
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

SPIRITuS: a SimPle Information Retrieval regressIon Test Selection approach

Simone Romano⁎,a, Giuseppe Scannielloa, Giuliano Antoniolb, Alessandro Marchettoc

aUniversity of Basilicata, Potenza, Italy
b Ecole Polytech. de Montreal, Montreal, QC, Canada
c Independent Researcher, Trento, Italy

A R T I C L E I N F O

Keywords:
SPIRITuS
Regression test case selection
Regression testing

A B S T R A C T

Context:Regression Test case Selection (RTS) approaches aim at selecting only those test cases of a test suite that
exercise changed parts of the System Under Test (SUT) or parts affected by changes.

Objective:We present SPIRITuS (SimPle Information Retrieval regressIon Test Selection approach). It uses
method code coverage information and a Vector Space Model to select test cases to be run. In a nutshell, the
extent of a lexical modification to a method is used to decide if a test case has to be selected. The main design
goals of SPIRITuS are to be: (i) easy to adapt to different programming languages and (ii) tunable via an easy to
understand threshold.

Method:To assess SPIRITuS, we conducted a large experiment on 389 faulty versions of 14 open-source
programs implemented in Java. We were mainly interested in investigating the tradeoff between the number of
selected test cases from the original test suite and fault detection effectiveness. We also compared SPIRITuS
against well-known RTS approaches.

Results:SPIRITuS selects a number of test cases significantly smaller than the number of test cases the other
approaches select at the price of a slight reduction in fault detection capability.

Conclusions:SPIRITuS can be considered a viable competitor of existing test case selection approaches espe-
cially when the average number of test cases covering a modified method increases (such information can be
easily derived before test case selection takes place).

1. Introduction

Regression testing is conducted after changes are made to a system
in order to ensure that modifications did not alter the expected beha-
vior. The simplest regression test strategy, named Retest-all, consists in
re-executing the entire test suite of the System Under Test (SUT) on the
modified SUT version. As a system evolves, its test suite tends to grow
in size. Therefore, Retest-all might not be a viable option because it
might require too much time and/or too many resources [1,2]. To deal
with this problem, a number of approaches have been proposed. Ex-
isting approaches can be classified into three main classes: (i) test suite
minimization (or test suite reduction); (ii) Regression Test case Selec-
tion (RTS); and (iii) test case prioritization (e.g., [3–10]). Both test suite
minimization and RTS approaches seek to reduce the size of the entire
test suite preserving its capability to reveal faults. While test suite
minimization approaches delete obsolete or redundant test cases from a
test suite [11], RTS approaches select a subset of test cases to execute
only those that exercise changed parts or parts affected by changes of a
SUT [12]. That is, RTS approaches temporarily select test cases (they do

not remove selected test cases from test suites). Finally, test case
prioritization approaches sort test cases according to one or more cri-
teria [1,13]. Common to the three classes of approaches mentioned
before is the assumption of the availability of some a-priori knowledge
about the SUT and its test suite (e.g., coverage matrix or test case past
fault revealing ability).

RTS approaches are appealing because they allow executing a subset
of the entire test suite without removing any test case. However, as
underlined by Engström et al. [14], RTS approaches need to be tailored
to specific situations, development organizations, requirements, com-
plexity of the problem and preconditions in software applications since
no general solution exists. This in turn leads to the development of a
number of specialized RTS strategies [12]. They differ from one another
according to how they define and identify modifications in a SUT (i.e.,
when passing from its previous version to the current one), and how
they associate test cases to modifications (i.e., how test cases are se-
lected).

In this paper, we present SPIRITuS (SimPle Information Retrieval
regressIon Test Selection approach), an RTS approach. To select test

https://doi.org/10.1016/j.infsof.2018.03.004
Received 23 June 2017; Received in revised form 24 January 2018; Accepted 3 March 2018

⁎ Corresponding author.
E-mail addresses: simone.romano@unibas.it (S. Romano), giuseppe.scanniello@unibas.it (G. Scanniello), antoniol@ieee.org (G. Antoniol), alex.marchetto@gmail.com (A. Marchetto).

