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Abstract: The increasing availability of data, gathered by sensors and intelligent machines, is chang-
ing the way decisions are made in the manufacturing sector. In particular, based on predictive
approach and facilitated by the nowadays growing capabilities of hardware, cloud-based solutions,
and new learning approaches, maintenance can be scheduled—over cell engagement and resource
monitoring—when required, for minimizing (or managing) unexpected equipment failures, im-
proving uptime through less aggressive maintenance schedules, shortening unplanned downtime,
reducing excess (direct and indirect) cost, reducing long-term damage to machines and processes,
and improve safety plans. With access to increased levels of data (and over learning mechanisms),
companies have the capability to conduct statistical tests using machine learning algorithms, in
order to uncover root causes of problems previously unknown. This study analyses the maturity
level and contributions of machine learning methods for predictive maintenance. An upward trend
in publications for predictive maintenance using machine learning techniques was identified with
the USA and China leading. A mapping study—steady set until early 2019 data—was employed
as a formal and well-structured method to synthesize material and to report on pervasive areas of
research. Type of equipment, sensors, and data are mapped to properly assist new researchers in
positioning new research activities in the domain of smart maintenance. Hence, in this paper, we
focus on data-driven methods for predictive maintenance (PdM) with a comprehensive survey on
applications and methods until, for the sake of commenting on stable proposal, 2019 (early included).
An equal repartition between evaluation and validation studies was identified, this being a symptom
of an immature but growing research area. In addition, the type of contribution is mainly in the form
of models and methodologies. Vibrational signal was marked as the most used data set for diagnosis
in manufacturing machinery monitoring; furthermore, supervised learning is reported as the most
used predictive approach (ensemble learning is growing fast). Neural networks, followed by random
forests and support vector machines, were identified as the most applied methods encompassing
40% of publications, of which 67% related to deep neural network with long short-term memory
predominance. Notwithstanding, there is no robust approach (no one reported optimal performance
over different case tests) that works best for every problem. We finally conclude the research in this
area is moving fast to gather a separate focused analysis over the last two years (whenever stable
implementations will appear).

Keywords: predictive maintenance; machine learning; smart manufacturing; systematic mapping;
sustainable manufacturing

1. Introduction

Learning is the most important thing that human beings do. An organism cannot
properly animate itself without first learning how to [1]. At the same time, past knowledge
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and experience aid the decision-making process. We need to study, analyse, and use data
systematically, but above all, wisely, in order to improve ourselves and while minimizing
efforts. In the same way, industry is becoming ‘smarter’ by introducing local intelligence
in equipment in the form of machine learning (ML). ML acquires knowledge to computers
through observations and interacting with word. It uses artificial intelligence to build
systems that automatically improve with experience and are able to extract the fundamental
relations that govern the process [2]. ML makes use of big data, the expansion of the
Industrial Internet of Things (IIoT), the availability of computing power, the development
of cyber-physical systems, and superior decision capabilities required to manage today’s
complex assets [3]. ML makes use of representation (classification), evaluation (scoring
function), and optimization (search method). It cannot get something from nothing, but
it applies the basic principle of getting more from less. ML generally improves with
performances. On the counterpart, is makes use of artificial intelligence (as a branch of
computer science) as the coding program (generally in the form of network) that can
sense, reason, act and react to the external stimulus as biological entities. It learns an
input/output map via back-propagation and optimization procedure [4]. Therefore, even
though machine learning has been researched for decades, the application of artificial
intelligence (AI) systems in industry and its associated operational assets is now advancing
at a rapid pace. ML is supporting agile, lean, and energy-efficient manufacturing systems
by combining human resources, automation, and data [5]. Given the availability of a big
data pool, collecting from sensors attached to every aspect of a production line and its
supporting services, data-driven optimisation can be implemented in manufacturing.

Data-driven approaches aim to construct abilities and intelligence on data [6]. When
data are big, it requires technical, methodological (may be human and operational) skills
to manage and properly decide value through mining. Manufacturing data support
actions, including

• conducting sophisticated statistical analysis, using big data analytics and machine
learning algorithms to make smarter business decisions;

• optimizing operational efficiency of manufacturing assets, enabling the use of au-
tonomous vehicles, increase production speed, reduce test time and calibration, reduce
supply chain forecasting errors and result in better product availability;

• improving after sales service and enable customisation of products;
• implementing energy management initiatives, uncover important insights, fine-tune

product quality, reduce the risk of shipping non-conforming parts, develop prediction
of the future behaviour of the systems, detect anomalies, identify defects, and uncover
the root cause of problems.

Poor maintenance management can lead to non-negligible, economic, environmental,
and social impacts. Those may alter the industrial sustainability [7]. The correct main-
tenance and management of physical assets could report positive effects in social and
corporate sustainability [8]. Stakeholders recognize in maintenance, as well as on the
educational and training and smartness of maintenance processes, the levers for life cycle
sustainability. The type of maintenance process affects the assets and equipment as well as
process efficiency. It, moreover, acts on safety performance, environmental damage, and
energy and resource consumption [9]. Applying predictive maintenance (PdM) could boost
equipment life cycle and quality [10], minimize human effort, optimise supply, and enable
the management of reliability and errors, losses, wastage, and costs, thereby increasing
the overall equipment effectiveness (OEE) [11]. At the moment, real-time and proactive
maintenance requires real-time sensing and extensive data collection, and it is mostly the
evolutionary step of condition-based maintenance [7].

PdM is showing great potential when guided by an ML algorithm, which works in
the domain of artificial intelligence. The effectiveness of ML is measured by its ability to
rapidly handle big data. Using ML we can “interpret” complex processes, assets, and data.
ML can give direct access from machines to a large number of sample data. In agent-based
implementations, code is included inside the internal machine engine in order to detect
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patterns and trends while triggering alarms and stoppages based on tasks, products, and
boundaries. Rather than programming computers to be smart by hand-coding software
routines with a specific set of instructions to accomplish a particular task, ML examines the
relationship between a data record and the labelled output (e.g., failures) and then creates
a data-driven model to report future outcomes. This can recognize patterns from historical
events and can forecast or prevent failures based on learnings from specific breakdown of
root causes. Cloud-based AI systems continuously learn from alerts. In this way, it results
in performance optimization and consequent increases in machine availability. Comparing
an AI-based approach to traditional condition monitoring or more classical maintenance
strategies, such as usage-based exchange, a considerable improvement can be expected
due to better failure prediction.

ML algorithms are being applied to a broad range of problems or applications in the
manufacturing domain. They can generally used to enlarge and extract prediction while
mitigating the difference in training and test sets. They generally contain an evolution
of the condition-based maintenance [12]. Open source, pre-made beta tools are widely
available on the internet, further promoting adoption. However, they suffer problems with
virtual prototyping and data collection. Supervised and unsupervised learning, inductive
logic programming, clustering, reinforcement learning, Bayesian networks, and decision
tree learning are some major proposals for ML.

There is no clear border between ML and deep learning (DL). In the most basic
terms, DL is a probability-based decision system. Analysing the dataset, DL constructs the
probability network by making statements, decisions, or predictions with a risk or more
“certain” outcome projection. This study analysed the recent literature on ML applications
for PdM to construct patterns and guidelines for situational intelligence, performance
improvement, and reliability improvement in smart manufacturing [13].

The question of what is the best ML for PdM comes from what best fits the data and
objective [14,15]. Classifying the maintenance strategies in order to increase complexity,
it is possible to recognize strategies for (i) Corrective or Reactionary Maintenance (CM
or RM). In CM or RM the asset operates on breaking-down followed by maintenance
activities with the aim of speedily restoring; this procedure passively acts after failure
to detect and repair. According to ISO 13306:2010, CM maintenance is carried out after
fault recognition and is intended to put an item into a state in which it can perform a
required function. It is also referred to as run-to-failure maintenance, in which you cannot
run without spare parts. It is the simplest maintenance approach used on constant failure
rate. Moreover, it is the least effective one, in relation to the cost of interventions and the
associated downtime after failure [16]. (ii) Preventive Maintenance (PM). PM anticipates
breakdowns so that they can be managed and failures can be reduced. According to ISO
13306:2010, PM is carried out at predetermined intervals or according to prescribed criteria
and intended to reduce the probability of failure or the degradation of the functioning of
an item. Adjustments, replacements, renewals, and inspections are organized based on
planning and scheduled tasks. If planned, the machine is periodically inspected, and the
identified parts are replaced based on a timetable. (iii) Proactive Reliability Maintenance
(PRM) aims at determining the root failure causes, collecting measures, and performing
corrective actions to avoid service stoppage [17]. It aims to anticipate failures or defects
before they occur. It is defined in ISO 13306:2010 as an active preventive maintenance that
can be carried out while the item is functioning. (iv) With a Condition-Based Maintenance
approach (CBM), anomalies are identified and resolved prior to functional failure based
on sensor signal monitoring. Maintenance is performed only when equipment problems
have been registered. According to ISO 13306:2010, CBM is a preventive maintenance that
includes a combination of condition monitoring and/or inspection and/or testing, analysis,
and the ensuing maintenance actions.

