
Vol.:(0123456789)

Rendiconti del Circolo Matematico di Palermo Series 2
https://doi.org/10.1007/s12215-022-00775-2

1 3

On the traction problem for steady elastic oscillations 
equations: the double layer potential ansatz

Alberto Cialdea1   · Vita Leonessa1 · Angelica Malaspina1

Received: 19 July 2021 / Accepted: 29 May 2022 
© The Author(s) 2022

Abstract
The three-dimensional traction problem for steady elastic oscillations equations is studied. 
Representability of its solution by means of a double layer potential is considered instead 
of the more usual simple layer potential.
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1  Introduction

Several papers have been devoted to develop potential methods for different boundary 
value problems for the steady-state oscillations for isotropic elastic bodies (see, e.g., [1, 2, 
15–17] and the references therein).

In particular, in [12, Chapter VII] a solution of the Dirichlet problem is sought in terms 
of a double layer potential. In [10] we have achieved a solution of the Dirichlet problem 
by a simple layer potential. In this case the boundary conditions lead to an integral system 
of the first kind on the boundary. The solution of this system was obtained following a 
method given in [3] for the Laplace equation, which can be considered as an extension to 
higher dimensions of Muskhelishvili method (see [4]). We observe that the method intro-
duced in [3], which hinges on the theory of reducible operators and on the theory of dif-
ferential forms, was applied to different BVPs for several PDEs in simply and multiple 
connected domains (see, e.g., [6–9]). We remark that our method uses neither the theory of 
pseudodifferential operators nor the concept of hypersingular integrals.
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In the present paper we pass to consider the traction problem with datum in [Lp(Σ)]3 for the 
homogeneous system of the steady-state oscillations

for an elastic medium with density 𝜌 > 0 , oscillation frequency � ∈ ℝ , and Lamé con-
stants � and �.

We look for a solution u ∶ ℝ
3
→ ℂ

3 in the form of a double layer potential with density 
in the Sobolev space [W1,p(Σ)]3 , where Σ is the boundary of the domain � representing the 
medium. We observe that this layer potential ansatz is different from that one used in [12], 
where a solution is represented by means of a simple layer potential.

Our main result (Theorem 2) establishes the solvability of the problem under study when-
ever �2 is an interior traction eigenvalue or not. If it is, then the datum must satisfy cer-
tain compatibility conditions under which a singular integral system admits solutions (see 
Lemma 3). If not, the problem is always solvable.

The paper is organized as follows. After summarizing some notations in Sect. 2, we con-
sider the system of elasto-static oscillations and its fundamental matrix in Sect. 3. Section 4 
deals with boundary integral operators related to the system and with auxiliary results associ-
ated to certain boundary integral equations. In Sect. 5 we recall the results we have obtained in 
[10] for the Dirichlet problem. Section 6 is devoted to the main result of the present paper and 
some preliminary results useful to reach our goal.

2 � Notations

In the whole paper � is a bounded domain (open connected set) of ℝ3 such that its bound-
ary is a Lyapunov surface Σ (i.e. Σ has a uniformly Hölder continuous normal field of some 
exponent � ∈ (0, 1] ), and such that ℝ3⧵� is connected. The outwards unit normal vector at the 
point x = (x1, x2, x3) ∈ Σ is denoted by n(x) = (n1(x), n2(x), n3(x)) . The symbol | ⋅ | stands for 
the Euclidean norm for elements of ℝ3.

For h ∈ ℕ , Ch(�) is the space of all complex-valued continuous functions whose deriva-
tives are continuously differentiable up to the order h in � . Moreover, the symbol Ch,�(�) 
stands for the space of all functions defined in � having continuous derivatives up to order 
h ∈ ℕ and such that the partial derivatives of order h are Hölder continuous with exponent 
� ∈ (0, 1].

