic given that the 

data used are not available over time and in the same ways. For all these weaknesses, for the technological 

progress that has taken place in the field of Remote Sensing data management, for the free use of data and 

for an innovative study on soil consumption, in this research project the information base is determined by 

satellite data. This guarantees to be able to monitor the phenomenon and to replicate the studies over time 

and in different territorial contexts. Sustainable urbanization is a key driver of the 2030 Agenda for 

Sustainable Development. Achieving SDG 11 and its targets will require political will and commitment, 

innovative and integrated planning and design, and collaboration among all stakeholders at all levels. 

Achieving sustainable urbanization requires addressing the social, economic, and environmental dimensions 

of development, with the goal of ensuring that cities and human settlements are inclusive, safe, resilient, and 

sustainable. 

In conclusion, this thesis provides a concrete example of the contribution of Earth Observation and innovative 

geospatially derived data in support of the Sustainable Development Goals. The SDGs were formulated in 

tandem with a comprehensive and ambitious monitoring system. However, this monitoring system is 

currently hindered by a lack of available data and statistical capacity to monitor it effectively. Earth 

Observations are positioned as a critical source of information to support SDG monitoring: they enhance data 

availability, provide precise and appropriate data spanning long time periods, and have a wide geographical 

range that complements traditional methods[1,10]. To provide a practical application in this area, a LULCC 

classification methodology was estimated at a local scale, capable of providing tools and methods useful for 

achieving the SDG 11.3 and 15.3 objectives of the 2030 Agenda. The results obtained make up a dataset 

heterogeneous range of data and tools, harmonized in space and time, concerning the spatial distribution of 

built-up areas, abandoned and eroding agricultural areas, that can satisfy the data requirements of the SDGs.  
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Glossary 

 

LAND ABANDONMENT: Land abandonment refers to the process by which cultivated or managed land is no 

longer used for agricultural, forestry, or other purposes, and is left to revert to its natural state or undergoes 

a spontaneous reforestation. This can occur due to a range of factors, including changes in land use policies, 

economic factors, rural-urban migration, environmental degradation, and natural disasters. The abandoned 

land may be left to regenerate naturally or may require active restoration efforts to ensure its recovery. The 

abandonment of land can have significant ecological, economic, and social impacts, including changes in 

ecosystem services, loss of biodiversity, and impacts on local communities [124,247,248]. 

LAND CONSUMPTION: land consumption means: (1) the expansion of built-up area which can be directly 

measured; (2) the absolute extent of land that is subject to exploitation by agriculture, forestry or other 

economic activities and (3) the over-intensive exploitation of land that is used for agriculture and forestry 

[30]. 

LAND COVER: The physical coverage of land, usually expressed in terms of vegetation cover (natural or 

planted) or lack of it. Related to, but not synonymous with, land use. Land cover refers to the physical and 

biological cover on the Earth's surface, including vegetation, water bodies, bare soil, and human-made 

structures. Land cover can be classified into different categories based on the dominant type of cover, such 

as forests, grasslands, wetlands, croplands, urban areas, and water bodies. These categories are often used 

to understand the distribution and characteristics of different land cover types and their implications for 

ecosystem services, biodiversity, climate, and human well-being. [6,29]. 

LAND DEGRADATION: Land degradation refers to the deterioration of the quality and productivity of land, 

often as a result of human activities. It involves the decline in the natural fertility and biological diversity of 

the soil, as well as the reduction in the ability of the land to support plant growth and other ecosystem 

services. Land degradation can occur through a variety of processes, such as soil erosion, deforestation, 

overgrazing, land-use change, and pollution. It can have significant impacts on food security, water 

availability, and the sustainability of ecosystems, and it is often linked to poverty, social conflict, and 

migration [29,30,248–250]. 

LAND TAKE: there are various synonyms for land take [17]: (1) the area of land that is taken by infrastructure 

and other facilities that necessarily go along with the infrastructure, such as filling stations on roads and 

railway stations [30,123]; (2) also referred to as land consumption describes an increase of settlement areas 

over time. This process includes the development of scattered settlements in rural areas, the expansion of 

urban areas around an urban nucleus (including urban sprawl), and the conversion of land within an urban 

area (densification). Depending on local circumstances, a greater or smaller part of the land take will result 

in actual soil sealing [251]; the amount of agriculture, forest, semi-natural/natural land, wetlands or water 

taken by urban and other artificial land development, as defined in the EEA Land take indicator (CSI 014/LSI 

001; EEA, 2005)[252]. This indicator provides information on the change from agricultural, forestry and semi-

natural/ natural land, wetlands or water to urban land cover as a consequence of urban residential 

development, development of economic sites and infrastructures (including the creation of industrial, 

commercial and transport units, but excluding the conversion of previously developed land to sport and 

leisure facilities) and development of green urban areas on previously undeveloped land. To this end, the 

indicator uses Corine Land Cover (CLC) data, containing a hybrid of land cover and land use data. Land take 
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is also referred to as 'land consumption' in some cases, although the actual meaning may differ from the 

EEA's definition of land take [244]; 

LAND USE: Human activities, which are directly related to the land, making use of its resources, or having an 

impact upon it. A given land use may take place on one or more than one piece of land, and several land uses 

may occur on the same piece of land. Land use refers to the various ways in which land is utilized or managed 

by humans, including the activities and functions that take place on the land. It encompasses both natural 

and human-made features on the earth's surface, including agriculture, forestry, urban development, 

transportation, mining, recreation, and conservation. Land use can be categorized into different types, such 

as residential, commercial, industrial, institutional, and agricultural. Land use planning is the process of 

deciding on the best use of land to meet the needs of the society while considering environmental, social, 

and economic factors. Effective land use management is critical for ensuring sustainable development and 

the conservation of natural resources. [29,123,253]. 