The condition-based monitoring approach calculates potential degradations and ef-
fective program maintenance. CBM points on data in order to get maintenance decisions.
Vibration and pressure signals are generally used as the signals in monitoring. CBM in-
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telligently avoids any unnecessary maintenance tasks in predicting interventions. CBM
technologies significantly reduce the cost of maintenance and improve operational safety.
PdM can be considered a CBM smart release that measures the condition of the equipment,
forecasts possible failures and stoppages, and, consequently, proceeds in action to avoid
any ramifications of failure. It acts on the role of a reliability centred maintenance (RCM),
plant asset management system (PAM), and total productive maintenance (TPM) [18].

As this research area is an active one, a number of other reviews were identified in
related fields. Merkt reviewed maintenance approaches with applicability in the industrial
environment. They found that literature did not inform as to which new AI technology
based on ML methods and techniques is influencing and changing the maintenance ap-
proaches in the industrial setup [19]. Carvalho et al. reviewed the use of ML techniques in
PdM applications [20]. The goal was to identify if ML was being applied in this field rather
than to look at the selection of ML techniques to best serve PdM. Long over this paper, we
considered situations where input of learning is collected in multiple data gathered from
factory for digital twin applications [21,22]. This paper reports a systematic mapping [23]
of the machine learning technologies for predictive maintenance in smart manufacturing.
It quantifies its role in literature to identify trends in research and usage. Its main aim is
to assist new researchers in the identification of ML techniques for potential application
the PdM field. In recent times, with the consolidating of Industry 4.0 and smart manufac-
turing [24], different proposals have appeared with predictive maintenance framework
and, above all, systematic review analysis. Kiangala and Wang in 2020 proposed a predic-
tive maintenance framework, developing fault classification based on machine learning,
with application for motor conveyors. In this work, a principal component classification
was applied to improve the effectiveness of fault diagnosis [25]. Ruiz-Sarmiento et al. in
2020 analysed predictive maintenance initiatives in the production of a high-quality hot
rolling process. They applied Bayesian filter and machine learning to estimate machine
degradation and plan maintenance initiatives [26]. Zhang et al., in 2019, analysed data-
driven methods for PdM in the context of automatic washing equipment. They concluded
about the importance of data mining and data amount for forecasting error affordability.
Accuracy over different ML approaches was discussed [27]. A state-of-the-art analysis
about industrial IoT devices and cyber-physical system cases related to maintenance was
reported in the work of Rubio et al. in 2019. They remarked the importance of automatic
fault classification for smart maintenance detection [28]. In the last year, the trend of
interest—but still open issue—about predictive maintenance initiatives was certified by
various proposals investigating state-of-the-art challenges. Zonta et al., 2020, classified and
catalogued current challenges and limitations in predictive maintenance remarking the
importance of a taxonomy—and clear strategy identification—for engineering domains in
the context of I4.0 [29]. Moreover, Dalzochio et al., 2020, discussed the newest (last 3 years)
published research proposals in the area of predictive maintenance. They mostly concluded
ML methods applied to PdM are generally related to a specific domain (equipment) with
no global vision on factory assessment. Identification of an optimal strategy and quality
of results depends on equipment and machines and on the possibility of extrapolation
based on data features [30]. The state-of-the-art initiatives on PdM for pump systems and
thermal power plants were discussed in the work of Olesen et al., 2020. They focused
on experimental-based proposals while reporting about ML performances on remaining
useful lifetime estimation, based on features extraction [31]. They concluded that for the
success on ML in PdM a knowledge-based classification/intervention is required.

Moreover, the international roadmap for devices and systems [32] remarked the
actual design of devices for heterogeneous system integration (particularly in the field
of semiconductor industry) to support information collection and digital manufacturing
interacting with product, process, people, and the environment [33–36].

The requirement of a systematic vision for PdM initiatives is the objective of the work
of Carvalho et al., 2020 [20]. This work mostly focuses more on equipment and methodology
analysis/clusterisation. In the work of Siahpour et al., 2020 [35], the authors proposed
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a deep learning based cross-sensor approach for integrating multiplace location data to
machinery fault diagnosis. The authors applied a deep convolutional neural network and
unsupervised parallel data for conditional domain adaptation. In the proposal of Lee et al.,
2020 [36], the use of intelligent digital twin was used for product design and development,
machine and equipment health monitoring, and product support and services for smart
manufacturing initiatives [37–39].

We finally conclude the research in this area is moving fast and requires a focused
investigation over the last two years.

2. Research Methodology

Systematic literature studies, including both reviews and maps, have emerged as a
formal and well-structured approach to synthesize evidence and thus allow researchers to
come to an understanding of the status of a research area [40]. A systematic map builds a
classification scheme in the field of interest, which fundamentally quantifies publications
and categorizes research types while providing a visual map of trends. It provides an
approach that facilitates a great breadth of investigation, while sacrificing depth.

2.1. Mapping the Process

Figure 1 illustrates the mapping process providing a visual workflow. The mapping
process extracts from a database—constructed from research questions and keywords
selection—relevant features on ML to PdM for SM (ML2PdM4SM). Selected papers are
classified using keywords, and a set of inclusion and exclusion criteria for core consistency
is included. Relevant papers were further analysed to classify the research content. Finally,
the screened papers were aggregated, categorized, and mapped in order to answer the
research questions [41].

2.2. Research Questions

The role of research questions (RQs) is to select and classify publications by quantifying
the presence of main concepts in the current literature. Prominent use and the application
of machine learning technologies for predictive maintenance in smart manufacturing have
been investigated. Therefore, a cluster of ML techniques, its application, and main results
are discussed. The six RQs are as follows:

RQ1.How many articles cover the use of machine learning for predictive maintenance
in smart manufacturing?

The amount of interest in this area, from 2013 to 2019 (early included), was illustrated
by quantifying the sources of literature in the field and assuming the publication rate as an
indicator, in order to estimate the trend.

RQ2.What type of research is being conducted in this area of ML techniques for PdM
in SM?

The maturity level was formulated. It is assumed that simulation without an industrial
test bed may be indicative of a developing effort. On the contrary, complete maturity would
exhibit a larger number of studies where solution results have been commented.

RQ3.What type of contributions are resulting from publications?

An effort was made to understand the specific challenges by analysing the obtained
output in publications and by classifying the output in terms of contribution. This question
may further help in identifying gaps or trends in the research field. It was assumed that
early research efforts may focus on architecture, model, framework, process, or methodolo-
gies, whereas more mature research may propose tools.

RQ4.What class of equipment is a candidate to be mapped for smart manufacturing,
and what is the relation between equipment and type of data under investigation?

The specific research approaches that support challenges for manufacturing industries
were identified. Therefore, by classifying industrial equipment and components, it is possi-
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ble to provide consistency of ML in handling degradation and fault prediction, estimation
of remaining useful life (RUL), detection quality, performance and health monitoring, and
reliability and risk analysis based on different types of data sets.

RQ5.What machine learning approaches are the most frequently applied for PdM and
for which tasks are they widely used?

The most prominent ML technologies for PdM in SM were identified as well as the
specific tests for which they were used. Thus, the latest advancements in relevant areas are
highlighted and commented on.

RQ6.Which type of ML approach shows the best performance in PdM?

Successful performances in ML for PDM in SM were reviewed in order to suggest
future (incoming) research directions.