Information and Software Technology 99 (2018) 62–80

Available online 27 March 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.03.004
https://doi.org/10.1016/j.infsof.2018.03.004
mailto:simone.romano@unibas.it
mailto:giuseppe.scanniello@unibas.it
mailto:antoniol@ieee.org
mailto:alex.marchetto@gmail.com
https://doi.org/10.1016/j.infsof.2018.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.03.004&domain=pdf

cases, SPIRITuS uses method coverage information (i.e., a method
coverage matrix) and a Vector Space Model (VSM). In more detail, let P
and P′ be the previous and current versions of a SUT and let T be the test
suite of P. To decide if a method m′∈ P′ has to be tested or not,
SPIRITuS compares the new method version with the previous one (i.e.,
m∈ P) via VSM. If the lexical similarity between m′ and m is below a
given threshold, the method m′ is tagged as to be tested and all the test
cases exercising m are selected from T (i.e., from the test suite of P) to
create a test suite T′ with which to test P′. SPIRITuS is tunable: by
changing the threshold it is possible to select a lower (or higher)
number of test cases. However, it pays to be cautious as reducing the
number of test cases may have a price in fault detection capability.
Intuitively, the lower the threshold, the fewer test cases will be selected.
On the other hand, the higher the threshold, the closer T′ will be to T.

To empirically evaluate the SPIRITuS performance (i.e., tradeoff
between size and fault detection effectiveness of T′), we compared it
against Diff, Random-75, and Ekstazi [14–16]. The Diff approach exe-
cutes the test cases that cover methods that are changed. A method m′ is
considered changed with respect to m, if there is any textual difference
to the source code of these methods. Differences are computed via the
UNIX diff tool. Random-75 randomly selects 75% of test cases in T.
Ekstazi tracks dynamic dependencies of test cases on files, then it selects
a test case to be run if its dependent files are changed. Ekstazi re-
presents the state of the art for the RTS approaches [17] and this was
why we chose it as one of the baseline approaches. SPIRITuS and the
baseline RTS approaches were compared on 389 faulty versions of 14
Java programs.

Paper structure. In Section 2, we highlight background and related
work, whereas we introduce our approach in Section 3. The design of
our experiment is shown in Section 4. The obtained results and their
discussion are presented in Section 5, while threats to validly are dis-
cussed in Section 6. Final remarks conclude the paper.

2. Background and related work

In this section, we first discuss the RTS problem and the fault
seeding. Finally, we summarize RTS approaches and studies on these
approaches.

2.1. Regression test case selection

RTS approaches aim at selecting only those test cases that exercise
changed parts of the SUT or parts affected by changes to reduce the
testing cost, while preserving the same fault detection capability as the
original test suite [12]. More formally, the RTS problem is defined as
follows [1,2,18]:

• Given a previous version of the SUT, P, the current version of the
SUT, P′, and a test suite T for P, select a subset of T, T′, with which to
test P′.

These notations will be used in the rest of the paper. According to
the definition above, Retest-all consists in applying T on P′. It is worth
mentioning that the evolution of T (e.g., adding a test case to T) is out of
the scope of RTS approaches [18] as well as the cost to fix the faults that
T′ detects or not.

2.2. Seeded faults in empirical investigations

Experiments in regression testing, often, require a set of programs
with known faults [19]. One problem is that real programs of realistic
size with real faults are difficult to find [19]. To deal with this issue, one
common practice is to seed faults, either manually or automatically by
applying mutation operators (see the definition in Table 1) into existing
programs [20]. A study by Andrews et al. [19] showed that faults
seeded by applying mutation operators (i.e., mutation faults, see the

