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Abstract 

Climate mitigation, more stringent regulations, rising energy costs, and sustainable 

manufacturing are pushing researchers to focus on energy efficiency, energy 

flexibility, and implementation of renewable energy sources in manufacturing 

systems. This thesis aims to analyze the main works proposed regarding these hot 

topics, and to fill the gaps in the literature. First, a detailed literature review is 

proposed. Works regarding energy efficiency in different manufacturing levels, in the 

assembly line, energy saving policies, and the implementation of renewable energy 

sources are analyzed. Then, trying to fill the gaps in the literature, different topics are 

analyzed more in depth. In the single machine context, a mathematical model aiming 

to align the manufacturing power required to a renewable energy supply in order to 

obtain the maximum profit is developed. The model is applied to a single work center 

powered by the electric grid and by a photovoltaic system; afterwards, energy storage 

is also added to the power system. 

Analyzing the job shop context, switch off policies implementing workload approach 

and scheduling considering variable speed of the machines and power constraints are 

proposed. The direct and indirect workloads of the machines are considered to support 

the switch on/off decisions. A simulation model is developed to test the proposed 

policies compared to others presented in the literature. Regarding the job shop 

scheduling, a fixed and variable power constraints are considered, assuming the 

minimization of the makespan as the objective function. 

Studying the factory level, a mathematical model to design a flow line considering the 

possibility of using switch-off policies is developed. The design model for production 

lines includes a targeted imbalance among the workstations to allow for defined idle 

time. 

Finally, the main findings, results, and the future directions and challenges are 

presented. 
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Introduction 
The Paris Agreement is an international treaty on climate change and has been adopted 

by 196 Parties in the twenty-first session of the Conference of the Parties (UNFCCC, 

2015). It has defined a limit to the increment in the global average temperature of 2°C 

compared to pre-industrial levels and the Parties makes efforts to contain the 

temperature increase to 1.5°C respect the same benchmark. In the last five years, as 

reported in (IRENA, 2019b), energy-related CO2 emissions have risen by 1.3% per 

year. Fossil fuels impact around two-thirds of global greenhouse gas emissions and the 

increment of their use in emerging economies is affecting air quality, and then human 

health, together with climate changes (IEA, 2020). It’s important that all economic 

sectors meet zero CO2 emissions at the beginning of the second half of this century in 

order to limit the increase of the global average temperature to 1.5°C (IRENA, 2020). 

Climate change has several effects on environmental, human, and economic aspects; 

it impacts sea level rise, agriculture, human health, ecosystems, drought and flooding, 

weather conditions and so on (Watkiss et al., 2005). Europe, following the path of 

sustainability and climate change mitigation through the “20-20-20” targets, defined 

the goals for 2030 (Tsemekidi Tzeiranaki et al., 2020): reduction of 40% of greenhouse 

gas emissions with respect to 1990 values; minimum 32% of renewable energy 

consumption; increment of energy saving at least of 32.5%. About 24% and 5% of the 

global greenhouse gas emissions are related respectively to industrial energy 

consumption and to industrial processes (Ritchie & Roser, 2020), as in Figure I.1. 
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Figure I.1 Global greenhouse gas emissions by sector (Ritchie & Roser, 2020) 

Energy efficiency and renewable energy sources could provide more than 80% of the 

emission savings required (IRENA, 2020). Improving energy efficiency and the 

implementation of renewable energy supplies could give also economic benefits. 

Indeed, the electricity price without taxes for non-household consumers varied 

similarly to the inflation trend till 2012, and after presented a decrement (Eurostat, 

2020a). However, as discussed, the persistent increment in taxes has led to a growth 

in the electricity total price (evaluated in the second half of 2020) of 29.5% compared 

to the inflation-adjusted price of the first semester of 2008. The transition to a 

decarbonized global energy system will involve huge investments in energy efficiency, 

renewable energy sources and enabling infrastructure (IRENA, 2019b). 

As reported in (Eurostat, 2020b) the renewable energy sharing has been more than 

doubled between 2004 and 2019, and this growth is expected to continue. 

Indeed, only in 2020, the increment of renewable power generation capacity, defined 

as the maximum net generating capacity of power obtained with renewable energy 

sources to generate electricity, has been of about 10.3% respect the previous year 

(IRENA, 2021a). Solar and wind energy are driving the growth of renewable energy 

sources, covering about 91% of all net renewable additions. The power capacity trend 

of the main renewable energy sources from 2011 till 2020 has been reported in the 
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following figure (Figure I.2) and it can be noticed the high increment of solar and wind 

sources. 

 

 

 
Figure I.2 Capacity power of the main renewable energy sources from 2011 till 2020 

(data taken from (IRENA, 2021b)) 

The continuous expansion of renewable sources is also due to their lowing costs. For 

example, the total photovoltaic installed cost decreased between 66% and 84% during 

2010-2018 (IRENA, 2019a). Furthermore, the energy transition impacts the socio-

economic system. IRENA (2019b) called REmap case the scenario in which the 

temperature increase limit defined in the Paris Agreement is respected through 

renewable energy sources and energy efficiency. As argued, the REmap case could 

improve Gross Domestic Product and whole-economy employment, respectively they 

will be incremented relatively about of 2.5% and 0.2% by 2050.  

Energy efficiency is defined as “the ratio of output of performance, service, goods or 

energy, to input of energy” (Directive 2012/27/EU, 2012). Energy flexibility is 

indicated as “[…] the ability of a production system to adapt itself fast and without 

remarkable costs to changes in energy markets.” (Graßl et al., 2014). Energy flexibility 

is very important in order to implement renewable energy sources in manufacturing. 

Indeed, many renewable power systems are time-variable sources unlike traditional 
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ones. As reported in (IRENA, 2018), a power system is defined as flexible if can in an 

economic and reliable way meet the peak load, avoid the load losses, balance supply 

and demand, have adequate storage, adjust the demand following needs, mitigate 

destabilizing events and operate with market efficiency. The flexibility enables 

optimal implementation of variable renewable energy supplies by enhancing their use. 

Synergies between energy flexibility and renewable energy sources have been 

discussed in (IRENA, 2017). The higher energy efficiency, the lower the overall 

energy demand, and then the higher sharing of renewable in the energy mix. 

Manufacturing firms could achieve sustainable production with energy efficiency, 

energy flexibility and renewable energy sources gaining also benefit in terms of costs 

and green reputation.  

Manufacturing is defined as “The entirety of interrelated economic, technological, and 

organizational measures directly connected with the processing/machining of 

materials, i.e., all functions and activities directly contributing to the making of 

goods.” (Segreto & Teti, 2019). As argued by Segreto and Teti, in manufacturing 

physical and chemical processes are used to change shape, size, properties and 

characteristics in order to realize a part or several parts, that will be assembled, of a 

final product. Machines, robots, material-handling equipment, energy, workers and 

several tools are necessary to complete the manufacturing process. Manufacturing 

plays a role key in the global economy. As reported in (Eurostat, 2021b), about the 

8.8% of non-financial business economy in the EU-27 are classified to manufacturing. 

The importance of manufacturing is demonstrated by its contribution to employment 

(Figure I.3), about 22.8%, and to non-financial business economy value added, about 

29.3%, compared to the other NACE (European Classification of Economic Activities) 

sections in EU-27’s non-financial business economy (Eurostat, 2021b).  
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Figure I.3 Persons employed in EU-27 grouped by NACE sections in 2017 (data 

taken from (Eurostat, 2021a) 

The importance of the manufacturing activities and the actual challenges to pursue 

green production have attracted the focus of researchers. Nowadays, indeed, energy 

efficiency and sustainability in manufacturing is a hot topic; scholars have provided 

several studies and have explored the wide ranges of manufacturing system typologies.  

This thesis aims to investigate the main works proposed in literature regarding energy 

efficiency, flexibility and the use of renewable energy sources in manufacturing 

systems and to cover the topics that have been insufficiently investigated. The 

dissertation is organized as follows. 

Chapter 1 presents the literature review and extends the motivations of this study 

presenting the proposed research questions.  

Chapter 2 analyzes the implementation of a renewable energy source in a single 

machine context. 

New switch-off policies based on workload are provided and compared to others 

present in the literature in Chapter 3. 

A scheduling model of a job shop system with power constraint is studied and 

developed in Chapter 4.  

Chapter 5 provides a design model of a flow line that takes into account the switch-off 

policies. 

Finally, the conclusions and future works are presented and discussed. 
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Chapter 1: Research background and motivations 
1.1 Literature review 

The number of articles regarding energy efficiency and sustainability in manufacturing 

systems analyzed in each year from 2007 until August 2021 has been reported in the 

following figure (Figure 1.1). The literature analysis has been conducted considering 

“Web of Sciences”, “ScienceDirect” and “Google Scholar” databases; the main 

keywords used are “energy consumption”, “energy-efficient”, “energy-saving”, 

“energy efficiency”, “energy cost”, “energy optimization”, “sustainable”, “renewable” 

in combination with “manufacturing”, “manufacturing system”. To deepen the state of 

the art, the previous keywords were used along with others related to the characteristics 

of the manufacturing system, for example “job-shop”, “flow-shop”, “single-machine”, 

etc... It can be noticed that the number of papers has grown considerably in recent 

years.  

 
Figure 1.1 Publication year/number of articles graph 

Figure 1.2 reports the eight journals in which are published the greatest number of 

papers analyzed. In “CASE” are grouped the articles presented in several years of the 

“International Conference on Automation Science and Engineering (CASE)”. The 

other journals or proceedings present less than six articles for each of them. 
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Figure 1.2 Journal/number of articles graph 

The percentage of papers for each publisher has been reported in Figure 1.3; in the 

graph “other” groups the publishers with one article each. 

 

 
Figure 1.3 Percentage of papers in each publisher 

A general overview of the different sections of the literature review has been reported 

in Figure 1.4. 
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Figure 1.4 Literature analysis overview 

The papers analyzed have been classified into four main groups, each of them can be 

split into other classes and subclasses.  

The four main groups are:  

§ Manufacturing system context; 

§ Assembly line; 

§ Policies and strategies for energy saving; 

§ Renewable energy sources in manufacturing systems. 

The first and the second group collect the papers regarding energy efficiency 

respectively in the manufacturing system and assembly line context. The first of them 

is also divided into subclasses considering the type of manufacturing system analyzed. 

The policies and strategies for energy saving group is considered apart from the 

previous ones as the results achieved concern several typologies of manufacturing 

system and could be extended to different contexts. For the same reason, the 
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application of renewable energy sources in manufacturing is considered as a separate 

section. A separate paragraph (1.1.5) tries to sort the approaches used in the previous 

groups into different classes and discussed the several techniques, how they are 

widespread, and their use in the literature. 

Figure 1.5 shows the number of articles included in each main class and subclasses 

analyzed. 

 

 

 
Figure 1.5 Percentage of papers in each class 
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1.1.1 Manufacturing system context 

In the following section, the main studies focusing on energy efficiency and on the 

reduction of energy consumption in manufacturing systems are analyzed. 

The section is composed of the following subsections based on the manufacturing level 

in which the energy-saving actions have been applied or on the characteristic of the 

manufacturing system: 

1.1.1.1 Single machine 

1.1.1.2 Two machines in line 

1.1.1.3 Parallel machines 

1.1.1.4 Flow shop 

1.1.1.5 Job shop 

1.1.1.6 Open shop 

1.1.1.7 Cellular manufacturing system 

1.1.1.8 Reconfigurable manufacturing system 

A brief presentation of other process types is discussed in subsection 1.1.1.9. 

 

1.1.1.1 Single machine 

The single machine level is the first grade where energy-saving strategies can be 

implemented. One of the principal approaches proposed in the literature for energy-

efficient machining is the optimization of the process parameters. Papers in the single 

machine context concern material removal processes and single-machine scheduling; 

conventional machining processes, i.e. milling, turning, and drilling, and the grinding 

operations (a typical abrasive process) have been selected among the several 

typologies of the material removal processes. 

In the following, the studies concerning the cutting parameters have been grouped 

according to the type of machining process in subsection 1.1.1.1.1 to 1.1.1.1.4. 

Subsection 1.1.1.1.5 presents the works regarding the single machine scheduling with 

energy aspects. 

1.1.1.1.1 Milling 

Calvanese et al. (2013) found the optimal cutting condition in terms of cutting speed 

and feed rate in order to minimize the energy consumption of a machine tool. In their 
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work, an analytical model for the energy characterization of a computer numerical 

control milling center has been discussed. 

In the same context, Albertelli et al. (2016) provided an energy consumption model of 

a machine tool required during a face milling operation. In the evaluation of the energy 

consumption, several components needed for the milling, the cutting energy, and the 

passive phase energy have been considered. The objective function is the minimization 

of the energy consumption and the cutting speed, the feed rate, and the radial depth of 

cut have been considered as the parameters of the optimization. Other works 

concerning energy consumption, which is defined as one of the multiple objectives of 

the optimization in milling achievable through the proper selection of the cutting 

parameters, can be found in (C. Li et al., 2017; Jian-guang Li et al., 2014). 

Approaching the energy consumption, J. Yan and Li (2013) considered material 

removal rate, surface roughness, and cutting energy as the optimization objectives and 

addressed the investigation of the best parameters (spindle feed, feed rate, depth of cut, 

and width of cut) using the weighted grey relational analysis and the response surface 

methodology. Moreover, a Cuckoo search algorithm has been applied to a multi-

objective optimization model considering the minimization of the energy footprint and 

of the production time (X. Chen et al., 2019). Another metaheuristic algorithm has 

been used for energy optimization in the milling context (W. Wang et al., 2020). In 

their work, W. Wang et al. developed a dual-objective optimization model, i.e. the 

minimization of the power consumption and of the processing time, and used an 

artificial bee colony algorithm to solve the mathematical problem to find the best 

parameters. T. Zhang et al. (2020) developed a mechanical milling power model with 

the aim of analyzing the main milling parameter effects on the specific milling energy, 

specific removing energy and energy efficiency. The main result of the study is that 

the lower the rotational speed, the feed rate per tooth, the axial cutting depth, and the 

cutting width, the higher the specific removing energy. This outcome is due to the 

increment of idle energy. The authors argued that an increment of the milling 

parameters leads to a higher value of energy efficiency.  

Abdul Hadi et al. (2021) focused on the machining process of two aluminium pieces. 

The spindle power input is changed considering the high frequency data of the machine 

provided by an edge device. The optimization of the spindle power input achieves peak 
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power smoothing and lower total energy consumption with negligible effect on costs 

and production time. 

1.1.1.1.2 Turning 

Hanafi et al. (2012) applied a grey relational theory and Taguchi optimization for the 

minimization of the power consumption and of the surface roughness during a turning 

process. The authors showed by using Pareto analysis that the depth of cut, followed 

by cutting speed and feed rate, is the parameter that most impacts the optimization 

objectives. Rajemi et al. (2010) proposed a machining energy model with the aim of 

finding the cutting speed that allows minimizing the energy consumption. They argued 

that the best energy conditions don’t always are the same for the minimum cost 

criterion. Another work concerning the energy saving in turning can be found in (Q. 

Wang et al., 2014). In the paper, the effect of the cutting depth, feed rate, and cutting 

speed has been studied and the optimization model, considering as objectives the 

energy, the cost, and the quality, has been developed and solved using non-dominated 

sorting genetic algorithm II (NSGA-II). 

1.1.1.1.3 Drilling 

Mori et al. (2011) showed that the power consumption reduction can be achieved by 

the selection of cutting conditions also in drilling in addition to the face/end milling. 

Moreover, they argued that an appropriate pecking cycle and the synchronization of 

the spindle with the feeding system lead to a reduction of the power consumption. 

Analyzing the energy efficiency in drilling, Zhongwei Zhang et al. (2020) proposed a 

mathematical model in order to minimize energy consumption and processing time. In 

their study, a deep-hole drilling process with two drills has been considered and a 

particle swarm optimization-based algorithm has been applied to find the best 

parameters setting. The energy prediction models in drilling (S. Jia et al., 2018, 2019) 

are really useful tools to obtain energy savings.  

1.1.1.1.4 Grinding 

Regarding the grinding process, Heinzel and Kolkwitz (2019) analyzed the effect of 

fluid supply on energy efficiency. The results showed that the modular nozzle has 

higher energy efficiency than the tangential flat nozzle despite the higher power 

consumption. Either the flow rate has an impact on the specific energy; therefore, the 

higher the flow rate, the higher the energy efficiency.  
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The eco-efficiency can be achieved by an optimal selection of the main influencing 

grinding parameters and considering surface roughness, costs, and carbon footprint as 

the objectives of the optimization process (Winter et al., 2014). Other works regarding 

the eco-efficiency and the energy consumption in grinding can be found in (P. Jiang et 

al., 2017; W. Li et al., 2012) 

1.1.1.1.5 Single machine scheduling 

In the single machine scheduling context, Mouzon and Yildirim (2008) developed a 

framework in order to minimize the total energy consumption and the total tardiness. 

In their work, an approximate Pareto front has been obtained using a greedy 

randomized multi-objective adaptive search metaheuristic method and the solutions 

have been compared by using an analytical hierarchy process. The minimization of the 

total completion time and of the total energy has been selected as the optimization 

objective in (Yildirim & Mouzon, 2012) and a genetic algorithm has been 

implemented to address the problem. Appropriate single machine production 

scheduling has been used to reduce the energy cost (Shrouf et al., 2014). The authors 

considered the variable energy cost; the job starting time, the idle and inactive time, 

and the energy cost have been obtained by using the proposed scheduling model. 

Shijin Wang et al. (2016) addressed bi-objective single-machine batch scheduling with 

different job sizes, the time of use electricity tariffs, and various machine energy 

consumption to minimize both the total energy cost and the makespan. Two 

decomposition-based heuristic methods and an  e-constraint method have been applied 

to find respectively the approximate and the exact Pareto front. 

Based on the work of Shijin Wang et al. (2016), S. Zhang et al. (2018) proposed two 

improved heuristic methods to solve the problem. 

 

1.1.1.2 Two machines in line 

The simplest multi-machine configuration is a manufacturing system composed of two 

machines in line. This setup is defined also as a flow shop with two machines. 

Regarding the context of the two-machine sequence-dependent permutation flow shop, 

the compromise between the minimization of the energy consumption and of the 

makespan has been studied in (Mansouri et al., 2016). Addressing this aim and finding 

the Pareto frontier, they proposed a mixed integer linear multi-objective optimization 
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model and developed a constructive heuristic method to solve it. In subsequent work, 

this study is further analyzed and a new constructive heuristic method has been 

implemented with the purpose of outperforming the previous one (Mansouri & Aktas, 

2016). The single job two machines scheduling problem has been studied in (Fang et 

al., 2020). In their work, the authors considered the possibility of divide the job into 

several sub-lots each of them characterized by different processing speeds. With these 

considerations, the aim of the paper is to obtain the optimal schedule (the size of the 

sub-lots and the processing speeds) that allows minimizing the total energy 

consumption. Assia et al. (2020) analyzed the energy-saving through scheduling in a 

flow shop composed of two machines. In the paper a mixed integer linear 

programming with two objectives is proposed; the mathematical model has been 

solved with an exact method in order to minimize the makespan and the total energy 

consumption. The optimization process provides the production and preventive 

maintenance planning that results in a minimization of the considered targets. 

Considering the electricity cost could be an alternative way to address the energy 

efficiency; usually, the energy costs are higher during the power peak period, so 

avoiding high power consumption when the electricity prices are high leads to less 

electric line saturation. Shijin Wang, Zhu, et al. (2018) provided a two-machine 

permutation flow shop scheduling model in order to minimize the total electricity cost, 

considering variable the electrical cost during the time. The authors used two heuristic 

algorithms to obtain the optimal schedule and in addition they proposed an iterated 

local search method. In another approach discussed in (Ho et al., 2020), the 

minimization of the total electricity cost has been achieved considering fixed the 

minimum makespan and under time-of-use electricity tariffs; six heuristic algorithms, 

three based on Johnson’s rule and three based on Hadda’s algorithm, have been 

proposed and tested. C.-B. Yan (2019) studied the energy consumption optimization 

problem in a two machines serial line considering the Bernoulli reliability model.  

 

1.1.1.3 Parallel machines 

In this subsection, the papers regarding the energy efficiency in parallel machine 

context have been grouped. A parallel machine system can be distinguished as 
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identical, uniform, and unrelated (Graham et al., 1979). Paragraph 1.1.1.3.4 reports the 

works regarding a combination of the previous classes. 

1.1.1.3.1 Identical parallel machines 

In this case, the parallel machines of the manufacturing system are identical and work 

at the same speed. 

The simultaneous minimization of the makespan and of the total electricity cost in 

identical parallel batch-processing machines has been studied in (Zhao-hong Jia et al., 

2017). The scheduling problem has been solved using a Pareto-based ant colony 

algorithm. Together with the electricity cost under time-of-use tariffs, the total 

weighted tardiness has been considered as one of the targets of the optimization 

process, that is addressed with the e-constraint method and with three heuristic 

methods based on grouping genetic algorithms (Rocholl et al., 2020). The e-constraint 

method is suitable for the small-scale instances, and it has been applied for the identical 

parallel machine scheduling problem considering the total energy consumption and the 

makespan as the objectives of the optimization (Shijin Wang, Wang, et al., 2018); 

instead for the medium and large scale instances a developed constructive heuristic 

model with local search strategy and a non-dominated sorting genetic algorithm II have 

been used. C.-H. Liu et al. (2018) studied the concomitant minimization of the total 

weighted tardiness for one job and of the total completion time for another one 

considering a constraint on the peak power consumption. The set of solutions has been 

obtained using a domination number-based genetic algorithm. 

1.1.1.3.2 Uniform parallel machines 

The uniform parallel machines can work at different processing speeds. 

A scheduling model, solved by a differential evolution algorithm and considering the 

makespan and the total electricity cost minimization, in the context of uniform parallel 

batch processing machines can be found in (S. Zhou et al., 2018). Zandi et al. (2020) 

proposed a heuristic algorithm addressing the scheduling problem. The proposed 

method returns an exact Pareto frontier of the total energy consumption and of the total 

completion time. 

1.1.1.3.3 Unrelated parallel machines 

Parallel machines are defined unrelated if the processing time depends on the machine 

speed and the speed is specific per each machine and job matching. 
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The scheduling problem concerning the unrelated parallel machine environment has 

been analyzed by Kurniawan et al. (2017). In their work, a genetic algorithm has been 

developed in order to minimize the total cost composed of the makespan cost and the 

electricity cost, which is considered variable during the periods. Considering the time 

of use electricity tariffs, two different approaches based on genetic algorithm have 

been used to minimize the total cost composed of the makespan cost and the electricity 

cost (Kurniawan et al., 2017; Moon et al., 2013). Saberi-Aliabad et al. (2020) 

developed a mixed integer linear programming model with the objective of the 

minimization of the consuming energy cost, considering also different electricity 

tariffs. In addition, a fix and relax heuristic algorithm has been proposed to address a 

large-size instances problem. In the same manufacturing context, a memetic 

differential algorithm has been applied to minimize both the makespan and the total 

energy consumption (Xueqi Wu & Che, 2019).  

To minimize the total tardiness, including also the total energy consumption as a non-

key objective, an imperialist competitive algorithm has been proposed (Pan et al., 

2018). The simulation results show the feasibility of using the algorithm proposed in 

the low carbon parallel unrelated machine scheduling context. Meng, Zhang, Shao, 

Ren et al. (2019) developed a five mixed integer linear programming model for the 

unrelated parallel machine scheduling of a hybrid flow shop. In this study, the energy 

saving is obtained by machines turning off/on, reducing in this manner the energy 

consumption in idle state. An improved genetic algorithm for addressing the 

minimization of the total energy consumption has been proposed and compared with 

other optimization algorithms. Cota et al. (2021) provided a mixed integer linear 

programming model in order to minimize the makespan and the total electricity 

consumption. By using a developed heuristic algorithm, called multi-objective smart 

pool search metaheuristic, the solution of the problem returns the allocation and the 

order of the jobs, and the processing speed. 

1.1.1.3.4 Hybrid parallel machines 

In (Hongliang Zhang et al., 2021) a scheduling problem with the objective of total 

electricity cost minimization considering the electrical prices variable during the time 

has been studied in two-stage parallel machine context. The manufacturing system 

consists of identical parallel machines and unrelated parallel machines respectively at 
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stage 1 and at stage 2. A tabu search-greedy insertion hybrid algorithm has been 

developed to solve the new continuous-time mixed-integer linear programming model. 

 

1.1.1.4 Flow Shop 

In the flow shop context, scheduling is still a good strategy for energy saving and 

efficiency. Flow shop with specific characteristic have been grouped in subsection 

1.1.1.4.1 and 1.1.1.4.2. 

Hao Zhang et al. (2014) provided a time-indexed integer programming with the aim 

of minimizing the electricity cost and the CO2 emissions without reducing 

productivity. The authors argued that shifting the greatest energy demands during off 

and mid peak hours leads to a reduction in electricity costs. However, CO2 reduction 

does not always meet electricity cost reduction; the CO2 emissions per kWh depend 

on the mix of power resources used and how they are combined during peak hours. 

The peak power consumption has been evaluated as an important issue of the flow 

shop scheduling in (Nagasawa et al., 2015). The approach proposed considered the 

uncertain processing time of the operations and consists of obtaining for first the initial 

schedule that allows minimizing the peak power consumption and the inventory cost. 

In a second phase, a rescheduling is provided to prevent the peak power due to the 

uncertainty of the processing time including idle times. Differing from the other works 

on the scheduling problem, G.-S. Liu, Yang, et al. (2017) considered the minimization 

of the energy consumption with the evaluation of the product quality. The machine 

speed influences the production time, energy consumption, and product quality. 

Quality control has been considered at the end of the line and, if the product quality 

doesn’t satisfy the requirement, it’s necessary to rework the piece with additional 

energy consumption and time. The authors developed a novel three-stage 

decomposition approach to address the scheduling problem. The minimization of the 

total energy cost as the objective function in flow shop energy-efficient scheduling has 

been addressed using a memetic algorithm in (Marichelvam & Geetha, 2021). In this 

paper, the workers’ absenteeism, cancelled, and rush orders have been included. In 

(G.-S. Liu, Zhou, et al., 2017) the sum of the energy consumption and tardiness has 

been considered as the target of the optimization process. Fuzzy numbers have been 

formulated to consider the uncertainty in the scheduling problem and a genetic 
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algorithm has been applied to solve it. Even in (B. Zhou & Liu, 2019), the fuzzy 

numbers have been used to take into account the uncertainty of processing time; in this 

paper, the minimization of the total weighted delivery penalty and of the total energy 

consumption has been defined as objective function and a multi-objective differential 

evolution algorithm has been provided. The flow line has been considered as a 

Bernoulli serial line with the aim of improving energy efficiency by scheduling 

machine shutdowns (G. Chen et al., 2013). The problem of single item capacitated lot-

sizing in flow shop considering energy aspects has been studied in (Masmoudi et al., 

2015). In this paper, two mixed integer programming models have been developed in 

order to minimize the total production cost consisting of electrical, holding, setup and 

power demand costs. Extending this work to address the lot-sizing problem in the case 

of the medium and large scale, Masmoudi et al. (2017a) proposed two heuristic 

methods based on movement techniques and Masmoudi et al (2017b) developed a fix-

and-relax heuristic and a genetic algorithm. The multi-item capacitated sizing problem 

considering energy aspects has been investigated in (Masmoudi et al., 2016).  