Figure 1. The systematic mapping process.
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2.3. Scientific Database Search

The database was extracted from IEEE Xplore, ResearchGate, Science Direct, Google
Scholar, and Scopus. Keywords were identified and grouped on synonymous search terms
(Table 1). A PICO (population, intervention, comparison, and outcome) approach was
used including the following: population as specific role, category, application area, or
industry group; intervention as the methodology, tool, technology, or procedure; comparison
to identify the different strategies that have been used until now; measurable outcome
for quantification of key success. The Mendeley reference management tool was used to
remove duplicates and manage multiple references. Publications from 2013 to 2018 (early
2019) were selected assuming that only pioneering (because of the level of maturity in
technology) approaches were published before 2013. Terms selection was defined in order
to widely include concepts (like for example prognostic and health management (PHM)
under the category “terms” identification of predictive maintenances) that was used in
combination with techniques and monitoring perspectives).

Table 1. Main database for research criteria.

Key Terms Related Acceptable Terms

Smart Manufacturing Industry 4.0, Smart industry, industrial application, semiconductor manufacturing,
implant tool, industrial equipment, throughput machining, rotating machinery

Machine Learning
Data-driven framework, Deep Learning model, Deep Neural Networks, Long
Short-Term Memory, Support Vector Machine, Reinforcement Learning, Learning
Algorithms and Methods

Predictive Maintenance

Toll wear prediction, degradation prediction, failure prediction, Prognostics
technique, Remaining Useful Life Prediction, fault detection, real-time Quality
Assessment, anomaly detection, automated diagnostics, predictive analytics,
Health monitoring, inspection system, detecting anomalies, fault detection and
diagnosis, forecasting fault or obsolescence risk or product lifecycle, component
Reliability prediction, predictive quality

2.4. Screening the Publication Content

The database was populated by searching keywords in the title and abstract. Exclusion
and inclusion criteria were manually applied after a cursory analysis (Table 2). The
screening process was organized in three steps to make the selection more agile and
accurate. The first step aimed at including only the papers in which at least two of the
selected keywords were matched in the title. The resulted publications were filtered (step 2)
based on a deeper understanding of the abstract and conclusion sections. Exclusion was
then again applied manually based on the content of analysis, significance in methodology,
and the coherence with the RQs.

Table 2. Inclusion and exclusion criteria for selection of relevant papers.

IN
C

LU
SI

O
N

C
R

IT
ER

IA

Technical reports, conference abstracts, review and research articles, studies and papers regarding
application of ML for PdM in SM.

In the field of both smart manufacturing and predictive maintenance.

Published in the time frame 2013–2019 (early included).

The focus of the paper contributes to the search topic based upon the abstract.
Studies that are only available in the form of PowerPoint presentations.
Studies not presented in English.
Research only containing synopsis of a full report.
Books and grey literature.

I

Multiple publications of an identic proposal.
Papers lying outside the domain of interest.

EX
C

LU
SI

O
N

C
R

IT
ER

IA

II Papers which only mentioned the main focus in introductory sentences in the abstract, but is not discussed
in the full text study.
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Thus, relevant papers in the database were obtained. These were selected to conduct
backward snowball sampling. It was used (step 3) as a reference list to identify additional
papers to be included. This database was then studied by full-text reading.

3. Data Extraction and Documentation

For each publication in the database the following information was extracted: publi-
cation title, authors, year, geographical area, research and contribution type, component
investigated as per case study, sensor data monitored, task performed, machine learning
strategy, and method applied. We designed a code to extract headings from the selected
proposal. We implemented the Latent Dirichlet Allocation to analyze text and mine for
probabilities of words [42]. For each publication in the database, we read the proposal in
order to cluster the strategy and method applied. Each publication was classified as either
“evaluation research” or “validation research” (see Table 3 for details). These categories are
further divided into subcategories as per Figure 2.

Table 3. Type of research included.

Type of Research Description

VALIDATION

Theoretical Research presents a vision or a review for a topic. Research encompassing
novel and unique techniques, not yet used in practise for example experiments, i.e., done
in the laboratory.
Philosophical paper provides a conceptual way of looking at a particular problem or field,
in the form of a taxonomy or conceptual framework.
Opinion paper expresses a personal interpretation about whether a particular technique
is good or bad or how things should been done, without focusing on related work or
standard research methods.
Experience paper is written from the personal experience of the researcher, and describes
how something has been done in practice.
Solution proposal provides a solution, with a small example or a good line of
argumentation, to a particular problem or a significant extension of an existing
technique.

EVALUATION

Content Research validates a significant implementation of a given technique and takes
place in a real-world industrial context, considering benefits and drawbacks of the
solution.
Implementation research includes an experiment or a case study.
Commercialization research presents a novel solution that is fully commercialized.

Figure 2. Classification of research methods.
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Reports containing a survey, case study, controlled experiment, action research, ethnog-
raphy, simulation, prototyping, and mathematical (software engineering state of art analy-
sis) were included.

To classify the type of contribution, the qualitative research method known as key-
wording was chosen. The abstract of each publication was reviewed to identify the main
keywords, over the declared, that described the research output of the paper. Research
labelled as theory or platform [43] was excluded in this phase. Table 4 provides a summary
of each type of research contribution. Furthermore, each publication used in the study was
classified in the type of contribution.

Table 4. Classification of type of contribution [8].

Type of
Contribution Explanation of Research Content

METHODOLOGY Research that presents instructions or methods, with low-level approaches, to assist in solving a problem.

ARCHITECTURE Research that describes a theoretical view of a system where different components interact with each other
in solving a problem.

MODEL Research that outlines mathematical models or algorithms for solving particular problems.

TOOL Research that develops well-defined software utilities that address a subset of a bigger problem or a device
that serves a particular function and it can be integrated within identified machines.

FRAMEWORK Research that describes the encapsulation of multiple software libraries that solve a particular problem,
while also being extensible.

PROCESS Research that presents low-level processes to solving a particular problem.

This study sought to highlight the amount of interest, the current maturity level,
pertinent trends in the literature, and the focus of the research shown in a new and
pervasive research area, as the application of the advanced techniques of machine learning
for predictive maintenance in smart manufacturing. In particular, the study presented
some machine learning techniques for predictive maintenance to highlight the advantages
of their application to improve situational intelligence, performance, and reliability in
smart manufacturing. The research questions led the adopted systematic mapping process,
to help other researchers in the field to analyze research directions and identify interesting
needs and perspectives in the field. The systematic mapping was carried out by gathering
high-level knowledge from 78 publications, deemed relevant for the study, according
to the aforementioned inclusion/exclusion criteria. An upward trend was identified
in publications for smart manufacturing of PdM; in particular, in the last two years, a
fivefold growth in publications was recorded after a trough in 2016. It was found that
40% of research evidenced a study related to deep learning methods; these are considered
an innovative trend in machine learning in recent years [44]. USA and China led the
publication provenance of the selected papers, possibly due to the policy lead initiatives in
these countries. It was also observed that there were an equal number of evaluation and
validation studies available in this area, this being a symptom of a research area being not
yet mature, but in rapid growth. In addition, the majority of models and methodologies
were identified as contribution types. However, in 2017–2018 the superiority in publications
of tools revealed a growing interest in applications. This mapping study was conducted
also to review the progress in this field, through the identification of a research set from the
relevant papers for the study. Publications were included that presented an implementation
of a proposed solution tested on open source simulated data set or an evaluation of it in
a real industrial case study. As a result of this study, existing classes of machine learning
approaches and methods were identified and characterized in relation to the investigated
equipment and the related monitored data. It was found that vibration is the major factor
monitoring signal for machinery analysis [45]. It compares as the most used data set for all
types of equipment analysed [46]. Furthermore, the most used approach was supervised
learning, although ensemble learning is gaining importance. Neural networks, followed by
random forests and support vector machines, were identified as the most applied methods.
Neural networks accounted for 40% of the publications, of which 67% related to deep
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neural network with long short-term memory as the majority. However, as discussed, there
was no one algorithm found that worked best for every problem.

3.1. Type of Equipment and Sensor Data

In order to highlight the main application areas of ML techniques for PdM, compo-
nents and equipment were classified by analysing the evaluation or validation approach
that the authors reported. Table 5 shows the different types of equipment investigated in
relation to specific monitored data sets.