SOIL EROSION: Soil erosion refers to the loss of soil due to the movement of water, wind, ice, or other natural 

agents, as well as human activities such as agriculture and deforestation. Soil erosion can lead to the loss of 

topsoil, which is the most fertile layer of soil that contains the most nutrients and organic matter necessary 

for plant growth. When topsoil is lost, it can have negative impacts on crop productivity, water quality, and 

biodiversity. Soil erosion is a major environmental concern, particularly in areas with steep slopes, intense 

rainfall, or unsustainable land use practices. It is also one of the major contributors to sedimentation in rivers, 

lakes, and reservoirs, which can lead to reduced water storage capacity and increased flooding. Therefore, 

soil erosion prevention and control measures are critical for protecting the environment and promoting 

sustainable land use [48,254]. 

SOIL SEALING: Soil sealing refers to the permanent covering of soil with impermeable materials such as 

asphalt, cement, bricks, metal, and other artificial materials. This process transforms natural soil into an 

impermeable surface, preventing the absorption of water and the exchange of air and nutrients between the 

soil and atmosphere. Soil sealing can have negative consequences on the environment, such as reduced 

biodiversity, increased risk of flooding, decreased air quality, and the urban heat island effect. Additionally, 

soil sealing can negatively impact the quality of life for people, such as the loss of green spaces, increased 

traffic, and noise pollution [25,30]. 

URBANIZATION: is a result of population migration from rural areas in addition to natural urban demographic 

growth[255]. Urbanization is the process by which an increasing proportion of a population lives in urban 

areas or cities, and there is a corresponding decrease in the proportion of people living in rural areas. 

Urbanization is often associated with economic and social development, as cities tend to be centres of 

commerce, education, and innovation. Urbanization can also lead to changes in lifestyle, culture, and the 

environment. It can have both positive and negative impacts on society, including increased access to 

services, higher levels of pollution, and changes in land use patterns [256–258]. 
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Appendix 
 

A 1. Tables and Figure 
 

▪  Map of Services and Equipment (2021). 
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▪ Tables 1 Distribution of resident population by municipality from 1981 to 2021 (Class 6).  

 

▪ Tables 2 Distribution of resident population by municipality from 1981 to 2021 (Class 5) 

 

 

 

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Calvera 754 1 Armento 946 1 Armento 800 1 Armento 667 1 Aliano 891