The blocking is typical in a flow shop system without buffers between machines or 

with limited and full intermediate buffers (Pinedo, 2008). This blocking condition 

imposes the impossibility of leaving the upstream machine until the job on the next 

machine is completed. In the blocking flow shop context, a scheduling problem 

considering also energy saving has been proposed (Han et al., 2020). The authors 

considered the minimization of the makespan and of the energy consumption during 

job blocks and machine idle time. A discrete multi-objective evolutionary optimization 

algorithm has been used to address the problem. 

1.1.1.4.1 Permutation Flow Shop 

The permutation flow shops are characterized by a fixed order of the jobs through the 

machines (Potts et al., 1991). 

Controlling power peak is a very important issue in energy efficiency. A scheduling 

model that considering peak power as a constraint and makespan as the objective 

function has been discussed in (Fang et al., 2013). E. Jiang and Wang (2019) 

considered as objectives of the scheduling problem the maximum completion time and 

the total energy consumption and addressed the optimization using an evolutionary 

algorithm based on decomposition. The flow shop analyzed is characterized by the 
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setup time of each job depending on the sequence. C. Lu et al. (2017) extended the 

permutation flow shop scheduling problem considering in their model also 

transportation time, sequence-dependent setup time, and the energy consumption in 

the setup stage, in the transportation phase, and in the public period with the classical 

time and energy features. A hybrid multi-objective backtracking search algorithm has 

been provided to solve the scheduling model. 

A mixed integer linear programming model has been developed in (Öztop et al., 2020) 

considering as objective function the minimization of the total flow time and of the 

total energy consumption and assuming a machine variable processing speed. To 

address the problem for small instances an e-constraint approach has been proposed, 

whereas for the large instance problems an e-constraint approach and two iterated 

greedy algorithms, a variable block insertion heuristic algorithm, and construction 

heuristic procedure have been provided. Utama et al. (2020) developed a hybrid whale 

optimization algorithm in order to minimize the energy consumption in a permutation 

flow shop scheduling with a dependent sequence setup. Xueqi Wu and Che (2020) 

considered the simultaneous minimization of the makespan and the total energy 

consumption in the no-wait permutation flow shop scheduling problem. In their study 

machine processing speeds have been adapted respecting the objective functions and 

an adaptive multi-objective variable neighborhood search algorithm has been used to 

achieve the Pareto front. In the same manufacturing context, the total energy 

consumption and the total tardiness have been considered as objective functions and 

three metaheuristic algorithms (an ant colony algorithm, a genetic algorithm, and a 

genetic algorithm with local search) have been provided in (Yüksel et al., 2020). 

The distributed permutation flow shop is a general case of a permutational flow shop 

characterized by several identical factories, each of them consisting of the same 

machines arranged in series (Naderi & Ruiz, 2010). J. Chen et al. (2019) proposed a 

scheduling model for the distributed no-idle permutation flow shop context with the 

aim of minimizing the total energy consumption and the makespan using a 

collaborative optimization algorithm. The same targets have been considered in (J.-J. 

Wang & Wang, 2020) regarding distributed permutation flow shop. In this work, the 

problem is solved using a knowledge-based cooperative algorithm. 
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1.1.1.4.2 Flexible Flow Shop 

The flexible flow shop can be defined as “a generalization of the flow shop and the 

parallel machine environments” (Pinedo, 2008).  

Regarding the flexible flow shop, Bruzzone et al. (2012) proposed an approach based 

on two phases to consider peak power in the scheduling problem. In the first phase 

using mixed integer programming, a production schedule is obtained in order to 

minimize the weighted sum of the total tardiness and the makespan, without 

considering a power constraint. The machine assignments and job sequences have been 

defined solving the mathematical model and considering fixed these values, defining 

a power constraint, the mathematical model is resolved. The new schedule respects the 

limits on the power consumption but could have a worsening of the objective function 

compared to the previous planning. Dai et al. (2013) used a genetic-simulated 

annealing algorithm to obtain the minimization of the maximum completion time and 

the total energy consumption in flexible flow shop scheduling problem. An ant colony 

optimization algorithm has been applied in the multi-objective hybrid flow shop 

scheduling (H. Luo et al., 2013); the minimization targets are the makespan, and the 

electrical power cost and time-of-use tariff is considered. Unlike other works, Gong et 

al. (2020) considered also worker flexibility to achieve energy efficiency. The authors 

developed a mathematical model in which the objective functions to be minimized are 

the makespan, the total worker cost, and the green production indicator. The last one 

is composed of the energy consumption, the noise, the recycling rate of tool chips, and 

the safety coefficient. The mathematical model has been solved using a hybrid 

evolutionary algorithm. The minimization of the energy consumption costs 

considering three possible machine states (standby, shut-down, operation) has been 

studied and solved with a hybrid genetic algorithm in (R.-H. Huang et al., 2017). 

Hasani and Hosseini (2020) considered in the bi-objective scheduling problem the 

production cost and the energy consumption as the two targets to be minimized and 

implemented a makespan constraint. The investigated flexible flow shop consists of 

unrelated parallel machines in the first stage and a single machine in the next stages; a 

Non-dominated Sorting Genetic Algorithm II has been used to address the problem. A 

dynamic scheduling model with the aim of minimizing the weighted aggregation of 

the makespan and the total tardiness, considering a bound on the power peak, has been 
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analyzed in (J. Luo et al., 2019). The dynamic features of scheduling have been also 

studied in (Tang et al., 2016). The authors considered the makespan and the energy 

consumption as the objective functions and solved the scheduling problem with an 

improved particle swarm optimization method. A non-dominated sorting genetic 

algorithm II and a non-dominated ranked genetic algorithm have been used and tested 

in scheduling problem with two objective functions, i.e. the total weighted tardiness 

and the energy consumption, in (Nasiri et al., 2018). J. Yan et al. (2016) proposed an 

energy-efficient method based on multi-level optimization. The proposed approach 

aims to combine energy saving at the machine level and at the line level. The cutting 

energy and the cutting time have been considered as objectives in the machine tool 

level, whereas in the shop floor level the makespan and the total energy consumption 

have been defined as the targets; the optimization has been achieved using grey 

relational analysis and a genetic algorithm respectively at the machine and at the line 

grade. The flexible flow shop scheduling problem, considering the time of use 

electricity tariffs and makespan and electricity cost as the objective functions, has been 

addressed using an improved strength Pareto evolutionary algorithm in (M. Zhang, 

Yan, Zhang, et al., 2019). In addition to two typical objective functions in energy-

efficient scheduling, i.e. the makespan and the electricity consumption, Zeng et al. 

(2018) considered also material wastage as one of the multi-targets of the optimization 

process. The mathematical model has been solved with a hybrid non-dominated 

sorting genetic algorithm II. New teachers’ teaching-learning-based optimization has 

been proposed in the context of the hybrid flow shop scheduling problem (Lei et al., 

2018). The total tardiness and the total energy consumption have been considered 

respectively as the key objective and the non-key objective. T.-L. Chen et al. (2020) 

provided a mixed integer programming with two objective functions, i.e. the 

minimization of the makespan and electric power consumption. The approximate 

Pareto solutions have been obtained using a non-dominated sorting genetic algorithm 

II. The simultaneous minimization of the total weighted tardiness and total price of the 

non-processing energy has been investigated and addressed using an evolutionary 

algorithm based on decomposition in (S. Jiang & Zhang, 2019). Jun-qing Li et al. 

(2018) studied the hybrid flow shop scheduling problem considering as objectives the 

minimization of the total energy consumption and of the makespan. The authors 
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developed an algorithm characterized by exploitation search, deep-exploitation 

phases, exploration and deep-exploration phases to achieve optimization targets. The 

minimization of the total tardiness and energy cost considering variable discrete 

production speeds has been analyzed in (S. Schulz et al., 2020). S. Schulz et al. (2019) 

considered three objectives, i.e. makespan, total energy cost, and peak load, and 

provided an iterated local search algorithm to address the optimization scheduling 

problem.  

 

1.1.1.5 Job Shop 

Works regarding the energy efficiency in job shop have been discussed in the 

following. Subsection 1.1.1.5.1 grouped the paper related to the flexible job shop 

configuration. 

Kemmoe et al. (2017) designed a mathematical model considering different power 

requirements in the initial phase and processing phase and selected the makespan as 

the objective function. The aim of the paper is to define a feasible production schedule 

that allows respecting the variable power threshold; the authors provided a 

Randomised Adaptive Search Procedure hybridized with an Evolutionary Local 

Search to solve the problem. Tang and Dai (2015) proposed to achieve energy saving 

starting from a defined schedule. The first phase consists of obtaining a production 

planning in order to minimize the makespan. Then, considering fixed the machine 

assignments and the job sequences, the approach aims to minimize the energy 

consumption by modifying the cutting speeds. The authors provided a genetic-

simulated annealing algorithm to solve the problem. The minimization of the 

makespan and of the total energy consumption considering different speed rates has 

been selected as the objective function in (Escamilla et al., 2016; Salido et al., 2016); 

the job shop scheduling problem has been solved using a genetic algorithm. Together 

with the previously optimization targets, Yin et al. (2017) assumed that noise is 

affected by the machining spindle speed and provided a genetic algorithm based on 

simplex lattice design to solve the mixed integer programming model. Masmoudi et 

al. (2019) proposed two integer linear programming models to minimize the energy 

production costs under power peak constraints and used a heuristic method to solve 

the mathematical problem. One of the widely used heuristic models is the genetic 
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algorithm. R. Zhang and Chiong (2016) studied the scheduling problem in a job shop 

system including the minimization of energy consumption. The developed genetic 

algorithm optimizes the scheduling problem by integrating the two sub-problems 

derived from the original model to reduce the computational complexity. A genetic 

algorithm has been implemented in the job shop scheduling model to obtain Pareto 

front solutions with the energy consumption and makespan as objectives in (May et 

al., 2015). Nie et al. (2019) modeled the job shop scheduling using the Game Theory 

and solved the problem using a genetic algorithm. H. Wang, Jiang, et al. (2018) 

proposed an approach that applies Modified Genetic Algorithm (MGA) at the first 

stage and a hybrid method, that integrates Genetic Algorithm (GA) with Particle 

Swarm Optimization (PSO), at the second stage. The model was tested for a flexible 

job shop scheduling problem. Lei et al. (2019) developed a two-phase meta-heuristic 

based on the imperialist competitive algorithm and variable neighborhood search in 

order to achieve a solution for the flexible job shop scheduling problem; the proposed 

algorithm allows obtain the minimization of the total tardiness and of the makespan 

considering the total energy consumption as a constraint. Renna (2020a) used a Gale-

Shapley algorithm to share power among the machines of a manufacturing system 

under a peak power constraint. Ebrahimi et al. (2020) analyzed the application and the 

performance of four metaheuristic algorithms in the flexible job shop context. In their 

work, the minimization of a single objective function obtained as the sum of the energy 

cost and the tardiness penalty has been considered. The algorithms tested are two 

variants of the particle swarm optimization and two variants of the ant colony 

optimization. The best results considering both objective function and CPU (central 

processing unit) time have been obtained with the hybrid ant colony optimization and 

simulated annealing algorithm. Abedi et al. (2020) considered the variable speed of 

the machines and the productivity deterioration; the minimization of the total weighted 

tardiness and the total energy consumption can be achieved by properly selecting the 

operation sequences and the machine speeds. A multi-population and multi-objective 

memetic algorithm with periodic local search has been provided to address the 

optimization goal. L. Zhang, Li, Królczyk, et al. (2019) introduced an effective gene 

expression programming-based rule mining algorithm to define dispatching rules. In 

their work, the objective function is the minimization of the total energy consumption 
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composed of direct and indirect energy consumption. The energy-efficient scheduling 

solved using respectively an improved whale and a grey wolf optimization algorithms 

can be found in (T. Jiang, Zhang, Zhu, Gu, et al., 2018) and in (T. Jiang, Zhang, Zhu, 

& Deng, 2018). The scheduling problem is designed in order to obtain in the first paper 

the minimization of the sum of the energy consumption cost and the completion-time 

cost and in the second one the minimization of the total cost of energy consumption 

and tardiness. In the distributed job shop scheduling context, i.e. an extension of the 

job shop that considers several factories, a multi-objective evolutionary algorithm with 

decomposition has been used to solve the mathematical model considering the 

minimization of the makespan and the total energy consumption (E. Jiang et al., 2020).  

1.1.1.5.1 Flexible Job Shop 

The Flexible Job Shop has been defined as “a generalization of the job shop and the 

parallel machine environments” (Pinedo, 2008).  

Regarding the flexible job shop scheduling problem, Moon and Park (2014) developed 

mixed-integer programming and constraint programming approaches with the goal of 

obtaining the minimization of the total production cost. The total production cost is 

defined as the sum of the cost linked to the makespan and the electricity cost. 

Furthermore, the model is improved taking into account the cost related to energy 

storage and distributed energy resources. Meng, Zhang, Shao and Ren (2019) provided 

several mixed integer linear programming models selecting as objective function the 

minimization of total energy consumption. Lei et al. (2017) selected the workload 

balance, instead of time-related targets, together with the total energy consumption as 

one of the minimization objectives. The mathematical model has been solved using a 

shuffled frog-leaping algorithm. The simultaneous minimization of the total energy 

consumption and the makespan in a flexible job shop with variable processing speed 

context has been obtained using a multi-objective grey wolf optimization algorithm 

(S. Luo et al., 2019). The same targets of the optimization process have been 

considered in (Dai et al., 2019). In addition, in the paper, a transportation constraint 

has been implemented due to its high energy impact. The mathematical problem has 

been solved using a genetic algorithm. Mokhtari and Hasani (2017) provided a 

mathematical model with three objective functions, i.e. the total completion time, the 

total availability of the system, and the total energy cost, and addressed it using an 
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enhanced evolutionary algorithm. The number of machine turning on/offs has been 

considered as a minimization objective with the total energy consumption and the 

makespan in (Xiuli Wu & Sun, 2018). The non-dominated sorted genetic algorithm II 

and a green scheduling heuristic method have been implemented to deal with the 

mathematical model. In the context of a distributed and flexible job shop, Jin Wang et 

al. (2021) applied edge computing and the industrial internet of things in real-time 

scheduling. The real-time scheduling method proposed allows considering real-time 

data for the operations assignment and the real-time operations allocation has been 

done using an evolutionary game-based method. 

The minimization of the tax cost on surplus energy consumption and the minimization 

total cost of jobs lateness based on soft time-windows have been considered as 

objective functions in (Ayyoubzadeh et al., 2021). In their study two types of 

uncertainties have been included; the first regards the pre-know probability 

distributions, the second, instead, the no well-known probability distributions. These 

two types of uncertainties have been addressed respectively with stochastic scheduling 

and reactive scheduling. The problem has been solved using a NSGA-II algorithm. 

 

1.1.1.6 Open Shop 

The literature is lacking in papers regarding the energy efficiency in the open shop 

systems. The researchers focused mainly in this context to the classical optimization 

objectives like the minimization of the makespan (Lawler et al., 1982; Sevastianov & 

Woeginger, 1998), of the maximum lateness (Lawler et al., 1981), of the number of 

late jobs (Kravchenko, 2000), of the weighted number of late jobs (Galambos & 

Woeginger, 1995), and of total completion time (Achugbue & Chin, 1982; Tautenhahn 

& Woeginger, 1997). Hosseinabadi et al. (2019) considered the open-shop scheduling 

problem with the objective to minimize the makespan. The genetic algorithm 

developed can find more optimal solutions for all kinds of problems and could find 

them in shorter computational times compared to the other algorithms. Works 

regarding the open shop considering energy issues have been developed in speed-

scaling processor studies. Bampis et al. (2014) investigated the scheduling problem of 

an open shop with a speed-scaling setting considering as the objective function the 

minimization of the makespan with a constrain on the energy budget. The scheduling 
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problem in speed scaling setting has been formulated as a convex flow problem in 

(Bampis et al., 2015). The proposed approach has been applied to the preemptive open-

shop speed-scaling problem in order to minimize energy consumption.  

 

1.1.1.7 Cellular Manufacturing System 

Referring to the design of cellular facility layout, a mathematical model with 

minimization of the total cost and the total energy loss as objective has been proposed 

and solved using a Non-Dominated Sorting Genetic Algorithm II in (Niakan et al., 

2014). Niakan et al. (2016) extended the studying of sustainable dynamic cellular 

manufacturing system and included in the second objective function not only energy 

loss but also other waste such as chemical, raw material waste, and greenhouse gas 

emission. Imran et al. (2017) focused on cell formation with the aim of minimizing the 

value-added work in process considering the electricity cost of the machine and of the 

material handling system. A simulation integrated hybrid genetic algorithm, i.e. the 

integration of genetic algorithm and discrete event simulation, addressed the layout 

design. Iqbal and Al-Ghamdi (2018) investigated the energy saving obtainable by 

properly assigning the manufacturing process to the machine and selecting the 

machines in each cell. The problem has been solved using a simulated annealing 

algorithm. Saddikuti and Pesaru (2019) aimed to minimize makespan, flowtime, and 

energy consumption and proposed a Non-dominated sorting genetic algorithm II to 

solve the model. Lamba et al. (2020) developed a mixed integer non-linear model and 

a simulated annealing meta-heuristic approach has been used to address the 

optimization problem. The objective function is the minimization of the sum of the 

material handling cost, the rearrangement cost (both considering inter and intra cell 

movement), and the total electrical cost. 

 

1.1.1.8 Reconfigurable Manufacturing System 

Choi and Xirouchakis (2015) proposed an approach based on holistic production 

planning to address the energy consumption problem in the reconfigurable 

manufacturing system. A linear programming model has been developed considering 

also part handling systems in energy consumption; the maximization of the throughput 

and the minimization of the energy consumption have been selected as objective 
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functions. Jiafeng Zhang et al. (2015) investigated the energy saving obtainable by a 

dynamic local reconfiguration, i.e. the switch from the working to energy-efficient 

mode, of the system. Energy has been considered in the total cost in (M. Liu et al., 

2019). The authors investigated the reconfigurable manufacturing system considering 

both the design and the manufacturing phase; a mixed integer programming model has 

been proposed with the objectives of the minimization of the total cost and the cycle 

time. The mathematical model has been addressed with an e-constraint method and 

with a multi-objective simulated annealing algorithm respectively for small and 

practical problem sizes. Touzout and Benyoucef (2019) studied the process plan 

generation problem. In this paper a mathematical model has been proposed with the 

aim of minimizing the total production cost, the completion time, and the greenhouse 

gas emissions, the latter evaluated considering the total energy consumption. An 

iterative multi-objective integer linear programming approach, an archived multi-

objective simulated annealing, and the non-dominated sorting genetic algorithm have 

been used and investigated. Regarding sustainable process plan, three objectives, i.e. 

the minimizations of the total production cost, of the total production time, and of an 

environmental criterion, have been identified and considered in (Khezri et al., 2020a, 

2020b, 2019). Energy consumption has been defined as the environmental objective 

in (Khezri et al., 2020a), whereas Khezri et al. (2020b, 2019) considered that the 

energy consumption impacts on the amount of the greenhouse gas emissions included 

in the environmental criterion, which is, respectively in the two papers, the 

sustainability-metric value and environmental hazardous wastes. In (Khezri et al., 

2020b) a posteriori approach, a non-dominated sorting genetic algorithm II, and a 

strength Pareto evolutionary algorithm II have been used to solve the mathematical 

model, whereas in (Khezri et al., 2019) an adapted version of weighted goal 

programming has been implemented. Khezri et al. (2020a) addressed the problem 

using an augmented ε-constraint based approach. 

 

1.1.1.9 Other processes and technologies 

Energy saving has been also studied in other processes. Some examples have been 

briefly discussed in the following, but they have not been considered in the literature 

analysis and in the comparison of the number of papers in the different sections. The 
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minimization of the energy consumption has been considered in the multi-objective 

optimization in the sheet metal forming and in arc welding processes respectively in 

(Gao et al., 2019) and in (W. Yan et al., 2017); referring to the laser cutting, Xu et al. 

(2014) defined the minimization of the total energy consumption on the whole cutting 

path. Ma et al. (2021) proposed an energy prediction model for different additive 

manufacturing technologies and conducted an optimization of the energy consumption 

and surface quality. Always in the additive manufacturing context, Yang et al. (2017) 

developed a method to find the optimal parameters in order to minimize the energy 

consumption in stereolithography-based processes. Therefore, the reduction of energy 

consumption is very important issue in industry and in all production processes. 

 

1.1.2 Assembly Line 

Abdullah et al. (2019) developed an assembly sequence planning model in order to 

achieve energy efficiency. The objective function considered is the weighted sum of 

the number of tool changes, of the number of assembly direction changes, and of 

energy consumption in idle mode. The problem has been solved using a moth flame 

optimization algorithm.  

In robotic and automatic assembly lines the energy saving is a very important issue 

and several papers in literature focused on this topic. Michalos et al. (2015) proposed 

an approach based on two stages to design and configure the assembly line considering 

multiple criteria, one of which is resource energy consumption. Nilakantan et al. 

(2016) and Nilakantan, Ponnambalam, et al. (2015) used particle swarm optimization 

and differential evolutionary algorithm to minimize the energy consumption in a U-

shaped robotic assembly line. The particle swarm optimization algorithm has been also 

implemented to address the straight robotic assembly line considering the 

simultaneous minimization of the total energy consumption and the cycle time 

(Nilakantan, Huang, et al., 2015). B. Sun et al. (2020) aimed to minimize the 

previously cited objective functions using a bound-guided hybrid estimation of 

distribution algorithm. In the same robotic assembly line context, i.e. straight line, 

Nilakantan et al. (2017) proposed a multi-objective co-operative co-evolutionary 

algorithm to address the problem of minimizing the total carbon footprint and 

maximizing the line efficiency. Several studies focused on the U-shaped robotic 
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assembly line and different approaches have been proposed to address the complexity 

of the problem. Zikai Zhang, Tang, Li, et al. (2019) provided a mathematical model 

for the assembly line balancing problem in order to minimize both the energy 

consumption and the cycle time and developed a Pareto artificial bee colony algorithm. 

Using a hybrid Pareto grey wolf optimization, Zikai Zhang, Tang and Zhang (2019) 

solved the balancing problem with the aim of minimizing the carbon emission, the 

noise emission, and the cycle time. The robot energy consumption has been evaluated 

in order to find the related carbon emissions. B. Zhang and Xu (2020) proposed a 

flower pollination-based algorithm to minimize both the smoothness index and the 

energy consumption. A cellular strategy-based genetic algorithm has been used to 

solve the problem of minimizing the energy consumption and of maximizing the 

system efficiency in the mixed-model assembly line (B. Zhang et al., 2020a), whereas 

an improved whale optimization algorithm has been proposed to minimize 

concurrently the energy consumption, the smoothness index, and the total cost in the 

semi-automated assembly line designing problem (B. Zhang et al., 2020b). Three 

objectives, i.e. the minimization of the cycle time, the minimization of the sum of 

energy consumption, and the minimization of the total cost, have been considered in 

the balancing problem of a multi-robot cooperative assembly line (B. Zhou & Kang, 

2019). The authors developed and used a multi-objective hybrid imperialist 

competitive algorithm with a nondominated sorting strategy. The energy consumption 

of a two-sided robotic assembly line has been investigated in (Z. Li et al., 2016). In 

this work, a mixed-integer programming model has been proposed with the aim of 

minimizing the energy consumption and the cycle time and a restarted simulated 

annealing algorithm has been developed to address it. 

 

1.1.3 Policies and Strategies for Energy-Saving 

As shown in the previous section, energy efficiency can be achieved by properly 

selecting process parameters and with energy-oriented scheduling. 

Moreover, policies and strategies for energy-saving can be useful tools for 

incrementing energy efficiency, reducing energy consumption and costs, and 

decrementing the carbon footprint. As argued by Frigerio et al. (2021) the energy-
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efficient control policies can be ranked in buffer-based policies and time-based 

policies; the class depends on the information used by the policy. 

 

1.1.3.1 Buffer-based policies 

G. Chen et al. (2011) applied energy-efficient policies based on buffer threshold in a 

Bernoulli serial line characterized by buffer stripping. In (Su et al., 2016), Upstream, 

Downstream, Upstream & Downstream policies have been investigated in a 

production line in order to evaluate the energy saving. These policies for changing 

machine states take into account information respectively from upstream, downstream, 

and simultaneously both upstream and downstream buffers. Zhiyang Jia et al. (2016, 

2015) applied the buffer-based policy to switch on/off machines in Bernoulli serial 

production line. A fuzzy Petri net has been used to reduce the idle period by switching 

off/on the machines (Fei et al., 2018). The state commutation is defined by a fuzzy 

controller evaluating the real-time buffer occupancy and machine status. The results 

show that the approach proposed reduces energy consumption with a limited 

throughput loss. A fuzzy decision method to control the machine switch on/off taking 

into account the information regarding the pieces in the buffer and the machine states 

has been studied in (Junfeng Wang et al., 2017; Junfeng Wang, Fei, Chang, Fu, et al., 

2019; Junfeng Wang, Fei, Chang, Li, et al., 2019). Junfeng Wang, Fei, Chang and Li 

(2019) proposed a dynamic adaptive fuzzy reasoning Petri net to establish the machine 

state. The fuzzy rules have been defined considering the upstream and downstream 

buffer levels and the certainty factor of the rules dynamically changes depending on 

the production rate. 

 

1.1.3.2 Time-based policies 

Mouzon et al. (2007) showed the possibility of energy saving by turning off 

underutilized machines and proposed a machine controller that aims to reduce energy 

consumption using dispatching rules. Furthermore, supporting the energy savings 

obtained with the controller, the authors developed a mathematical scheduling model 

to minimize the energy consumption and total completion time. Frigerio and Matta 

(2014) proposed a switch-off policy based on the time threshold, i.e. the machine shut 

down after an interval since the last departure. In (Frigerio & Matta, 2015a), the 
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authors extended the energy-efficient control strategy defining the switching policy 

that establishes the commutation between machine states (from on to off and vice 

versa) according to specific time interval; special cases of the switching policy have 

been presented. An approach based on online arrival evaluation has been studied in 

order to provide optimal time thresholds of the time-based control policy (Marzano et 

al., 2019). Squeo et al. (2019) presented the Multi-Sleep policy, i.e. an extension of 

the switching policy, that uses time thresholds to change the state of the machine 

components. 