Throughout the paper we consider p ∈ (1,∞) . Lp(Σ) is the space of p-integrable complex-
valued functions defined on Σ . By Lp

h
(Σ) we mean the space of the differential forms of degree 

h ≥ 1 whose coefficients belong to Lp(Σ).
If u is a h-form in � , the symbol du denotes the differential of u, while ∗ u denotes the dual 

Hodge form. Moreover, we write ∗
Σ
w = w0 if w is an 2-form on Σ and w = w0d�.

The Sobolev space W1,p(Σ) can be defined as the space of functions in Lp(Σ) such that 
their weak differential belongs to Lp

1
(Σ) . If u ∈ [W1,p(Σ)]3 , by du we denote the vector 

(du1, du2, du3).
Finally, we distinguish by apices + and − the limit obtained by approaching the boundary Σ 

from � and ℝ3⧵� , respectively, that is

We shall omit the superscript + when there is no ambiguity.

��u + (� + �)∇div u + ��2u = 0

u+(x) = lim
�∋y→x

u(y) and u−(x) = lim
ℝ3⧵�∋y→x

u(y) for x ∈ Σ.
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3 � The system of elasto‑static oscillations and its fundamental matrix

In this section, we recall the necessary background material related to the homogeneous 
system of elasto-static oscillations.

In the problem under study the domain � represents an elastic medium with density 
𝜌 > 0 and Lamé constants �,� satisfying conditions 𝜇 > 0 and 3𝜆 + 2𝜇 > 0.

The homogeneous system of elasto-static oscillations is

where u ∶ ℝ
3
→ ℂ

3 is the displacement vector and � ∈ ℝ is the oscillation frequency  
[12, p. 48].

System (1) can be expressed in the matrix form

by means of the ( 3 × 3 ) matrix differential operator

whose entries are

�jk being the delta Kronecker symbol. For the case � = 0 we simply write A(�x) and the 
above system turns into the Lamé one.

The fundamental matrix of (2) has the form

where

i is the imaginary unity, the non-negative constants k1 and k2 are determined by

and the costants �l, �l are the following ones

Γ(x,�) is known as Kupradze’s matrix and it has the property that each column and each 
row of it satisfy (2) for x ≠ 0 (see [12, p. 85]). Another important property to recall is that

Γ(x) being the Somigliana (or the Kelvin) matrix, that is the fundamental matrix of 
A(�x)u = 0 (see [12, p. 84 and p. 88]). In particular, the last limit relation is obtained by 
studying the behavior of the auxiliary matrix

(1)��u + (� + �)∇div u + ��2u = 0

(2)A(�x,�)u = 0

A(�x,�) = (Ajk(�x,�))j,k=1,2,3

Ajk(�x,�) = �jk(�� + ��2) + (� + �)
�2

�xj�xk
, j, k = 1, 2, 3,

Γ(x,�) = (Γkj(x,�))j,k=1,2,3

Γkj(x,�) =

2∑
l=1

(
�kj�l + �l

�2

�xk�xj

)
eikl|x|
|x| , x ∈ ℝ

3,� ≠ 0,

k2
1
= ��2(� + 2�)−1, k2

2
= ��2�−1,

�l = �2l(2��)
−1, �l = (−1)l(2���2)−1.

lim
�→0

Γ(x,�) = Γ(x)
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which will be useful also for our scope. In particular, we mention that, for every x ∈ ℝ
3 

and � ∈ ℝ , the following estimates hold:

where c̃(�,�) and c(�,�) are positive constants, depending on � and � only. Moreover,

For more details on the above estimates see [12, pp. 87–89].

4 � Boundary integral operators

Consider now the ( 3 × 3 ) matrix differential operator

with entries

T is known as the stress operator (see [12, p.57]).
We are interested in the kernels of the boundary integral operators ∓I + K and ±I + K∗ , 

where

the prime denoting the transpose of a matrix, and

with 1 < p < ∞ and p + q = pq.
The operators K and K∗ are adjoint ones with respect to the duality

where ⟨f , g⟩ stands for the bilinear form

(3)Γ̃(x,�) = Γ(x,�) − Γ(x),

(4)

|Γ̃kj(x,�)| ≤ |�|̃c(�,�), k, j = 1, 2, 3,

||||||
�Γ̃kj(x,�)

�xl

||||||
≤ �2c(�,�), k, j, l = 1, 2, 3

(5)
||||||
�2Γ̃kj(x,�)

�xl�xm

||||||
= O

(
1

|x|
)
, k, j, l,m = 1, 2, 3, x ≠ 0

T = (Tjk)j,k=1,2,3

Tjk = �nj
�

�xk
+ �nk

�

�xj
+ ��jk

�

�n
.