definition in Table 1) can be representative of real faults, while hand-
seeded faults seem to be harder to detect than real ones. Do and Ro-
thermel [21] studied the use of mutation operators in empirical as-
sessments of test case prioritization techniques. Results indicated that
mutation faults can replace real or hand-seeded faults. Do and Ro-
thermel [21] also proposed an experimental procedure largely adopted
in the context of regression testing. For example, Do et al. [22] and Hao
et al. [23] applied this procedure to evaluate prioritization approaches,
while Mirarab et al. [8] to assess a size-constrained RTS approach.
Recently, this experimental procedure has been implemented in
SMUG [24]. It is a tool prototype (i.e., an Eclipse plug-in) that seeds
faults in Java source code. We used this tool in the instrumentation of
the experiment conducted to assess SPIRITuS (see Section 4.6). SMUG
first compares the previous version of a program, P, and the current
one, P′, by identifying methods that are added to P′ or modified in P′.
Then, it creates mutants that involve only these modified/added
methods. The created mutants are then used to generate faulty versions
of P′ with known faults. To this end, SMUG implements the following
steps:

1. Identifying modified/added methods. P and P′ are compared to identify
methods that are added to P′ or modified in P′. To this end, SMUG
compares each method m′∈ C′ to its counterpart m∈ C, where C′
and C are classes with the same fully qualified name in P′ and P,
respectively. In addition, m′ and m must have the same signature
(i.e., name and parameter types). If m′ and m have at least one
changed statement (i.e., whitespace characters and comments are
disregarded), then we consider m′ a modification of m. If m′ does not
have a counterpart m, then m′ is considered as added to P′.
Operations like moving a method from a class to another one, re-
naming a method, and changing parameter types, are seen as a
method added to P′ [21].

2. Creating a mutant pool. Mutation operators are applied to each
modified/added method to create a mutant pool (see the definition
in Table 1) for P′. The mutation operators implemented in SMUG
are: Arithmetic OPerator change (AOP), it replaces an arithmetic op-
erator with another arithmetic operator (e.g., + with each of the
following operators -, *, or /); Logical Connector Change (LCC), it
replaces a logical connector with another logical connector (e.g., &&
with ||) and a bitwise operator with another bitwise operator (e.g.,
&, |, ⌃); Relational Operator Change (ROC), it replaces a relational
operator with another relational operator (e.g., > with each of the
following operators <, <=, >=, ==, or !=); Overriding Method Deletion
(OMD), it deletes a declaration of an overriding method; and Ar-
gument Order Change (AOC), it changes the order of the arguments in
a method invocation if there are at least two arguments with com-
patible types.

3. Creating mutant groups. Given a mutant pool, n mutant groups (see
the definition in Table 1) are created according to the following
criteria: (i) each mutant group Mi contains a random number of

Table 1
Definitions and useful concepts.

Mutation
operator

It is an operator that, on the basis of a transformation rule,
applies a syntactic change to a code region (e.g., a statement or
a method). Mutation operators can be applied on either source
code or byte-code of a program.

Mutation fault It is the result of the application of a mutation operator (i.e., the
changed code region).

Mutant It is a version of the program with a mutation fault.
Killed mutant A mutant is killed if and only if it exists at least one test case in

the test suite that detects its mutation fault.
Mutant pool It is a set of killed mutants.
Mutant group It a subset of the mutation pool.
Faulty version It is a version of the program built on the basis of a mutation

group. A faulty version contains a (mutation) fault for each
mutant in the mutant group.

S. Romano et al. Information and Software Technology 99 (2018) 62–80

63

killed mutants (see the definition in Table 1), ki, ranging in between
1 and l; (ii) each killed mutant in a mutant group is randomly se-
lected from the mutant pool; (iii) each mutant group does not con-
tain mutants whose mutation faults involve the same instruction;
and (iv) no couple of mutant groups contains the same mutant. The
researcher chooses the values for n and l.

4. Generating faulty versions. For each mutant group Mi, a faulty version
(see the definition in Table 1) of P′ with ki mutation faults is gen-
erated. The total number of faulty versions of P′ is equal to n. For
each seeded fault, we have its position in the source code and the
test case/s that detect/s this fault. This information is of primary
importance to assess RTS approaches [19].