 

1.1.3.3 Hybrid buffer and time based policies 

Frigerio and Matta (2016) presented a control policy, based simultaneously on buffer 

and time information, that is called TNT policy; this new strategy turns off the machine 

when the buffer is empty and after a defined time interval from the last departure. The 

machine switches on, instead, when the threshold of the queue or of the time is reached. 

Other special cases of the policy have been also analyzed. In (Frigerio & Matta, 2015b) 

the TNT policy has been applied in a production line with finite buffer capacities. In 

the context of the pull production line, Renna (2018) developed a switch-off policy 

that uses the downstream buffer level and the customer satisfaction to commute the 

machine state. Stochastic factor and buffer utilization have been considered to evaluate 

the energy saving opportunity with machine shut down (Z. Sun & Li, 2013). A fuzzy 

controller has been used to switch the machine on and off in a one buffer one machine 

manufacturing system (Duque et al., 2018). The required production rate, the buffer 

level, and the state of the machine have been considered as input of the fuzzy logic 

module. 

 

1.1.3.4 Other policies and strategies 

In (Fernandez et al., 2013; Z. Sun et al., 2014), a “Just-for-Peak” buffer inventory 

policy has been developed in order to reduce the energy demand during peak periods. 

The proposed policy introduced additional buffers, coupled with the standard ones, 

which are filled during the non-peak period. The “Just-for-Peak” buffers allow 

switching off the upstream machines during the peak electricity demand without 

compromising the throughput. Evaluating the energy efficiency of the machine tool is 
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a very important issue for production sustainability. Hu et al. (2012) proposed an 

online monitoring approach to measure energy efficiency. The method proposed by 

the authors doesn’t require any sensor and, for this reason, the implementation cost is 

very low. The real-time information enables energy efficiency improvement through 

corrective and immediate actions. Diaz et al. (2019) developed a control strategy to 

reduce energy consumption in a manufacturing system. The authors studied the use of 

the receding horizon approach to switching on/off early the peripheral devices 

considering their dynamic with the aim of reducing the global energy consumption. 

Chang et al. (2013) focused on the energy saving opportunity in a serial production 

line; the authors defined the opportunity window as the maximum possible inactive 

time of a station that doesn’t involve a reduction of productivity at the end-of-line 

station. Energy opportunity windows and energy profit bottleneck, i.e. the machine 

that results in the greatest profit loss on the line, have been investigated in (Brundage 

et al., 2016, 2014). Zou et al. (2016) provided an approach for evaluating the 

opportunity windows to reduce energy saving and to perform preventive maintenance 

in stochastic production systems. The reduction of the energy consumption using 

energy saving opportunity in multistage manufacturing system has been investigated 

in (Y. Li et al., 2018). In (Y. Huang et al., 2018), a max-plus algebra method has been 

used to evaluate the energy saving window in order to switch off the machines in a 

serial production line. Mashaei and Lennartson (2013) defined suitable conditions for 

switching off machines and included them in a mathematical model with the objective 

of minimization of the energy consumption in the context of a pallet-constrained flow 

shop. 

 

1.1.4 Renewable energy sources in manufacturing systems 

The integration of renewable energy sources in manufacturing allows reducing carbon 

footprint, and together with energy efficiency leads to sustainable manufacturing. 

However, the main issue regarding the variable renewable energy sources (such as 

solar and wind) is the dependence on the weather; thus, the energy supplied is 

intermittent and variable. For these reasons, the main challenge is the adoption of 

energy flexibility to align the energy demand with renewable sources. On the other 

hand, the alignment of the machine parameters to the renewable supply could affect 
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the production and the product quality. Another strategy to overcome the power 

fluctuation is the installation of electricity storage systems.  

Abikarram and McConky (2017) investigated the possibility of smoothing load profile 

to improve the use of the photovoltaic system. The authors claimed that the smoothing 

strategies allow reducing the effects of introducing the renewable energy source on the 

net demand variability and supporting the installation of the photovoltaic plant in the 

manufacturing system. Beier et al (2016) suggested using the batteries of the electric 

vehicle to improve the integration of the variable renewable energy sources in 

manufacturing. The results show that, whereas stationary batteries are characterized 

by continuous availability, the vehicle batteries are independent from the integration 

of the renewable energy source due to their traction uses. In the paper, it is also showed 

that energy flexibility further improves the variable renewable energy sources 

integration. An energy flexibility approach based on real-time control to align the 

energy demand to on-site renewable energy supply has been proposed in (Beier et al., 

2017) without negative influence on the throughput. The method proposed leads to a 

more efficient integration of renewable sources in the context of a manufacturing 

system with several processes and intermediate buffers.  

Schulze, Blume, Siemon et al. (2019) focused on the introduction of battery storage 

with the aims of improve the use of variable renewable energy sources. Energy storage 

systems and the energy management lead to an optimal energy self-sufficiency and at 

the same time a high productivity. A procedure to integrate renewable energy sources 

applying energy-flexibility has been studied in (J. Schulz et al., 2020). Popp et al. 

(2017) presented a real-time control approach that takes into account the renewable 

energy supply to plan the use of machine tool components characterized by energy-

flexibility. The approach has been implemented in a manufacturing system composed 

of thirty machines and with on-site renewable sources in order to evaluate the 

economic gain. Biel et al. (2018) investigated the scheduling problem of a flow shop 

with an onsite wind power supply. The approach consists of the generation of several 

power wind scenarios which are considered after in a two-stage stochastic 

optimization. The first stage allows obtain the optimal production schedule in order to 

minimize simultaneous the total weighted flow time and the expected energy cost, 

whereas the second stage fixes the energy supply decision according to the wind power 
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data. Santana-Viera et al. (2015) suggested using wind turbine and photovoltaic units 

to support facilities in interruptible/curtailable demand response programmes and 

proposed a stochastic programming model to define the optimal capacity of the 

renewable energy sources in order to maximize the annual utility saving. 

A single machine scheduling model has been developed in (X. Wang et al., 2011) to 

minimize the total carbon emissions considering renewable energy. The single 

machine scheduling with renewable energy sources problem has been also studied in 

(C.-H. Liu, 2016a). In this work, C.-H. Liu developed two models; in the first, the 

objective is the simultaneous minimization of the total weighted flow time and the 

carbon emissions, whereas in the second case the objective function is the 

minimization of the total flow time while the CO2 emissions are a constraint. C.-H. 

Liu (2016b) focused on the discrete lot-sizing and scheduling problem with renewable 

energy and provided two models: the first considers the simultaneous minimization of 

the earliness tardiness and CO2 emissions, the second assumes earliness tardiness as 

optimization function and CO2 emissions as a constraint.  

Karimi and Kwon (2021) provided a mathematical optimization to study energy cost 

and makespan in the context of unrelated parallel machines with on-site solar power 

generation and a battery. Eight configurations have been analyzed, each of these is 

characterized by the presence of the solar power plant, the battery, and the energy-

aware objective. In the first four configurations, the single objective is the 

minimization of the makespan; then the energy cost has been evaluated. In the last four 

configurations, the scheduling has been obtained in order to minimize simultaneously 

makespan and energy cost. Results demonstrate that energy-aware scheduling could 

lead to better use of the energy provided by the solar power plant and the battery. 

Fattahi et al. (2018) focused on the mining supply chain and proposed a multi-stage 

stochastic program including strategic and tactical planning with wind and solar 

energy supplies. A mixed integer linear programming model considering a wind 

turbine integrated with the electrical grid has been provided in (Zhai et al., 2017). The 

manufacturing system is a flow line and the objective function is the minimization of 

the expected total energy cost. Still focused on the flow shop scheduling problem, 

Shasha Wang et al. (2020) proposed a two-stage multi-objective program taking into 

account energy provided by the electrical grid, on-site renewable energy sources, and 
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energy storage. In the first step, the production schedule is defined in order to minimize 

the total weighted completion time, whereas the second phase consists of the energy 

supply decisions with the objective of minimizing the energy costs. Fazli Khalaf and 

Wang (2018) focused on the energy costs in the flow shop scheduling problem with 

intermittent renewable, energy storage, and real-time electrical price. The authors 

addressed the problem in two phases. The first phase results in the production schedule 

and the optimal electricity demand curve in order to minimize the purchased electricity 

considering the day-ahead electrical tariff and the forecasted renewable energy supply. 

The second stage concerns aligning the forecasted and the real energy supplied by the 

renewable energy sources and minimizing the real-time energy cost. A mathematical 

model with the objective of minimizing the levelized cost of energy by properly sizing 

wind turbine, photovoltaic, and battery storage in the context of a multi-stage flow 

shop in island mode has been proposed in (Jin et al., 2020). Subramanyam et al. (2020) 

focused simultaneously on defining the size capacity of renewable energy sources and 

on production schedule with the aim of minimizing the levelized cost of energy in a 

flow shop manufacturing system. Xiuli Wu et al. (2018) investigated the multi-

objective scheduling problem in the context of a flexible flow shop with renewable 

energy sources. The minimization of the electricity cost, under the time of use 

electrical tariff, has been considered as the objective function in the scheduling 

problem of a hybrid flow shop connected to the electrical grid and with an onsite 

photovoltaic system (Hao Zhang et al., 2017). A dynamic load scheduling algorithm 

for the demand side management aiming to minimize the total electricity cost with 

controlled order delay has been investigated in the context of a job shop equipped with 

an onsite windmill (Nayak et al., 2019). Cui et al. (2019) developed a scheduling model 

in a manufacturing system with an onsite microgrid system with the target of 

minimizing the total energy cost by cutting the peak power load and reducing the 

energy bought from the electrical grid. In this paper, the manufacturing system has 

been defined as a Bernoulli serial line. 
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1.1.5 Energy Efficiency Approaches 

The literature is rich in work regarding energy efficiency in manufacturing systems. 

The following figure (Figure 1.6) presents an overview of the main approaches used. 

The list in the figure of the mathematical method and the used approach is not 

exhaustive but limited to the papers investigated. The approaches analyzed are grouped 

in classes even if they are not original and are used only to evaluate a new method. For 

these reasons, an article can be classified into more than one class. Two colorbars have 

been used to show the number of papers respectively in each approach and in each 

subclass. It can be seen that the most of work approaches are heuristic and 

metaheuristic. In literature, there are several papers that focused on energy-efficient 

scheduling, and the scholars developed and extended different models that can be 

applied to real-life problems. Mathematical programming models can generate optimal 

solutions for small-scale multi-objective scheduling problems, but it is difficult to 

apply to large-scale problems because of their high complexity. Therefore, heuristics 

and meta-heuristics are proposed to solve large instances and multi-objective 

scheduling problems. The most common metaheuristic algorithms adopted are the 

evolutionary and the computational swarm intelligence algorithms. Regarding the 

evolutionary algorithm, the genetic algorithm, and its subclass NSGA-II, find wide 

applications in the literature. Algorithms based on evolution, and natural, animal, and 

human behavior are widely reported in the literature, so the development of hybrid 

algorithms is common in order to provide a new method with the strength of the native 

ones.  
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Figure 1.6 Energy Efficiency Approaches 
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In the following table (Table 1.1) the abbreviated name of the algorithms presented in 

Figure 1.6 has been reported  
ABC Artificial Bee Colony MFOA Moth Flame Optimization Algorithm 
ACA Ant Colony Algorithm MOEA/D Multi-Objective Evolutionary 

Algorithm based on Decomposition AGA Adaptive Genetic Algorithm 
AMOSA Archived Multi-objective Simulated 

Annealing 
NEH Nawaz-Enscore-Ham heuristic 
NRGA Non-dominated Ranked Genetic 

Algorithm 
BA Bat Algorithm NSGA-II Non-dominated Sorting Genetic 

Algorithm II 
CGA Cellular Genetic Algorithm PSO Particle Swarm Optimization 
DNGA Domination Number-based Genetic 

Algorithm 
RKGA Random Key Genetic Algorithm 
RNS Randomised Neighborhood Search 

FFOA Fruit Fly Optimization Algorithm RSA Restarted Simulated Annealing 
FPA Flower Pollination Algorithm SPEA-II Strength Pareto Evolutionary 

Algorithm II 
GGA Grouping Genetic Algorithm SPGA-II Sub Population Genetic Algorithm II 
GWOA Grey Wolf Optimization Algorithm VNS Variable Neighborhood Search 
ICA Imperialist Competitive Algorithm WOA Whale Optimization Algorithm 
MBO Migrating Bird Optimization WWO Water Wave Optimization 

Table 1.1 Algorithm abbreviations 

Several studies used the exact and numerical approach. In particular, a significant 

number of works uses the mathematical solvers offered by different software due to 

the high quality of solutions obtained. As previously stated, the exact and numerical 

approaches however require high computational complexity and solution time; for 

these reasons, the application is restricted to the small scale instances problems. Also, 

simulations, real-time data acquirement, and experimental tests have been used to 

develop, implement and evaluate energy-efficient strategies. Discrete event 

simulations have been used mainly compared to the time continuous simulations; 

discrete event and time continuous simulations have been grouped due to the fact that 

in many cases, simulative approaches used both of them or a hybridized approach. 

Other theories have been limitedly studied, but among these, a larger number of works 

concerns Markov chain and Fuzzy Theory. Few papers regarding approximation 

strategies have been presented in the energy-efficient context.  

 

1.1.6 Literature limitations and implications for future research 

The energy efficiency in manufacturing system has been widely analyzed, indeed 

about 66% of the papers considered in the literature analysis concerns this topic. The 

higher number of articles in this context examines the flow shop configuration. 

Respecting the other works in the manufacturing system group a significant number 
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of articles analyses job shops and single machines. Energy efficiency in open shops 

has been limited analyzed covering only the 1% of the total papers. Moreover, these 

studies considered the open shop layout in processor environments and not in a typical 

manufacturing system.  

In the single machine context, the main limit of the state of art regards the alignment 

of the process parameters such as cutting speed, feed rate and so on to renewable power 

supply. The investment analysis of the adoption of renewable energy supply has been 

poorly investigated. Analyzing the switch-off policies, the works proposed in the 

literature focused mainly on a single machine or on a production line disregarding their 

implementation in production systems with the unfixed flow of pieces, such as job 

shops. Moreover, the performance reduction due to the adoption of energy saving 

policies has also been poorly studied. 

Deeping the job shop context, there is a lack of papers that investigated the production 

scheduling, considering both the power constraint and the variable speed of machine 

tools. Finally, at the factory level, few works take into account the opportunity of 

implementing the switch-off policy from the design step of the manufacturing system. 

The actual state of the art is rich in works that implement and develop heuristic and 

metaheuristic approaches, especially evolutionary algorithms. The main reason is the 

great number of articles regarding scheduling problem that requires heuristic 

techniques to be applied in real life and large instance cases. A limited number of 

articles proposed the application of other theories, for example fuzzy theory. 

Furthermore, only about 11% of the analyzed articles focused on the implementation 

of renewable energy sources in manufacturing. Renewable energy sources in 

manufacturing systems could be a hot topic for the next years. The decreasing cost of 

adopting renewable resources is pushing their use in complex manufacturing systems; 

particularly photovoltaic and wind power systems are driving the increment adoption 

of renewables. The main limitation of using renewable energy sources is the 

intermittent power provided; for these reasons, researchers are studying new energy 

efficient strategies and energy flexibility. One of the main challenges is mainly the 

development of renewable energy-oriented policies and strategies in order to obtain 

not only energy saving but also an efficient use of renewable energy; another way to 

save and use when needed the variable energy is the adoption of batteries. However, 
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the introduction of energy storage requires attention to its sizing, both to have enough 

energy when needed and not exceed in battery size with a consequent increase in costs. 

A lack of works has been found regarding the development of energy-saving policies 

that consider renewable energy sources. For these reasons, future directions and 

challenges for researchers could be the implementation of energy-saving policies 

considering the availability of renewable energy supply, in-depth analysis of other and 

noncommon theory applied in different contexts, considering renewables and energy 

efficiency as one target for sustainability and not as separate issues.  

 

1.2 Motivation and Research Questions 

This thesis, motivated by the importance of sustainable production as demonstrated in 

the analysis of the literature, focused and deepened several aspects of energy efficiency 

and sustainability in manufacturing systems trying to cover the lack in the state of art.  

The main topics analyzed, each of them is extensive discussed in a separate chapter, 

are the implementation of the renewable energy sources in the single machine context, 

the development of new switch-off policies, the scheduling problem in job shop 

context and the design of flow line in order to apply switch-off policies. 

For each topic, this thesis aims to answer to several research questions indicated as 

follows. 

Chapter 2 analyzes the implementation of renewable energy supply (in particular a 

photovoltaic plant) in the single machine context and the effects of the addition of 

energy storage. The research questions addressed are: 

RQ1: what is the impact of the renewable energy source on the time evolution 

of the parameter settings of machine under different conditions over a planning 

horizon? 

 
RQ2: what is the economic gain that can be obtained by the method proposed? 

 
RQ3: what is the impact of the introduction of battery storage on a 

manufacturing production system? 
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Chapter 3 focuses on switch off policies in job-shop for energy-efficiency and aims to 

respond to the following RQs: 

RQ4: what is the impact of the most used switch-off policy in flow lines in the 

case of job shop manufacturing systems? 

 
RQ5: can a switch-off policy based on the evaluation of the workload be 

applied efficiently in job shop systems? 

 

Deeping the job shop context, Chapter 4 investigates the job shop scheduling problem 

with the introduction of power constraint dealing with the following issues: 

RQ6: can a scheduling model provide production planning considering the 

minimization of makespan as the objective function and the power as a 

constraint? 

 
RQ7: can the developed scheduling model find a solution considering a 

variable available power in order to meet the decision maker's requirements 

based on sustainability and consumption criteria? 

 

The last topic investigated is discussed in Chapter 5 and regards the design of flow line 

with the purpose of responding to the following questions: 

RQ8: what is the impact of the design model proposed on the performance of 

the production line in terms of energy saving maximizing the production rate? 

 
RQ9: can the constraint of a limited reduction loss improve significantly the 

energy saving of the production line obtaining an adequate trade off? 

 

As Duflou et al. (2012) argued, the manufacturing system can be decomposed into five 

levels: 

§ Unit process; 

§ Multi-machine; 

§ Factory; 

§ Multi-factory system; 

§ Supply chain. 
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For this reason, this thesis deepened different topics aiming to extend the studies 

regarding the energy efficiency in manufacturing at each level. The topics analyzed 

are related to the first three grades (Chapter 2 regards the unit process, Chapter 3 and 

4 concern multi-machine and finally Chapter 5 is linked to the line design of a flow 

factory). Firstly, the single machine context has been investigated considering the 

implementation of a photovoltaic plant and a battery. Subsequently, deepening the 

multi-machine level, two different strategies of energy saving have been studied, i.e. 

switch-off policies and scheduling. Finally, at the upper grade of multi-machine, the 

energy-saving strategy analyzed regards the design of a flow line. The combination of 

the methodologies proposed at different grades could provide further benefits. In the 

following figure (Figure 1.7) has been reported the planning horizon required for the 

application of the energy saving strategies at different grades. 

 
Figure 1.7 Planning horizon of the possible level intervention 

Intervention 
level 

Planning horizon 

Single 
Machine 

Multi-machine 

Factory 
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Chapter 2: Renewable energy sources in single machine 
The climate mitigation and the reduction of energy cost in manufacturing processes 

drive to expand the electricity generation from renewable sources. Nonetheless, the 

intermittency of renewable energies, especially solar and wind energy, represents one 

of the main challenges, typically overcome by the installation of electricity storage 

systems. This issue can be addressed by a new and original approach, consisting in the 

energy-flexibility of the production, in which manufacturing parameters are selected 

to optimize and to align production planning to renewable energy availability. This 

chapter deals with a time dependent theoretical and numerical model developed to 

calculate the time evolution of the electric power required by a manufacturing system, 

self-consistently coupled with a renewable plant.  

The aim of the model is to align the power required by the manufacturing system with 

the renewable energy supply in order to obtain the maximum monthly profit. The 

model has been applied to a single work center powered by the electric grid and by a 

photo-voltaic system, performing the machining process over one year of production. 

The model includes the tool cost, the stocked units, the energy cost and the penalty for 

the unsatisfied demand. The maximum profit has been calculated with an hourly 

adaption of manufacturing parameters, i.e. the cutting speed, to the renewable time 

dependent power profile. The model presents general features and can be applied when 

production processes are fully characterized. In order to find the maximum profit, the 

model, inherently nonlinear, has been solved by recurring to the Trust-Region Method. 

Different scenarios characterized by fluctuations of product demand are considered in 

order to investigate the sensitivity of the manufacturing system to the uncertainty of 

the forecast demand. The influence of the photo-voltaic supply has been investigated, 

comparing results obtained in the case of manufacturing systems powered only by the 

electric grid. The main limitation of the overall literature concerns the alignment of 

the manufacturing process parameters (as the cutting speed, feed rate, etc.) to the 

intermittent renewable energy source. In fact, in the theoretical models analyzed in this 

context, cutting parameters have been adjusted to minimize the energy consumption 

without considering the alignment with the power supplied by the renewable energy 

source. Another limit related to the research activity is the investment analysis of 

renewable energy sources. The major part of the works focused on the design of the 
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renewable source to supply the manufacturing system. These investigations don’t 

consider how an existing energy source can impact the manufacturing system when 

process parameters change. The addition of electric storage allows storing the excess 

of the energy supplied by the PV (Photovoltaic) plant in order to use it, for example, 

during the dark hours of the day. Subsequently, the model has been tested considering 

the addition of energy storage to evaluate its effect to the manufacturing system. A 

basic storage model has been developed and implemented to pursue this issue. 

Therefore, as previously mentioned, this Chapter aims to respond to the following 

research questions. 

RQ1: what is the impact of the renewable energy source on the time evolution 

of the parameter settings of machine under different conditions over a planning 

horizon? 

 

RQ2: what is the economic gain that can be obtained by the method proposed? 

 

RQ3: what is the impact of the introduction of battery storage on a 

manufacturing production system? 
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Nomenclature 
a Taylor coefficient HSS High Speed Steel 
h solar plant efficiency K Taylor constant [m min-1] 
hg(s) specific emissions of the greenhouse gas 

g emitted by the energy source s to 
generate electricity 

Kcs specific cutting pressure [N mm-1] 
L working length [mm] 
𝑚"#$%& CO2-equivalent mass emitted 

g maximum power coefficient [%°C-1] nct number of tools  
a  Feed [mm rev-1] nr number of rapid movements 
az feed per tooth [mm tooth-1] NOCT Nominal Operating Cell Temperature 

[°C] Cd daily cost [€] 
CE energy cost Pax axes power during machining [W] 
Ch hourly cost [€ h-1] Pc cutting power [W] 
Cm machining cost [€ h-1] Pd daily profit [€] 
Cst storage unit cost [€ unit-1] Pm monthly profit [€] 
Ct tool cost [€ tool-1] PPV Photovoltaic system power [W] 
Cu unit cost [€ unit-1] Ps unit selling price [€ unit-1] 
CNC Computer Numerical Control Psupp auxiliary units power [W] 
D mill diameter [mm] PSTC Power of photovoltaic system in 

Standard Test Conditions [W] dc depth of cut [mm] 
dm days of the month Pen Penalty [€] 
De daily demand Pens penalty cost for unit [€ unit-1] 
Dem effective daily demand prodh hourly productivity [unit h-1] 
Eac hourly energy in the battery PVGIS Photovoltaic Geographical Information 

System Eb hourly energy bought from the grid 
Ebu energy bought from the grid for a single 

piece 
Rd daily proceeds [€] 
SE Selling price of energy  

Ect energy for a tool change [J tool-1] St stocked unit [€ unit-1] 
Efix fixed energy consumption [J] Ta ambient temperature [°C] 
Er Energy for a single rapid movement [J] Tc cell temperature [°C] 
Esc Self-consumed energy tct time to change a tool [s] 
𝐸()
(+) electrical energy of the production 

process k supplied by the energy source 
s at time interval t 

tfix fixed time [s] 
tm unit manufacturing time [min] 
tp unit production time [s] 

Ep energy for the production of a single unit 
[J unit-1] 

tr rapid movement time [s] 
Ttool tool life [min] 

Epv PV energy for a single unit [J unit-1] Uav available unit  
Fc cutting force [N] Up daily produced unit 
G Irradiance [W m-2] vc cutting speed [m min-1] 
GHG Greenhouse Gas vf feed speed [m min-1] 
GHGES Greenhouse Gas Emission Savings ze number of engaged teeth 
GWPg Global warming potential of greenhouse 

gas g 
  

Table 2.1 Nomenclature of Chapter 2 

 

 



Chapter 2:Renewable energy sources in single machine 
 

 

 

46 

2.1 The implementation of PV plant in a single machine manufacturing system 

2.1.1 Reference context basic assumptions of the model 

In this paragraph, the basic assumptions of the model are introduced and discussed. 

The model under investigation is represented by the time dependent simulation of a 

single work center (a computer numerical control machine) of a manufacturing system 

that performs the machining process over one year of production, 24 hours per day. 

The model includes the tool cost, the storage, the energy cost and the penalty for the 

unsatisfied demand.  

The model is developed in order to find the best compromise between the market 

demand and the power required with the aim of obtaining the maximum profit. The 

model is inherently nonlinear and a proper numerical model has been developed. 

The model is simplified considering one work center supplied by the electric grid and 

by a PV (Photovoltaic) plant. The characterization of the energy consumption and 

power of the machine is evaluated according to Calvanese et al. (2013) and to 

Albertelli et al. (2016) and the process considered is the face milling of prismatic 

workpieces. For these reasons, the model has a general feature and basic assumptions 

considered do not limit the results that could be extended to a more realistic plant 

composed of several work centers supplied by an high-power PV plant. Finally, the 

model is able to catch the fundamental behavior of manufacturing systems with 

variable renewable energy supply and can be generalized when production processes 

are fully characterized.  

More specifically, the demand for items is daily and the possibility of storing any 

excess production and a penalty for unsatisfied demand is considered. According to 

the sketch reported in Figure 2.1, the items stocked can be used the day after to satisfy 

the demand, reducing, consequently, the production.  

The model includes a photovoltaic (PV) plant designed to provide energy to a single 

work center of the manufacturing system. During the dark hours, the machine works 

using the grid electricity and during the light hours, the photovoltaic can be used to 

supply the energy request for machining. The plant does not have energy storage so 

that an excess of power produced by the photovoltaic plant must be sold. The proposed 

approach aims to calculate the variable time profile, on an hourly base, of the optimal 

cutting speed to maximize the monthly profit, considering the following main 
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parameters: the cost of the tools, the work center, the energy cost, the availability of 

energy supplied by the photovoltaic plant, the cost of storage and any penalties for 

failure to deliver the product. More in detail, regarding the PV system, hourly 

irradiance and ambient temperature have been taken from the PVGIS database 

(PVGIS, 2018) for a site located in Potenza, in the south of Italy. The photovoltaic 

system has been considered with a maximum power of 10 kW in Standard Test 

Conditions. The tilt and the azimuth are respectively 30° and -45° (SUD-EAST). 