2 Cersosimo 896 2 Brindisi Montagna 949 2 Brindisi Montagna 905 2 Brindisi Montagna 904 2 Armento 577

3 Cirigliano 578 3 Calvera 662 3 Calciano 983 3 Calciano 797 3 Brindisi Montagna 840

4 Fardella 911 4 Cersosimo 882 4 Calvera 584 4 Calvera 437 4 Calciano 678

5 Ginestra 841 5 Cirigliano 532 5 Campomaggiore 980 5 Campomaggiore 853 5 Calvera 361

6 Guardia Perticara 872 6 Craco 971 6 Carbone 853 6 Carbone 704 6 Campomaggiore 746

7 Missanello 757 7 Fardella 857 7 Castelluccio Superiore987 7 Castelluccio Superiore 864 7 Carbone 550

8 Oliveto Lucano 768 8 Ginestra 783 8 Castelmezzano 970 8 Castelmezzano 855 8 Castelgrande 841

9 San Paolo Albanese 545 9 Guardia Perticara 817 9 Cersosimo 847 9 Cersosimo 716 9 Castelluccio Superiore 739

10 Teana 771 10 Missanello 713 10 Cirigliano 445 10 Cirigliano 365 10 Castelmezzano 744

11 Trivigno 893 11 Oliveto Lucano 762 11 Craco 796 11 Craco 754 11 Castronuovo di Sant'Andrea 943

12 San Paolo Albanese 529 12 Fardella 765 12 Fardella 628 12 Cersosimo 571

13 Teana 874 13 Ginestra 726 13 Gallicchio 887 13 Cirigliano 297

14 Trivigno 868 14 Guardia Perticara 758 14 Ginestra 732 14 Craco 651

15 Missanello 604 15 Gorgoglione 992 15 Fardella 559

16 Oliveto Lucano 587 16 Guardia Perticara 609 16 Gallicchio 824

17 San Costantino Albanese884 17 Missanello 554 17 Ginestra 721

18 San Martino d'Agri 969 18 Noepoli 983 18 Gorgoglione 888

19 San Paolo Albanese 416 19 Oliveto Lucano 499 19 Guardia Perticara 524

20 Sasso di Castalda 871 20 San Costantino Albanese 784 20 Missanello 533

21 Teana 750 21 San Martino d'Agri 813 21 Noepoli 773

22 Trivigno 794 22 San Paolo Albanese 313 22 Oliveto Lucano 374

23 Sasso di Castalda 822 23 Pietrapertosa 945

24 Teana 652 24 Rapone 908

25 Trivigno 710 25 Ruvo del Monte 993

26 San Chirico Raparo 955

27 San Costantino Albanese 624

28 San Martino d'Agri 685

29 San Paolo Albanese 226

30 Sasso di Castalda 766

31 Teana 551

32 Trivigno 603

Class 6

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Albano di Lucania 1706 1 Albano di Lucania 1682 1 Abriola 1808 1 Abriola 1578 1 Abriola 1329

2 Aliano 1635 2 Aliano 1495 2 Albano di Lucania 1612 2 Accettura 1989 2 Accettura 1679

3 Armento 1069 3 Banzi 1903 3 Aliano 1284 3 Albano di Lucania 1468 3 Albano di Lucania 1369

4 Banzi 1742 4 Calciano 1049 4 Anzi 1949 4 Aliano 1035 4 Anzi 1573

5 Calciano 1189 5 Campomaggiore 1109 5 Banzi 1514 5 Anzi 1787 5 Balvano 1751

6 Campomaggiore 1047 6 Cancellara 1715 6 Cancellara 1598 6 Balvano 1859 6 Banzi 1230

7 Cancellara 1784 7 Carbone 1171 7 Castelgrande 1231 7 Banzi 1402 7 Calvello 1775

8 Carbone 1372 8 Castelgrande 1358 8 Castelsaraceno 1730 8 Calvello 1922 8 Cancellara 1166

9 Castelgrande 1249 9 Castelluccio Superiore1142 9 Castronuovo di Sant'Andrea1439 9 Cancellara 1408 9 Castelluccio Inferiore 1955

10 Castelluccio Superiore1158 10 Castelmezzano 1063 10 Colobraro 1535 10 Castelgrande 1016 10 Castelsaraceno 1243

11 Castelmezzano 1123 11 Castronuovo di Sant'Andrea1691 11 Episcopia 1656 11 Castelsaraceno 1486 11 Chiaromonte 1778

12 Castronuovo di Sant'Andrea1773 12 Colobraro 1756 12 Gallicchio 1018 12 Castronuovo di Sant'Andrea 1136 12 Colobraro 1086

13 Colobraro 1997 13 Episcopia 1735 13 Garaguso 1193 13 Chiaromonte 1963 13 Episcopia 1276

14 Craco 1014 14 Gallicchio 1130 14 Gorgoglione 1179 14 Colobraro 1340 14 Forenza 1901

15 Episcopia 1690 15 Garaguso 1270 15 Grumento Nova 1839 15 Episcopia 1444 15 Garaguso 1001

16 Gallicchio 1109 16 Gorgoglione 1395 16 Maschito 1864 16 Garaguso 1126 16 Grumento Nova 1598

17 Garaguso 1225 17 Grumento Nova 1956 17 Montemurro 1555 17 Grumento Nova 1720 17 Laurenzana 1642

18 Gorgoglione 1383 18 Maschito 1951 18 Nemoli 1561 18 Laurenzana 1979 18 Maschito 1511

19 Grumento Nova 1985 19 Montemurro 1648 19 Noepoli 1189 19 Maschito 1725 19 Montemilone 1438

20 Montemurro 1703 20 Nemoli 1598 20 Pietrapertosa 1312 20 Montemilone 1751 20 Montemurro 1144

21 Nemoli 1493 21 Noepoli 1348 21 Rapone 1203 21 Montemurro 1330 21 Nemoli 1402

22 Noepoli 1521 22 Pietrapertosa 1447 22 Ripacandida 1767 22 Nemoli 1511 22 Pescopagano 1727

23 Pietrapertosa 1563 23 Rapone 1336 23 Roccanova 1759 23 Pescopagano 1999 23 Ripacandida 1594

24 Rapone 1447 24 Ruvo del Monte 1453 24 Ruvo del Monte 1262 24 Pietrapertosa 1103 24 Roccanova 1345

25 Ruvo del Monte 1757 25 San Chirico Nuovo 1801 25 San Chirico Nuovo 1632 25 Rapone 1018 25 San Chirico Nuovo 1225

26 San Chirico Nuovo 1839 26 San Chirico Raparo 1695 26 San Chirico Raparo 1304 26 Ripacandida 1717 26 San Giorgio Lucano 1091

27 San Chirico Raparo 1735 27 San Costantino Albanese1077 27 San Giorgio Lucano 1510 27 Roccanova 1639 27 San Mauro Forte 1310

28 San Costantino Albanese1206 28 San Giorgio Lucano 1820 28 San Severino Lucano1923 28 Ruvo del Monte 1094 28 San Severino Lucano 1419

29 San Giorgio Lucano 1964 29 San Martino d'Agri 1243 29 Sant'Angelo Le Fratte1472 29 San Chirico Nuovo 1528 29 Sant'Angelo Le Fratte 1331