2.3. Vector space model

The representation of a set of documents (i.e., the corpus) as vectors
in a common vector space is known as the Vector Space Model
(VSM) [25,26]. It can be used in a number of information retrieval
operations ranging from: scoring the textual similarity among docu-
ments in the corpus, scoring the textual similarity of documents on a
query, document classification, and document clustering. In a VSM, a
document d is represented as a vector of numbers, called document
vector, so that a point is associated to d. That is, each document is
associated with a real valued vector that spans the space of terms in the
corpus. Also queries are represented as vectors. If a term t occurs in the
document d, its value in the vector is non-zero. The values associated to
the terms are known as (term) weights. The simplest approach to
compute term weights consists in assigning to each term t a weight
equal to the number of its occurrences in the document d. This
weighting schema is named as term frequency (i.e., tft,d). The di-
mensionality of document vectors is the number of terms in the corpus.
Since VSM does not use a predefined vocabulary or grammar, it can be
easily applied to any kind of corpora. The term frequency weighting
schema suffers from a critical problem: all terms are considered equally
important. In fact, certain terms have little or no discriminating power
in determining relevance when executing a query. For instance, cards of
books in a library are likely to have the terms author and title. To deal
with this issue, the largest used weighting schema is the term frequency-
inverse document frequency:

− =tf idf tf idf*t d t d t, , (1)

where idf is the inverse document frequency and is computed as fol-
lows:

=idf N
df

logt
t (2)

N is the number of documents in the corpus, while dft is the document
frequency defined to be the number of documents in the corpus that
contain the term t. From a practical perspective, the −tf idf weighting
schema assigns higher values either to terms with a high number of
occurrences in the document or to terms that appear in a small number
of documents.

For a document d, any weighting function that maps the number of
occurrences of t in d (included the tf weights above) may be viewed as a
quantitative digest of that document. This view of a document is known
in the literature as the bag of words model. In this model the exact
ordering of the terms in a document is ignored, while the number of
occurrences of each term is retained (e.g., the document “Mary is faster
than Carmen” is equal to the document “Carmen is faster than Mary”).

Since not all the terms are equally important, a different set of
techniques can be used to normalize the corpus [25] before the in-
dexing (i.e., the application of VSM): stop word removal, special token
elimination, etc. Removed terms, therefore, do not contribute in any
way to retrieval and scoring. Other normalization techniques can be
applied on the corpus, e.g., splitting identifiers and stemming. Also,
these techniques have to be applied before the indexing takes place.

A few approaches have been proposed to quantify the (lexical) si-
milarity between two documents in VSM. Some of these consider the
magnitude of the vector difference between two document vectors
(Euclidean distance). A drawback of this approach is that two docu-
ments with a very similar content can have a significant vector differ-
ence since their lengths are very different. To deal with this drawback
the standard way of computing the similarity of the documents d1 and
d2 consists in computing the cosine similarity between the corresponding
document vectors,

→
V d()1 and

→
V d(),2 as follows:

=

→ →

→ →SIM d d V d V d

V d V d
(,) ()· ()

() ()
1 2

1 2

1 2 (3)

where the numerator represents the dot product (also known as the
inner product) of the two vectors. The denominator is the product of the
Euclidean lengths of the vectors. SIM assumes values in between 0 and
1, where 1 means that the two documents are identical from the textual
point of view. Values below 1 indicate that the two documents are
different.

As far as the textual similarity of documents on a query is con-
cerned, VSM can be easily applied by considering a query q as a vector.
The query vector is built as the document vectors. To compute the si-
milarity between the query q and a given document d, it suffices to
compute the cosine similarity (Eq. (3)) between the vectorial re-
presentation of q and d, that is, between

→
V q() and

→
V d(), respectively.