Figure 2.1 shows the reference context described for the daily production, divided into 

three main coupled areas: the market, the manufacturing system and the electric power 

system.  

The aim is to suggest a methodology to increase efficiencies in the use of energy by 

implementing cleaner production and technical processes. More specifically, the 

model calculates the hourly profile of an operating parameter, i.e. the cutting speed, 

which maximizes the monthly profit recurring to the hourly time evolution of the PV 

power. In the model, the demand, daily generated from a discrete uniform distribution, 

and the buffer, due to the production of the day before, are the input of the 

manufacturing system. The work center (manufacturing) manufactures the parts by 

recurring to the grid and, whenever possible, to the PV system to maximize the profit 

changing hourly the cutting speed. The feed is not modified because it can affect the 

roughing of the items. In the next paragraphs, the mathematical model is described in 

detail and numerical results have been presented.  

 
Figure 2.1 Schematization of the reference context 

Grid 

Storage Machine 
tool 

Demand 

Unit sold 

Unsatisfied 
demand 

Excess of production 

Manufacturing system 

Market 

Power 

Unit available 

PV system 
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2.1.2 Mathematical and numerical model 

2.1.2.1 Formulation of monthly profit 

The objective function is the maximization of the monthly profit (Pm) (Eq. 2.1) 

calculated as the sum of daily profit: 

 𝑀𝐴𝑋	𝑃2 =4𝑃5,7

58

79:

;𝑣=(𝑡)? (2.1) 

where Pd,j is the daily profit of the j-th day of the month, dm is the number of days of 

the month and 𝑣=(𝑡) is the time-dependent machining parameter (i.e., the cutting 

speed). In the following, the dependence of the daily profit from the cutting speed will 

be described and the hourly profile of the cutting speed that maximizes the monthly 

profit will be calculated by a numerical algorithm. The maximization of the objective 

function (the profit) has been carried out by recurring to the trust region method, a 

numerical method based on the interior point technique (Byrd et al., 2000). 

The daily profit can be calculated as shown in Eq.2.2: 

 𝑃5,7 = 𝑅5,7 − 𝐶5,7 − 𝐶+) ∙ 𝑆𝑡7E: (2.2) 

where Rd,j is the daily income of the j-th day of the month, Cd,j is the daily cost of the 

j-th day of the month, Cst is the cost of a unit in storage, Stj-1 is the number of units in 

storage from the production of the day before. 

More, in particular, the daily incomes, i.e. the number of units sold times the selling 

price, are obtained as follows: 

 𝑅5,7 = 𝑃+ ∙ min	(𝑈𝑛KL,7	; 	𝐷𝑒𝑚7) (2.3) 

where Ps is the unit selling price, Unav,j are the available units on the j-th day, and Demj 

is the effective demand on the j-th day. In turn, the available units can be calculated as 

the sum of the produced units on the j-th day, 𝑈𝑛P,7, and the units stocked the day 

before, 𝑆𝑡7E:, as follows: 

 𝑈𝑛KL,7 = 𝑈𝑛P,7 + 𝑆𝑡7E: (2.4) 

while the effective demand (Eq. 2.5) is calculated as the sum of the daily demand (Dej) 

and the unsatisfied demand of the day before, i.e.: 
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 𝐷𝑒𝑚7 = R
𝐷𝑒7																																																							𝑖𝑓	𝐷𝑒𝑚7E: ≤ 𝑈𝑛KL,7E:
𝐷𝑒7 + 𝐷𝑒𝑚7E: − 𝑈𝑛KL,7E:												𝑖𝑓		𝐷𝑒𝑚7E: > 𝑈𝑛KL,7E:

 (2.5) 

Finally, stocked units of the j-th day depend on the available units and on the effective 

demand of the (j-1)-th day as follows: 

 𝑆𝑡7 = R
0																																																																𝑖𝑓	𝐷𝑒𝑚7E: ≥ 𝑈𝑛KL,7E:
𝑈𝑛KL,7E: − 𝐷𝑒𝑚7E:																																𝑖𝑓		𝐷𝑒𝑚7E: < 𝑈𝑛KL,7E:

 (2.6) 

The following non-linear system can express double formulations given by Eq. 2.5 and 

Eq. 2.6 in the unknown’s 𝐷𝑒𝑚7 and 𝑆𝑡7. 

 

⎩
⎪
⎨

⎪
⎧𝐷𝑒𝑚7^: = 𝐷𝑒7^: + ;𝐷𝑒𝑚7 − 𝑆𝑡7? ∙ max a0, 1 −

𝑈𝑛P,7
(𝐷𝑒𝑚7 − 𝑆𝑡7)

c ;

𝑆𝑡7^: = ;𝐷𝑒𝑚7 − 𝑆𝑡7? ∙ max a0,
𝑈𝑛P,7

;𝐷𝑒𝑚7 − 𝑆𝑡7?
− 1c ;

 (2.7) 

A matrix formulation of Eq. 2.5 and Eq. 2.6 is given in the Appendix A, where a 

nonlinear system of equations must be solved to obtain the effective demand and the 

stocked units as functions of the demand and of the produced units. Nonlinearity arise 

due to the double formulations of equations 2.5 and 2.6.  

By introducing the penalty for unit cost, Pens, the daily penalty for unsatisfied demand 

is expressed as 

 𝑃𝑒𝑛 = R0																																																											𝑖𝑓	𝑈𝑛KL ≥ 𝐷𝑒𝑚.				
𝑃𝑒𝑛+ ∙ (𝐷𝑒𝑚 − 𝑈𝑛KL)																					𝑖𝑓	𝑈𝑛KL < 𝐷𝑒𝑚					 (2.8) 

and the daily cost is defined as  

 𝐶5 =4𝐶e,f + 𝑃𝑒𝑛
gh

f9:

 (2.9) 

where Ch,i is the hourly cost, which is strictly related to the hourly productivity, prodh, 

using the following equation: 

 𝐶e = 𝐶i ∙ 𝑝𝑟𝑜𝑑ℎ (2.10) 

where Cu is the unit cost and the hourly productivity, i.e. the inverse of the unit 

production time tp, depends on the cutting speed.  
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The unit cost, considering that the production system is equipped with a photovoltaic 

system without battery and is linked to the electrical grid, can be calculated by the 

following equation: 

 𝐶i = 	o

𝐶2 ∙ 𝑡P
3600 + 𝐶) ∙ 𝑛=) + 𝐶r ∙ (𝐸𝑝 − 𝐸𝑝𝑣)																𝑖𝑓	𝐸𝑝 ≥ 𝐸𝑝𝑣	

𝐶2 ∙ 𝑡P
3600 + 𝐶) ∙ 𝑛=) − 𝑆r ∙ (𝐸𝑝𝑣 − 𝐸𝑝)																	𝑖𝑓	𝐸𝑝 < 𝐸𝑝𝑣

 (2.11) 

where Cm is the hourly machining cost, Ct is the tool cost, nct is the number of tools for 

single piece, CE is the energy cost, SE  is the selling price of energy to the grid, Epv 

and Ep  are the energy given by the photovoltaic plant and the energy needed for the 

production of a single unit, respectively. 

 

2.1.2.2 Formulation of unit energy and unit production time 

The energy required to produce a single unit (Eq. 2.12) is written as (Albertelli et al., 

2016): 

 

 𝐸𝑝 = 𝐸sft + 𝐸=)𝑛=) + 𝐸u𝑛u + ;𝑃= + 𝑃Kt + 𝑃+iPP?	60𝑡2 (2.12) 

 

where Efix is the energy used when the machine is on, Ect is the energy used for a single 

tool change, nct is the number of tools changed, Er is the energy used for a single rapid 

movement, nr is the number of rapid movements, Psupp is the power request by the 

machine auxiliary units Pc is the cutting power, Pax is the power request by the axes 

during machining and tm is the manufacturing time. The energy needed for a single 

rapid movement is calculated by using Eq. 2.13 (Calvanese et al., 2013): 

 

 
𝐸u = 4 v 𝑃Ku,(

)w

)x
∙ 𝑑𝑡 + v 𝑃u,( ∙ 𝑑𝑡

)$

)w
− 𝜂5 v 𝑃5u,( ∙ 𝑑𝑡

)z

)$(9t,{,|

 (2.13) 

 

where Par,k, is the power absorbed during the acceleration of the axis k; Pr,k is the power 

when the axis k is moving at the maximum speed and Pdr,k is the power during the 

deceleration of the axis k and hd is the fraction of energy recovered during the braking 

phase. 
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The time for a rapid movement (Eq. 2.14) it’s given by (Albertelli et al., 2016): 

 

 𝑡u = (𝑡: − 𝑡}) + (𝑡g − 𝑡:) + (𝑡~ − 𝑡g) (2.14) 

 

The cutting power Pc and the power request by the axes during machining Pax can be 

calculated as follows (Eqs. 2.15): 

 𝑃= =
𝐹=𝑣=
60 , 𝑃Kt =

1
3
𝐹=𝑣s
60  (2.15) 

 

where Fc is the cutting force, vc is the cutting speed and vf is the feed speed. 

The cutting force (Eq. 2.16) is computed as follows: 

 

 𝐹= = 𝐾=+ ∙ 𝑑= ∙ 𝑎| ∙ 𝑧% (2.16) 

 

where Kcs is the specific cutting pressure, dc is the depth of cut, az is the feed per tooth 

and ze are the number of engaged teeth. 

The unit production time is given considering all the contributions involved in the 

production by the following expression (Eq. 2.17): 

 

 𝑡P = 𝑡sft + 𝑡u𝑛u + 𝑡=)𝑛=) + 60𝑡2 (2.17) 

 

where tfix is the fixed time for a single process, tr is the time linked to a single rapid 

movement, tct is the tool change time e tm is the unit manufacturing time. 

The tool life is given by Taylor tool life equation (Eq. 2.18) as follows: 

 

 𝑣=𝑇)���� = 𝐾 (2.18) 

 

where Ttool is the tool life, and K and a are Taylor parameter. 

The unit manufacturing time (Eq. 2.19), the number of tools (Eq. 2.20) and the number 

of rapid movements (Eq. 2.21) are given by the following equations: 
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 𝑡2 =
𝜋	𝐿	𝐷

1000	𝑎	𝑣=
 (2.19) 

 𝑛=) =
𝑡2

�𝐾𝑣=
�
:/� =

𝜋	𝐿	𝐷
1000	𝑎	 𝐾

E:/�	𝑣=:/�E: (2.20) 

 𝑛u = 2𝑛=) + 2 (2.21) 

 

where L is the length of manufacturing and D is the mill diameter.  

By using Eqs. 2.1-2.6 and 2.8-2.21, the monthly profit can be expressed as a function 

of the time-dependent profile of the cutting speed. In the Appendix A, the complete 

dependence of the monthly profit on the cutting speed is described, in particular in 

Figure A.1, where all the quantities are expressed as a function of the cutting speed 

except for the time evolution of the PV power and for the demand, considered as input 

quantities of the model. The model calculates the time profile of the cutting speed on 

an hourly base which maximizes the monthly profit. 

 

2.1.2.3 Formulation of PV power 

In order to evaluate the hourly time evolution of the PV power, empirical correlations 

based on the International standard for electrical performances of PV systems have 

been used (ASTM Standard E1036, 1998; Skoplaki & Palyvos, 2009). The electric 

power is strongly affected by the cell temperature, Tc, and by the irradiance, G, and 

can be calculated by recurring to a formula which involves a certification parameter, 

called the NOCT (Nominal Operating Cell Temperature) (IEC 61215, 2005). The 

NOCT is reported by the PV module manufacturer and is obtained from outdoor 

measurements by a thermal probe placed on the rear side of the PV module which is 

located on an open structure. It represents the temperature reached by the back sheet 

of the module in open circuit when the solar irradiance is 800 W m-2, the ambient 

temperature Ta (20 °C), and the wind speed (1 m s-1). The cell temperature can be 

calculated for different values of solar irradiance and ambient temperature (D’Angola 

et al., 2020; Skoplaki & Palyvos, 2009; Spertino et al., 2016), using a linear expression 

as follows (Eq. 2.22): 

 𝑇= = 𝑇K +
𝑁𝑂𝐶𝑇 − 20

800 𝐺 (2.22) 
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and the electric power, PPV, can be calculated starting from the Standard Test 

Conditions by using the following expression (Eq. 2.23) 

 

 𝑃�� = 𝜂
𝑃+)=
1000𝐺(1 +

𝛾
100

(𝑇= − 25)) (2.23) 

 

where Pstc is the power in standard test conditions, h represents the system efficiency 

(0.85) and g the temperature coefficient given by the manufacturer (-0.45 %/°C, while 

NOCT=45 °C). 

Finally, the energy produced by the PV system for a single unit in the time interval [t0, 

t0 + tp] is given by Eq. (2.24): 

	
𝐸𝑝𝑣 = v 𝑃��(𝑡)

)x^)�

)x
∙ 𝑑𝑡 (2.24) 

 

where the time evolution of the electric power is related to the time evolution of 

irradiance and ambient temperature and, as a consequence, of the cell temperature. The 

values of G(t) are based on calculations from satellite images performed by CM-SAF 

and the database represents a total of 12 years of data (Huld et al., 2012; Šúri et al., 

2005) and are reported in Figure 2.2. 

As previously discussed, the average profile of the irradiance, given by PVGIS 

database, does not match a real day profile, but results can be considered satisfactory 

being obtained over a year. In order to optimize the performances, a real-time system 

made by a set of sensors for measuring both meteorological and electrical parameters 

and a data control system can allow to obtain the maximum performance in different 

ambient conditions. Moreover, also forecasting model, able to calculate irradiance 

profile and climate conditions with short horizons, can be implemented in the model 

(Reikard & Hansen, 2019). 
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Figure 2.2 Irradiance and cell temperature during the average day of January (1), 
March (3), July (7) and October (10). Electric power produced during the average 

day of the year. 

2.1.3 Test case and numerical results 

The numerical method developed to calculate the maximum monthly profit as a 

function of the cutting speed, has been extensively described in the previous paragraph 

and more in detail in the Appendix, in which the iterative procedure adopted to solve 

the nonlinear model has been illustrated (Figure A.2). By using the model, a strategy 

to increase efficiencies in cleaner production and technical processes can be designed 

implementing renewable energy. In the following section, some numerical results have 

been presented. 

In particular, the proposed method has been used in a test case whose details are 

reported in Table 2.2. Cutting and machine tool parameters are taken from Albertelli 

et al. (2016) and Calvanese et al. (2013), while the tool used is in high speed steel 

(HSS) and Taylor’s parameters are taken from Groover (2012).  
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Cutting parameter, tool properties and material 
properties 

Selling data, production cost and solar plant data 

feed per tooth az 0.3 [mm tooth-1] unit selling price  6.5 [€ unit-1] 

depth of cut dc 2 [mm] unit storage cost 0.13 [€ unit-1] 
Taylor’s constant K 120 [m min-1] penalty 0.65 [€ unit-1] 

Taylor’s coefficient a 0.125 machining cost  25 [€ hr-1] 

mill diameter D 40 [mm]  energy cost from 20:00 to 07:00 0.18 [€ kWh-1] 
from 07:00 to 20:00 0.22 [€ kWh-1] number of teeth 6 

  Selling price of energy 0.04 [€ kWh-1] 
tool cost 2 [€ tool-1] peak power  10 [kW] 
specific cutting pressure 2300 [N mm-2] solar plant efficiency 0.85 

workpiece length 400 [mm] PV plant size 80 [m2] (Lasnier & Ang, 1990) 
workpiece width 500 [mm] Temperature power 

coefficient 
-0.45 [%/°C] 

  Tilt angle 30° 
 Azimuth angle -45° (-45° SUD, -90° EAST) 

Machine tool parameter   
Fixed power 1200 [W]   

Auxiliary units power  1200 [W]   
tool change time 10 [s]   

Tool changer power 80 [W]   
fixed time 120 [s]   

Table 2.2 Data and simulation parameters of the test case 

The unit selling price (Eq. 2.25), the penalty (Eq. 2.26) and a cost of unit stocked (Eq. 

2.27) are defined as follows: 

 𝑃+ = 1.2
𝐶i,L" + 𝐶i,L�

2  (2.25) 

 𝑃𝑒𝑛+ = 0.1	𝑃+ (2.26) 

 𝐶+) = 0.02	𝑃+ (2.27) 

where Cu,vC and Cu,vP are respectively the units cost at the speed that minimizes the cost 

at the speed that maximizes the production. The assumptions of the simulation tests 

are the following: 

- the cutting speed can change hourly. 

- the demand of products is daily and is already known at the first day of the 

month under investigation. 

- the storage capacity is infinite. This assumption allows evaluating if the 

proposed model increases the fixed assets due to the higher work in process.   

- solar radiation and temperature data are considered as monthly averages of 

daily profiles on a hourly time scale. 

To define the different demand scenarios, the number of pieces obtainable at the 

minimum production cost and the number of pieces obtainable at maximum production 
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capacity were calculated (CIRP, 2019). By using the parameters given in Table 2.2, 

the daily productivity at the minimum production cost is 186 units, the maximum daily 

production is 220 units. In the test cases, daily demand is generated sampling from a 

discrete uniform distribution. The lower bounds of the three intervals are one-third, 

half of the daily productivity and the daily productivity that can be achieved when the 

cutting speed is the one that minimizes the production cost, respectively 62, 98 and 

186 units a day. The upper bound is the maximum production capacity. 

Three different fluctuations of the demand have been considered: 

• Test case 1 with high fluctuation: [62-220], mean daily demand: 141 units;  

• Test case 2 with medium fluctuation: [98-220], mean daily demand: 159 units; 

• Test case 3 with low fluctuation: [186-220], mean daily demand 203 units; 

Each test was also repeated considering the work center powered only by the electricity 

grid in order to obtain the performance evaluation.  

To compare results obtained in the test cases, the following performance parameters 

have been considered: 

• Profit gained over the year; it is the total profit derived from the production of 

the items.   

• Energy cost; it is the total energy cost due to the electricity grid.  

• Unit stocked; it is the total unit of items stored between two days that is a fixed 

asset.  

• Penalty over the year; it is the total cost due to the items delivered in delay.  

For each experimental class, simulations are repeated and averaged to guarantee a 

statistical validity of the results, considering that the daily demand is extracted by a 

statistical distribution. For each test case, 150 replications have been conducted to 

assure a 10% confidence interval and a 95% confidence level for each performance. 

The confidence interval describes a range of likely values of a statistic and typically, 

95% or 90% confidence intervals are calculated (for more details (Currie, 2019)). The 

performance with the largest confidence interval is the annual penalty, which however 

is below 10% with the number of replications considered. Regarding the statistical 

average and confidence intervals, Figure 2.3, as an example, shows the trend of the 

average of the yearly profit and of the yearly penalty with the number of replications 



Chapter 2:Renewable energy sources in single machine 
 

 

 

57 

for the test case 1. In the figure, the confidence intervals have been also reported 

showing a decreasing behavior with the number of replications. 

 
Figure 2.3 Mean and 95% confidence interval for yearly profit and yearly penalty 

for test case 1 

Results obtained in the three different cases have been reported in Table 2.3, where 

mean values of the performances are shown.  

 
 Case 1  Case 2  Case 3  

 Photovoltaic 
+Grid Grid   Photovoltaic 

+Grid Grid   Photovoltaic 
+Grid Grid   

Yearly 
profit [€] 106724.70 103803.72 +2.81%  144763.40 141767.52 +2.11%  186922.14 183836.11 +1.68%  

Energy 
bought 
[kWh] 

30680.59 44091.26 -30.42%  34559.43 48299.75 -28.45%  44152.22 58375.44 -24.37%  

Energy cost 
[€] 5913.23 8812.14 -32.90%  6681.51 9658.27 -30.82%  8590.58 11675.02 -26.42%  

Units 
stocked  
[units] 

9176.63 9131.93 +0.49%  9128.31 9114.15 +0.16%  2107.37 2106.83 +0.03%  

Yearly 
penalty [€] 414.07 411.25 +0.69%  570.38 572.11 -0.30%  1700.13 1701.09 -0.06%  

yearly self-
consumed 

energy 
[kWh] 

13411.36    13740.45    14223.43    

Energy sold 
[kWh] 

 
851.45    522.37    39.38    

Table 2.3 Simulation results obtained for the three different test cases. 

In the table, results obtained when the work center is self-consistently coupled to the 

PV plant and when it is powered only by the electric grid are compared. Results show 

the effectiveness of the energy-flexibility approach, aligning production planning and 

manufacturing parameters to the renewable energy supply. In all cases the energy 

Mean 
Upper and lower confidence interval limits 
Size of confidence interval 

3.44 
1.49

1.84 23.03

11.60
9.13

Mean 
Upper and lower confidence interval limits 
Size of confidence interval 
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bought decreases of about 30%. In test case 3, characterized by a greater demand, the 

yearly profit is higher due to the higher units provided. It can be noticed that the 

stocked units are lower than in other cases, and the yearly penalty increases. Indeed, 

increasing production to satisfy demand leads to an increase in tool and energy costs, 

and in this case, it is more suitable to pay the penalty rather than increasing the cutting 

speed with the linked costs.  

 

 
Figure 2.4 Percentage variation of the parameters in the three test cases from the 

benchmark (work center powered by the grid without PV plant) 

Figure 2.4 shows the percentage variations from the benchmark (energy is given only 

from electricity grid) of the considered performances in the three test cases reported in 

Table 2.3. 

Higher demand fluctuation (case 1) leads to a higher increase of the profit (2.81%), 

while the reduction of the fluctuations reduces profit gained. The other relevant result 

is the reduction of about 30% of the energy bought from the grid, that leads to reduce 

considerably the CO2 emission. Lower fluctuations of the demand lead to reduce the 

benefits in terms of profit. Figures 2.5-2.8 show an example of time evolution of the 

parameters (cutting speed, energy bought, daily productivity, energy sold, energy self-

consumed, PV energy produced) in the full model, where the PV plant has been self-

consistently coupled to the manufacturing process in order to maximize the profit. 

1.50%
2.00%
2.50%
3.00%

141 159 203

Mean daily demand [unit]

Yearly profit 

-40.00%

-20.00%

141 159 203
Mean daily demand [unit]

Energy

Energy bought Energy cost

0.00%
0.20%
0.40%
0.60%

141 159 203
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-0.50%
0.00%
0.50%
1.00%

141 159 203

Mean daily demand [unit]

Yearly penalty
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Results obtained in two selected months (January and July) have been reported for a 

single replication, in order to show how the model works on the time control of the 

cutting speed and the energy bought and sold. These figures show how the proposed 

model controls the cutting speed of the CNC (Computer Numerical Control) machine. 

A constant cutting speed profile is obtained when the PV plant is off and when the 

energy cost is always the same during the day. A slight dependence characterizes the 

time depended profile when different energy costs between day and night have been 

considered.  

Analyzing the result for July in Figure 2.5, it can be observed that there is an increase 

in cutting speed during the light hours, especially in test cases 1 and 2. The increase of 

the production, linked to the cutting speed, is due to less cost of energy, when it is 

produced by the photovoltaic system. The increase in the speed in July in test case 3 

is not relevant, because, in this case, a further increment of production implicates 

higher cost of tool and energy. In winter months, like January, there is no increment in 

cutting speed during the light hours, due to a lower value of irradiance and, thus, to a 

lower value of energy produced by the photovoltaic system. However, a few decreases 

in cutting speed during the light hour can be observed, due to a higher cost of energy 

bought from the grid during the central hours of the day. 

Figure 2.6(a) shows the cutting speed profile in July when a single replication of the 

daily demand is generated. In Figure 2.6(b) the difference between the cutting speed 

at the Zenith and at midnight is reported being strictly related to daily production; in 

fact, the higher the production, the smaller the gap between the two speeds and the 

quantities are in phase opposition. However, it can be noticed that the gap is small in 

the day 13, despite the low daily production. This is because the cutting speed is close 

to its lower limit during the night, and due to the small number of units to be produced, 

it is not necessary to increase the speed during the day to meet the demand. 

Figure 2.7 shows the energy bought and sold from and to the grid during the hours of 

the days of July and January for test case 1. In all simulations, the time dependent 

irradiance profile for each month is the average one as given by PVGIS database and 

are reported in Figure 2.2. It can be seen that in July, due to the greater values of 

irradiance, it is not necessary to buy energy from the grid, while in January the energy 

given by the photovoltaic system is not sufficient to guarantee the production. For this 
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reason, the purchase of energy from the grid must be increased. Furthermore, there is 

no surplus of energy in January, while in July the excess energy is sold to the grid. In 

the other two cases, the same hourly behavior has been obtained, but with a lower daily 

variation of the energy bought and sold during the same month, due to the narrower 

range of daily demand.  

Finally, Figure 2.8 shows the time evolution during one day of July of the energy 

bought, sold, self-consumed from PV system, produced by PV system and requested 

by the machine when a single replication of the demand is generated. 
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Figure 2.5 Cutting speed profiles for three test cases in January and July. The single 

replication of the daily demand is generated sampling from a discrete uniform 
distribution 
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Figure 2.6 Cutting speed profile at the Zenith (vlight) and at midnight (vnight) (a) and 
differences of the two cutting speed profiles and daily productions (b) in July. The 

single replication of the daily demand is generated sampling from a discrete uniform 
distribution 

 

 

 
Figure 2.7 Energy bought (Eb) from the grid and sold (Esold) in January and July. 
The single replication of the daily demand is generated sampling from a discrete 

uniform distribution 
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Figure 2.8 Daily profile of Energy bought (EB), Energy sold (ES), Energy self-

consumed from PV system (EPV,u), Energy produced by PV system (EPV,p), Energy 
demand (Ed). The single replication of the daily demand (July) is generated sampling 

from a discrete uniform distribution 

 

The main outcome of the model is represented by a strong reduction of the energy cost, 

obtained by finding the maximum monthly profit in a manufacturing system where the 

production and the required electric power is self-consistently aligned with the 

renewable energy source. Compared to the case where only the connection to the 

electricity is available, in the three test cases, the mean of energy cost is reduced by 

32.9%, 30.8% and 26.4%, respectively. 

To define the economic feasibility of the investment the well known Net Present Value 

formula has been used (Eq. 2.28): 

 

 
𝑁𝑃𝑉 = −𝐼} +4

𝐶𝐹)
(1 + 𝑖))

�

)9}

 (2.28) 

 

The price of the solar system in the last 8 years decreased of 85% and the benchmark 

cost of the plant is about 1300 € kWp-1 (Jäger-Waldau, 2018). Thus, the investment 

for a 10 kW PV plant is 13000 €. Considering that the average saving on energy 

demand compared to the absence of the photovoltaic plant of the test cases analyzed 

is about 2986.67 € year-1 and considering a cost of capital “i” of 3% (Bortolini et al., 

2013), the payback period is 5 years. 
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2.2 The battery addition 

The addition of electric storage allows storing the excess of the energy supplied by the 

PV plant in order to use it, for example, during the dark hours of the day. The aim is 

to find the cutting speed profile that achieves the maximum profit, including the 

possibility of storing energy. By using battery storage, the cutting speed profile has a 

lower fluctuation during a single day compared to the system composed only of the 

PV plant and connected to the electrical grid.  