Table 5. Real-world system components investigated and their measurable sensor data [11].
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(GC) units used in the advanced gas-cooled reactor, and rotary machines in plant fan mills 
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wind turbine [52]; turbofan and induction motor [53], aircraft, and diesel engine [54,55]; 
and transformer short-circuit (considered in Electrical and Electronic) were also catego-
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The manufacturing machinery category included proposals with data related to CNC
tools, devices, industrial equipment for different production, swivels and valves, reactors,
hard drive, refrigeration [47] and cold-storage systems (RCSS), and heating, ventilation and
air conditioning (HVAC) [48]. The semiconductor manufacturing process included wafer
fabrication, ion beam etching, and ion-source tungsten filament breakdown [49]. The rotary
machines category included degradation of bearings [50,51], gas circulator (GC) units used
in the advanced gas-cooled reactor, and rotary machines in plant fan mills plates. Studies
on exhaust fan, mill, and furnace fan; degradation of bearings of gas or wind turbine [52];
turbofan and induction motor [53], aircraft, and diesel engine [54,55]; and transformer
short-circuit (considered in Electrical and Electronic) were also categorised.
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3.2. Machine Learning Approaches and Tasks

Machine learning models are data-driven learning methods used to train software
to make generalized predictions from historical data. These models have the ability to
automatically learn how to solve problems of different natures and with different dimen-
sionality values, from hundreds of input features to just a few [12]. ML-based PdM can be
divided into the following main classes: (i) Supervised is the task of inferring a function
from labelled training data. Knowledge on failures is included in the modelling dataset; (ii)
Unsupervised is where logistic and/or process information are available, but maintenance
related data do not exist, the observations have no “labels”; hence, an algorithm is used
to identify hidden patterns in the input variables [4]; (iii) Semi-supervised learning uses
unlabelled examples to help learn the probability distribution over the input space and
jointly optimizes the prediction over the labelled and unlabelled examples [13]. This is
becoming popular in the recent research. (iv) Reinforcement learning can combine the
learning and acting phases simultaneously into on-line learning and gives a self-optimizing
feature. It uses data to learn about an optimal relationship (for a given objective), either
between the input and the decision or the input and the performance index.

Sub categories of several data driven models in ML are identified as follows: (a)
Ensemble learning are meta-algorithms that attempt to decreasing variance. It aims to do
this by biasing data while improving predictions using bagging, boosting, and stacking
methods [14]; (b) Inductive learning involves an algorithm for decision map and rule-based
learning; (c) Instance-based learning is a class of inductive learning. It generates classifica-
tion predictions using specific instances on local approximation. Instance-based learning
algorithms do not maintain a set of abstractions derived from specific instances [15].

However, many researchers engaged in machine learning have promoted recent
developments like Deep Learning (DL), as revolutionary inventions that will have a trans-
formative effect. DL has emerged as a promising computational technique for dynamic
system prediction due to its enhanced capability to characterize the system complexity [56],
overcoming the shortcomings of those traditional methods [57]. It is a ML technique
that learns multiple levels of representations in deep architectures. The traditional neural
networks are less effective in handling the unlabelled data that are often encountered in
real life. Deep architectures incorporate both unsupervised pre-training and supervised
fine-tuning strategies to construct the learning models [58]. DL over the class of artificial in-
telligence systems allows automatic processing of data. It works towards highly non-linear
and complex feature abstraction via a cascade of multiple layers, instead of handcrafting
the optimum feature representation of data with domain knowledge. In this perspective,
the contraposition that was used between deep learning category vs. the others is suitable.

Moreover, the PdM instances can be formulated as follows: (i) Classification problem,
which aims to determine the probability of a part failing before n numbers of parts are
processed; (ii) Regression problem in which it is predicting the time remaining until the
next failure is expected to occur, called RUL [6]. Both the categories are under supervised
learning class; (iii) Clustering is generally listed under the unsupervised approach as the
results are a collection of data items split between similarity and dissimilarity categories [59].
The following high-level schematics, Figures 3 and 4, were defined, matching different
classification schemes presented in the literature [60–64]. Different and multiple names
for the literature were found and grouped as per RQ5 into data-driven models (blue
blocks), learning approaches (grey blocks), and learning modes (light green blocks). Across
learning class, it is possible to identify different supervised categories. Those encompass
the supervised, semi-supervised, reinforced, inductive, instance-based and unsupervised
approaches in learning (grey color). They can implement NNs-based methodology with
some probability-based tests (for features extraction). You should generally make use
of multiple learning algorithms to obtain better predictive performance (those are under
the class of machine learning approaches based on data) [65]. Learning is used to extract
classification, prediction, function approximation, and features clustering. Semi-supervised
learning represents a middle ground between supervised and unsupervised algorithms.
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They operate on data mostly unlabelled and can make use of learning models as for its two
grounded categories.

Figure 3. Classification of machine learning approaches, methods, and tasks (learning approaches (grey blocks) and learning
modes (light green blocks)).

Figure 4. Deep Learning methods.
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3.3. Machine Learning Methods

The following methods were identified for the ML category, based on successful ap-
plications: (A) Random forest (RF), which is an example of parallel ensemble method. It
operates by constructing a set of decision trees. Training and outcomes make use of the
mean prediction of the individual trees. The objective in parallel methods is to exploit inde-
pendence between the base learners, as the error can be reduced dramatically by averaging.
Otherwise, in sequential ensemble methods, the base learners are generated sequentially,
and the objective is to exploit the dependence between them. The overall performance can
be boosted by weighing previously mislabelled examples with higher loads; (B) Gradient
Boosting Methods (GBM) differ from RF in the order and way the trees are built [66].
In GBM new trees (constructed one at time, these are not in forest composition) help to
correct errors made by previously trained trees; (C) In Support Vector Machine (SVM), as
a supervised learning machine approach, the input variables, arranged in separate columns,
constitute an n-dimensional space [67]. A hyperplane is selected to separate the inputs in
classes. SVMs are usually employed in combination with Kernel Methods (KM) to further
enhance performance in classification using non linearity. (D) In the Decision Tree Method
(DTM), a tree (top down structure) is constructed as a predictive structure. The branches
of this tree illustrate the outcome of the decisions taken; (E) in Rule Based Learning (RBL)
the network of decisions can be converted in rules. They work on memory and matching
schemes to evaluate conflict and to decide how to proceed in learning. (F) The k Nearest
Neighbour (k-NN) classifies objects of instances based on the nearest values with respect
to features. It requires computation of distances between samples [68]; (G) Linear (LiR)
tries to estimate real values based on continuous variables, while (H) Logistic Regression
(LR) estimates estimate discrete values based on given set of independent variables. In
simple words, it predicts the probability of occurrence of an event by fitting data to a logit
function [63]. (I) Gaussian Mixture Model (GMM) is known as a non-parametric method
of density estimation [68]. The unknown parameters are estimated by maximizing the
log-likelihood, using the expectation-maximization algorithm [69]. Therefore, an instance
is assigned to cluster with a probability amount [70]. Under the clustering approach over
the main unsupervised class there are (J1) Hierarchical Methods (HM) (divided in agglom-
erative and divisive). They work on a bottom-up or a top-down strategy (depending on the
type) starting from one object for a cluster or from all objectives in one cluster. It iteratively
agglomerates or subdivides clusters until termination conditions are satisfied. HMs are
generally contraposed to (J2) Fuzzy Unordered Rule Induction Algorithm (FURIA) that
produces better decision boundaries between different classes over fuzzy logic rules [18].
(L) Hidden Semi-Markov Decision Process model (SMDP) is utilized to represent the
deteriorating process of machines, due to the generally distributed sojourn time and the
unobservable underlying stochastic process on deteriorating quality states [71].

Specific ML applications make use of neural networks. Artificial neural network
(ANN) tries to adapt to the information flow of the biological learning scheme. Differ-
ent types of applications of ANNs include Back Propagation Neural Network (BPNN),
Adaptive Neuro-Fuzzy Inference System (ANFIS), Bayesian Neural Network (BNN), Prob-
abilistic Neural networks (PNNs), and Generalized Regression Neural Networks (GRNNs)
as a feed-forward category [30].

The BPNN algorithm adjusts the connection weights based on the gradient descent
method where the squared error is minimized in the direction of the greatest improve-
ment [72]. BPNN suffers a large number of iterations to converge to the desired solution.

ANFIS is an integration of ANNs and fuzzy logic principles, which makes it possible
to utilize the benefits of both in a single framework [73]. Probabilistic neural network
involves one-pass learning implemented directly in the learning structure. In the regression
schema, dependence between layer decisions is arranged.

BNNs comprise a probabilistic model and neural network. They try to identify direct
dependencies between statistical variables. These are represented in the form of a directed
acyclic graph (DAG) and a set of node probability tables (NPTs) [74]. GRNNs are memory-



Appl. Sci. 2021, 11, 2546 14 of 34

based networks of the probabilistic class in a feed-forward approach. They estimate
continuous variables as in standard regression techniques in a conditional expectation [75].