K ∶ [Lp(Σ)]3 → [Lp(Σ)]3, K�(x) = ∫Σ

[TyΓ(x − y,�)]��(y) d�y,

K∗ ∶ [Lq(Σ)]3 → [Lq(Σ)]3, K∗�(x) = ∫Σ

[TxΓ(x − y,�)]�(y) d�y

⟨� ,K�⟩ = ⟨K∗� ,�⟩,

∫Σ

fg d� = ∫Σ

3∑
j=1

fjgj d�.
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Denote by V0 the spaces of solutions of the homogeneous Dirichlet problem

and by W0 the spaces of solutions of the homogeneous traction problem

If �2 is not a Dirichlet eigenvalue of (6) then V0 = {0} ; analogously, if �2 is not a traction 
eigenvalue of (7) then W0 = {0} . Otherwise, such spaces are not trivial. Let us define

and

In view of [12, Theorems 2.2 and 2.3, p. 413–415], we have

Moreover, from (3), (4), and [12, p. 236 and p. 355] it follows

and

If �2 is not an interior traction (Dirichlet) eigenvalue, then mT = 0 ( mD = 0 ). Otherwise, 
the following results hold (see [10, Lemmas 3.1 and 3.2]).

Lemma 1 

	 (i)	 Let {�1,… ,�mT} be a basis of N(I + K∗) and define

Then

and the vector functions

(6)

⎧
⎪⎨⎪⎩

v ∈ [C1,�(�)]3 ∩ [C2(�)]3

A(�x,�)v = 0 in �

v = 0 on Σ

(7)

⎧⎪⎨⎪⎩

w ∈ [C1,�(�)]3 ∩ [C2(�)]3

A(�x,�)w = 0 in �

Tw = 0 on Σ.

V =
{
Tv
|||Σ ∶ v ∈ V0

}

W =
{
w|Σ ∶ w ∈ W0

}

(8)N(I + K) = W and N(I − K∗) = V .

dimN(I + K) = dimN(I + K∗) = mT ∈ ℕ

dimN(I − K) = dimN(I − K∗) = mD ∈ ℕ.

wj(x) = ∫Σ

Γ(x − y,�)�j(y) d�y, x ∈ ℝ
3⧵Σ, j = 1,… ,mT .

�j = −
1

2
[Twj]− on Σ, j = 1,… ,mT ,
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form a basis for N(I + K).
	 (ii)	 Let {�1,… , �mD} be a basis of N(I − K) and define

Then

and the vector functions

form a basis of N(I − K∗).

An inspection of the proof of Lemma 3.1 in [10] shows that

The same happens for the part (ii) of Lemma 1, that is

Remark 1  On account of Lyapunov–Tauber theorem [12, Theorem 8.3, p. 319], relation (9) 
is equivalent to

We end this section by proving some additional results about the kernels above 
considered.

Lemma 2  If � ∈ N(I ± K) and � ∈ N(I∓K∗) , then ⟨�, �⟩ = 0.

Proof  It is sufficient to note that

	�  ◻

Proposition 1  Let � ∈ [Lp(Σ)]3 be a solution of � − K� = 0 . Then � ∈ [W1,p(Σ)]3.

Proof  Let � ∈ [Lp(Σ)]3 such that � ∈ N(I − K) . It is easy to see that the potential

satisfies the boundary condition v+ = 0 on Σ . Moreover, taking (3) into account, the system 
� − K� = 0 can be rewritten as

� j = −[w
j
]− on Σ, j = 1,… ,mT ,

vj(x) = ∫Σ

[TyΓ(x − y,�)]��j(y) d�y, x ∈ ℝ
3⧵Σ, j = 1,… ,mD.