30 San Martino d'Agri 1313 30 Sant'Angelo Le Fratte1656 30 Sarconi 1351 30 San Chirico Raparo 1154 30 Sarconi 1405

31 Sant'Angelo Le Fratte1587 31 Sarconi 1307 31 Savoia di Lucania 1236 31 San Giorgio Lucano 1284 31 Savoia di Lucania 1018

32 Sarconi 1112 32 Sasso di Castalda 1115 32 Spinoso 1778 32 San Mauro Forte 1706 32 Spinoso 1362

33 Sasso di Castalda 1098 33 Savoia di Lucania 1351 33 Terranova di Pollino1534 33 San Severino Lucano 1678 33 Terranova di Pollino 1065

34 Savoia di Lucania 1295 34 Spinoso 1852 34 Valsinni 1797 34 Sant'Angelo Le Fratte 1439 34 Vaglio Basilicata 1903

35 Spinoso 1788 35 Terranova di Pollino1815 35 Sarconi 1324 35 Valsinni 1384

36 Terranova di Pollino 1948 36 Valsinni 1965 36 Savoia di Lucania 1147

37 Spinoso 1562

38 Terranova di Pollino 1343

39 Valsinni 1607

Class 5 
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▪ Tables 3 Distribution of resident population by municipality from 1981 to 2021 (Class 4) 

 

▪ Tables 4 Distribution of resident population by municipality from 1981 to 2021 (Class 3) 

 

 

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Abriola 2309 1 Abriola 2061 1 Accettura 2436 1 Acerenza 2513 1 Acerenza 2204

2 Accettura 2669 2 Accettura 2740 2 Acerenza 3010 2 Atella 3801 2 Atella 3744

3 Acerenza 3391 3 Acerenza 3043 3 Atella 3726 3 Baragiano 2597 3 Baragiano 2536

4 Anzi 2178 4 Anzi 2158 4 Balvano 2007 4 Barile 2809 4 Barile 2664

5 Atella 3486 5 Atella 3519 5 Baragiano 2751 5 Brienza 4039 5 Bella 4796

6 Balvano 2205 6 Balvano 2296 6 Barile 3229 6 Castelluccio Inferiore 2137 6 Brienza 3873

7 Baragiano 2499 7 Baragiano 2716 7 Brienza 4067 7 Corleto Perticara 2598 7 Corleto Perticara 2351

8 Barile 3457 8 Barile 3262 8 Calvello 2212 8 Filiano 3090 8 Filiano 2800

9 Brienza 4016 9 Brienza 4144 9 Castelluccio Inferiore2344 9 Forenza 2178 9 Francavilla in Sinni 3987

10 Calvello 3034 10 Calvello 2362 10 Chiaromonte 2148 10 Francavilla in Sinni 4203 10 Grassano 4865

11 Castelluccio Inferiore2630 11 Castelluccio Inferiore2617 11 Corleto Perticara 3018 11 Grottole 2365 11 Grottole 2088

12 Castelsaraceno 2064 12 Castelsaraceno 2020 12 Filiano 3298 12 Latronico 4781 12 Irsina 4459

13 Chiaromonte 2489 13 Chiaromonte 2410 13 Forenza 2546 13 Marsico Nuovo 4401 13 Latronico 4173

14 Corleto Perticara 3658 14 Corleto Perticara 3345 14 Francavilla in Sinni 4367 14 Miglionico 2554 14 Maratea 4837

15 Filiano 3151 15 Filiano 3318 15 Grottole 2607 15 Moliterno 4246 15 Marsico Nuovo 3910

16 Forenza 3058 16 Forenza 2807 16 Laurenzana 2250 16 Oppido Lucano 3798 16 Miglionico 2395

17 Francavilla in Sinni 4147 17 Francavilla in Sinni 4044 17 Marsicovetere 4703 17 Palazzo San Gervasio 4846 17 Moliterno 3663