Feed Forward Back propagation Neural Network (FFBPNN) over the main category
of a probabilistic network is an iterative process operation, in which the input patterns
are fed into the input layer of the system. Each hidden layer makes the computation, and
it forwards the next active layer in the network until the output layer. The output layer
computes the errors based on the observed outcomes and desired level. These errors will
then be back-propagated by using the back-propagation formula, from the output layer
through the hidden layers and finally reach the input layer. The learning process terminates
whenever the total error is within an acceptable level or whenever the limit of the number
of iterations has been reached [76].

The Restricted Boltzmann Machine (RBM), as elements of the probabilistic class, is an
energy-based parallel constraint network that consists of a layer of binary hidden units
and a layer of binary visible units without interconnections between both visible/visible
and hidden/hidden units [43].

An innovative trend of the last number of years focused on Deep Neural Networks
(DNNs) (Figure 4, inspired from [77]). Deep learning is the evolution of machine learning.
It technically continues to analyze data based on NNS while structuring algorithm in layers.
They are applied in systems that require human or artificial “thought”. Essentially, DNNs
involve feeding a computer system with data. They can be used to make decisions about
other data. Data are fed across neural networks as per ML in SM. These networks (logical
constructions) ask multiple binary true/false questions, or extract a numerical value, for
every bit of data that pass through them. They classify data according to response. DNN
can identify failures, if populated by historical data, and the amount is in the complexity of
the system.

The most commonly used deep architectures are Deep Belief Networks (DBN) and
Convolutional Neural Networks (CNN).

DBN is a feasible method for fault diagnosis and prognosis whenever targeting
condition is beyond the historical data. In addition, it also manifests the ability to discover
the discriminative information about failures when there is large input dimensionality.
DBN architectures of structured Restricted Boltzmann Machines (RBMs) are probabilistic
generative models. Those learn the joint probability distribution of training data without
using data labels. Once the structure of a DBN is determined, the goal for training is to
learn the weights and biases between layers.

CNN consists of multiple layers of hierarchy with some layers of feature representa-
tions (feature maps) and classification of type of conventional neural networks. Due to the
ability to learn complex and robust representation via a convolutional layer, local patterns
in raw data are extracted and subsequently build complex patterns for machine health
monitoring through stacking convolutional layers [9].

Echo State Networks (ESNs) are a kind of recurrent neural network that arises from
the so-called “reservoir computing approaches” [78]. By stacking memory cells, informa-
tion of previous inputs are stored in the output with weights, carried by cell state, which
makes Long Short-Term Memory (LSTM) an outstanding tool to mimic time series [79].

Auto Encoder (AE) is an unsupervised learning algorithm that extracts features from
input data without labelling information [80]. It generally consists of two parts including
encoder and decoder. The encoder type compresses data when dealing inputs of high
dimensionality by mapping variables in the hidden layer. The decoder reconstructs approx-
imation in inputs. Supposing the activation function is a linear function and there are fewer
hidden layers than the dimensionality of input data, then the linear auto encoder is similar
to a principle component analysis (PCA). Several variants of AE have been developed:
Denoising Auto Encoder (DAE) is an extension version of the basic auto encoder, which is
trained to reconstruct the stochastically corrupted input data by adding isotropic Gaussian
and by forcing the hidden layer to explore robust features; Sparse Auto Encoder (SAE)
imposes sparse constraints on the hidden layers while imposing activation closing to zero.
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This is used for fault diagnosis and intelligent fault signature. Variational Auto Encoder
(VAE) is a deep generative architecture constructing a probability distribution for a latent
variable. It generates new input data by sampling distribution. Currently, the generative
model is widely used for reliability and risk analysis [81].

To evaluate the performance of the models, the most important metrics in publications
are accuracy, precision, recall, F-measure, mean square error, mean absolute percentage
error, and the failure capture rate, or in machine learning terms the true positive rate. The
latter one is generally analysed next to true negative rate (i.e., percentage of assets that will
not fail and the model will predict them correctly) as we can reach a complete true positive
rate whenever all occurring failures are predicted but we are able to gain information about
risky assets [82].

The current proposal is performing, as per relevant literature review, a comparison of
main class of ML. We are focusing on specific performance, but in the specific applicability
with the intent to construct a round mat per choosing the right approach for the right
asset. The best evolution or validation studies are than selected for a specific asset in a
particular content.

In answering RQ6 methods, the learning algorithm or models are used as synonymous
and alternative in the filtering database.

4. Results

The systematic map shown in Figure 5 was used to select relevant papers in the field
of analysis. A total of 483 publications were originally selected using keywords and main
sources as per RQs.

Figure 5. A breakdown of the screening process.

Basing on exclusion criteria I, 205 papers were considered out from the domain of
search. The remaining papers were then submitted to keywords screening test, according
to a Latent Dirichlet allocation analysis of text in the abstract and conclusion. A total of
82 papers were then rejected basing on exclusion criteria II. They resulted in 67 articles of
relevance matching. The snowballing method was finally used to extract the references from
each of these publications. We screened referenced papers to conclude about inclusion or
rejection in the database. Finally, 78 relevant papers constituted the database for answering
RQs and to conclude about the role of ML techniques for PdM. The references paper are
available in the Table A1.

RQ1.How many articles cover the use of machine learning for predictive maintenance
in smart manufacturing?

An upward trend was observed in publications between 2013 and 2018 (Figure 6). A
quite stable trend was revealed in the published literature about ML for PdM before 2016.
Since 2017, an increase in interest in research about the topic was apparent with a fivefold
increase noted in 2017, and ever-increasing output continuing in 2018 and early months
of 2019.
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Figure 6. Publications over the years.

Figure 7 further analysed this trend by differentiating between ML and DL terms.
Papers were highlighted by focusing on the DL approach or those applying DL methods.
The growth in publications was especially registered in the last two years, after a downfall
in 2016, and in 2017–2018 their number was exactly one-third of the total.

Figure 7. Trend in deep learning publications.

An interesting result relates to the provenance map of publication (from the first
author location) as displayed in Figure 8. The highest number of publications about ML for
PdM was from USA, with 21 papers, then China with 13 papers, Italy 8, Germany 7, India
6, Sweden and Spain 4, and U.K. 3. A single paper was published from each of Turkey,
Ireland, Australia, Taiwan, Korea, Kazakhstan, Switzerland, Bulgaria, Brazil, Israel, Greece,
Japan, Mexico, Norwegian, Serbia, Thailand, and Austria.

RQ2.What type of research is being conducted in this area of ML techniques per PdM
in SM?

Figure 9 reports on the type of research. There is a perfect sub-division of the analysed
papers between evaluation-based proposal and validation reports. Evaluation is mainly
based on an advanced research approach that is trying to explore consequences, benefits,
and drawbacks within the industrial case test. The 39 validation reports provided, generally,
conceptual analysis and solutions over a simulation test mainly based on open source
data sets.
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Figure 8. Geographical provenance of publications—evaluation and validation as per main analysis.

Figure 9. Presence of research types.

Figure 10 displays the distribution of the type of research. In 2015, 2016, and 2017
there was a prevalence of validation-based studies. In 2018 a significant rise in evaluation
proposal was reported as consequence of the presence real industrial applications.

Figure 10. Popularity of research types by year (stable reports until early 2019).
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RQ3.What type of contributions are resulting from publications?

The type of contribution is reported in Figure 11 over the 78 papers. The contribu-
tions to the field mainly consisted of models. Many proposed ML algorithms to predict
equipment reliability or failure. The majority of ML-based publications were of methodol-
ogy proposal for diagnostic, anomaly detection, and prediction [83]. Twelve publications
reported about conceptual framework platforms that describe architecture for software
implantation [84,85]. Early research efforts focused on tool proposal, and just one publica-
tion was in the area of process mapping. All proposals started by analysing the production
process to discover correlations between sensor data from equipment. Data were collected
and generally stored in a local cloud [86]. The learning part of the PdM technique was
implemented for system’s monitoring, prediction of quality in products, and scheduling
decisions for flexible maintenance of equipment.

Figure 11. Comparison of contribution type.

Figure 12 illustrates the distribution of publications. A growing interest manifested in
the last 2 years in which the publication of at least one paper for each category was evident.

Figure 12. Trend in publication by contribution type.