�j =
1

2
[vj]− on Σ, j = 1,… ,mD,

(9)� j = [Tv
j
]− on Σ, j = 1,… ,mD,

the determinant of the matrix (⟨� j,�l⟩)j,l=1,…,mT
does not vanish.

(10)the determinant of the matrix (⟨�j,� l⟩)j,l=1,…,mD
does not vanish.

(11)� j = [Tv
j
]+ on Σ, j = 1,… ,mD.

⟨�, �⟩ = ⟨∓K�, �⟩ = ∓⟨�,K∗�⟩ = −⟨�, �⟩.

v(x) = ∫Σ

[TyΓ(x − y,�)]��(y) d�y
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where

Note that the function H belongs to [W1,p(Σ)]3 by virtue of (4) and (5). Therefore, the dou-
ble layer potential with density �

satisfies

Then, following [12, Theorem 1.8 at p. 171 and pp. 313-313], there exists TE almost every-
where on Σ and it belongs to [Lp(Σ)]3 . In [5, Theorem 5] it has been proven that a solution 
E can be represented in terms of a simple layer potential with density � ∈ [Lp(Σ)]3:

Accordingly, we have that the function � satisfies

Now consider the following traction problem

By applying [13, Theorem 1], we have that (12) admits a solution w in terms of a double 
layer potental with density �0 ∈ [W1,p(Σ)]3 , since the compatibility conditions

are satisfied by virtue of Gauss–Green formulas (see [12, pp. 111-114]). Then

and the double layer potential

has to be a rigid displacement a ∧ x + b in � , a, b ∈ ℝ
3 . Finally, � = �0 + a ∧ x + b and this 

concludes the proof.	�  ◻

−�(x) + ∫Σ

[TyΓ(x − y)]��(y) d�y = H(x)

H(x) = −∫Σ

[TyΓ̃(x − y,�)]��(y) d�y.

E(x) = ∫Σ

[TyΓ(x − y)]��(y) d�y, x ∈ �,

A(�x)E = 0 in � and E = H on Σ.

E(x) = ∫Σ

Γ(x − y)�(y) d�y.

T ∫Σ

[TyΓ(x − y)]��(y) d�y = TE(x), x ∈ Σ.

(12)A(�x)w = 0 in � and Tw = TE on Σ.

∫Σ

[TE(x)] (a ∧ x + b) d�x = 0 ∀ a, b ∈ ℝ
3

T ∫Σ

[TyΓ(x − y)]�(�(y) − �0(y)) d�y = 0 on Σ

∫Σ

[TyΓ(x − y)]�(�(y) − �0(y)) d�y



	 A. Cialdea et al.

1 3

5 � The Dirichlet problem associated with A(@
x
,!)u = 0

In [10] we solved the Dirichlet problem for steady elastic oscillations in the class of potentials 
defined as follows.

Definition 1  We say that a function u belongs to the space Sp if and only if there exists 
� ∈ [Lp(Σ)]3 such that u can be represented by means of a simple layer potential with den-
sity � , i.e.

Namely, we dealt with the solvability and representation formula of solutions of the dif-
ferential problem

where the datum f satisfies conditions

The method applied consists in proving that a certain singular integral operator is reduc-
ible in the following sense. We say that a continuous linear operator S ∶ B1 → B2 between 
two Banach spaces can be reduced on the left if there exists a continuous linear opera-
tor R ∶ B2 → B1 such that RS = I + T  , where I stands for the identity operator on B1 and 
T ∶ B1 → B1 is a compact operator. Analogously, one can define an operator S reducible on 
the right. If S is a reducible operator, its range is closed and then the equation S� = � has a 
solution if and only if ⟨� , �⟩ = 0 , for any � ∈ B∗