18 Grottole 3130 18 Grottole 3006 18 Miglionico 2630 18 Paterno 3394 18 Muro Lucano 4999

19 Laurenzana 2996 19 Laurenzana 2640 19 Moliterno 4592 19 Pietragalla 4238 19 Oppido Lucano 3627

20 Marsicovetere 3431 20 Marsicovetere 4098 20 Oppido Lucano 3968 20 Pomarico 4167 20 Palazzo San Gervasio 4540

21 Maschito 2052 21 Miglionico 2718 21 Paterno 3994 21 Rapolla 4379 21 Paterno 3100

22 Miglionico 2568 22 Montemilone 2122 22 Pescopagano 2147 22 Rivello 2814 22 Pietragalla 3930

23 Moliterno 4922 23 Oppido Lucano 4004 23 Pietragalla 4532 23 Rotonda 3481 23 Pomarico 3884

24 Montemilone 2614 24 Paterno 4170 24 Pomarico 4482 24 Rotondella 2621 24 Rapolla 4146

25 Oppido Lucano 4092 25 Pescopagano 2392 25 Rapolla 4648 25 Ruoti 3525 25 Rivello 2591

26 Paterno 3964 26 Pietragalla 4633 26 Rivello 3010 26 Salandra 2928 26 Rotonda 3282

27 Pescopagano 3088 27 Pignola 4681 27 Rotonda 3888 27 San Fele 3165 27 Rotondella 2489

28 Pietragalla 4583 28 Rapolla 4447 28 Rotondella 3233 28 Satriano di Lucania 2313 28 Ruoti 3383

29 Pignola 3982 29 Ripacandida 2072 29 Ruoti 3687 29 Stigliano 4679 29 Salandra 2595

30 Rapolla 4073 30 Rivello 3153 30 Salandra 3109 30 Tolve 3322 30 San Fele 2654

31 Ripacandida 2307 31 Roccanova 2023 31 San Fele 3832 31 Tramutola 3123 31 Satriano di Lucania 2254

32 Rivello 3001 32 Rotonda 4011 32 San Mauro Forte 2306 32 Trecchina 2309 32 Stigliano 3768

33 Roccanova 2022 33 Rotondella 3712 33 Satriano di Lucania 2353 33 Tursi 4908 33 Tolve 3047

34 Rotonda 3892 34 Ruoti 3777 34 Tolve 3620 34 Vaglio Basilicata 2072 34 Tramutola 2946

35 Rotondella 3989 35 Salandra 3363 35 Tramutola 3251 35 Vietri di Potenza 2895 35 Trecchina 2159

36 Ruoti 3440 36 San Fele 4186 36 Trecchina 2404 36 Viggianello 3140 36 Tricarico 4890

37 Salandra 3478 37 San Mauro Forte 3025 37 Vaglio Basilicata 2217 37 Viggiano 3035 37 Tursi 4849

38 San Mauro Forte 2961 38 San Severino Lucano2224 38 Vietri di Potenza 3096 38 Vietri di Potenza 2694

39 San Severino Lucano2352 39 Satriano di Lucania 2424 39 Viggianello 3500 39 Viggianello 2790

40 Satriano di Lucania 2081 40 Tolve 3766 40 Viggiano 3208 40 Viggiano 3269

41 Tito 4870 41 Tramutola 3244

42 Tolve 3934 42 Trecchina 2508

43 Tramutola 3544 43 Vaglio Basilicata 2320

44 Trecchina 2530 44 Vietri di Potenza 3255

45 Vaglio Basilicata 2145 45 Viggianello 3985

46 Valsinni 2013 46 Viggiano 3161

47 Vietri di Potenza 3444

48 Viggianello 4274

49 Viggiano 3044

Class 4

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Bella 5916 1 Bella 5789 1 Bella 5440 1 Bella 5051 1 Ferrandina 8137

2 Ferrandina 9172 2 Ferrandina 9427 2 Ferrandina 9358 2 Ferrandina 8857 2 Genzano di Lucania 5377

3 Genzano di Lucania 6731 3 Genzano di Lucania 6330 3 Genzano di Lucania 6115 3 Genzano di Lucania 5816 3 Lagonegro 5192

4 Grassano 6281 4 Grassano 6065 4 Grassano 5792 4 Grassano 5350 4 Marsicovetere 5536

5 Irsina 7237 5 Irsina 6558 5 Irsina 5732 5 Irsina 5138 5 Montalbano Jonico 6874

6 Lagonegro 6264 6 Lagonegro 6260 6 Lagonegro 6146 6 Lagonegro 5774 6 Montescaglioso 9224

7 Latronico 5787 7 Latronico 5507 7 Latronico 5279 7 Maratea 5214 7 Nova Siri 6663

8 Maratea 5108 8 Maratea 5261 8 Maratea 5261 8 Marsicovetere 5360 8 Picerno 5687

9 Marsico Nuovo 6010 9 Marsico Nuovo 5610 9 Marsico Nuovo 5134 9 Montalbano Jonico 7488 9 Pignola 6830

10 Montalbano Jonico 9093 10 Moliterno 5033 10 Montalbano Jonico 7991 10 Muro Lucano 5635 10 Sant'Arcangelo 6062

11 Montescaglioso 9265 11 Montalbano Jonico 8688 11 Muro Lucano 5134 11 Nova Siri 6638 11 Scanzano Jonico 7635

12 Muro Lucano 7529 12 Muro Lucano 6380 12 Nova Siri 6418 12 Picerno 5997 12 Senise 6656

13 Nova Siri 5475 13 Nova Siri 5922 13 Palazzo San Gervasio5184 13 Pignola 6604 13 Tito 7162

14 Palazzo San Gervasio6514 14 Palazzo San Gervasio6138 14 Picerno 6186 14 Sant'Arcangelo 6381

15 Picerno 5543 15 Picerno 5976 15 Pignola 5483 15 Scanzano Jonico 6790

16 Pomarico 5012 16 Pomarico 5018 16 Sant'Arcangelo 6637 16 Senise 7064

17 San Fele 5907 17 Sant'Arcangelo 7270 17 Scanzano Jonico 6711 17 Tito 6922

18 Sant'Arcangelo 6781 18 Scanzano Jonico 6210 18 Senise 7182 18 Tricarico 5674

19 Scanzano Jonico 5945 19 Senise 7316 19 Stigliano 5616

20 Senise 7248 20 Stigliano 6576 20 Tito 6387

21 Stigliano 7269 21 Tito 5722 21 Tricarico 6318

22 Tricarico 7197 22 Tricarico 7017 22 Tursi 5510

23 Tursi 6080 23 Tursi 6003

Class 3
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▪ Tables 5 Distribution of resident population by municipality from 1981 to 2021 (Class 2) 

 

▪ Tables 6 Distribution of resident population by municipality from 1981 to 2021 (Class 1) 

 

▪ Table 7 Resident population in age groups. 