Figure 2.9 represents the reference context, i.e. the manufacturing system linked to the 

power system, composed of photovoltaic system (photovoltaic plant and battery) and 

of electrical grid, affected by the market demand.  

 

 
Figure 2.9 The addition of the battery to the power system 

 

The battery charge level is also calculated on an hourly basis, as follows (Eq. 2.29): 

𝐸𝑎𝑐f,7 = a
𝐸𝑎𝑐fE:,7 + ;𝐸𝑝𝑣f,7 − 𝐸𝑝f,7? ∙ 𝑝𝑟𝑜𝑑ℎf,7 			𝑖𝑓	𝐸𝑝f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7 < 	𝐸𝑎𝑐fE:,7 +	𝐸𝑝𝑣f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7	
0																																																																						𝑖𝑓		𝐸𝑝f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7 ≥ 	𝐸𝑎𝑐fE:,7 +	𝐸𝑝𝑣f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7

 (2.29) 

where Eaci,j is the energy in the battery in the i-th hour of the j-th day, Epvi,j is the 

energy supplied by PV plant during the production of a piece in the i-th hour of the j-

th day, Epi,j is the energy required for the production of a piece during the i-th hour of 

the j-th day, and prodhi,j is the hourly productivity during the i-th hour of the j-th day. 

 

Manufacturing system Market 
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Using Eq. 2.29, the battery is charged when the energy given by the PV plant is higher 

than the energy required for the production.  

The battery can be in one of the following states: 

• charge state, when Epvi,j > Epi,j 

• discharge state, when Epvi,j < Epi,j 

• neutral state, when Epvi,j = Epi,j 

For the first hour of a day, the stored energy must include the battery charge level of 

the previous day as follows (Eq. 2.30): 

𝐸𝑎𝑐:,7 = a
𝐸𝑎𝑐gh,7E: + ;𝐸𝑝𝑣:,7 − 𝐸𝑝:,7? ∙ 𝑝𝑟𝑜𝑑ℎ:,7	𝑖𝑓	𝐸𝑝:,7 ∙ 𝑝𝑟𝑜𝑑ℎ:,7 < 	𝐸𝑎𝑐gh,7E: +	𝐸𝑝𝑣:,7 ∙ 𝑝𝑟𝑜𝑑ℎ:,7
0																																																																							𝑖𝑓		𝐸𝑝:,7 ∙ 𝑝𝑟𝑜𝑑ℎ:,7 ≥ 	𝐸𝑎𝑐gh,7E: +	𝐸𝑝𝑣:,7 ∙ 𝑝𝑟𝑜𝑑ℎ:,7

 (2.30) 

Similarly, the battery charge level at the beginning of a generic month must take into 

account the energy stored in the battery at the end of the previous months, as follows 

(Eq. 2.31): 

𝐸𝑎𝑐:,: = a𝐸𝑎𝑐gh,� + ;𝐸𝑝𝑣:,: − 𝐸𝑝:,:? ∙ 𝑝𝑟𝑜𝑑ℎ:,:			𝑖𝑓	𝐸𝑝:,: ∙ 𝑝𝑟𝑜𝑑ℎ:,: < 	𝐸𝑎𝑐gh,� +	𝐸𝑝𝑣:,: ∙ 𝑝𝑟𝑜𝑑ℎ:,:	0																																																																								𝑖𝑓		𝐸𝑝:,: ∙ 𝑝𝑟𝑜𝑑ℎ:,: ≥ 	𝐸𝑎𝑐gh,� +	𝐸𝑝𝑣:,: ∙ 𝑝𝑟𝑜𝑑ℎ:,:
 (2.31) 

where the subscript “l” denotes the last day of the previous month. 

By using Eqs. 2.29-2.31, the level of the charge of the battery is initialized only the 

first day of the year. 

Considering the presence of the battery, the energy bought by the grid is given by the 

following equation: 

𝐸𝑏f,7 = R
𝐸𝑝f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7 − 𝐸𝑎𝑐fE:,7 − 𝐸𝑝𝑣f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7			𝑖𝑓	𝐸𝑝f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7 > 	 𝐸𝑎𝑐fE:,7 +	𝐸𝑝𝑣f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7
0																																																																																					𝑖𝑓		𝐸𝑝f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7 ≤ 	 𝐸𝑎𝑐fE:,7 + 	𝐸𝑝𝑣f,7 ∙ 𝑝𝑟𝑜𝑑ℎf,7

 (2.32) 

where Ebi,j is the energy bought from the electrical grid during the i-th hour of the j-th 

day. When the energy required is higher than the energy given by the PV plant and by 

the energy storage, it is necessary to buy energy from the electrical grid for the 

production. The energy for the production of a single piece, is calculated as follows:  

𝐸𝑏𝑢 =
𝐸𝑏

𝑝𝑟𝑜𝑑ℎ (2.33) 

where Ebu is the energy bought from the grid for a single piece. Then the unit cost in 

the case of addition of the battery, is calculated as: 
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𝐶i =
𝐶2
3600 𝑡P + 𝐶)𝑛=) + 𝐶r𝐸𝑏𝑢 (2.34) 

where Cu is the unit cost, Cm is the hourly manufacturing cost, tp is the production time, 

Ct is the tool cost, nct is the number of tools needed for the production of a single unit 

and CE is the energy cost. 

 

2.2.1 Simulation experiments and results 

In the model, the energy can be bought from the grid, supplied directly by the PV plant 

and by the battery storage, which is sized in order to minimize the energy sold to the 

grid. In fact, if the PV production is greater than the energy demand for production, 

the excess energy is used to charge the battery. The energy costs during the day are 

reported in Table 2.4. 

Hour Energy cost 

from 8:00 to 19:59 0.22 [€ kWh-1] 

from 20:00 to 07:59 0.18 [€ kWh-1] 

Table 2.4 Energy costs during the day 

Regarding the daily demand of products, the same scenarios of the system composed 

of only PV plant have been considered. The scenarios analyzed are the same of the 

case of the system composed of only photovoltaic plant and connected to the grid and 

of the case of system only linked to the grid and have been presented in paragraph 

2.1.3. Therefore, the fluctuation ranges are high, medium and low (case 1, case 2 case 

3). The three test cases have been applied both to the production system assisted by 

the PV plant with energy storage and linked to the grid and to the production system 

equipped only with the PV plant and connected to the electrical grid (no battery 

storage). In the second case, the excess energy is sold to the electrical provider. 

The percentage of variations has been obtained referring to the system assisted by the 

PV plant and linked to the grid (no battery storage). In the last case, energy costs are 

mainly reduced by the PV plant up to about 33%, 31%, and 26% respectively in the 

high, medium and low fluctuation of the demand, as evaluated in the previous 

paragraph. 
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To evaluate the effect of the battery storage, the following performances were 

considered: 

• Yearly profit; 

• Energy cost; 

• Energy bought; 

• Self-consumed energy. 

In the following figures, the hourly profiles of the cutting speed are reported. Figure 

2.10 shows the cutting speed (vc) profile in January obtained finding the maximum of 

the monthly profit in the case of high demand fluctuation. The hourly profile of the 

cutting speed is characterized by a slow variation, due to the different value of the 

energy costs during the day. In January, for the lower energy supplied by the PV 

system, the behaviour of the system with and without the battery storage is the same, 

due to the low energy produced by the PV system. 

 
Figure 2.10 Cutting speed (vc) profile for the case of high demand fluctuation in 

January in the system equipped with a PV plant, energy storage, and connected to the 
electrical grid 

During the summer, when the energy supplied by the PV plant is higher, the cutting 

speed profile for the two production systems (with and without battery storage) is 

different. Figure 2.11 shows the two cutting speed profiles in August in the case of 

high demand fluctuation. It can be noticed that, in contrast to the system without 

energy storage, the presence of the battery storage reduces the fluctuations 
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considerably during the day by finding a different cutting speed due to an increased 

self-consumed energy at a more favorable fare. The different values of the cutting 

speed in different days depending on the daily demand. The higher the daily demand, 

the higher the cutting speed. Higher increases in cutting speed during the light hour in 

the case without the battery storage occur when demand is low. To obtain profit it’s 

required to meet the demand, for this reason when the market requires few pieces in a 

day to satisfy the requirements it’s not necessary to produce at high cutting speed 

during the day. Incrementing the production during the light hours allows to reduce 

energy costs compensating the tool costs. Indeed, the lower the cutting speed, the lower 

the tool cost, but the higher the machining costs. 

 

 
Figure 2.11 Cutting speed (vc) profile in August for the high fluctuation demand in 

the system with and without battery storage 

In the second test case, i.e. medium fluctuation demand, the cutting speed profiles for 

the two systems analyzed have the same behaviour of the case with high fluctuation 

demand. In the case of low fluctuation demand, the cutting speed profiles present low 

variations during the days, due to the lower variations of pieces to be produced and to 

the higher daily demand.  

Figure 2.12 shows the energy bought from the electrical grid during January and 

August in the case of a system with battery storage and high fluctuation of demand. 

During January the battery storage never charges and energy must be taken from the 

grid even during the light hours. On the other side, during the summer months, the 

battery storage system increases the self-consumed energy, so it is not necessary to 

buy energy from the grid. 
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Figure 2.12 Energy bought (Eb) for the case of high demand fluctuation in January 

and in August in the system equipped with a PV plant, energy storage, and connected 
to the electrical grid 

Figure 2.13 shows the energy stored during April and August. The peaks of stored 

energy occur during the summer months. The level of charging depends on daily 

demand: the lower the demand, the higher the energy stored during the same day. 

 

 

 
Figure 2.13 Stored energy (Eac) during April and August for the case of high 

demand fluctuation in the system equipped with a PV plant, energy storage, and 
connected to the electrical grid 

Figure 2.14 represents the self-consumed energy in the system in the presence of 

battery storage and high fluctuation of demand. The figure shows that the presence of 

the battery allows to increase self-consumed energy over a long period of time, so that 

even when there is no photovoltaic energy available. The addition of the energy storage 

extended the time of using the self-consumed energy instead of selling it to the 

electrical provider at a non-affordable tariff. It can be noticed that the system can use 

the energy produced by the PV plant or stored in the battery, reducing considerably 

the energy bought from the electrical grid. When the energy supplied by the PV system 

and by energy storage is not enough for the production, the system is powered by the 

grid. 
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Figure 2.14 Self-consumed energy (Esc) in the system equipped with a PV plant, 

energy storage, and connected to the electrical grid with high fluctuation of demand 

Figure 2.15 shows the charge level of the battery during the year. It can be noticed that 

energy is mainly stored between hours 2000 and 6500 and, for this reason, the addition 

of the battery storage has influence mainly during the spring and the summer. The 

level of charge is also influenced by the daily demand. In particular, the peaks of 

charge occur when the demand is low. For about 88% of the total time the energy 

stored, for this single work center model, ranges between 0 to 2 kWh.  

 
Figure 2.15 Stored energy (Eac) during the years. Simulations have been performed 

in the case of high fluctuation of the demand 
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The cutting speed profile requires further investigation and discussion, as reported in 

the following. 

 
Figure 2.16 Cutting speed (vc) during the 5th of August in the three power systems 

(grid, PV and grid, PV with energy storage and grid) 

Figure 2.16 shows the cutting speed during the hours of one day simulated in the three 

cases: electrical grid (grid), PV plant and grid (PV+grid) and PV plant with battery 

storage and electrical grid (PV+energy storage+grid). In the case of only connection 

to the electrical grid, the cutting speed profile presents a decrement in the central hour 

of the day due to the higher electricity tariff. Considering the power system composed 

of the photovoltaic plant and linked to the electrical grid, the cutting speed raises 

during the light hour reducing the energy cost optimizing energy self-use. The 

introduction of the battery implies a constant cutting speed to optimize the profit. As 

described above, this circumstance allows to reduce the stress of the cutting tools and 

to improve the cutting life derived from the fatigue effect. The constant cutting speed 

reduces the percentage of life used for the manufacturing operation compared to the 

other two cases. 
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Figure 2.17 Percentage of tool wear during the 05th August in the three power 

systems (grid, PV and grid, PV with energy storage and grid) 

Figure 2.17 shows the percentage consumed of the cutting tools for the three cases 

studied. Integrating the curve of the cutting speed, the total life consumed for the day 

can be obtained. It can be noticed that the percentage of the tool wear follows the 

cutting speed profile; analyzing the case of photovoltaic plant and electrical grid, the 

reduction of energy cost during the light hour allows increment the stress of the tools, 

and then their cost, in order to maximize the profit. 

As shown in Table 2.5, the introduction of the battery reduces the life consumed at the 

same level as the network supplier. The benefit of this condition is the reduction of the 

tools used, and the management of the tool’s inventory is simpler. The forecast for the 

tools is stable, and this allows us to improve the performance of inventory 

management. 

 grid PV+grid PV+energy 
storage+grid 

tool consumed % 
of total life 6.75% 18.75% 6% 

Table 2.5 Percentage of tool wear 

Table 2.6 reports the percentage variations of the performances analyzed with respect 

to the chosen benchmark. Energy costs are reduced by the PV plant up to 30% and the 

addition of battery storage leads to an additional reduction in energy cost, especially 

in the case of high fluctuation of demand. 
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 Per cent variations 
 High 

fluctuation 
Medium 

fluctuation 
Low 

fluctuation 
Yearly profit [€ year-1] +0.16% +0.068% +0.004 % 

Energy cost [€ year-1] -3.26% -1.73% -0.10% 

Energy bought [kWh year-1] -2.79% -1.51% -0.09% 

Self-consumed energy [kWh year-1] +6.37% +3.79% +0.28% 
Table 2.6 Percentage variations of yearly profit, energy cost, energy bought and self-

consumed energy of the system equipped with the PV plant, battery storage and 
linked to the grid respect to the system with only the PV plant and connected to the 

grid 

In fact, it can be seen, in particular in the case of high fluctuation in demand, a 

reduction of about 3% the energy cost and an increase of more than 6% in self-

consumed energy, producing for the system composed by PV plant and energy storage 

savings up to 35%. On the other side, in the case of medium fluctuation of the demand, 

the benefits obtained adding the battery storage are reduced and, in the low fluctuation 

demand, the performance variations from the benchmark are negligible. In fact, in this 

case, the system absorbs almost all the energy supplied by the PV system due to the 

higher production required and does not charge the storage system, behaving as if it 

were practically absent. As previously discussed, the addition of the battery results in 

a cutting speed profile with lower fluctuation during the day and this circumstance 

allows to reduce the stress of the cutting tools and to improve the cutting life derived 

from the fatigue effect.  

Therefore, analyzing the results in both cases, i.e. with and without energy storage, the 

main findings of the numerical experiments are: 

- energy flexibility approach allows to increase the profit; 

- the hourly adaption of the cutting speed leads to a reduction of the energy 

bought from the electrical grid; 

- the implementation of PV pant and energy flexibility approach allows reducing 

the CO2 emissions, especially with high demand fluctuations; 

- the introduction of a battery reduces the cutting speed fluctuations and limits 

tools fatigue stress. 
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2.3 CO2 reduction through the integration of renewable electrical power 

The simultaneous growth of the use of photovoltaic technology and the reduction in 

its cost has favoured the diffusion of solar power on a large scale, leading the solar 

power contribution to more than 20% of the world’s electricity by 2050, as reported 

by the International Energy Agency (IEA, 2020), of which 16% is covered by 

photovoltaic systems (IEA, 2014). Moreover, in (IEA, 2020) solar energy, used for 

power generation and heating in buildings and industry, is considered to become by 

2070 the largest primary energy resource, serving more than 20% of the global primary 

energy demand. The direct consequence is the reduction of a significant fraction of the 

growing global CO2 emissions from fossil generation. Renewable sources typically 

produce emissions during manufacture but reduce carbon emissions considerably by 

replacing carbon-intensive sources. In order to calculate the emissions reduction, the 

energy that is replaced and its carbon intensity must be evaluated. Moreover, the 

energy consumed in manufacturing processes by installing the renewable system must 

be computed and added. 

In PV energy conversion, solar radiation is directly converted into electric current self-

consumed, dispatched to the grid or stored. The crystalline or multi-crystalline silicon 

(c-Si) devices convert sunlight to electricity with efficiency in the range 15-25% and 

cover around the 90% of the market due to the consolidated experience in manufacture 

and processing from the microelectronics industry. The cost of silicon PV modules has 

felt down from 15 €/Wp to lower than 1 €/Wp encouraging its growth (Jäger-Waldau, 

2018; Marigo & Candelise, 2013). Alternative technologies are represented by thin 

films, characterized by lower cost (0.6 €/Wp) and efficiency, and multiple layers of 

different semiconductors with efficiency over 30%, but, due to the expensive 

manufacturing production, lower diffusion (Louwen et al., 2016). 

Carbon intensity is strictly related to the characteristics of different PV technologies 

and ranges between 15 gCO2/kWh and 38 gCO2/kWh in the case of CdTe systems or 

c-Si, respectively, considerably lower than the intensity of fossil fuel (500 gCO2/kWh), 

according to de Wild Schotten (2013).  

The reduction of anthropogenic CO2 (and, more generally, greenhouse gas GHG) 

emissions is seen as a mandatory objective for the next years to avoid harmful global 

warming problems (UNFCCC, 2015). However, the CO2 emissions related to the 
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energy sector continued to increase in the last five years, at an annual rate of 1.3% 

(IRENA, 2019b). According to IRENA (IRENA, 2019b), “Renewable electricity 

paired with deep electrification could reduce CO2 emissions by 60%, representing the 

largest share of the reductions necessary in the energy sector”. In addition, the 

combined effect of electrification and increased RES (renewable energy sources) 

deployment, together with a better energy efficiency of the energy components and 

systems, reduces the total energy demand from power plants based on fossil fuels. The 

corresponding environmental impact leads to a substantial reduction of CO2 emissions.  

Besides the energy consumption aspects of energy flexibility, the assessment of the 

environmental impact of the products is crucial to enable the decision-makers reaching 

their strategic decisions. In this respect, the study carried out in Pfeilsticker et al. 

(2019) for the manufacturing industry considers the overall production cost (composed 

of energy cost, inventory cost, and processing costs defined with hourly rates per 

machine), as well as the emissions costs due to the use of energy during the production 

process. 

The greenhouse gas emissions are considered by determining the CO2-equivalent mass 

(Chicco & Mancarella, 2008), by using the emission factor (i.e., the specific emissions 

in g/kWh of a greenhouse gas produced by an energy source in the production process) 

multiplied by the global warming potential (GWPg) to obtain the CO2-equivalent mass. 

The emission factors depend on the production process, as different equipment and 

energy sources are used in each process. The emission factor referring to the electricity 

taken from the grid depends on the energy mix for electricity production in the country. 

An updated emission factor database can be found in IPCC (2020). For energy 

flexibility analyses, in which the variations of the operational schedules with respect 

to a baseline scenario are of interest, the relevant emission factors can be the marginal 

emission factors instead of the average emission factors (Harmsen & Graus, 2013). In 

fact, considering the average emission factors would imply that all the equipment 

undergo some changes, while flexibility is assessed by considering only the changes 

occurring for some equipment that form the operational energy and emission profiles. 

The application of energy flexibility strategies results in changing the energy used at 

different time intervals, with the consequent variation of the equivalent CO2 emissions. 

Alternative expressions based on similar concepts are provided as the Carbon 
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Emission Signature (Jeswiet & Kara, 2008), in which the primary energy sources 

replace the production processes. 

In the realm of sustainable manufacturing, an established method for CO2 emission 

assessment is the carbon emission accounting (CEA), which considers energy, raw 

materials, and waste disposal. Recent advances include the extension of the CEA 

method to consider also capital factors and labour, leading to the Extended Carbon-

Emission Accounting (ECEA) (Zhao-hui et al., 2020). 

Some solutions that provide significant energy and CO2 emissions savings in industrial 

plants include: 

1. Enhancing self-sufficiency through flexible energy production in the 

manufacturing processes, also using demand response and energy storage to 

shape the energy demand profiles (J. Schulz et al., 2020). However, self-

sufficiency cannot guarantee CO2-neutrality (i.e., the absence of anthropogenic 

CO2 production), because the type of equipment used in the energy systems 

could not be CO2-free. 

2. Enhancing energy flexibility from the combination of RES and carbon capture 

and utilization (CCU) solutions (Mikulčić et al., 2019). The CO2 “wasted” 

from a manufacturing process can be used in other energy and chemical 

processes, also at relatively low scale. Since the actions needed to make CO2 

available for other processes may require energy, the CCU solution is viable 

only when this energy is produced from RES. Moreover, CCU could be more 

expensive than other solutions (e.g., energy storage (Schulze, Blume, 

Herrmann, et al., 2019)), then a specific analysis of convenience has to be 

carried out for the case under consideration. 

3. Including recovering solutions and recycling strategies in the manufacturing 

processes (S. Lu et al., 2019), provided that the related costs are reasonable, 

and the corresponding energy requested comes from RES. 

The solutions indicated above have the common advantage to require energy inputs 

from RES. This fact can be positive when the manufacturing system is located in an 

area in which a large extent of RES is available, or even the existing RES would be 

curtailed in the absence of further energy demand. 
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The emission factor model is used to assess the CO2 equivalent emissions. The 

emissions considered are the ones due to the use of electrical energy taken from 

different sources. The emission factor 𝜇�
(+) represents the specific emissions of the 

greenhouse gas g emitted by the energy source s to generate electricity. The global 

warming potential GWPg of greenhouse gas g is introduced to obtain the CO2 

equivalent emissions. The electrical energy 𝐸()
(+) refers to the production process k 

supplied by the energy source s at time interval t. 

Let us denote with G the set of greenhouse gases, with S the set of energy sources, and 

with K the set of production processes. The CO2-equivalent mass emitted during the 

production process in the time period composed of successive time intervals t = 1,…, 

T, is calculated as follows: 

𝑚"#$%& = ∑ ∑ ∑ 𝜇"#$%&
(+) 𝐸()

(+)
+∈𝐒(∈𝐊

¢
)9:   (2.35) 

where the CO2-equivalent emission factor is expressed as: 

 

𝜇"#$%&
(+) = 4𝜇�

(+)𝐺𝑊𝑃�
�∈𝐆

 (2.36) 

 

Eq. 2.35 can be used with regular or non-regular time intervals, provided that the actual 

energy values are used in each time interval.  

The usage of different energy sources s to supply the electrical energy 𝐸()
(+) changes 

the emissions because of the different emission factors involved. Hence, different ways 

to supply the same demand through the electrical grid or with local sources 

(photovoltaic systems and batteries) correspond to different emissions.  

The combined effect of reducing the energy needed to carry out the process and using 

electricity taken from the local sources leads to reducing the CO2-equivalent 

emissions. To quantify the emission savings, a baseline scenario is considered, in 

which no actions are done to enhance the effectiveness of the production process and 

the electricity is taken from the grid. In this case, the emission factor referring to the 

electricity taken from the grid depends on the energy mix for electricity production in 

the country (Nieuwlaar et al., 1997). For example, in Italy the GHG emission factor 
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for electricity production from the national energy mix has decreased from 575.9 

g/kWh in 1990 to 477.7 g/kWh in 2005, and to 307.7 g/kWh in 2017 (Caputo, 2019). 

For photovoltaic systems, the emission factor is the GHG emission rate of per unit 

electrical energy generated by the photovoltaic system (Peng et al., 2013); the CO2-

equivalent emission factors reported in the literature vary from 14 to 73 g/kWh 

(Tawalbeh et al., 2021). The GHG emission factor 40 g/kWh has been used in 

applications of photovoltaic systems with batteries (Jurasz et al., 2020). 

For battery systems to be used together with photovoltaic systems, the GHG emission 

factor represents the pre-operation phase and is expressed in g/kWh with respect to the 

maximum energy capacity (in kWh) of the batteries; the value 200 kg/kWh has been 

considered in (Jurasz et al., 2020) for a battery lifetime of 10 years and has to be 

multiplied by the energy capacity of the battery storage system to get the overall mass 

of CO2 emitted during the construction phase. This information is not directly 

translated into a GHG emission factor to be used during the battery operation, for 

example depending on the energy discharged by the battery. 

The CO2-equivalent mass 𝑚"#$%&
¥¦§¨  is then calculated from Eq. 2.35. Furthermore, the 

CO2-equivalent mass 𝑚"#$%&  is calculated after applying changes in the production 

process and/or changing the electricity supply sources. The GHG Emission Savings 

(GHGES) indicator is then introduced as: 

𝐺𝐻𝐺𝐸𝑆 =
𝑚"#$%&
¥¦§¨ − 𝑚"#$%&

𝑚"#$%&
¥¦§¨  (2.37) 

Positive values of the GHGES indicator represent satisfactory cases in which the CO2-

equivalent emissions are reduced. The maximum value that can be obtained is 

GHGESmax = 1, when the local electricity is totally produced from sources that do not 

produce GHGs. On the other side, negative values indicate that the new situation is 

worse than the baseline scenario, and the minimum value is not limited.  

The energy balance due to the supply of the useful electrical energy 𝐸()ª¨«¦¬ª from the 

grid (𝐸()
­¨¬,­®¯ª) and from the local sources (photovoltaic 𝐸()

­¨¬,°±, and battery discharge 

𝐸()
ª¯§²³¦®­¨,¥¦´´¨®µ) is: 

𝐸()
­¨¬,­®¯ª + 𝐸()

­¨¬,°± + 𝐸()
ª¯§²³¦®­¨,¥¦´´¨®µ = 	𝐸()ª¨«¦¬ª (2.38) 
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In the situation analyzed here, in which the presence of a photovoltaic system with 

batteries is expected to reduce the GHG emissions, the battery is connected in such a 

way that can be charged only by the photovoltaic system and is never charged by the 

grid, to avoid increasing the GHG emissions. 

The use of renewable energy sources in the manufacturing system allows reducing the 

energy bought from the electrical grid. The integration of the battery permits a further 

reduction of purchased energy. Electrical consumption involves CO2 emissions due to 

the different technologies used in power plants. For this reason, the reduction of energy 

bought from the electrical grid by the integration of in-situ renewable and clean energy 

sources decreases proportionally the CO2 emissions. 