RQ4.What class of equipment is a candidate to be mapped for smart manufacturing and
what is the relation between equipment and type of data under investigation?

Seventy of 78 papers reported about using PdM while applying ML. This included both
validations (with simulations on open source test data set) and evaluations (with proposed
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real industrial applications). Figure 13 reports about the type of equipment and process
where successful learning efforts were registered. Manufacturing machinery was the most
prominent area of manufacturing for this ML application, followed by motor and rotary
machines. The most relevant sector making use of ML was semiconductor manufacturing.

Figure 13. Number of publications for each case study.

Forty-two papers presented, in case study, solutions for prediction of equipment
degradation. They all specified the type of source data monitored (Figure 14). Vibration
analysis was the most used type of data for machine learning. Acoustic signals were also
commonly combined in data with force, torque, and speed values [87,88]. Dimensional
data and surface roughness, energy consumption, voltage, and current measurement were
monitored for manufacturing machinery components [89]. Few papers reported on the use
of thermal data or digital images and magnetic emissions.

Figure 14. Comparison of investigated equipment and type of monitored data.

RQ5.What machine learning strategy is the most frequently applied for predictive main-
tenance and for which tasks is it setting?

Figure 15 reports on the type of ML algorithm most prevalent within the literature
in the database. Supervised learning was the most common (53%) type of algorithm as
reported by the literature. Eighteen percent of the literature reported ensemble methods;
11% in the class of unsupervised as well as inductive approach; 3% of application reported
about a semi supervised implementation; 2% were the implementation of reinforcement
and instance-based techniques.
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Figure 15. Popularity of machine learning approach types.

Fifty-five of the 78 papers compared different ML approaches in order to demonstrate
the superiority of the method put forward. Figure 16 shows the comparison of different
machine learning approaches and tasks.

Figure 16. Comparison of different machine learning approaches and tasks.

The supervised approach reported successful implementation for classification of
rough data, time series classification [90], and regression components [91]. The semi-
supervised and ensemble approaches can be used for both classification and regression,
while the reinforced approach is only used for clustering [92]. Instance-based approach
reported successful application in classification. Inductive learning approaches was the
only one that manifested consistent application for classification, regression, and clustering.

The relation between application area for prediction and the type of learning approach
is reported in Figure 17. In dealing with fault prediction for electrical and electronic com-
ponents, semiconductor manufacturing process equipment, rotary machines, and piping
structures, the use of supervised learning is put forward. Manufacturing machinery com-
ponents can be investigated using different learning modes. In this case, the supervised
approach was widely applied with no evidence of semi-supervised proposals. Analysing
motor components, turbines, and pumps, there was generally the possibility to use dif-
ferent types of learning approaches. Motors make use of unsupervised, semi-supervised,
and supervised (major evidence) learning. Turbines make use of supervised, unsuper-
vised, and inductive approaches. Fans and blowers applied unsupervised and supervised
learning strategies.
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Figure 17. Types of machine learning approaches used for each type of investigated equipment.

RQ6.Which machine learning strategy is the most frequently applied for predictive
maintenance and for which tasks is it setting?

Eighty-two machine learning methods were selected for analysis. Several papers
reported successful implementation of algorithms matched with ensemble approaches.
This is reported in tests as the best solution for prediction in specific problems. Figure 18
displays how the popularity of ML for PDM in SM was gaining a rising trend over the
analysis period.

Figure 18. Popularity of machine learning methods by year.

At least one successful ML application was published each year for support vector
machine algorithms and neural networks. These two approaches were the only ones
reported in 2015. In 2014 and 2016 few applications, characterized by different methods,
were presented. The growing interest in ML resulted (see data for 2017 and 2018) in a
diversification of methods, with multi-methods composition not evident. Notwithstanding,
NNs remained the most prominent sources of learning methods. Thirty-three algorithms
of 82 proposed neural network implantations, 15 for random forests algorithms, and 14
for SVM, with 75% of publications based on these methods alone. Figure 19 displays the
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percentage of learning methods over the case history. A relevant portion was assigned to
decision trees, linear regression, and k-Means methods.

Figure 19. Percentages for each class of learning methods.

Forty percent of publications (36 different papers) reported about NNS. The most sig-
nificant contribution was from DL algorithms (highlighted with green clouds in Figure 20).
DL for ML constituted 67% (24 proposed methods) of all NNs case test. With 22%, long
short-term memory covered the prominent class of NNs methods. There was a 19% usage
of deep neural network and an 11% of convolutional neural network. Artificial neural
networks and Bayesian neural networks were implemented in 8% of publications.

Figure 20. Popularity of neural network algorithms.

Figure 21 reports about the machine learning methods utilized for each type of investi-
gated equipment. While analysing piping equipment, there was just one proposal covering
the application of liner regression [93]. Electrical and electronic equipment reported three
successful applications of linear regression and neural network algorithms. Data from
fan and blower, motor, and semiconductor manufacturing processes are studied through
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SVMs, random forests, and neural networks. Turbines and pumps reported a proposal for
k-nearest neighbour and rule-based learners. Manufacturing machinery, as asserted before,
can generally report varying data sources, and the most disparate methods for learning.

Figure 21. Relation between machine learning methods and type of investigated equipment.

5. Discussion

RQ1.
RQ1 wants to assess the level of interest in machine learning techniques for predic-

tive maintenance. At present, thanks to technological innovation, ML4PdM reported an
exponential growth in publications over the last 5 years. The years 2007–2016 registered
the following: the economic collapse of the oil market for Japan and Russia; Italy struggled
with problems with banks and internal debt; an economic crisis affected Spain; Australia
and U.K. manufacturing sectors declined; and in 2015–2016 China’s stock market crashed.
It included the market turbulence, which culminated in the devaluation of the yuan, slow-
ing growth in the GDP of China, a fall in petroleum prices. Moreover, Greece was faced
with the default in June 2015; October 2014 registered the effects of the end of quantitative
easing in the United States and a sharp rise in bond yields in early 2016. Finally, in June
2016, there was the United Kingdom European Union membership referendum, in which
Brexit was voted upon. Dangerous trends that have manifested themselves in the world
economy include falling prices of raw materials, double-digit competitive devaluations
in emerging countries, and consequent massive flight of capital [94]. These economic col-
lapses confirmed by the interest in restructuring the cost components while using artificial
intelligence (AI), big data, and analytic in deep learning (40% of the analysed publications)
arrangement for predictive and self-teaching systems.

It was also observed that the USA and China are showing leadership in publications.
The potential reason for this could be the policy initiatives in these countries, i.e., Smart
Manufacturing Leadership Coalition (SMLC) and China 2025.

SMLC is a national non-profit focused on transforming U.S. manufacturing through
democratizing access to real-time data. SMLC is proposing a U.S. Public–Private Partner-
ship Program and “Framework for Revitalizing American Manufacturing”. That provides a
comprehensive approach to transform manufacturing plants, their supply chains including
of education and knowledge, transportation, and stable capital markets. More in detail,
SMLC is developing the nation’s first open platform and marketplace for real-time data
analytics and industrial competition for manufacturing. This infrastructure will enable
manufacturers to access real-time data for strategic decisions. The architecture is not an
Internet of Things, but an Internet of Manufacturing that allows solutions to be connected
and applied through an open framework. On the other side, “CHINA 2025” is the oriental
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response to the European “Industry 4.0”. It is the attempt to promote manufacturing
innovation in China. The seven-step program of “CHINA 2025” focuses on artificial intelli-
gence, biotechnology, and robotics. Its “Made in China 2025” strategy aims at mastering
design, software, and production, building the right pool of talent. It targets a combination
of high-tech sectors and infrastructure. It focuses on building powerful and competitive
industries, building stable legal and economic institutions, maintaining a sustainable macro
environment, establishing the right partnership, and division of responsibilities between
private and public sectors.

RQ2.
RQ2 arose from the need to assess the maturity level of ML4PdM. The prevalence of

validation research approach, based on theoretical models, with no details in test beds and
implementation, would have been synonymous with immature research area. This would
be one which requires the development of theory to support forthcoming applications.
On the contrary, most of the studies reviewed related to real industry test beds. This is
indicative of a research area at an already promising level. The perfect division of the
78 papers into two types of research in association with the exponential growth in the topic
of research revealed the importance of the area, but it is still not mature, due to the still
high proportion of validation output.