Municipality Old_19

81 

Old_20

21 
Population_1981 Population_202

1 

Aldult_1

981 

Adult_202

1 
Youth_1981 Child_1

981 
Child_2021 

Abriola 304 369 2309 1329 740 579 529 736 187 

Accettura 564 462 2669 1679 850 693 507 748 238 

Acerenza 602 593 3391 2204 494 933 708 903 274 

Albano di Lucania 254 317 1706 1369 545 586 353 554 188 

Aliano 254 301 1635 891 566 346 325 490 104 

Anzi 293 394 2178 1573 756 665 453 676 212 

Armento 229 89 1069 577 372 314 185 283 77 

Atella 408 811 3486 3744 1206 1585 741 1131 618 

Avigliano 1367 2461 11592 10796 4137 4795 2297 3791 1657 

Balvano 306 447 2205 1751 886 729 325 688 268 

Banzi 251 196 1742 1230 600 657 356 535 173 

Baragiano 348 615 2499 2536 794 1090 613 744 410 

Barile 542 603 3457 2664 1153 1137 782 980 397 

Bella 716 1149 5916 4796 2018 2015 1342 1840 768 

Bernalda 1207 2770 11803 12050 3822 5131 2835 3939 2082 

Brienza 537 917 4016 3873 1371 1633 930 1178 595 

Brindisi Montagna 129 170 1000 840 314 387 248 309 117 

Calciano 172 210 1189 678 453 279 245 319 81 

Calvello 407 489 3034 1775 988 701 732 907 276 

Calvera 91 127 754 361 235 154 154 274 25 

Campomaggiore 139 208 1047 746 316 313 256 336 94 

Cancellara 343 335 1784 1166 582 485 389 470 156 

Carbone 285 227 1372 550 466 216 272 349 38 

Castelgrande 243 271 1249 841 412 353 256 338 82 

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Avigliano 11592 1 Avigliano 11761 Avigliano 12025 Avigliano 11668 1 Avigliano 10796

2 Bernalda 11803 2 Bernalda 12037 Bernalda 11958 Bernalda 11761 2 Bernalda 12050

3 Lauria 13675 3 Lauria 13752 Lauria 13801 Lauria 13330 3 Lauria 12166

4 Lavello 13292 4 Lavello 13215 Lavello 13247 Lavello 13649 4 Lavello 13139

5 Melfi 15661 5 Melfi 15757 Melfi 16110 Melfi 17379 5 Melfi 17196

6 Pisticci 17793 6 Montescaglioso 10104 Montescaglioso 10121 Montescaglioso 10127 6 Pisticci 16889

7 Policoro 12174 7 Pisticci 18311 Pisticci 17811 Pisticci 17043 7 Policoro 17762

8 Rionero in Vulture 12679 8 Policoro 14551 Policoro 15096 Policoro 15415 8 Rionero in Vulture 12652

9 Venosa 12060 9 Rionero in Vulture 13201 Rionero in Vulture 13441 Rionero in Vulture 13085 9 Venosa 11093

10 Venosa 11905 Venosa 12148 Venosa 11830

Class 2

ID Munucipality 1981 ID Munucipality 1991 ID Munucipality 2001 ID Munucipality 2011 ID Munucipality 2021

1 Matera 51261 1 Matera 54919 Matera 57785 Matera 59813 1 Matera 59794

2 Potenza 65698 2 Potenza 65714 Potenza 69060 Potenza 66302 2 Potenza 65420

Class 1
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Castelluccio Inferiore 351 535 2630 1955 868 811 587 824 267 