2
 such that S∗� = 0 , S∗ being the adjoint of S 

(see, e.g., [11] or [14]).
Coming back to the method, by imposing the initial condition u|Σ = f  to a simple layer 

potential, we got an integral system of equations of the first kind

Following [3], we took the differential d of both sides of system (15), and we passed to the 
singular integral system

Note that the unknown is a vector function � ∈ [Lp(Σ)]3 , while the data is a vector whose 
components are differential forms of degree 1 belonging to Lp

1
(Σ) . The operator S defined 

by the left-hand size of (16), acting from [Lp(Σ)]3 into [Lp
1
(Σ)]3 , can be reduced on the left 

by the integral operator R�

∶ [L
p

1
(Σ)]3 ⟶ [Lp(Σ)]3 (introduced in [5]) defined as

u(x) = ∫Σ

Γ(x − y,�)�(y) d�y, x ∈ �.

(13)

⎧⎪⎨⎪⎩

u ∈ S
p

A(�x,�)u = 0 in �

u = f on Σ, f ∈ [W1,p(Σ)]3

(14)∫Σ

f Tv d� = 0, ∀ v ∈ V0,

(15)∫Σ

Γ(x − y,�)�(y) d�y = f (x), on Σ.

(16)S�(x) = ∫Σ

dx[Γ(x − y,�)]�(y) d�y = df (x), a.e. x ∈ Σ.
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(i = 1, 2, 3 ), where

and

As quoted before in general, this fact implies that the range of S is closed and Eq.  (16) 
admits a solution � ∈ [Lp(Σ)]3 if and only if

for every � ∈ [W
1,q

1
(Σ)]3 ( q = p∕(p − 1) ) such that d� = T(�x, n)vd� , with v ∈ V0 (see [10, 

Theorem 5.4]).
We conclude this section by the following existence result.

Theorem 1  Let f ∈ [W1,p(Σ)]3 ( 1 < p < ∞ ). There exists a solution of the Dirichlet prob-
lem (13) if and only if f satisfies the compatibility conditions

Proof  In [10, Theorem 5.5] is established that there exists a solution of (13) if and only if f 
satisfies compatibility conditions (14) and such conditions are equivalent to (17) because of 
(8), Lemma 1 part (ii), and (11). 	�  ◻

6 � The traction problem associated with A(@
x
,!)u = 0

The aim of this section is to solve the traction problem associated with the system 
A(�x,�)u = 0 in the following space of potentials.

Definition 2  We say that a function v belongs to the space Dp if and only if it can be repre-
sented by means of a double layer potential with density � ∈ [W1,p(Σ)]3 , i.e.

Consider the traction problem

R
�

i
[�](x) =

(� + �)(� + 2�)

(� + 3�)
Kjj[�](x) ni(x) + �Kij[�](x) nj(x)

+ �
(� + �)

(� + 3�)
Kji[�](x) nj(x)

Kjs[�](x) =∗ ∫Σ

dx[s1(x − y)] ∧ �j(y) ∧ dxs − �123
ihp ∫Σ

�

�xs
[Kij(x − y)] ∧ �h(y) ∧ dyp,

s1(x − y) = −
1

4�|y − x|
3∑
j=1

dxjdyj

Kij(x − y) =
1

4�

(yi − xi)(yj − xj)

|y − x|3 .

∫Σ

�j ∧ dfj = 0, j = 1, 2, 3

(17)∫Σ

f� j d� = 0 for every j = 1,… ,mD.

v(x) = ∫Σ

[TyΓ(x − y,�)]��(y)d�y, x ∈ �.



	 A. Cialdea et al.

1 3

where the datum g satisfies conditions

or, equivalently,

We begin by showing some preliminary results.

Proposition 2  Let v ∈ D
p with density u ∈ S

p , that is

where

with � ∈ [Lp(Σ)]3 . Then

for almost every x ∈ Σ.