The assessment of the GHG emission savings is carried out by using Eq. 2.37. The 

GHG emission factors considered are:  

- for the electricity taken from the grid: 𝜇"#$%&
(­¨¬,­®¯ª) = 307.7 g/kWh for Italy 

(Caputo, 2019); 

- for the electricity taken from the photovoltaic system: 𝜇"#$%&
(­¨¬,°±) = 40 g/kWh 

(Jurasz et al., 2020); 

- for the electricity taken from the battery: 𝜇"#$%&
(ª¯§²³¦®­¨,¥¦´´¨®µ) = 0, neglecting in 

the operational phase the GHG emissions referring to the battery construction 

(Jurasz et al., 2020). 

The GHG Emission Savings (GHGES) indicator for high, medium and low fluctuation 

case is respectively 0.28, 0.26, and 0.21. 

In the following figure (Figure 2.18) has been reported the prevented CO2 for each 

month in one replication of the high fluctuation case with the integration of the 

photovoltaic plant and energy storage. 
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Figure 2.18 Prevented CO2 emissions 

The annual value of the prevented CO2 emissions in the case of high, medium and low 

fluctuation is the same, as the presence of the battery allows storing excess energy 

without selling it to the electrical grid and enables maximizing self-consumed energy. 

The yearly mass of saved CO2 emissions is about 3.82·106 gCO2. 
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Chapter 3: Job shop policies 
One of the main methods that can be used to reduce energy consumption in 

manufacturing systems is the adoption of policies and strategies that consider the 

energy issues. Energy saving can be achieved without investment in new equipment 

or changing the manufacturing process through the reduction of the standby periods 

(W. Li et al., 2011), e.g. using the switch-off approach (Frigerio & Matta, 2015a). The 

main potential application field is the machining operations where the CNC (Computer 

Numerical Control) machines can switch off (Su et al., 2016). This field concerns 

several manufacturing operations as milling, lathe, drilling, etc. This chapter concerns 

two main issues: the evaluation of the switch-off policy proposed in the literature for 

production line in a job shop without preferential routing of the jobs and the 

development of policies derived from the workload control approaches to support the 

switch-off of the machines.  

The workload control is used to take into account the interaction among the machines 

in a job shop context. The WorkLoad Control (WLC) is a production planning control 

used for the small and medium enterprises that work in make to order way (Fernandes 

& Carmo-Silva, 2011; Stevenson et al., 2005). The main problems addressed by the 

WLC methods are the following (Renna, 2015): order release level, priority 

dispatching level and workload computation. The proposed method uses the workload 

computation to evaluate the interconnection among the machines of the job shop and 

decide the switch off/on. A simulation model tests the developed methods compared 

to the approach proposed in the literature to set the parameters of the policy and 

evaluate the benefits in terms of energy-saving and impact on the manufacturing 

system performance. 

The works proposed in the literature have the following limits: 

- The switch-off policies proposed works on a single machine or production line, 

the application in the job shop manufacturing system with no determined flow 

of the items was not investigated.  

- Few works evaluate the reduction of the performance level, due to the 

introduction of the switch-off policy, in addition to the energy consumption;  
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In response, this chapter proposes switch-off policies in job shop systems by first 

asking:  

RQ4: what is the impact of the most used switch-off policy in flow lines in the 

case of job shop manufacturing systems? 

The policy proposed in the literature cannot take into account the interconnection 

among the machines of a flexible manufacturing system, then the second research 

question of this chapter asks:  

RQ5: can a switch-off policy based on the evaluation of the workload be 

applied efficiently in job shop systems? 

 
Nomenclature 
α, β switching variable weights 
Mcf1 Classic aggregate workload formulation 1 policy 
Mcf2 Classic aggregate workload formulation 2 policy 
Mwdf1 Corrected aggregate dynamic workload formulation 1 policy 
Mwdf2 Corrected aggregate dynamic workload formulation 2 policy 
Mwsf1 Corrected aggregate static workload formulation 1 policy 
Mwsf2 Corrected aggregate static workload formulation 2 policy 
N N-policy 
nj number of pieces in the buffer of the j-th workstation 
np product type number 
nw number of work centers 
poi,j position of the j-th work center in the routing of the i-th job type 
PRj binary working variable of the j-th work center 
rei,j position of the j-th work center in the remaining routing of the i-th job type 
SWcj 

f1
 j-th work center switching variable of the formulation 1 in the classic aggregate workload 

SWcj 
f2

 j-th work center switching variable of the formulation 2 in the classic aggregate workload  
SWwdj 

f1 j-th work center switching variable of the formulation 1 in the corrected aggregate dynamic workload 
model 

SWwdj 
f2

 j-th work center switching variable of the formulation 2 in the corrected aggregate dynamic workload 
model 

SWwsj 
f1 j-th work center switching variable of the formulation 1 in the corrected aggregate static workload 

model 
SWwsj f2 j-th work center switching variable of the formulation 2 in the corrected aggregate static workload 

model 
WCj j-th work center 
WLcj classic aggregate workload of the j-th work center 
WLwdj corrected aggregate dynamic workload of the j-th work center 
WLwsj corrected aggregate static workload of the j-th work center 
xi,j Binary routing variable  
xui,k Element of the updated routing matrix  
XU Updated routing matrix 

Table 3.1 Nomenclature of Chapter 3 
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3.1 Reference context 

The switch-off policies considered have been applied in a job shop manufacturing 

system. The job shop consists of three work centers each with a single machine. For 

this reason, the terms workstation and work center have been used in the text with the 

same meaning. 

 
Figure 3.1 Three work center job shop manufacturing system 

The number of job types that enter the manufacturing system is 15 with the same 

probability to arrive. Each job type is characterized by the number and order of the 

work centers visited. Table 3.2 reports the routing of the jobs considered. Each job can 

be processed at most once by each machining center and the flow is completely 

random, without a preferential flow. 

Job type Routing Job type Routing Job type Routing 
1 WC1 6 WC1; WC3 11 WC1; WC3; WC2 
2 WC2 7 WC3; WC1 12 WC2; WC1; WC3 
3 WC3 8 WC2; WC3 13 WC2; WC3; WC1 
4 WC1; WC2 9 WC3; WC2 14 WC3; WC1; WC2 
5 WC2; WC1 10 WC1; WC2; WC3 15 WC3; WC2; WC1 

Table 3.2 Routing of jobs 

The assumption of three machining centers with one machine each has been done to 

limit computational complexity and make the model easier to develop. Furthermore, 

the limited set of work-centers enables defining an acceptable number of job routings 

that represent all possible flows between the machines; increasing the number of work 

centers results in very numerous typologies of job. However, the choice to consider 

different types of jobs has allowed realizing a fluctuation in the arrival of the pieces; 

the same possibility of entry and into the system and the type of routing of all the 

pieces allows to obtain the same use of the machines. The job shop manufacturing 
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system is tested considering different switch-off policies in order to evaluate the 

performance of each policy. 

3.2 Switch-off policies 

As described in Frigerio and Matta (2015a) there are four machine states: the out-of-

service state (or off state), the idle state (or on-service state), the warm-up state, and 

the working state. The reduction of energy during the unproductive states (idle, off, 

and warm-up states) is a very important issue, in particular, switching off the machine 

in the idle state. However, turning on the machine while in out-of-service state as soon 

as a new job arrives at the buffer increases the energy consumption during the warm-

up phase, due to the higher number of warmups. Moreover, having machines in off 

state and pieces in buffer results in an increment of the lead time. One of the policies 

used in the manufacturing system for energy saving is the N-policy (Frigerio & Matta, 

2016). The N-policy uses the buffer information to switch the machine off or on. In 

particular, the machine goes in the out-of-service state when no pieces are in the buffer, 

and it switches on when the level of the buffer reaches N. This policy only considers 

the information of each workstation buffer to switch off/on. The N-policy achieves a 

reduction of warmups by storing more than one job in the buffer. On the other hand, 

waiting for several jobs to reactivate the machine results in a higher lead time. For 

these reasons switching policies that also consider the other jobs that will arrive at the 

machine could be useful tools to achieve energy saving. These policies could achieve 

a reduction of the mean lead time and a reduction of energy consumption during the 

warm-up phase compared to the classic N-policy. Nevertheless, the energy 

consumption in the idle state, caused by starvation while waiting for jobs to arrive at 

the machine, increases. In the following, the workload is evaluated by taking into 

account the number of workpieces, and not considering the processing time as it is the 

same for all jobs; this choice allows to evaluate the switch-off models without the 

processing time influence. The proposed policies differ mainly for the workload 

calculation, therefore we distinguish three types of policies according to the workload 

evaluation proposed in the literature, as follows:  

- Classic aggregate workload (WLc) (Hendry, 1989; Tatsiopoulos, 1983); 

- Corrected aggregate static workload (WLws) (Land & Gaalman, 1996; 

Oosterman et al., 2000); 
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- Corrected aggregate dynamic workload (WLwd) (Renna, 2020b).  

In the classic aggregate workload, the direct load and the indirect load are considered 

without any distinction, while in the corrected aggregated workload the position of the 

work center in the routing is relevant. When the i-th job type enters in the 

manufacturing system, the workload of each work center is updated respectively as 

follows (Eqs. 3.1-3.3): 

 𝑊𝐿𝑐7 = 𝑊𝐿𝑐7 + 𝑥f,7					∀j (3.1) 

 
𝑊𝐿𝑤𝑠7 = 𝑊𝐿𝑤𝑠7 +

𝑥f,7
𝑝𝑜f,7

					∀j (3.2) 

 
𝑊𝐿𝑤𝑑7 = 𝑊𝐿𝑤𝑑7 +

𝑥f,7
𝑟𝑒f,7

					∀j (3.3) 

Where xi,j is a binary routing variable equal to 1 if the i-th job type need to be worked 

at the j-th workstation, equal to 0 otherwise, poi,j is the position of the j-th work center 

in the routing of the i-th job and rei,j is the position of the j-th work center in the 

remaining routing of the i-th job type. Indeed, the main difference between the 

corrected aggregate static workload (WLws) and the corrected aggregate dynamic 

workload (WLwd) is that poi,j is fixed when the i-th job type enters in the system, while 

rei,j is updated every time a job exits a work center. When the i-th part type has been 

processed by the j-th machine and is ready to leave for the next work center, the j-th 

workload is updated in the classic aggregate workload (WLc) and in the corrected 

aggregate static workload (WLws) respectively as follows (Eqs. 3.4-3.5): 

 𝑊𝐿𝑐7 = 𝑊𝐿𝑐7 − 1 (3.4) 

 
𝑊𝐿𝑤𝑠7 = 𝑊𝐿𝑤𝑠7 −

1
𝑝𝑜f,7

 (3.5) 

Instead, in the corrected aggregate dynamic workload (WLwd), when a part type leaves 

a work center, the workload of each workstation is updated as follows (Eq. 3.6): 

 
𝑊𝐿𝑤𝑑7 = 𝑊𝐿𝑤𝑑7 −

𝑥𝑢f,�»(f+E:)^7
𝑟𝑒f,7

					∀j (3.6) 

Where is is the current step in the sequence of the i-th piece, nw is the number of 

workstations in the manufacturing system, and xu is the element of the updated routing 

matrix XU. The binary matrix XU is a binary matrix of dimension np x nw(nw+1), in 

which np is the product type number. The element xui,nw·k+j is set equal to 1 if the i-th 
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job type needs to be worked after the k-1 job step by the j-th machine, 0 otherwise . 

Then the position in the i-th job remaining routing of the work centers that still have 

to process the part is updated as follows (Eq. 3.7) (Renna, 2020b): 

 
𝑟𝑒f,7 = 𝑟𝑒f,7 − 1	 (3.7) 

The corrected aggregate dynamic workload of each machine is recalculated as follows 

(Eq. 3.8): 

 
𝑊𝐿𝑤𝑑7 = 𝑊𝐿𝑤𝑑7 +

𝑥𝑢f,�»∙f+	^7
𝑟𝑒f,7

					∀j (3.8) 

To control the work center state, the switching variable has been defined in two 

different ways. In the first case, the switching variable is evaluated as the sum of direct 

and indirect load, properly multiplied by α and β coefficients. In the second case 

instead, the switching variable is obtained as the sum of the pieces in the buffer and 

the indirect load, and as previously done each term is multiplied by α and β. 

Nonetheless, when the aggregate static workload method is used, the second term of 

the sum does not represent the indirect workload, but the total workload. Indeed, in the 

WLws the workload computation is static, and then considering the indirect workload 

(the difference between the total workload and direct workload) instead of the total 

workload may result in a negative value. 

The different formulations of the switching variable allow defining two types of 

control mechanisms. The first formulation supposes that the signal for switching off 

the machine can start only when the machine has finished working, while in the second 

formulation, the switch-off signal starts in real-time, i.e. when the buffer level and the 

indirect workload are equal to zero. Having defined two formulations of the switching 

variables and applying this to the three workload calculation methods considered, six 

policies have been defined. Each model differs for the workload calculation and for 

the switching variable formulation. The switching variables of the j-th work center are 

defined in the six models considered as follows (Eqs. 3.9-3.14): 

 𝑆𝑊𝑐7
s: = 𝛼	(𝑛7 + 𝑃𝑅7) + 𝛽(𝑊𝐿𝑐7 − 𝑛7 − 𝑃𝑅7) (3.9) 

 𝑆𝑊𝑐7
sg = 𝛼	𝑛7 + 𝛽(𝑊𝐿𝑐7 − 𝑛7 − 𝑃𝑅7) (3.10) 
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 𝑆𝑊𝑤𝑠7
s: = 𝛼	;𝑛7 + 𝑃𝑅7? + 𝛽	𝑊𝐿𝑤𝑠7 (3.11) 

 𝑆𝑊𝑤𝑠7
sg = 	𝛼	𝑛7 	+ 𝛽	𝑊𝐿𝑤𝑠7 (3.12) 

 𝑆𝑊𝑤𝑑7
s: = 𝛼	(𝑛7 + 𝑃𝑅7) + 𝛽(𝑊𝐿𝑤𝑑7 − 𝑛7 − 𝑃𝑅7) (3.13) 

 𝑆𝑊𝑤𝑑7
sg = 𝛼	𝑛7 + 𝛽(𝑊𝐿𝑤𝑑7 − 𝑛7 − 𝑃𝑅7) (3.14) 

 

Where nj is the number of pieces in the j-th workstation buffer, PRj is a binary variable 

equal to 1 if the j-th machine is processing a piece, and 0 otherwise, and α and β are 

two parameters that regulate in the two formulations respectively the contribution of 

the direct and indirect workloads and of the buffer level and indirect workload. The 

parameters α and β are between 0 and 1 and such that α + β =1. By choosing α equal 

to 1 and β equal to zero, the models with formulation 2 degrade in the N-policy.  

A signal to switch off the machine starts when the switching variable is equal to zero. 

The machine switches on and is ready to work after the warmup phase when the 

switching variable reaches a defined value. The main problem of the N-policy and of 

the policies that only consider the buffer information to switch the machine state is 

that they do not consider the jobs that will arrive at the machine, but are still in another 

manufacturing center. The proposed policies also consider the entire workload of each 

machine in the variable for changing the state, and can achieve in a reduction of the 

switching-off and warming-up. For these reasons, the energy loss during the warm-up 

can be reduced.  
switching policy 

name 
type of workload calculation switching variable formulation 

Mcf1 Classic aggregate workload formulation 1 
Mcf2 Classic aggregate workload formulation 2 

Mwsf1 Corrected aggregate static workload formulation 1 
Mwsf2 Corrected aggregate static workload formulation 2 
Mwdf1 Corrected aggregate dynamic workload formulation 1 
Mwdf2 Corrected aggregate dynamic workload formulation 2 

Table 3.3 Simulated models 
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3.3 Simulation experiments and results 

To evaluate the proposed policies, different simulation scenarios have been tested. 

These scenarios are also tested considering the Always On (AO) policy, where the 

machine is never switched off, and considering the N-policy. The simulation cases 

have been conducted following the terminating analysis approach. For each simulation 

case, several replications have been conducted to assure a 5% confidence interval and 

a 95% confidence level for each performance. The simulation scenarios and the 

statistical analysis are supported by the Rockwell simulation platform (Arena). The 

performances analyzed are: mean lead time, unproductive states energy consumption 

and total energy consumption. The performances have been evaluated as a percentage 

variation from the always on case, which is set as the benchmark. The assumptions 

are: the time to transfer a product between the work centers is zero; no energy is 

required to hold pieces in buffers; the job types have the same probability of entering 

the system; the processing time of each job at each work center is the same and follows 

a discrete distribution [100s-95%; 280s-5%] (Su et al., 2016). The power required in 

each state has been considered the same for all machines, as follows (Su et al., 2016): 

5.35 kW in on-service (idle) state; 0.52 kW in out-of-service (off) state; 6 kW in 

warmup state; 12 kW in working state. Considering that the processing time of a piece 

at each work center is in mean about 110s, the warmup time is defined as equal to 66s 

(about 60% of process time).  According to Su et al. (2016), the simulation length is 

107s and the initial transient is 5·105s.  

To evaluate the behavior of the different switching policies in the two formulations 

and different values of the parameters α and β, the models are tested considering that 

the jobs inter-arrival time follows an exponential distribution with an expected value 

of 110 seconds (Expo110). The models are simulated considering that the machines 

switch off when the switching variable is equal to zero and they reactivate when the 

switching variable reaches two different limits, respectively 1 and 2. Figure 3.2 shows 

the percentage variation of mean lead time and energy consumption in unproductive 

states considering the case in which that the machine never goes in the out of service 

state (Always On) as the benchmark. The results are reported as a percentage variation 

compared to the benchmark case. 
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One of the effects of the switch-off policies is the increment in the lead lime with 

respect to the always on case, due to the waiting time of the jobs in queue during the 

out of service state, and to the time required for the warm-up. 

The best performances are obtained with a higher value of α. Indeed, the higher α, the 

lower the increment of the mean lead time, and the higher reduction of energy 

consumption in unproductive states compared to the always on case (Figure 3.2). 

Giving more weight to direct workload or to the number of pieces in the queue 

(respectively in formulations 1 and 2) than to the indirect workload leads to better 

performance. It can be noticed that in the corrected aggregate static models (Mwsf1 and 

Mwsf2), the influence of the coefficients α and β is limited compared to the other cases. 

In the corrected aggregate static workload model, the two proposed formulations 

achieve the same results. This is because in the analyzed case the value of the switching 

variable to switch off the machine is equal to zero, i.e. when the total workload is null. 

When the machine is in out-of-service states, the binary working variable PR is zero, 

and for this reason, the machine warms up in the same condition.  

The second formulation in the classic aggregate workload model and in the corrected 

aggregate dynamic model achieves a higher number of switch-offs, and then the 

machine stays in the out-of-service state for a longer time, as shown in Figure 3.2. 

Indeed, the second formulation does not exhibit the variable PRj in the first term of the 

switching variable, which indicates the working state of the machine. For this reason, 

the signal to switch off the machine starts in real-time, differently from the first 

formulation where the switching signal starts only when the machine is not occupied 

with a job. Therefore, the second formulation gives a higher reduction in energy 

consumption, but a higher increment of mean lead time. 
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Figure 3.2 Mean lead time and energy consumption in unproductive states with 

different value of coefficient α and β 
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To evaluate the results of the proposed switching policies, the same model is repeated 

considering the classic N-policy proposed in the literature. 

Figure 3.3 compares the performances (Mean lead time, energy consumption in 

unproductive states, total energy consumption) obtained with the N-policy and the 

proposed policies considering 1 and 2 as the limit to reach to reactivate the machine. 

The coefficients α and β have been chosen respectively equal to 0.9 and 0.1. Figure 

3.3 also reports the results obtained with the two proposed formulations. Considering 

the case where the machines warm up in the proposed policies and in the N-policy 

respectively when the switching variable and the buffer level reach 2, the results show 

that the corrected aggregate static model achieves a lower increment of the mean lead 

time from the benchmark. The N-policy as shown in the figure leads to the highest 

reduction in energy consumption but also to higher lead time. 

Setting the switch-on value from 1 to 2 achieves a reduction of energy consumption, 

but at the same time an increment of the mean lead time. This effect can be mitigated 

with the proposed policies, which not only consider the information of each work 

center to change the state of the machine, but also the jobs that are currently in the 

entire production system. 
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Figure 3.3 Performances of N-policy and Mc, Mws, Mwd considering switch-on 

value of 1 and 2 

The proposed policies are tested with other exponential distributions for the inter-

arrival time of jobs, with an expected value of 100 and 90 seconds (respectively 

Expo100 and Expo90). 
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Figure 3.4 reports the performances with different values of the expected value of the 

inter-arrival time of jobs. The machine utilization in the three test cases is respectively 

about 73%, 80% and 89%. In these test cases, the machines switch on when the 

switching variable reaches 2, the performances are evaluated considering the AO 

(Always On) as a benchmark, and compared to the N-policy with the same condition 

of inter-arrival of jobs. Higher congestion of the production system leads to a reduction 

of the total energy saving, since each machine needs to be in a working state for more 

time to satisfy the production. Regarding lead time, it can be noticed that its increment 

in all switching policies with respect to the Always on is reduced. This is due to the 

higher utilization of the machine, indeed the switching-off policies in this case act for 

a lower time. The proposed policies compared to the N-policy with different values of 

machine utilization result in the same behavior, i.e. in a reduction of the mean lead 

time increment but in a reduction of energy saving with respect to the Always-on case. 

 
Figure 3.4 Performances of N-policy and Mc, Mws, Mwd with different value of 

inter-arrival time and switch-on value equal to 2 
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To evaluate the effect of different power requests by machines during the warm-up 

phase, two other values of power absorbed during this state have been considered. 

Figure 3.5 shows the percentage variation of the energy consumption in unproductive 

states and the total energy consumption (considering that the power requested during 

the warm-up phase is 12 and 15 kW) with respect to the Always On model. The 

simulations have been proposed considering 1 and 2 as switch-on values. An increment 

of warmup power reduced the energy saving benefits of N-policy compared to the 

proposed policies. The energy saving with respect to the Always-on case is smaller in 

all the switch-off policies, but the proposed policies achieve better performances 

compared to the N-policy in some test cases. Indeed, having a machine with a high-

power request during warm-up suggests that switching-off machines several times 

leads to very high energy consumption during startup. For this reason, the proposed 

policies that limit the switch-off by considering the jobs in the entire system, could in 

some case work better also in energy saving compared to N-policy, for example when 

considering a warmup power of 15 kW. As previously, a higher value of the switch-

on limit leads to higher energy savings, but at the same time, to an increment of the 

mean lead time. 
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Figure 3.5 Energy consumption in unproductive states and total energy consumption 

of the N-policy and of the Mc, Mws, Mwd considering two different values of 
warmup power 

 

The simulations results lead to these main findings: 

- the N-policy works better for the reduction of energy consumption in 

unproductive states compared to the proposed policies; 

- the N-policy and the proposed switch-off policies achieve in an increment of 

mean lead time considering as benchmark the case in which the machines never 

turn off; 
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- the developed switch-off policies allow to reduce the increment of the mean 

lead time compared to the N-policy; 

- the proposed policies have the same behavior with different values of jobs 

inter-arrival compared to the performance of the N-policy; 

- in the case of high warmup power, the proposed policies limiting the number 

of switch-on achieve higher energy savings compared to the N-policy; 
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Chapter 4: Job shop scheduling 
Scheduling and production planning are additional methods to obtain energy 

efficiency at different manufacturing levels. It can be useful planning the order of 

operations of one-machine, coordinating the tasks of multi-machine and the factory 

procedures. Scheduling models in job shop systems (multi-machine level) can be 

adopted to obtain energy efficiency and saving. The literature review analysis shows 

the high number of papers regarding the energy-efficient scheduling in job-shop and 

in flexible job-shop systems. However, in literature, there is a lack of studies about the 

scheduling considering both the power constraint and the variable speed of machine 

tools in the job-shop context. Yet, a scheduling which conceives the power as a 

constraint is useful in those contexts where the power supply is limited, for example 

when renewable energy sources are employed. In fact, as above mentioned, the 

fluctuating energy supply of renewable energy systems requires to adapt production 

processes to the power constraint. On the other hand, taking into account the speed of 

machine tools in the job-shop context in order to adapt the process times and the 

needed power consumption, is equally important. Dealing with the power constraint 

and the variable speed of machine tools in the job-shop context to achieve energy 

efficiency optimisation, is not a simple matter. Operational processing times and 

power consumption of the machines are variables and, on the other hand, their values 

depend on the available power. Addressing the production planning with the 

impossibility of exceeding a certain threshold of power absorption and the 

minimization of the makespan as an objective function, this chapter has attempted to 

answer the following research question:  

RQ6: can a scheduling model provide production planning considering the 

minimization of makespan as the objective function and the power as a 

constraint? 

In order to answer the research question, a first scheduling model was developed. It 

was applied in a case study where the maximum possible power consumption of the 

system is fixed. Then, since in many planning scenarios the available and usable power 

is variable during the planning horizon, the study has explored another research 

question:  
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RQ7: can the developed scheduling model find a solution considering a 

variable available power in order to meet the decision maker's requirements 

based on sustainability and consumption criteria?  

To address this question, a further case study has been developed in which energy is 

supplied by a photovoltaic system. In this context, the decision-maker considered the 

variability of available power in the scheduling program. The results show how the 

proposed mathematical model allows to provide a production schedule respecting the 

power constraint in both the analyzed cases. Therefore, production planners can utilize 

the model to define production schedule in all the different contexts where there is a 

power limit, such as in the case of use of variable energy sources, included variable 

renewable sources. The proposed scheduling model represents a useful tool that 

manufacturing organizations can adopt to deal with the tradeoff between production 

targets, energy-saving, the use of renewables and the rethinking of their production 

objectives and practices. The mathematical model is solved using the Global Solver 

provided by LINGO software of LINDO Systems Inc. The Global Solver merges 

several range bounding and range reduction techniques in a branch and bound 

framework to obtain global solutions (LINGO, 2020). 
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ai,l,j binary precedence variable 
C0,j specific coefficient of the j-th machine 
C1,j specific coefficients of the j-th machine 
Ci completion time of the i-th job 
Cmax makespan 
I set of the jobs 
M large value variable 
MRRi,j material removal rate of the j-th machine when is working the i-th job 
Pi,j Power required by the j-th machine processing the i-th job 
Pi,j,k power absorbed by the j-th machine processing the i-th job during the k-th time 

period 
Plim imposed power limit  
PM1 power requirement of machine 1 
PM2 power requirement of machine 2 
PM3 power requirement of machine 3 
PM4 power requirement of machine 4 
PTOT the total system power consumption 
PLk maximum power available during the k-th time period 
PTk total power requested by the system during the k-th time period 
Qi,j removing volume during the operation (i,j) 
SEC specific energy consumption 
tk start time of the k-th time period 
tli,j processing time of the i-th job on the j-th machine 
Ui,j,k binary variable 
Vi,j,k binary variable 
W set of the machines 
WS workstation 
yi,j starting time of the i-th job on the j-th machine 
Zi,j,k binary variable 

Table 4.1 Nomenclature of Chapter 4 

4.1 The job shop scheduling problem 

The job shop scheduling problem concerns the assignment of jobs to the machine in 

order to optimize a defined objective function. The key features of the job shops are 

that each job has a specific and fixed routing and that each machine can work only one 

job at a time. 