Castelluccio Superiore 168 221 1158 739 414 297 242 334 98 

Castelmezzano 215 246 1123 744 367 304 238 303 82 

Castelsaraceno 289 373 2064 1243 671 527 474 630 156 

Castronuovo di 
Sant'Andrea 

346 358 1773 943 673 371 334 420 83 

Cersosimo 131 187 896 571 314 239 199 252 59 

Chiaromonte 364 493 2489 1778 864 773 548 713 234 

Cirigliano 156 99 578 297 204 140 98 120 18 

Colobraro 336 326 1997 1086 668 459 396 597 134 

Corleto Perticara 650 603 3658 2351 1246 1025 747 1015 307 

Craco 146 173 1014 651 323 266 217 328 99 

Episcopia 193 373 1690 1276 606 515 388 503 199 

Fardella 132 186 911 559 321 222 190 268 61 

Ferrandina 1118 2053 9172 8137 2890 3401 2059 3105 1240 

Filiano 466 679 3151 2800 1099 1228 705 881 372 

Forenza 581 531 3058 1901 1029 800 610 838 253 

Francavilla in Sinni 474 927 4147 3987 1301 1719 1003 1369 659 

Gallicchio 133 206 1109 824 370 340 232 374 108 

Garaguso 162 224 1225 1001 400 420 264 399 192 

Genzano di Lucania 1115 1466 6731 5377 2170 2215 1399 2047 844 

Ginestra 157 181 841 721 291 294 162 231 131 

Gorgoglione 223 231 1383 888 483 378 279 398 116 

Grassano 912 1244 6281 4865 2022 1962 1456 1891 792 

Grottole 407 524 3130 2088 935 889 703 1085 315 

Grumento Nova 250 411 1985 1598 722 682 451 562 235 

Guardia Perticara 172 136 872 524 327 236 153 220 47 

Irsina 1020 1246 7237 4459 2469 1764 1531 2217 640 

Lagonegro 697 1289 6264 5192 2018 2254 1552 1997 739 

Latronico 900 1290 5787 4173 2079 1732 1253 1555 509 

Laurenzana 496 465 2996 1642 1020 719 662 818 211 

Lauria 1574 2970 13675 12166 4603 5291 3275 4223 1711 

Lavello 1669 2789 13292 13139 4113 5557 3166 4344 2385 

Maratea 731 1317 5108 4837 1605 2110 1257 1515 642 

Marsico Nuovo 747 1137 6010 3910 2166 1588 1369 1728 519 

Marsicovetere 310 1023 3431 5536 1039 2391 909 1173 1104 

Maschito 403 437 2052 1511 703 623 383 563 209 

Matera 4495 13866 51261 59794 16719 25529 12749 17298 10102 

Melfi 1993 3188 15661 17196 4614 7392 3771 5283 3195 

Miglionico 361 583 2568 2395 805 1003 620 782 360 

Missanello 117 126 757 533 265 226 181 194 66 
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Moliterno 310 1101 4922 3663 2158 1540 1100 1354 485 

Montalbano Jonico 908 1666 9093 6874 2921 2922 2204 3060 1064 

Montemilone 487 393 2614 1438 869 621 471 787 184 

Montemurro 305 327 1703 1144 572 449 360 466 159 

Montescaglioso 1038 2129 9265 9224 2968 3768 2191 3068 1592 

Muro Lucano 1107 1364 7529 4999 2487 2185 1772 2163 648 

Nemoli 243 388 1493 1402 481 598 381 388 194 

Noepoli 270 251 1521 773 540 338 328 383 70 

Nova Siri 521 1421 5475 6663 1663 2835 1317 1974 1128 

Oliveto Lucano 127 147 768 374 294 151 122 225 34 

Oppido Lucano 590 921 4092 3627 1288 1495 924 1290 569 

Palazzo San Gervasio 965 1007 6514 4540 1951 1959 1479 2119 733 

Paterno 434 819 3964 3100 1262 1295 946 1322 461 

Pescopagano 444 513 3088 1727 1075 726 695 874 232 

Picerno 671 1394 5543 5687 1847 2426 1343 1682 843 

Pietragalla 855 977 4583 3930 1527 1695 1005 1196 571 

Pietrapertosa 283 270 1563 945 523 374 281 476 109 

Pignola 379 1210 3982 6830 1152 3144 1065 1386 1238 

Pisticci 2014 3992 17793 16889 5892 7167 4092 5795 2751 

Policoro 652 3398 12174 17762 3524 7747 3286 4712 3167 

Pomarico 733 1003 5012 3884 1599 1606 1207 1473 582 

Potenza 5663 16183 65698 65420 22420 28657 16255 21360 9908 

Rapolla 498 433 4073 4146 1224 2158 972 1379 762 

Rapone 234 256 1447 908 517 378 289 407 103 

Rionero in Vulture 1776 2730 12679 12652 3901 5629 2926 4076 2001 

Ripacandida 490 394 2307 1594 831 690 411 575 239 

Rivello 527 683 3001 2591 1007 1067 606 861 387 

Roccanova 338 392 2022 1345 677 520 406 601 162 

Rotonda 515 909 3892 3282 1387 1376 885 1105 431 

Rotondella 506 641 3989 2489 1388 1063 904 1191 339 

Ruoti 458 763 3440 3383 1121 1799 777 1084 560 

Ruvo del Monte 351 309 1757 993 585 396 363 458 119 

Salandra 429 668 3478 2595 1020 1078 818 1211 378 

San Chirico Nuovo 265 365 1839 1225 593 522 418 563 149 

San Chirico Raparo 313 318 1735 955 631 379 315 476 114 

San Costantino Albanese 212 224 1206 624 491 261 199 304 52 

San Fele 757 879 5907 2654 2038 1087 1379 1733 292 

San Giorgio Lucano 358 380 1964 1091 671 424 377 558 130 

San Martino d'Agri 221 224 1313 685 440 277 278 374 89 

San Mauro Forte 410 388 2961 1310 1014 553 651 886 142 
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San Paolo Albanese 146 102 545 226 214 79 94 91 15 