Proof  We start by observing that

Indeed, let �n be a sequence of polynomials such that �n → � in [Lp(Σ)]3 and define

Thanks to [12, formula (2.6) at p. 122], we have that

Letting n → +∞ , we obtain (22).
On the other hand, u satisfies the following jump relation (see [12, formula (5.9) at  

p. 313])

(18)

⎧
⎪⎨⎪⎩

v ∈ D
p

A(�x,�)v = 0 in �

Tv = g on Σ, g ∈ [Lp(Σ)]3

(19)∫Σ

gw d� = 0, ∀w ∈ W0,

(20)∫Σ

g� j d� = 0, ∀j = 1,… ,mT .

v(x) = ∫Σ

[TyΓ(x − y,�)]�u(y)d�y,

u(x) = ∫Σ

Γ(x − y,�)�(y)d�y,

(21)Tv(x) = −�(x) + K∗2�(x)

(22)2u(x) = ∫Σ

Γ(x − y,�)Tu(y)d�y − ∫Σ

[TyΓ(x − y,�)]�u(y) d�y, x ∈ �.

un(x) = ∫Σ

Γ(x − y,�)�n(y)d�y, x ∈ �.

2un(x) = ∫Σ

Γ(x − y,�)Tun(y)d�y − ∫Σ

[TyΓ(x − y,�)]�un(y) d�y, x ∈ �.
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Then, for a.e. x ∈ Σ we have

that is formula (21). 	�  ◻

Lemma 3  The singular integral system

where g ∈ [Lp(Σ)]3 , admits a solution � ∈ [Lp(Σ)]3 if and only if conditions (20) and

are satisfied.

Proof  Suppose that (20) and (24) are satisfied and rewrite system (23) as follows:

Observe that the equation (I + K∗)� = g has a solution if and only if ⟨g,w⟩ = 0 for every 
w ∈ N(I + K) , and this is true because of (20). Let �0 be a solution and consider the 
equation

This is solvable if and only if ⟨�0, �i⟩ = 0 for every �i ∈ N(I − K), i = 1,… ,mD . Such 
compatibility conditions are satisfied since

and then,

on account of (24),
This shows that there exists a solution � of (25). Therefore � satisfies (23).
Conversely, if � is a solution of (23), we have

Tu(x) = �(x) + ∫Σ

[TxΓ(x − y,�)]�(y) d�y a.e. x ∈ Σ.

Tv(x) = T

{
−2u(x) + ∫Σ

Γ(x − y,�)Tu(y) d�y

}

= −

{
�(x) + ∫Σ

[TxΓ(x − y,�)]�(y) d�y

}

+ ∫Σ

[TxΓ(x − y,�)]

{
�(y) + ∫Σ

[TyΓ(y − z,�)]�(z) d�z

}
d�y

= −�(x) + ∫Σ

[TxΓ(x − y,�)]

{
∫Σ

[TyΓ(y − z,�)]�(z)d�z

}
d�y

(23)−� + K∗ 2� = g,

(24)∫Σ

g�i d� = 0, i = 1,… ,mD

(I + K∗)(−I + K∗)� = g.

(25)(−I + K∗)� = �0.

⟨�0, �i⟩ = ⟨�0,K�i⟩ = ⟨K∗�0, �
i⟩ = −⟨�0, �i⟩ + ⟨g, �i⟩,

2⟨�0, �i⟩ = ⟨g, �i⟩ = 0, i = 1,… ,mD

(−I + K∗)(I + K∗)� = g.
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In particular, g ∈ R(I − K∗) , and then ⟨g, u⟩ = 0 for all u ∈ N(I − K) . This implies that 
conditions (24) are fulfilled.

On the other hand, (I + K∗)(−I + K∗)� = g . Hence g ∈ R(I + K∗) and ⟨g, v⟩ = 0 for all 
v ∈ N(I + K) , from which conditions (20) follow. 	�  ◻

Lemma 4  Given � ∈ [W1,p(Σ)]3 there exist � ∈ [Lp(Σ)]3 and c1,… , cmD
∈ ℂ such that

The vector (c1,… , cmD
) is the unique solution of the system

Proof  Let � ∈ [W1,p(Σ)]3 . In view of Proposition 1 the function � −
∑mD

i=1
ci�

i belongs to 
[W1,p(Σ)]3 for any c1,… , cmD

 . Thanks to Theorem  1, there exists � ∈ [Lp(Σ)]3 satisfying 
(26) if and only if

that is, (c1,… , cmD
) is solution of system (27).