RQ3.
This question arose with the purpose of understanding the approaches used to find

solutions in predictive maintenance for manufacturing equipment thanks to the advancing
machine learning techniques. More low-level approaches, framework, architectures, and
especially mathematical models and methodology are proposed in the reviewed literature.
This is a signal of early research efforts in the area; however, some toolboxes [95] for
the implementation of data-driven approaches in various manufacturing settings are
developing, as a signal of growing interest in applicable solutions [96]. In particular, Susto
et al., 2014 [97], proposes a PdM tool that allows a flexible maintenance scheduling decision
support system. It employs machine learning and regularized regression methods, by
iteratively exploiting the new information as it becomes available from newly processed
components to refine remaining useful life estimates and associated costs and risks [98,99].
Another example could be the industrial partner ProphecySensorlytics that deployed an
Android mobile app, called OnSpot, based on SpotCheck, a prototype system that uses well-
regularized deep neural networks to analyze sound, vibrational, and magnetic emissions of
industrial machinery to provide non-invasive machine diagnostics, both for fault detection
and to meter the day-to-day mode of operation of the machinery [100,101].

RQ4.
Failure of manufacturing equipment due to performance degradation of certain com-

ponents can be evaluated, and their degradation can be predicted through early condition
monitoring and data analysis. This can be achieved through data acquisition from sensors,
which have become smarter, smaller, easier to implement in existing systems, and cheaper
and more reliable [102]. A sensor converts physical values into electrical values (voltage,
current or resistance). Usually, one sensor measures one mechanical value, for example, the
mechanical values of acceleration, pressure, flow, torque, and force [103]. With this mechan-
ical value, one can interpret the vibration data, acoustic data, temperature [104], humidity,
weather, altitude, etc., and show a summary of the components and the mechanical values
acquired [34]. Therefore, this question aimed to discover the most researched applications
in smart manufacturing for predictive maintenance and the most monitored type of sensor
data utilized. With 30 papers, the results highlight manufacturing machinery as the most
discussed topic in publications, particularly in relation to the availability of vibration signal
monitoring. In fact, manufacturing machinery is the heart of a smart manufacturing with
the aim being to prevent failures before they occur, thus avoiding loss of production, quality,
downtime and cost; it was also the most comprehensive topic individuated in the study.
When mechanical equipment sets fail, the vibration phenomenon is obvious and universal.
The equipment produces vibration as long as it is running, and any change in each part
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will have an impact on the vibration signal. Vibration signal contains the most abundant
information, and the measurement is more convenient. Vibration signal is the result of the
interaction of various factors with irregular characteristics, such as chaos, typing, nonlinear,
and data are multi-scale [38].

RQ5.
This question arose from the interest in highlighting the most relevant machine learn-

ing approaches used for predictive maintenance and linking each of them with the tasks for
which they are employed. The analysis evoked by the output charts highlights supervised
learning, applied for classification, as the most commonly used approach for prediction
through machine learning techniques.

The supervised models can be used to find insights from the data, and the subsequent
use of prognostics [105] and forecasting [106] will make sure that the production process
runs efficiently with minimal costs incurred for maintenance and reduce product quality
degradation [107].

Supervised Learning is a machine learning paradigm for acquiring the input/output
relationship information of a system based on a given set of paired input/output training
samples. As the output is regarded as the label of the input data or the supervision, an
input/output training sample is also called labelled training data, or supervised data. As
commented from an interview with Geoffrey Hinton, almost all the economic value created
by neural networks has been through supervised learning, while unsupervised learning
is going to be absolutely crucial. What has worked over the last ten years or so is also
supervised learning.

Moreover, the predictive maintenance problem through supervised learning methods
can be formulated in two ways. The first is to formulate the PdM as classification problems
to determine the probability of a part failing before n numbers of wafers (for example) are
processed. The second is to formulate it as regression problem where one would predict
the time remaining until the next failure is expected to occur. The most used is evident to
be classification, especially for manufacturing machinery [108].

RQ6.
This question aimed to classify the different types of best-performing machine learn-

ing methods in terms of: prediction accuracy; precision; recall; minimum variance and
root-mean-squared and mean absolute error. They aim to be used in evaluation and val-
idation studies for prediction of different smart manufacturing equipment degradation.
The resulting charts show neural network methods as the leader, followed by random
forests and SVMs. All of these show a growing trend in the last 5 years and significant
successful applications in manufacturing. Deep neural networks were pointed out as more
relevant application methods, highlighting LSTM as the most promising algorithm used
for predictive maintenance applications in smart manufacturing.

However, the popularity of neural networks has to face the need of large volumes of
training data, and this has limited their use for industrial applications where representative,
labelled data might be difficult or costly to acquire. The deep learning based methods
were at the forefront, bringing greatly improved analysis and recognition abilities but,
at the same time, slowing down the running speed, as these methods require a lot of
computation [109]. With the rapid development of smart industry, people invest their
maximum effort on reducing manpower by deploying vision sensors in each manufacturing
line and empowering them with the ability of autonomous defect detection, which results in
a hugely increased data size [110]. Moreover, the improved methods of regularization allow
deeper neural networks also to potentially be trained with smaller amounts of labelled
data, bringing industrial applications within reach. The two most important aspects of
modern neural networks are regularization and data abstraction [40].

Therefore, it is also important to underline that in machine learning, there is some-
thing called the “No Free Lunch” theorem. It states that no one algorithm works best
for every problem, and it is especially relevant for supervised learning (i.e., predictive
modelling) [111]. There are many factors at play, such as the size, quality, and nature of
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data; the available computational time; the urgency of the task; and what you want to
do with the data [112]. As a result, many different algorithms should be tailored for each
problem, while using a hold-out “test set” of data to evaluate performance and select the
winner. Of course, the algorithms tried must be appropriate for the selected problem,
which is where picking the right machine learning task comes in.

Mitigation of Threats to Validity

The process of systematic mapping is not infallible, and there are indeed a number of
threats to the validity of this study. Possible threats for validity are, for example, publication
bias, as negative or new and controversial views may not be published (theoretical validity);
poorly designed data extraction forms and recording of data (descriptive validity); potential
researcher bias in the selection of studies and reporting of the data (theoretical validity);
the quality of the sample of studies obtained with respect to the targeted population
(theoretical validity); generalizability of the results of the mapping, which includes within
the population (internal generalizability) and between different populations (external
generalizability); the reliability of the conclusions drawn in relation to the data collected,
e.g., due to a possible bias of the researchers in the interpretation of that data [9]. To this
end, every effort was made to mitigate potential risks throughout the process. The study
was prone to threats in all stages, prevention of which are described below.

The choices relating to the search criteria were driven by the agreed scope of the
research, the research questions that needed to be answered, the PICO criteria, as well
as the relevance of papers returned from testing various search combinations. However,
there could be the risk that these have restricted the discovery of papers that did not
meet the search criteria. Although based on the sophistication of the search facilities
in modern digital databases and the competence and experience of researchers in the
field with which we were confronted, we could suggest that the risk of omitting relevant
papers was at least minimised. Digital databases were selected using prior knowledge
relating to engineering and technology research, as well as noting prominent databases
used in closely related fields; even if not all digital repositories were included in the study,
snowballing was conducted, and there is also a realistic chance that different types of digital
repositories would have provided a level of redundancy. While other databases enabled
the construction of searches to interrogate titles, abstracts, and keywords using Boolean
logic (as concerned Google Scholar), specifying an appropriate search string was necessary,
limiting the search to titles that including the following combinations of keywords: “Smart”
AND “Machine Learning” AND “Predictive”.

This has returned a manageable number of publications. The criteria defined for
inclusion and exclusion in this study were deemed to be aligned with the scope of the
study. The main search terms chosen were restricted to the area of interest, but many syn-
onymous terms were considered acceptable. Irrelevant papers were scanned thoroughly
before rejecting them. To avoid uncertainty or rejection of relevant papers by only scanning
ambiguous abstracts and conclusions, papers were read fully and checked twice to ensure
reliability. While scanning papers, extracting incomplete information was prevented by
simultaneously building a detailed schematic structure in Excel, related to the research
questions, of each paper. The results of the classification process and conclusions included
research efforts focusing on systematic mapping. The research presented in this paper
provided a broad first review of research relating to the advanced use in smart manufac-
turing of machine learning techniques for predictive maintenance. This study aims to
promote a better understanding of a new and pervasive area that brings many benefits
to the industrial environment. In particular, several fundamental research questions that
are relevant to current efforts were answered, while also providing a platform for further
research and investigation in this field. For any empirical study the discussion of validity
threats is of importance and is a quality criterion for study selection.
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6. Conclusions

This study sought to highlight the amount of interest, the current maturity level,
pertinent trends in the literature, and the research focus shown in a new and pervasive
research area, as the application of the advanced techniques of machine learning for
predictive maintenance in smart manufacturing. In particular, the study presented some
machine learning techniques for predictive maintenance to highlight the advantages of
their application to improve situational intelligence, performance, and reliability in smart
manufacturing. The research questions led the adopted systematic mapping process,
which would help other researchers in the field to analyze research directions and identify
interesting needs and perspectives in the field, by gathering high-level knowledge from
78 publications, deemed relevant for the study, according to inclusion/exclusion criteria. A
mapping study provides an approach that facilitates an investigation of great breadth, while
sacrificing depth, and is a formal and well-structured approach to synthesising material.