San Severino Lucano 385 446 2352 1419 855 586 508 604 148 

Sant'Angelo Le Fratte 216 327 1587 1331 583 -269 337 451 1047 

Sant'Arcangelo 776 1381 6781 6062 2003 3354 1670 2332 202 

Sarconi 148 340 1112 1405 409 671 223 332 110 

Sasso di Castalda 151 255 1098 766 388 25 206 353 358 

Satriano di Lucania 280 494 2081 2254 755 978 454 592 358 

Savoia di Lucania 195 274 1295 1018 421 434 299 380 139 

Scanzano Jonico 444 1480 5945 7635 1745 3214 1565 2191 1402 

Senise 740 1479 7248 6656 2165 2919 1731 2612 974 

Spinoso 278 354 1788 1362 575 586 383 552 174 

Stigliano 1377 1271 7269 3768 2538 1514 1565 1789 368 

Teana 99 176 771 551 265 221 180 227 63 

Terranova di Pollino 269 364 1948 1065 686 440 433 560 94 

Tito 532 1270 4870 7162 1555 3285 1249 1534 1383 

Tolve 659 751 3934 3047 1248 1312 859 1168 420 

Tramutola 472 724 3544 2946 1139 1267 814 1119 462 

Trecchina 411 638 2530 2159 838 909 570 711 278 

Tricarico 1024 1356 7197 4890 2267 2025 1620 2286 645 

Trivigno 146 170 893 603 286 261 220 241 66 

Tursi 653 1203 6080 4849 1840 2016 1449 2138 701 

Vaglio Basilicata 332 516 2145 1903 729 837 461 623 266 

Valsinni 271 380 2013 1384 694 583 468 580 172 

Venosa 1531 2561 12060 11093 3630 4830 2683 4216 1769 

Vietri di Potenza 473 679 3444 2694 1008 1151 842 1121 374 

Viggianello 574 898 4274 2790 1494 1162 964 1242 358 

Viggiano 433 596 3044 3269 1018 1417 678 915 631 

Basilicata 75823 131558 609514 545130 199769 233630 140968 192270 84758 

Matera Province 22998 45835 405896 352490 134122 152304 91918 127764 53650 

Potenza Province 52825 85723 203618 192640 65647 81326 49050 64506 31108 

 

 

A2. Methodogical annexess 
 

▪ The service endowment index was calculated for each municipality:  

∑
𝑥𝑖

𝑓𝑖
 

Where Xi represents the total endowment of services and fi the resident population. In general, the index is 

based on dividing the number of services available in a geographical area by the population residing in the 
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same area. However, this indicator shows some critical issues especially in relation to the difficulty of 

comparing different geographical areas and the need to also consider other factors, such as the socio-

economic conditions of the population, the quality of services, accessibility to transport and distance from 

infrastructure. 

• Depopulation Index:  

𝐷𝑒𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = (
𝐴𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) ∗ 100 

 

The result of the depopulation index is a percentage value which indicates the percentage increase or 

decrease of the population in the period considered. A positive depopulation index indicates a decrease in 

population, while a negative depopulation index indicates an increase in population. 

 

• Dependence Index: Ratio between the non-autonomous population due to age and the working 

population. 

 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 =  
(𝑃𝑜𝑝𝑢𝑙𝑎𝑛𝑡𝑖𝑜𝑛 ≤ 14𝑦 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ≥ 65)

≤ 15𝑦𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ≤ 64𝑦
∗ 100 

 

The dependency ratio is considered an indicator of economic and social relevance. The numerator is made 

up of the population which, due to age, considers itself to be non-autonomous - i.e., dependent - and the 

denominator by the segment of the population which, being active, should provide for its livelihood. 

It is an indicator that is affected by the economic structure of the population: for example, in societies with 

an important agricultural component, very young or elderly subjects cannot be considered economically or 

socially dependent on adults; on the contrary, in the more advanced structures, a part of the individuals 

considered in the denominator index are actually employees as students or unemployed. The indicator in 

developing countries takes on higher values than in more advanced populations economically; this is largely 

due to the greater presence of young individuals due to their higher fecundity. 

 

 

• LS Factor equation 

Many authors have developed equations to estimate the LS factor [259–262], the formula proposed by 

Mitasova [205,263] was used to calculate the topographic LS-factor relative to a point r on a hillslope, that 

includes into a single factor LS the parameters relating to slope length L and slope S, using a formulation that 

better interprets the topographical complexity of the examined region: 

 

 

𝐿𝑆(𝑟) = (𝜇 + 1)[𝑎(𝑟)/𝑎0]
𝜇

[sin 𝑏(𝑟) /𝑏0]
𝑛
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where a(r) is the upslope contributing area per unit contour width, in this study assessed by the product of 

QGIS with GRASS function r.flow), b is the slope, μ is the slope length exponent [264], n is a parameters whose 

value has been set up 1.2 [262], a0= 22.1 m is the standard USLE plot length, and b0= 9% is the slope grade of 

the standard USLE plot. The LS factor was estimated using the 20 m gridded DEM with the support of QGIS 

software, in fact most of the algorithms for LS estimation are implemented within GIS software.  The LS 

product factor is dimensionless and was assumed to be constant over the entire observation period of 

observation[205]. 
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