Observe that the existence and the uniqueness of the constants c1,… , cmD
 follow from 

(10). 	�  ◻

Remark 2  The sum on the right-hand side of (26) is not present if �2 is not an interior Dir-
ichlet eigenvalue.

Theorem 2  There exists a solution of the traction problem (18) if and only if the datum 
g ∈ [Lp(Σ)]3 satisfies compatibility conditions (19) (or, equivalently, (20)). If �2 is not an 
interior traction eigenvalue then the traction problem (18) is always solvable.

Proof  Assume that g satisfies (20). Let (c1,… , cmD
) be the solution of the system

and consider the double layer potential

where � ∈ [Lp(Σ)]3 . By imposing the boundary condition and taking into account Proposi-
tion 2, (9), and (11), we get

(26)�(x) = ∫Σ

Γ(x − y,�)�(y) d�y +

mD∑
i=1

ci�
i(x), x ∈ Σ.

(27)
mD�
i=1

ci⟨�i,� j⟩ = ⟨� ,� j⟩, j = 1,… ,mD.

∫Σ

(
� −

mD∑
i=1

ci�
i

)
� jd� = 0, j = 1,… ,mD,

(28)
mD�
i=1

ci⟨� i, �j⟩ = ⟨g, �j⟩, j = 1,… ,mD

v(x) = ∫Σ

[TyΓ(x − y,�)]�
(
∫Σ

Γ(y − z,�)�(z) d�z

)
d�y

+

mD∑
i=1

ci ∫Σ

[TyΓ(x − y,�)]��i(y) d�y, x ∈ �,
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Then v satisfies the boundary conditions if and only if

Such a system admits a solution � ∈ [Lp(Σ)]3 if and only if

and

(see Lemma 3). Both the above set of conditions are satisfied. In fact, thanks to (20) and 
Lemma 2,

and so conditions (29) are fulfilled. Conditions (30) hold in view of (28).
Conversely, let v ∈ D

p be a solution of (18) with density � ∈ [W1,p(Σ)]3 . Lemma 4 
infers that � can be written as in (26). Therefore,

because of Proposition 2 and Remark 1.
Now fix w ∈ W0 . From (8), w|Σ ∈ N(I + K) and, from Lemma  2, ∫

Σ
� iw d� = 0 

( j = 1,… ,mT ) . On the other hand, (−� + K∗ 2�) ∈ R(I + K∗) , and hence 
∫
Σ
(−� + K∗ 2�)wd� = 0 for every w ∈ N(I + K).
Accordingly,

and this concludes the proof. 	�  ◻

Funding  Open access funding provided by Università degli Studi della Basilicata within the CRUI-CARE 
Agreement.

Tv(x) = −�(x) + K∗ 2�(x) +

mD∑
i=1

ci�
i(x) = g(x), x ∈ Σ.

−� + K∗ 2� = g −

mD∑
i=1

ci�
i on Σ.

(29)∫Σ

(
g −

mD∑
i=1

ci�
i

)
� jd� = 0, j = 1,… ,mT

(30)∫Σ

(
g −

mD∑
i=1

ci�
i

)
�jd� = 0, j = 1,… ,mD

∫Σ

(
g −

mD∑
i=1

ci�
i

)
� jd� = −

mD∑
i=1

ci ∫Σ

� i� jd� = 0,

−� + K∗ 2� +

mD∑
i=1

ci�
i = g on Σ

∫Σ

gw d� = ∫Σ

(−� + K∗ 2�)wd� +

mD∑
i=1

ci ∫Σ

� iw d� = 0
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