In the state-of-the-art analysis there is, generally, unclear use of machine learning
terms. As appears frequently in conference proposals, authors generally refer to the artificial
intelligence approach as a machine learning identification, or they generally call the method
(neural networks) to describe the learning procedure. There is wide access to statistical
(pre-filtering) methodology in order to extract learning performances. The main limitation
in this case is data access. Exploration is (we can firmly affirm) greatly lacking on machine
learning for predictive maintenance. The available online databases are frequently used
for testing. Sometimes, the digital twin module—mainly in the manufacturing process
perspective—acts as feeding element (generating a back control loop). The industrial
evolution (mainly in the semiconductor industry) and IoT fast growth is here supporting
PdM with integrating (testing) solutions. In this case, cost and integration (whenever not
designed a priori) are the main issues.

Considering the social relevance of sustainable manufacturing, the impact of mainte-
nance processes and performances on sustainability (with its economic and environmental
dimension) emerges as a key strategy for business dimensions. Sustaining equipment
during the operations, while supporting process and reducing the industrial impact on
economy and society (may be using cyber-physical entities on twin sets), requires intelligent
use of the learning machines. An upward trend was pointed out in publications for smart
manufacturing of PdM; in particular, in the last two years a fivefold growth in publications
was recorded after a trough in 2016. Forty percent of research evidenced a study related to
deep learning methods; these are considered an innovative trend in machine learning in the
last years. USA and China led the publication provenance of the selected papers, probably
due to the policy lead initiatives in these countries. It was also observed that an equal num-
ber of evaluation and validation studies were available in this area, this being a symptom of
a research area not yet mature but in rapid growth. In addition, the majority of models and
methodologies as contribution types was highlighted, but in 2017–2018 the superiority in
publications of tools revealed a growing interest in applications. This mapping study was
conducted also to review the progress in this field, through the identification of a research
set, from the relevant papers for the study, both including publications that have presented
an implementation of a proposed solution tested on an open source simulated data set or
an evaluation of it in a real industrial case study. As result of this study, existing classes of
machine learning approaches and methods were identified and characterized in relation
to the investigated equipment and the related monitored data. It was also evident that
more interest in manufacturing machinery monitoring was occurring through vibration
signals, the most used data set for all types of equipment analysed; furthermore, the most
used approach was supervised learning, and ensemble learning is gaining importance.
Neural network, followed by random forest and support vector machine, was identified as
the most applied method, which addressed 40% of the publications, of which 67% related
to deep neural network with long short-term memory as the winner. However, as it was
discussed, there could be no one algorithm that works best for every problem.
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One major note is this proposal does not include recent (last two year) data as they
are moving quickly toward a huge set that requires different and detailed investigations. It
is our intent to discuss in the future those using the digital twin basis of analysis.
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Appendix A

In this section we included the referenced papers with characterization of type of
research and type of contribution as per the elaborated tables. We remarked that these
data ended at 2018, while we included proposals sent before 2018 but were accepted in
early 2019.

Table A1. Table of referenced papers clusterized per year (basing on principal author geographical provenience), Type of
research and Type of contribution.

Year of Publication Geographical
Provenience Type of Research Type of Contribution

[Koprinkova-Hristova] 2013 Bulgaria evaluation methodology
[Liu et al.] 2013 China evaluation model
[Schopka et al.] 2013 Germany validation model
[Susto et al.] 2013 Ireland evaluation model
[Wang et al.] 2014 China validation methodology
[Susto et al.] 2014 Taiwan evaluation tool
[de Souza et al.] 2014 Brazil evaluation methodology
[Li et al.] 2014 China validation model
[Kejela et al.] 2014 Norway evaluation model
[Lee, Kao et al.] 2014 United States evaluation framework
[Kroll et al.] 2014 Germany evaluation framework
[Lechevalier et al.] 2014 United States evaluation framework
[Cheng et al.] 2015 United States validation framework
[Munirathinam] 2015 India validation methodology
[Susto, Schirru et al.] 2015 Italy evaluation methodology
[Zhao et al.] 2015 China validation model
[Jahnke] 2015 Germany validation model
[Bluvband et al.] 2015 Israel validation methodology
[Sayed et al.] 2015 United Kingdom validation architecture
[Martín-díaz et al.] 2015 Spain evaluation methodology
[Wu et al.] 2016 United States validation model
[Jennings et al.] 2016 United States validation methodology
[Durbhaka and Selvaraj] 2016 India validation model
[Liao et al.] 2016 United States validation methodology
[Bosse] 2016 Germany evaluation methodology
[Mathew et al.] 2017 India validation model
[Aydin and Guldamlasioglu] 2017 Turkey validation model
[Diaz-Rozo et al.] 2017 United States validation architecture
[Luo et al.] 2017 China evaluation framework
[Siryani et al.] 2017 United States validation framework
[Jiang et al.] 2017 Australia validation framework
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Table A1. Cont.

Year of Publication Geographical
Provenience Type of Research Type of Contribution

[Cline et al.] 2017 United States evaluation model
[Shi et al.] 2017 Canada evaluation model
[DiBiano and
Mukhopadhyay] 2017 United States evaluation tool

[Ameeth and Aditya] 2017 India evaluation model
[Li et al.] 2017 Japan validation model
[Wu et al.] 2017 United States validation methodology
[Jinsong et al.] 2017 China evaluation model
[Satta et al.] 2017 Italy validation framework
[Guo et al.] 2017 China evaluation architecture
[Dong and Zhou] 2017 United States validation framework
[Uhlmann et al.] 2017 Italy validation model
[Costello et al.] 2017 United Kingdom evaluation model
[Alsina et al.] 2017 Italy evaluation model
[Irfan et al.] 2017 China evaluation methodology
[Canizo et al.] 2017 Spain validation methodology
[Mathew, Luo et al.] 2017 China validation model
[Li] 2017 China validation methodology
[Ahmad et al.] 2017 United States validation model
[Butte et al.] 2018 India evaluation model
[Zhang et al. (a)] 2018 China evaluation methodology
[Amrunthnah and Gupta] 2018 United States evaluation methodology
[Lærum] 2018 Norway validation tool
[Cho et al.] 2018 Switzerland evaluation architecture
[Ahmad et al.] 2018 South Korea validation model
[Abdurrahman and
ElifNurdan] 2018 Turkey evaluation architecture

[Amruthnath and Gupta (b)] 2018 United States validation methodology
[Ye] 2018 United Kingdom validation model
[Vasilić et al.] 2018 Serbia validation methodology
[Oh et al.] 2018 Thailand evaluation framework
[Sezer et al.] 2018 Mexico evaluation process
[Susto et al.] 2018 Italy evaluation methodology
[Ren et al.] 2018 China validation framework
[Zhang et al. (b)] 2018 United States evaluation methodology
[Hundman et al.] 2018 United States evaluation methodology
[Kumar et al.] 2018 United States validation framework
[Kolokas et al.] 2018 Greece evaluation methodology
[Paolant et al.] 2018 Sweden evaluation architecture
[Lejon et al.] 2018 Sweden evaluation methodology
[Amihai et al.] 2018 Germany validation model
[Lindström] 2018 Sweden evaluation model
[Kulkarni et al.] 2018 United States validation model
[Nalbach et al.] 2018 Germany evaluation architecture
[Techane et al.] 2018 Taiwan validation model
[Flath and Stein] 2018 Germany evaluation tool
[Gandhi et al.] 2018 Sweden evaluation architecture
[Bagheri et al.] 2018 Kazakhstan validation model
[Kohli] 2018 United States validation model
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