In literature, several works proposed the minimization of the makespan as the objective 

function of the job shop scheduling problem. There are further objective functions that 

can be considered for the minimization, e.g. the total weighted tardiness, the maximum 

lateness, the total weighted completion time, the discounted total weighted completion 

time and the weighted number of tardy jobs (Pinedo, 2016).  

As Abdorlazzagh-Nezhad and Abdullah (2017) argued in their work, the main 

constraints considered in the literature are the precedence, the capacity, the release 

date and due date.  
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The first mathematical formulations for scheduling problems were provided by 

Bowman (1959), Wagner (1959) and Manne (1960). Bowman proposed a formulation 

based on the discretization of the time. The decision variables are binary and define if 

a job is processed on a machine during a time period. Wagner proposed an integer 

linear programming model where binary decision variables have been defined 

considering the position of the machine in the sequence of the job. Manne’s approach 

is based on the disjunctive constraints for defining the precedence of the jobs on the 

same machine and for guarantees the not simultaneous processing. The decision 

variables in this formulation are the start time of the jobs on the machines and the 

binary variables that define the order of the jobs on the same machine.  

Due to the importance of the scheduling problem and the computational complexity, 

several studies focused on the optimization algorithm. A number of studies used 

branch and bounds techniques in job shop scheduling problem for minimizing the 

makespan, e.g. (Barker & McMahon, 1985), (Carlier & Pinson, 1989) and (Brucker et 

al., 1994). As remarked by Jian Zhang, Ding, Zou et al. (2019), many researchers 

focused also on approximation methods for the job shop scheduling problem. Jian 

Zhang, Ding, Zou et al. proposed a review of the main methods applied in the job shop 

scheduling and grouped the approximate approaches in constructive methods, artificial 

intelligence methods, local search methods and meta-heuristic methods. 

 

4.2 Mathematical model 

The mathematical model has been developed starting from the disjunctive formulation 

proposed by Manne (1960). The objective function is the minimization of makespan 

Cmax as follows: 

 𝑚𝑖𝑛	(𝐶2Kt) (4.1) 

The decision variables of the mathematical model are: 

§ yi,j is the starting time of the i-th job on the j-th machine; 

§ tli,j is the processing time of the i-th job on the j-th machine (linked to the 

material removal rate (MRR)). 

The finite set of the jobs, of the machines and of the time periods are respectively I, W 

and T. The time periods have been obtained by dividing the planning horizon (i.e. [0-
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tmax]) in NT interval each with the same length equal to the time step. Each operation 

is defined by a couple of indexes (i,j). The operation (i,j) is the task of the i-th job on 

the j-th machine. 

The variable yi,j must be equal to one of the start times of the time periods. The 

makespan is evaluated as the maximum completion time of the jobs, i.e. the completion 

time of the last job that leaves the system (Pinedo, 2016), as follows: 

 𝐶2Kt = 𝑚𝑎𝑥f(𝐶f) (4.2) 

where Ci is the completion time of the i-th job that is calculated as follows: 

 𝐶f = 𝑦f,% + 𝑡𝑙f,%		∀𝑖 ∈ 𝐼 (4.3) 

where yi,e and tli,e are respectively the starting time and the processing time of the i-th 

job on the last machine “e” of the i-th job routing.  

The precedence relations are defined by the following (Eq. 4.4). This constraint assures 

that the operation (i,j) starts after the completion of the task (i,v). 

 𝑦f,7 − 𝑦f,L ≥ 𝑡𝑙f,L				∀(𝑖, 𝑣) → (𝑖, 𝑗) (4.4) 

The following constraint assures that the makespan is greater than or equal to the 

completion time of all operations. 

 𝐶2Kt − 𝑦f,7 ≥ 𝑡𝑙f,7		∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊 (4.5) 

The disjunctive constraints ensure that different jobs can’t be processed on the same 

machine at the same time, as follows (Ku & Beck, 2016) (Eqs. 4.6-4.7): 

 𝑦f,7 ≥ 𝑦�,7 + 𝑡𝑙�,7 − 𝑀	𝑎f,�,7						∀	𝑖, 𝑙 ∈ 𝐼, 𝑖 < 𝑙, 𝑗 ∈ 𝑊	 (4.6) 

 𝑦�,7 ≥ 𝑦f,7 + 𝑡𝑙f,7 − 𝑀	;1 − 𝑎f,�,7?						∀	𝑖, 𝑙 ∈ 𝐼, 𝑖 < 𝑙, 𝑗 ∈ 𝑊						 (4.7) 

where M is a large value variable, and ai,l,j is a binary variable defined as follows (Eq. 

4.8): 

 𝑎f,�,7 = Â1			𝑖𝑓	𝑡ℎ𝑒	𝑖⎼𝑡ℎ	𝑗𝑜𝑏		𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠	𝑡ℎ𝑒	𝑙⎼𝑡ℎ	𝑗𝑜𝑏	𝑜𝑛	𝑗⎼𝑡ℎ	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	
0																																												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																														

 (4.8) 

The processing time of the i-th job on the j-th machine is defined in Eq.4.9: 
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 𝑡𝑙f,7 =
𝑄f,7

𝑀𝑅𝑅f,7
						∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊	 (4.9) 

where Qi,j is the volume that needs to be removed during the operation (i,j), i.e. the 

volume that needs to be removed when the i-th job is on the j-th machine, and MRRi,j 

is the material removal rate of the j-th machine when is working the i-th job. According 

to (Ku & Beck, 2016), the large variable M is defined equal to SiSjtli,j and in the case 

proposed, having different possible values of the MRR, M is defined equal to the sum 

of all processing times at the minimum possible material removal rate.  

The specific energy consumption (SEC) of the j-th machine during the processing of 

the i-th job is linked to the power absorbed by the j-th machine that is working the i-

th job as shown in Z. Jiang et al. (2019) (Eq. 4.10): 

 𝑆𝐸𝐶f,7 =
𝑃f,7

𝑀𝑅𝑅f,7
						∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊 (4.10) 

The specific energy consumption (SEC) is calculated as shown in Kara and Li (2011), 

as follows (Eq. 4.11): 

 𝑆𝐸𝐶f,7 = 𝐶},7 +
𝐶:,7

𝑀𝑅𝑅f,7
						∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊 (4.11) 

Where C0,j and C1,j are the specific coefficients of the j-th machine. 

The power absorbed by the j-th machine processing the i-th job during the k-th time 

period is called Pi,j,k and is defined as follows (Eq. 4.12): 

 𝑃f,7,( = R𝑃f,7															𝑖𝑓	𝑡( ≥ 𝑦f,7	𝑎𝑛𝑑	𝑡( < 𝑦f,7 + 𝑡𝑙f,7
0																																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																							

 (4.12) 

where tk is the start time of the k-th time period. 

Equation 4.12 can be replaced with the following equations (Eqs. 4.13-4.18) 

 𝑡( ≥ 𝑦f,7 − 𝑀	;1 − 𝑍f,7,(? − 0.01							∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇	 (4.13) 

 
𝑡( ≤ 𝑦f,7 + 𝑀	𝑍f,7,( − 0.01								∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇 (4.14) 

 𝑡( ≤ 𝑦f,7 + 𝑡𝑙f,7 + 𝑀	;1 − 𝑈f,7,(? − 0.01								∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇 (4.15) 

 𝑡( ≥ 𝑦f,7 + 𝑡𝑙f,7 − 𝑀	𝑈f,7,( − 0.01								∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇 (4.16) 
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 𝑉f,7,( = 𝑍f,7,(	𝑈f,7,(								∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇 (4.17) 

 𝑃f,7,( = 	𝑃f,7	𝑉f,7,(								∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝑊, 𝑘 ∈ 𝑇 (4.18) 

where Zi,j,k and Ui,j,k are two binary variable respectively equal to 1 if tk  ≥  yi,j and if tk 

< yi,j+tli,j. Then Vi,j,k is equal to 1 if yi,j≤ tk <yi,j+tli,j. 

The total power requested by the system during the k-th time period (PTk) is calculated 

as follows (Eq. 4.19) 

 𝑃𝑇( =4 4 𝑃f,7,(
7

	∀𝑘 ∈ 𝑇
f

 (4.19) 

The following constraint assures that the power requested by the system is lower or 

equal to the imposed limit value (Eq. 4.20): 

 𝑃𝑇( ≤ 𝑃𝐿(	∀𝑘 ∈ 𝑇	 (4.20) 

where PLk is the maximum power available during the k-th time period. 

 
4.3 Reference context and simulation results 

The reference context is a job shop composed of four workstations and three job types 

that are processed in the system. Each workstation consists of a single machine. The 

words “workstation” and “machine” have been considered with the same meaning. 

Each operation is characterized by a couple of one job and one machine, i.e. the 

operation (i,j) is the operation of the i-th job on the j-th machine. The choice of a simple 

job shop system is due to the high computational complexity of the mathematical 

model that could lead to a very long simulation time. The routing of the jobs, i.e. the 

order of workstations “WS” that need to be visited to complete the piece, has been 

defined as follows (Table 4.2): 

 Routing 
Job1 WS1→WS2→WS3→WS4 

Job2 WS3→WS1→WS4→WS2 

Job3 WS4→WS3→WS1→WS2 
Table 4.2 Jobs routing 
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The specific energy consumption (SEC) formulation of the four machines has been 

taken from Kara and Li (Kara & Li, 2011), as shown in Table 4.3. 

Machine 1 SEC = 1.494 + 2.191/MRR 

Machine 2 SEC = 3.600 + 2.445/MRR 

Machine 3 SEC = 2.830 + 1.344/MRR 

Machine 4 SEC = 2.411 + 5.863/MRR 
Table 4.3 Machines specific energy consumption (SEC) 

The processing time of each operation to simplify the problem has been rounded to the 

integer value, and the material removal rates can be chosen between 0.1 and 2 cm3/s 

with step of 0.1. The unit time considered is the minute ([min]).  

The cutting volume (Qi,j) in cm3 of each operation has been reported in the following 

table (Table 4.4):  

 Machine 1 Machine 2 Machine 3 Machine 4 

Job1 40000 14000 16000 20000 
Job2 15000 24000 10000 18000 

Job3 16000 8000 12000 26000 
Table 4.4 Cutting volume [cm3] of each operation 

The following table (Table 4.5) shows the machining time in minutes of each operation 

with the maximum admissible material removal rate (2 cm3/s), for the sake of 

simplicity the values have been rounded to the nearest integer number. 

 Machine 1 Machine 2 Machine 3 Machine 4 

Job1 333 117 133 167 

Job2 125 200 83 150 

Job3 133 67 100 217 
Table 4.5 Operation processing times [min] at the maximum admissible material 

removal rate 

Limits to the makespan have been defined as follows: 

§ The upper bound of the makespan has been set equal to the sum of all the 

processing time with the minimum material removal rate, i.e. 0.1 cm3/s; 

§ The lower bound of the makespan has been defined equal to the minimum 

makespan of the same scheduling problem, considering the material removal 
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rates fixed to the maximum value (2 cm3/s), with the precedence constraints 

and without power limit. 

The upper limit on the makespan has been defined considering that the worst 

production planning condition is that operations can be performed one at a time in the 

entire system and at the lowest admissible material removal rate. The mathematical 

model for the lower limit, since it does not need the evaluation of the power, uses only 

Eqs. 4.1-4.9 setting the material removal rates to the maximum value. Moreover, since 

the computational complexity is reduced, it is not necessary to divide the programming 

horizon into NT intervals and the starting time of each operation (yi,j) is set greater or 

equal to zero. 

The makespan obtainable from the scheduling must be into the interval defined by the 

lower and upper bound. The production planning obtainable at the lower bound is the 

best scheduling of the production system because it considers the minimum processing 

times (or equivalently the maximum material removal rates); maximum material 

removal rates can be imposed for several reasons such as technological motivation or 

for the product quality. 

In Figure 4.1 is reported the production schedule corresponding to the lower bound of 

the makespan. In each bar is shown the couple of indexes (i,j) that indicates the 

operation. In the figures reporting the power consumption, PTOT, PM1, PM2, PM3, PM4 

and Plim represent respectively the total system power consumption, the power 

requirement of machine 1,2,3 and 4 and the power limit imposed. 
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Figure 4.1 Schedule of the jobs and power consumption considering the maximum 

material removal rate and without power constraint 

To evaluate the developed mathematical model, the same scheduling problem has been 

analyzed considering also power constraint. 

Two different power limits have been considered: 

• fixed available power profile for all the programming horizon; 

• variable available power profile during the programming horizon. 

In the first case there is set a fixed power limit of 10 kW and a time step of 30 minutes. 

The mathematical model results in the production schedule showed in Figure 4.2. Each 

bar shows the value of the material removal rate as well as the identification of the 

operation. It can be noted that the mathematical model provides the production 

planning and adjusts the MRR to the available power to achieve the minimization of 

makespan. As a result, the total power absorbed by the system never exceeds the limit 

value respecting the optimization of the objective function. However, the value of the 

makespan increases compared to the case in which the power constraint is absent 

because the machines during some operations do not work at the maximum value of 

the material removal rate. 
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Figure 4.2 Schedule of the jobs and power consumption considering a fixed power 

limit and time step of 30 minutes 

In the second case, a power profile has been modeled considering the possibility of 

using the power supplied by a photovoltaic system, thus variable during the time. The 

power given by the photovoltaic system is calculated on an hourly basis using 

empirical correlations (ASTM Standard E1036, 1998; Skoplaki & Palyvos, 2009). The 

influence of irradiance and cell temperature has been considered according to 

(D’Angola et al., 2016) and (Spertino et al., 2016). The photovoltaic plant has been 

considered with a maximum power of 20 kW in Standard Test Conditions and the tilt 

and the azimuth angles are respectively 30° and −45°. The plant has been designed to 

be located in the city of Potenza (Italy) and the data have been taken from the PVGIS 

database (PVGIS, 2020) for the month of July. A guaranteed minimum power of 4 kW 

has been considered to allow the system working during the night or when the power 

of the photovoltaic system is not sufficient. Considering the available power profile 

above discussed and a time step of 60 minutes, the mathematical model results in the 

production schedule depicted in Figure 4.3. The production planning defines the 

operation start times and the material removal rates in such a way that most of the 

operations are performed during the daylight hours, i.e. when the photovoltaic system 

supplies more power; during the dark hours, on the other hand, operations are 

performed at a low MRR value, considering the minimum guaranteed power of 4 kW 

as a constraint. 
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Figure 4.3 Schedule of the jobs and power consumption considering a variable 

power limit and time step of 60 minutes 

In the following table (Table 4.6) are reported the makespan and the completion times 

of the jobs in minutes obtained with the mathematical model in the three cases 

analyzed. The completion times reported in Table 4.6 represent one of the different 

possible solutions that can be obtained with the mathematical model. 

 

 
maximum fixed 

material removal rate - 
no power constraint 

variable material 
removal rate - fixed 

available power 
profile 

variable material 
removal rate - variable 
available power profile 

Cmax [min] 858 1696 3340 
C1 [min] 775 1696 2158 

C2 [min] 858 1490 3340 

C3 [min] 658 1108 2207 
Table 4.6 Makespan and completion times of the jobs in the three test cases 
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The experimental results achieve the main following outcomes: 

- The scheduling model provides a feasible production planning achieving the 

minimum makespan and respecting both a fixed and variable power constraint; 

- the scheduling model is applicable in the context of variable renewable energy 

sources providing their power profile; 

- the mathematical model can be adapted in several cases with variable power 

profile, for example in the smart grid context, in order to avoid peak power 

periods. 
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Chapter 5: Flow line design 
One of the most promising approaches to reduce the amount of energy consumed in 

manufacturing systems is the switch off policy. This policy reduces the energy 

consumed when the machines are in the idle state. The main weakness of this policy 

is the reduction in the production rate of the manufacturing systems. The works 

proposed in the literature do not consider the design of the production lines for the 

introduction of switch off policies. The main models proposed in the literature, for the 

design of manufacturing systems, focused primarily on the performance in regards to 

productivity, quality, and work in process, etc. Recently, the models proposed include 

the energy efficiency issue, but Gahm et al. (2016) emphasized how the scheduling 

models that include energy-saving may reduce the other goals of the manufacturing 

systems. Then, it is more important to propose a model that reduces energy 

consumption without reducing the productivity performance of manufacturing 

companies. 

The literature analysis showed the following limits: 

§ Few works evaluate the reduction of the performance level due to the 

introduction of the switch-off policy, but only energy consumption; 

§ A limited number of works were proposed to consider the possibility of 

adoption of the switch-off policy from the design step of the production line.  

Trying to cover the lacking of design model that implements this issues, the following 

research questions have been addressed. 

RQ8: what is the impact of the design model proposed on the performance of 

the production line in terms of energy saving maximizing the production rate? 

 

RQ9: can the constraint of a limited reduction loss improve significantly the 

energy saving of the production line obtaining an adequate trade off? 
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Nomenclature 
C Cycle time Poff Power in out-of-service state 
Cmax Maximum fixed cycle time Pw Power in working state 
dj Distance between nearby stations Pwu Power in warm up state  
i = 1,..,N Operation index sj State of the j-th station 
j = 1,..,M Station index Td,j j-th station idle time  
Kj j-th buffer capacity ti i-th operation processing time 
nj Number of parts in j-th buffer Tj j-th station processing time 
ND

off Downstream buffer level to 
switch off  

twu Time in warm-up state 
TTd Cycle idle time 

ND
on Downstream buffer level to 

switch on  
vik Precedence constrains binary 

variable 
NU

on Upstream buffer level to switch 
on 

WSj j-th station 
xij Operation assignment binary 

variable Pi Power in idle state 
Table 5.1 Nomenclature of Chapter 5 

5.1 Flow Line Design Model 

The problem deals with the designing of a flow line composed by M stations that 

manufactures one product type. The product consists of N operations to process; these 

operations should be assigned to the M workstations, following the precedence 

constrains. The variables of the model are the assignments of the operations to the 

workstations of the flow line. The operation assignment binary variable xij is defined 

as follows (Eq. 5.1): 

 𝑥f7 = Â1					𝑖𝑓	𝑡ℎ𝑒	𝑖 − 𝑡ℎ	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑗 − 𝑡ℎ	𝑠𝑡𝑎𝑡𝑖𝑜𝑛	
0																																																	𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																															

 (5.1) 

The precedence constrains binary variable ensures that the i-th operation must be 

completed before the k-th operation, and it is computed as Eq. 5.2: 

 𝑣f( = Â1					𝑖𝑓	𝑡ℎ𝑒	𝑖 − 𝑡ℎ	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑝𝑟𝑒𝑐𝑒𝑑𝑠	𝑡ℎ𝑒	𝑘 − 𝑡ℎ	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛			
0																																																	𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																											

 (5.2) 

The processing time Tj of the j-th station is the sum of the processing time of the 

operations assigned to j-th station, as follows (Eq. 5.3): 

 𝑇7 = 4 𝑡f	𝑥f7
È

f
 (5.3) 

The cycle time C of the production line is equal to the maximum of the stations’ 

processing times, as shown in Eq. 5.4 

 𝐶 = 𝑀𝐴𝑋7É𝑇7Ê (5.4) 
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The j-th station idle time is defined as follows (Eq. 5.5): 

 𝑇5,7 = 𝐶 − 𝑇7 (5.5) 

The idle time for each cycle is given by Eq. 5.6: 

 𝑇𝑇5 =4(𝑇5,7)	
Ë

79:

 (5.6) 

The difference of processing time between nearby stations is called distance dj and it 

is defined as follows (Eq. 5.7): 

 𝑑7 = 𝑇7^: − 𝑇7 (5.7) 

A positive value of the distance dj forms a couple of workstations when the first has a 

higher velocity than the second workstation. Then, the first workstation can fill the 

downstream buffer and goes into the off state, reducing energy consumption. 

Therefore, the flow line consists of a couple of workstations to facilitate the off state 

of the first workstation of the couple. Figure 5.1 shows the concept of the distance of 

a couple of workstations. In the following figure, the term WSj has been used to identify 

the j-th workstation; the distance between two stations has been obtained as the 

difference of the processing time of the second workstation (with higher working time) 

and the first workstation of the couple. In Figure 5.1, the processing time is linked to 

the stations with, respectively, lower and higher productivity per couple, as 

represented in blue and green. 

 
Figure 5.1 Distance between stations 

WS2 WSn+1 WSn WS1 … 

Processing 
time 

Couple of 
workstations 

d1 dn 
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To achieve an unbalanced flow line, the objective function is achieved by maximizing 

the sum of the distance between stations (Eq. 5.8): 

 𝑀𝐴𝑋Í4 𝑑7
7

Î 			𝑤𝑖𝑡ℎ	𝑗 = 1,3,5,… (5.8) 

This is subject to the following constrains (Eq.s 5.9–5.11)) 

 4 𝑥f7 = 1
Ë

79:
									𝑤𝑖𝑡ℎ	𝑖 = 1,… , 𝑁 (5.9) 

 4 𝑗	𝑥f7 ≤ 4 𝑗	𝑥(7	
Ë

79:

Ë

79:
									∀	𝑣f( = 1 (5.10) 

 4 𝑡f	𝑥f7
È

f9:
≤ 𝐶	2Kt								𝑤𝑖𝑡ℎ	𝑗 = 1,… ,𝑀 (5.11) 

Eq. 5.9 ensures that each operation is only assigned to one machine. Equation 5.10 

ensures that the constraints on the precedence of operations are respected. Finally, Eq. 

5.11 ensures that the station processing times are below the maximum fixed cycle time. 

By setting the cycle time, maximizing the objective function achieves an unbalanced 

line that respects the targeted productivity. Equation 5.8 results in an unbalanced flow 

line with high idle times between sequential stations. In order to achieve more 

downtime, and therefore higher energy saving, this research proposes a different 

objective function from past literature, where the focus instead is on obtaining the 

minimum cycle time (Baybars, 1986), the minimum number of stations, and the 

minimum idle time (Scholl, 1999). 

Figure 5.2 shows the framework used for the design of unbalanced flow lines. First, 

using the mathematical model, the flow line with maximum productivity and minimum 

cycle time has been achieved. The obtained maximum productivity flow line and the 

minimum cycle time has been calculated as the bottleneck station processing time. The 

minimum cycle time has been used as a parameter to design unbalanced flow lines 

using the maximization of the sum of distances as the objective function according Eq. 

5.8. Then, increasing and fixing the cycle time, the maximization of the sum of the 

distance results in several unbalanced flow lines (three unbalanced flow lines have 

been obtained). Then, the simulation will be studied if the increment of the cycle time 

can lead to important energy reduction. 
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Figure 5.2 Framework for flow line designs 

5.2 Switch off Policy 

As described in the literature (Su et al., 2016), switching off policies based on buffer 

level information can lead to significant energy savings without reducing productivity. 

The proposed policies are upstream (UP), downstream (DP), and upstream and 

downstream (UDP). In the upstream policy, the machine switches off when the 

upstream buffer is empty and switches on when the upstream buffer level is NUon. The 

level of downstream buffer controls the state in the downstream policy. The machine 

switches off when the threshold NDoff is reached and turns on when the number of 

pieces in the buffer is equal to NDon. According to (Frigerio & Matta, 2015a), the state 

of machine sj is defined as follows (Eq. 5.12): 

 𝑠7 = o

1											𝑖𝑓	𝑜𝑢𝑡 − 𝑜𝑓 − 𝑠𝑒𝑟𝑣𝑖𝑐𝑒	
2											𝑖𝑓	𝑖𝑑𝑙𝑒																															
3										𝑖𝑓	𝑖𝑛	𝑠𝑡𝑎𝑟𝑡 − 𝑢𝑝												
4										𝑖𝑓	𝑤𝑜𝑟𝑘𝑖𝑛𝑔																				

 (5.12) 

The states 1, 2 and 3 are unproductive, i.e., no pieces are being processed when a 

machine is in one of these states. The states 1 and 2 are called inactive states. 
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According to (Su et al., 2016), the upstream and downstream combines the UP and DP 

policies as follows (Eq. 5.13): 

 a
𝑆𝑤𝑖𝑡𝑐ℎ − 𝑂𝑓𝑓																		𝑖𝑓	𝑠7 = 2	𝐴𝑁𝐷	(𝑛7 = 0	𝑂𝑅		𝑛7^: ≥ 𝑁�ssÐ )					
𝑆𝑤𝑖𝑡𝑐ℎ − 𝑂𝑛																					𝑖𝑓	𝑠7 = 1	𝐴𝑁𝐷	(𝑛7 = 𝑁��Ñ 	𝐴𝑁𝐷		𝑛7^: ≤ 𝑁��Ð )

 (5.13) 

Figure 5.3 summarizes the states of the generic machine and the transition from one 

state to another. 

 
Figure 5.3 Machine states 

5.3 Reference Context and Simulation Scenarios 

Using the mathematical model described in Section 5.1, four production lines with 10 

stations and 20 tasks to complete have been designed. The flow line only produces one 

product type.  

The operation processing times and the precedence constraints are described in Table 

5.2 and have been obtained from the simple assembly line balancing problem dataset 

(SALBP) according to (Otto et al., 2013). 
Operations  Processing Time (s)  Precedence  Operations  Processing Time (s)  Precedence 

1  142  -  11  97  7 
2  34  -  12  132  8 
3  140  -  13  107  10, 11 
4  214  -  14  132  12 
5  121  -  15  69  12 
6  279  1  16  169  13 
7  50  2  17  73  13 
8  282  4  18  231  13 
9  129  5  19  120  15 
10  175  6  20  186  14 

Table 5.2 Operation processing time [s] 
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The basic assumptions for the line design are the following: 

§ The stations can perform every possible operation assigned by the design 

model; 

§ The precedence constraints are fixed; 

§ No machine failure has been considered; 

§ The operations processing times are deterministic and are the same for each 

station. 

Figure 5.4 shows the precedence graph. In the precedence graph, each task is 

represented as a node, and each direct precedence constraint is illustrated as an arrow 

that links node i and k if the i-th operation must precede the k-th operation. For 

example, in Figure 5.4, operation 6 must be executed before operation 10. 

 
Figure 5.4 Precedence graph 

Four flow lines are obtained in order to get respectively: 

1. Minimization of total idle time for each cycle with minimum Cycle Time 

(MinTTd); 

2. Maximization of distance between stations with a 2.5% increment of 

minimum Cycle Time (2.5% loss production rate, MaxD_2.5%); 

3. Maximization of distance between stations with a 5% increment of minimum 

Cycle Time (5% loss production rate, MaxD_5%); 
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4. Maximization of distance between stations with a 10% increment of 

minimum Cycle Time (10% loss production rate, MaxD_10%). 

The solution of the mathematical model, considering the previous constrains, gives the 

following flow line designs (Table 5.3); moreover, the station processing times and 

the station idle times have been reported in Table 5.3.  
  MinTTd  MaxD_2.5%  MaxD_5%  MaxD_10% 

Station 

 Station 
Processing 

Time [s] 

 Station 
Idle 

Time [s] 

 Station 
Processing 

Time [s] 

 Station 
Idle 

Time[s] 

 Station 
Processing 

Time [s] 

 Station 
Idle 

Time [s] 

 Station 
Processing 

Time [s] 

 Station 
Idle 

Time [s] 
1  298  6  248  63  248  70  214  119 
2  282  22  311  0  313  5  282  51 
3  272  32  282  29  282  36  263  70 
4  274  30  298  13  298  20  333  0 
5  279  25  274  37  279  39  279  54 
6  287  17  306  5  315  3  329  4 
7  304  0  279  32  236  82  269  64 
8  293  11  304  7  304  14  333  0 
9  304  0  276  35  289  29  276  57 
10  289  15  304  7  318  0  304  29 
TTd    158    228    298    448 

Table 5.3 Stations processing and idle times [s] 

The first production line is considered to be the benchmark of the other production 

lines, because it gives a balanced production line with 10 stations and the minimum 

cycle time.  

A discrete event simulation, implemented in Arena, has been used to evaluate the 

performances of the four flow line designs and to analyze the application of switch off 

policies in unbalanced production lines. 

Each model has been simulated by considering machines in the “always on” (AO) state 

and the UDP switch off policy. 

The basic assumptions of the AO model are: 

§ Each station has a buffer; 

§ The buffer capacity is fixed, and equal to K; 

§ The buffer of the first station is always full, that is the raw material is always 

available; 

§ The power absorbed in each state is equal for all machines. 

In addition, for the models with switch off policies, the following conditions apply:  

§ Each station is controlled by a switch off policy; 

§ The control policy parameters (NUon, NDoff, NDon) are the same for stations 

from 2 to 9; 
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§ The first station has only DP policy; 

§ The last station has only UP policy. 

As described by Frigerio and Matta (2015a), the production line machines can be in 

the following states: 

- Working state: the machine is processing a piece and absorbs the power Pw; 

- Idle state: the machine is ready to work a part, and absorbs the power Pi; 

- Out-of-service (Inactive) state: the machine is not ready to process a part. In 

this state the machine absorbs the minimum amount of power Poff; 

- Warmup state: the machine changes its state from Out-of-service in idle or 

working state, consuming the power Pwu for the time to complete the warmup 

twu. 

According to (Su et al., 2016), the power required by a generic machine in each state 

is: 

- Pw = 12 kW; 

- Pi = 5.35 kW; 

- Poff = 0.52 kW; 

- Pwu = 6 kW for twu = 20 s. 

To determine the best switch off control parameters, a full factorial design has been 

developed. The factors considered are NUon, NDoff, NDon, and three levels for each factor 

are evaluated as follows: 

- NUon = [1, 2, 3]; 

- NDon = [4, 5, 6]; 

- NDoff = [7, 8, 9]; 

According to (Su et al., 2016), the levels of buffer to switch off or switch on machines 

respect the following constraints (Eqs. 5.14-5.16): 

 𝑁�ss,7Ð > 𝑁��,7Ð  (5.14) 

 𝑁�ss,7Ð ≥ 𝑁��,7^:Ñ  (5.15) 

 𝑁��,7Ð ≥ 𝑁��,7^:Ñ  (5.16) 
Figure 5.5 reports on the experiment results for model 1. The design with the lowest 

inactive time has a value of 0, the design with the highest inactive time has a value of 

1. These results are used to set these parameters for the simulation tests.  
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Figure 5.5 Experiments results for line design MinTTd 

The results of the other experiments for models MaxD_2.5%, MaxD_5%, and 

MaxD_10% are reported in Appendix B. 

As shown in Figure 5.5, and in the figures (Figures B.1–B.3) in Appendix B, for all 

the four design models, the set NUon = 3, NDon = 4, NDoff = 9, gives the maximum time 

spent in the idle and inactive state. Therefore, the simulation scenarios and the 

evaluation of the performances have been obtained by considering the best control 

parameters. According to (Su et al., 2016), the discrete event simulation length is 107 

s, and the initial transient is 5×105 s. 

Figure 5.6 shows the setting of simulation scenarios and performance evaluations. 

Using mathematical optimization, the flow line design and the operations assignment 

to the stations have been achieved. Using discrete event simulation, the best set of 

switch off-parameters have been obtained. Finally, by employing this set, the 

performances of the four lines have been evaluated and compared. 
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Figure 5.6 Simulation process and performances evaluation 

 

5.4 Numerical Results 

As shown in the following figure (Figure 5.7), an increment of the cycle idle time for 

each station has been achieved by choosing the maximization of the distance between 

stations as the objective function, instead of the minimization of idle time. The 

maximum increment of TTd has been obtained in the case where the cycle time has 

been increased by 10%.  
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Figure 5.7 Increment of idle time for each cycle 

The discrete event simulation results, as compared to the model MinTTd, are shown in 

Figure 5.8. The results in the figure only consider the effects of the unbalanced line on 

the idle time, so the simulations have been made by considering machines with an 

always on control policy. It can be noticed that the higher the idle time, the lower the 

throughput. Indeed, by increasing the distance, stations are in the idle state for longer 

than in a balanced flow line. Increased cycle time allows for mathematical 

optimization, which aims to maximize the distance between station process times and 

to have greater freedom in assigning operations to the machines. The 10% increase in 

cycle time (MaxD_10%) results in a flow line where the idle time has grown by 159%, 

but productivity has decreased by only 9%. 
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Figure 5.8 Results with always on policy 

However, the increase in downtime leads to more energy consumption in a non-

productive state. In order to reduce energy consumption, switch-off policies should be 

in place. The UDP policy achieves a significant reduction in energy consumption in 

non-productive states. In Figure 5.9, the energy consumption in unproductive states 

(Idle, Out-of-service, Warmup) of the four lines (MinTTd, MaxD_2.5%, MaxD_5%, 

MaxD_10%) are compared to a case with machines that are always on and those 

applying switch off policies. In all the cases analyzed, adopting a shutdown policy 

allows for a significant reduction in energy consumption in non-productive states, 

ranging from 86% to 89%.  

For these reasons, switch-off policies in unbalanced flow lines are necessary and 

achieve a reduction in unproductive state energy consumption. If the machines are in 

always on states, the unbalancing flow line leads to a reduction in throughput and 

energy consumption due to more time being spent in the idle state. Staying for a long 

time in the idle state is detrimental, since in this state, the machine is ready to work 

and then absorbs power without producing. The switch-off policies warrant energy 

saving due to the lower energy consumption during warmup. 

Designing an unbalanced flow line and controlling the machines state with a switch-

off policy can lead to a reduction in total energy consumption, not only in unproductive 
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states. Figure 5.10 shows the increment of reduction of energy consumption for an 

unbalanced flow line design with switch-off policies, compared to an always on 

balanced flow line. For this reason, designing a flow line to achieve a high unbalance 

under cycle time constraints, and applying a machine shutdown policy, leads to a 

reduction in total energy consumption. 

 
Figure 5.9 Reduction of energy consumption in unproductive states using switch-off 

policies 

 
Figure 5.10 Total energy reduction 
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Figure 5.11 shows the total time that stations hold in the inactive state and the number 

of warmups. 

Like the number of pieces in the buffer, the number of times that machines switch on 

depends on the position of the bottleneck. Machines turn on fewer times when using 

model MaxD_5% than model Max_2.5%, even if the total inactive time is longer, 

because the last station is the bottleneck. It can be seen that, if the bottleneck is among 

the first machines on the line, it can lead to a reduction of the work in process and 

storage costs. However, this leads to more switch-ons and higher energy consumption 

during warmup. 

 
Figure 5.11 Warmup and out-of-service time 

Figure 5.12 reports the switch-off mean times. It can be noticed that the model 

MaxD_5% gives the maximum value of the mean inactive time. Thus, this 

configuration leads to a high inactive time for each switch off. Instead, in the model 

MaxD_2.5%, the mean time in the inactive state is the lowest; the machines turn into 

off-state since there are only few pieces in the buffer. The UP policy achieves a 

reduction in the machine energy consumption removing resource starvation. Indeed, 

the machine turns off when the upstream buffer is empty and then does not wait in the 

idle state using a high quantity of energy. 
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Figure 5.12 Mean switch off time for the four lines design with UDP policies 

The following figure (Figure 5.13) shows the mean of the pieces in the buffers of the 

four models with the switch off policy. It can be noticed that the number of pieces in 

the buffers does not depend on the chosen objective function. Indeed, the number of 

elements in the buffers depends on the position of the bottleneck. In fact, in model 

MaxD_2.5%, as written in Table 5.2, the bottleneck is the second machine on the line. 

For these reasons, if the elements in the buffers are lower than NUon, then the UDP 

policy degrades for the machines below the bottleneck in the upstream policy. 

 
Figure 5.13 Pieces in buffer and mean of the work in progress. 
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Conclusions 
Sustainability and energy efficiency have become hot topics in all human activities. 

Scholars have focused on energy efficiency, energy saving strategies and 

implementation of renewable energy sources in manufacturing systems. Indeed, 

industries are great energy consumers and taking green actions in this sector could 

achieve a reduction of CO2 emissions in order to mitigate climate change.  

The present thesis aimed to suggest and analyze the effect of several strategies and 

actions to achieve energy efficiency and implementation of renewable energy sources 

in manufacturing systems at different levels and with several actions. 

In the single machine context, an approach based on energy flexibility has been 

proposed (Chapter 2). The alignment of renewable energy supply with the machining 

process requirement is a crucial issue to take advantage of renewable energy and to 

reduce energy consumption and CO2 emission. The method proposed supports the 

hourly adaption of the machining process cutting speed to obtain the maximum profit 

aligning the power of the machine to a photovoltaic energy supply. A simulation model 

is used to evaluate the performance indicators in terms of profit, costs, and energy. The 

numerical results show how the energy flexibility approach allows to increase the 

profit and reduces drastically the energy bought from the grid with a relevant reduction 

of the CO2 emission. The answer to the first research question (RQ1: what is the impact 

of the renewable energy source on the time evolution of the parameter settings of 

machine under different conditions over a planning horizon?) is: the numerical 

analysis demonstrated that the improvements in profit and reduction of CO2 can be 

obtained especially when the fluctuations of the product demand are higher.  

However, in response to RQ2 (what is the economic gain that can be obtained by the 

method proposed?), the economic gain can be obtained by the optimization of the use 

of electricity (grid and PV), reducing the energy sold in the framework of an energy-

flexibility approach. The benefits of the proposed approach are directed to the 

manufacturing enterprises with several machining processes. It was motivated by an 

important issue encountered when an industrial plant installed a photovoltaic plant in 

order to optimize the energy supplied for the manufacturing system. The method 

proposed, supported by an infrastructure of sensors, can improve the use of the 

photovoltaic source for the machining processes. Moreover, the decision maker can 
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evaluate the sizing of the photovoltaic plant evaluating both the manufacturing 

performance and the reduction of the costs. The method can be easily generalized, 

including different cutting tools typology and machine characteristics to evaluate the 

performance indicators. The model has been applied and limited to a specific 

machining process, but could be extended to a more complete plant composed of 

different and several work centers supplied by a high power PV plant when the energy 

demand profile of each machine is known. Then the effects of the introduction of an 

energy storage have been studied by answering to the third research question (RQ3: 

what is the impact of the introduction of battery storage on a manufacturing 

production system?). The fluctuation of the cutting speed leads to reduce the tool life 

due to the fatigue stress, and the forecast of the tools to order is more difficult, 

increasing the costs of inventory. The introduction of battery storage reduces these 

effects limiting the cutting speed fluctuations. The numerical results show that in the 

framework of the proposed model with constant rate production, the battery does not 

affect appreciably the profit with respect to the case of a system powered by a PV plant 

without storage, but reduces the fluctuation of the cutting speed drastically.  

The development of switching-off policies has been discussed in Chapter 3. 

These policies based on different workload approaches proposed in the literature have 

been studied in a job-shop system. To evaluate the behavior of proposed policies, the 

simulations have been repeated by also considering the application of the N-policy to 

switch off the machine.  

In response to RQ4, the results show that the N-policy works better for the reduction 

of energy consumption in unproductive states. Higher energy saving can be achieved 

by setting a higher value of the queue limits for the warmup, thus reducing the number 

of switch-on. On the other hand, keeping more pieces in the buffer leads to a higher 

mean lean time. The main problem of the N-policy is that does not consider jobs that 

will arrive at the machine, but which are currently in another workstation, as 

information to switch on/off. Indeed, the switching-off policies proposed in the 

literature are applied in flow lines, where the routing of the jobs is fixed. 

Addressing RQ5, several policies based on different approaches considering also two 

different formulations have been proposed. The simulations have compared the 

proposed switching policies based on workload evaluation with the N-policy and 
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Always-on case set as a benchmark. The results show that with respect to the Always-

on case, the N-policy achieves a higher energy saving, but with a worst mean lead time 

compared to the performances obtained with the proposed policies based on workload. 

The classic aggregate, corrected static and corrected dynamic workload policies 

achieve a reduction of warm-ups, as they take into account the current jobs in the 

system. For this reason, the proposed policies allow having a compromise between a 

reduction of the energy consumption and an increment of lead time compared to the 

Always-on case. Comparing the two formulations, it can be seen that formulation 2 

leads to a higher number of switches off/on, and therefore to a worsening of the mean 

lead time, but also to a higher energy saving compared to formulation 1. The policies 

have been repeated considering different values of the machine utilization. The tests 

demonstrate that the policies have the same behavior with different values of jobs 

inter-arrival. Different values of the power required by machines during the warmup 

phase have been studied. The results show how, as the warmup power is increased, the 

proposed policies limiting the number of switch-on achieve higher energy savings 

compared to the N-policy, keeping anyway a lower increment of mean lead time with 

respect to the benchmark. In this case, the higher energy saving of one formulation 

compared to the other depends on the chosen switch-on value.  

The proposed policies support an energy-efficient control model for job-shop 

manufacturing system focusing on metal cutting processes. The proposed model has a 

relevant significance for processes such as grinding, turning, and milling that are 

primary value-added manufacturing operations to produce components and final 

products.  In these environments, the results of the model suggest the choice of the 

more adapt model to reduce the energy consumption or to pursue the compromise 

between the energy consumption and lead time. The decision depends also on the 

power consumption of the machines in the different states: work, idle and warm-up. 

Deeping the job-shop context, scheduling has been studied in Chapter 4. Proper 

scheduling and production planning can lead to energy saving and more 

environmentally sustainable production without reinvesting in new equipment or 

implementing re-engineering procedures. In the literature, most of the studies 

proposed a scheduling model where energy costs and energy consumption are one of 

the objectives of the optimization process. However, the optimization can also entail 
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the accomplishment of multiple objectives. In this case, a compromise between energy 

consumption and traditional scheduling goals, such as makespan, total tardiness and 

so on, has to be reached. This Chapter proposes a job-shop scheduling model that 

considers as objective function the minimization of the makespan, i.e. the maximum 

completion time of the jobs, in presence of a power constraint. The model helps 

decision makers plan production taking into account power constraint and variable 

processing times. Considering different completion times for each job and different 

order of the jobs, the model provides several optimal solutions in compliance with the 

power constraint. Developing the model has allowed to answer the research questions 

RQ6 and RQ7. Especially, responding to the RQ6, the results have highlighted that the 

scheduling model provides a feasible production planning obtaining the minimum 

makespan and respecting a fixed power constraint. Answering the RQ7, the research 

has underlined that considering a variable available power, the model provides a 

feasible job scheduling. These theoretical findings show the usefulness of the model 

even when utilizable power is variable during the planning horizon. From a practical 

viewpoint, the proposed decision model can support the decision-maker (e.g. 

production planning manager, energy manager, etc.) in production planning taking into 

account the impossibility of exceeding a fixed threshold of power absorption and the 

minimization of the makespan as an objective function. Managers and production 

planners can utilize the scheduling model in all the different situations where there is 

a power limit. Some typical situations can be the use of a renewable energy source, the 

utilisation of smart grids, or even situation where exceeding a certain threshold of 

power required to the electrical grid involves the payment of a penalty. The model can 

help decision making about production planning in a manufacturing system that uses 

PV plants and other variable power sources. The proposed model, indeed, is a useful 

tool to support company’s managers in their decision making about the energy 

transition, i.e. the shift from fossil fuels to sustainable power and business model 

transformation towards sustainability. Using an optimal schedule, they can better deal 

with the tradeoff between production and energy efficient targets and look for a more 

efficient use of renewable energy. The scheduling model provides useful insights 

about the proper use of renewable energy sources in situ against power constraints and 

the variable speed of machine tools. However, it can also be used to plan production 
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of several manufacturing facilities involved in energy community grid. In this case, 

proper production planning is crucial to avoid peak power periods due to the energy 

requirements of several factories. The proposed model can support the formulation of 

such planning. In such a prospect the model represents a tool that can drive managers 

and entrepreneurs towards the choice of new forms of energy use that include 

renewable energy sharing (e.g. through community grid) energy flexibility, and 

energy-oriented production planning.  

Finally, the flow line design problem with energy issue has been investigated in 

Chapter 5 proposing the following RQs: 

RQ8: what is the impact of the design model proposed on the performance of the 

production line in terms of energy saving maximizing the production rate? 

RQ9: can the constraint of a limited reduction loss improve significantly the energy 

saving of the production line obtaining an adequate trade off? 

Using the simulation has been demonstrated that the model proposed could improve 

the reduction of energy consumption of the flow line more than the design model that 

does not consider the possibility of introducing the switch-off policy. The results 

showed that the model can support the decision about the better trade-off between the 

production rate level and energy consumption reduction. Moreover, if the objective is 

also the reduction in the number of on/off activities that can affect the maintenance of 

the machines, the results highlighted the better choice. The simulation tests prove that 

the number of warmups can be reduced by properly choosing the bottleneck position, 

respecting the precedence constraints, in order to achieve further energy saving. 

Regarding the flow line design, it can be resumed: (i) the design model should be 

adapted to introduce the switch-off policy to obtain a higher benefit from the switch-

off policies; (ii) it is possible to evaluate, with the use of the simulation, the effect of 

a targeted reduction of production rate (for example in a determined production 

planning period) to improve the energy consumption reduction; and (iii) the model 

proposed can be extended to different flow lines to support the decision making about 

the design and potential energy reduction. 

The present thesis has deepened several production levels and strategies to achieve 

energy efficiency and energy saving in manufacturing system. The main limitation of 

the mathematical model presented in Chapter 2 regards the application to a specific 
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machining process and the simplified energy price policy. Regarding job shop 

scheduling, the mathematical model has been applied in a simple case due to the high 

computational complexity. The flow line design model (Chapter 5) presents the 

weakness of not having considered machine failures and that processing times are 

deterministic.  

The present thesis, investigating different manufacturing aspects and grades, could be 

a starting point for grouping several energy-saving strategies to reach higher energy 

efficiency. For these reasons future works aim to consider a more complex 

manufacturing system with several and different machining process, considering 

machine failures, implementing several renewable energy supplies and storage 

systems. Parameters optimization, energy-saving policies, scheduling and design can 

be coordinated with the goal of achieving energy-efficiency and of reduction of the 

energy consumption not at the level at which they are applied. 
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In the following Appendix, details on the numerical model have been reported. 

In particular, Figure A.1 illustrates the dependence of the monthly profit on the cutting 

speed. The model in non linear, so an iterative procedure has been implemented. The 

time evolution of the PV plant and the daily demand are considered as inputs and a 

maximization algorithm has been developed in order to calculate the time profile of 

the cutting speed which maximizes the monthly profit. More in detail, the 

maximization of the objective function has been carried out by recurring to the trust 

region method, a numerical method based on the interior point technique (Byrd, 2000). 

 
Figure A.1 Dependence of the monthly profit on the cutting speed 
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Figure A.2 numerical procedure to calculate the maximum monthly profit 

As described in Figure A.2,  the algorithm starts from a guess value of cutting speed, 

vc0, calculated as the mean value of the cutting speed with minimum cost and the 

cutting speed that achieves the maximum production rate. The daily demand and the 

PV power time evolution are considered as input quantities. The cutting speed is 

implemented as a Nd x 24 matrix with Nd  rows corresponding to the j-th day of the 

month and 24 columns, corresponding to the hours of the day.  
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2. First-day parameters. The available units, the units stocked, the effective 

demand and the penalty for the first day of the month can be calculated by 

using equations (2.5), (2.6). 

3. Available units, stocked units, effective demand and penalty for all the days 

of each month can be calculated. In order to calculate the stocked units and 

the effective demand a nonlinear system of equations must be solved (more 

details in the following). 

4. Monthly Profit. The maximum monthly profit can be calculated by using the 

interior point technique with an assigned tolerance on the relative error. The 

procedure is repeated for all the months of the year. 

 

The non linear system to calculate the stocked units and the effective demand is 

explained in the following, by recurring to a matrix formulation of Equations (2.5) ad 

(2.6). 

If we define 𝑥7 = 𝐷𝑒𝑚7 ; 𝑦7 = 𝑠𝑡7 ; 𝑏7 = 𝑈𝑛5,7 ; 𝑎7 = 𝐷𝑒7, Equations (2.5) and (2.6) 

reduce to 

a
𝑥7^: = 𝑎7^: +max	{0, 𝑥7 − 𝑏7 − 𝑦7}	

𝑦7^: = max	{0, 𝑦7 + 𝑏7 − 𝑥7}
  

 

Evaluate the first attempt system: 

R
𝑥7^: = 𝑎7^: + 𝑥7 − 𝑏7 − 𝑦7	

𝑦7^: = 𝑦7 + 𝑏7 − 𝑥7
→ R

𝑥7^: = 𝑎7^: − 𝑦7^:	
𝑦7^: = 𝑦7 + 𝑏7 − 𝑥7   

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑥g + 𝑦g = 𝑎g	
𝑦g = 𝑏: − 𝑥:
𝑥~ + 𝑦~ = 𝑎~

𝑦~ − 𝑦g + 𝑥g = 𝑏g
𝑥h + 𝑦h = 𝑎h

𝑦h − 𝑦~ + 𝑥~ = 𝑏~
⋮

𝑥52 + 𝑦52 = 𝑎52
𝑦52 − 𝑦5 + 𝑥52E: = 𝑏52E:
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We obtain the following system: 

 𝐵Ú)𝑊Ô} = 𝜂̅} 

 

 
                     

 1 1 0 0 0 0 0 0 0 0 … … 0 0 0 0  x2	 	 a2	
 0 1 0 0 0 0 0 0 0 0 … … 0 0 0 0  y2	 	 b1-a1	
 0 0 1 1 0 0 0 0 0 0 … … 0 0 0 0  x3	 	 a3	
 1 -1 0 1 0 0 0 0 0 0 … … 0 0 0 0  y3	 	 b2	
 0 0 0 0 1 1 0 0 0 0 … … 0 0 0 0  x4	 	 a4	
 0 0 1 -1 0 1 0 0 0 0 … … 0 0 0 0  y4	 	 b3	
 0 0 0 0 0 0 1 1 0 0 … … 0 0 0 0  x5	 	 a5	
 0 0 0 0 1 -1 0 1 0 0 … … 0 0 0 0  y5	 =	 b4	
 0 0 0 0 0 0 0 0 1 1 … … 0 0 0 0  x6	 	 a6	
 0 0 0 0 0 0 1 -1 0 1 … … 0 0 0 0  y6	 	 b5	
 … … … … … … … … … … … … … … … …  …	 	 	
 … … … … … … … … … … … … … … … …  …	 	 	
 … … … … … … … … … … … … … … … …  xdm-1	 	 adm-1	
 … … … … … … … … … … … … … … … …  ydm-1	 	 bdm-2	
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1  xdm	 	 adm	
 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 1  ydm	 	 bdm-1	

 

⎩
⎪
⎨

⎪
⎧𝑥7^: = 𝑎7^: + ;𝑥7 − 𝑦7? ∙ max a0, 1 −

𝑏7
(𝑥7 − 𝑦7)

c ;

𝑦7^: = ;𝑥7 − 𝑦7? ∙ max a0,
𝑏7

;𝑥7 − 𝑦7?
− 1c ;

  

 

 

Defined the coefficient Cj and Dj  

𝐶7 = max a0, 1 −
𝑏7

(𝑥7 − 𝑦7)
c ; 

𝐷7 = max a0,
𝑏7

;𝑥7 − 𝑦7?
− 1c ; 

 

 

The system can be rewritten as: 
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a
𝑥7^: = 𝑎7^: + 𝐶7;𝑥7 − 𝑦7?;

𝑦7^: = 𝐷7;𝑥7 − 𝑦7?;
  

 

 

                     

 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 x2	 	 a2+c1*x1	
 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 y2	 	 d1*x1	
 -C2	 C2	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 x3	 	 a3	
 -D2	 D2	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 y3	 	 0	
 0	 0	 -C3	 C3	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 x4	 	 a4	
 0	 0	 -D3	 D3	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 y4	 	 0	
 0	 0	 0	 0	 -C4	 C4	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 	 x5	 	 a5	
 0	 0	 0	 0	 -D4	 D4	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 	 y5	 =	 0	
 0	 0	 0	 0	 0	 0	 -C5	 C5	 1	 0	 0	 0	 0	 0	 0	 0	 	 x6	 	 a6	
 0	 0	 0	 0	 0	 0	 -D5	 D5	 0	 1	 0	 0	 0	 0	 0	 0	 	 y6	 	 0	
 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 	 …	 	 	
 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 	 …	 	 	
 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 	 xdm-1	 	 adm-1	
 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 …	 	 ydm-1	 	 0	
 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 … … -C29	 C29	 1	 0	 	 xdm	 	 adm	
 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 … … -D29	 D29	 0	 1	 	 ydm	 	 0	

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑥g = 𝑎g	+𝐶:𝑥:
𝑦g = 𝐷:𝑥:

𝑥~ − 𝐶g𝑥g + 𝐶g𝑦g = 𝑎~
𝑦~ − 𝐷g𝑥g + 𝐷g𝑦g = 0
𝑥h − 𝐶~𝑥~ + 𝐶~𝑦~ = 𝑎h
𝑦h − 𝐷~𝑥~ + 𝐷~𝑦~ = 0

⋮
𝑥52 − 𝐶52E:𝑥52E: + 𝐶52E:𝑦52E: = 𝑎52
𝑦52 − 𝐷52E:𝑥52E: + 𝐷52E:𝑦52E: = 0

 

 

 

where C1, D1 are known and the following nonlinear system holds: 

 

𝐴Ó)(𝑊Ô )𝑊Ô = 𝜂 
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Figure B.1 Experiments results for line design MaxD_2.5% 

  
Figure B.2 Experiments results for line design MaxD_5%  
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Figure B.3 Experiments results for line design MaxD_10% 
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