VSM is simple (i.e., it does not need specific parameter settings like
other text retrieval techniques, such as Latent Dirichlet Allocation —
LDA — and Latent Semantic Indexing — LSI), very efficient, and in-
dexing can be easily done in an incremental fashion [25].

2.4. Related work

Rothermel and Harrold [12] identified three main families for code-
base RTS approaches: (i) coverage-based (they select test cases that
exercise changed part of the SUT); (ii) minimization-based (they select
the smallest subset of test cases that can satisfy some minimum cov-
erage criteria for the modified parts of the SUT); and (iii) safe (they
guarantee, by construction, that all test cases that can reveal faults are
selected).

White and Leung [27] proposed a coverage-based RTS approach
that isolates dependencies to the changed parts of a SUT and then se-
lects a subset of T covering the parts within the firewall. More recently,
Soetens et al. [28] proposed ChEOPSJ, a firewall-based approach and
made available a tool prototype [29]. ChEOPSJ was validated by using
mutation testing.

Coverage- and minimization-based RTS approaches work in a si-
milar fashion. The most remarkable difference is that minimization-
based approaches seek to select a minimal subset of T that exercises
changed parts of the SUT or parts affected by changes. The approach
proposed by Fischer et al. [30] falls into this family. This approach uses
a 0-1 integer programming algorithm to identify a subset of T that in-
cludes at least one test case that exercises a modified part of the SUT.
Mirarab et al. [8] addressed a variation of the traditional RTS problem,
called size-constrained RTS. They apply an Integer Linear Programming
(IP) problem using two different coverage-based criteria. Constraint
relaxation is used to find many close-to-optimal solution points and
then combined to obtain a final solution (using a voting mechanism).
Selected test cases are then prioritized using a greedy algorithm that
maximizes coverage in an iterative manner. The authors conducted an
empirical evaluation on five programs by using mutation testing. A
practical question is that the approach needs to know (or estimate) the
number of test cases to be selected in advance.

Safe RTS approaches guarantee by construction that all test cases
that can reveal faults are selected. Examples of safe approaches are
those proposed by Rothermel and Harrold [31], Vokolos and
Frank [15], and Gligoric et al. [16,32]. Rothermel and Harrold’s

S. Romano et al. Information and Software Technology 99 (2018) 62–80

64

approach build a graph-based representation (i.e., control-flow-graph)
of P and P′. This representation together with code coverage informa-
tion are used to detect changes and then decide which test cases have to
be selected. Vokolos and Frank’s approach, called Pythia, identifies
changes by means of textual differences (i.e., diff) between P and P′,
then selects those test cases that cover the identified changes. Pythia
and Diff (one of the baseline approaches) can be considered as the same
approach. The only difference is that Pythia works at file level on C
programs, while Diff works at method level on Java programs. Due to
their nature, these approaches can work on programs written in any
programming language. However, their application on programs
written in object-oriented languages (e.g., Java) could turn them into
unsafe RTS approaches. Pythia/Diff and SPIRITuS work similarly be-
cause they both leverage textual differences and code coverage in-
formation. Pythia/Diff uses a simple textual difference, while SPIRITuS
uses a VSM to detect changes. According to documented results on the
use of information retrieval techniques (e.g., VSM) to code-based ana-
lysis (e.g., [33]), we expect that SPIRITuS could provide a more fine-
grained analysis of code changes and can reduce the size of Tmore than
Diff. Gligoric et al. [32] proposed an RTS approach that relies on dis-
tributed version-control systems. More recently, Gligoric et al. [16]
proposed Ekstazi (one of the baseline approaches), a firewall-based
approach that tracks dynamic dependencies of test cases on files. Ek-
stazi does not explicitly compare P and P′ but for each test case, it
identifies what files it depends on. Executable code such as Java classes
as well as external resources such as configuration files are files con-
sidered by Ekstazi. A test case is then selected if at least one of its de-
pendent files changed. Similar to Ekstazi, SPIRITuS works with code
coverage information. However, while Ekstazi considers all file
changes, SPIRITuS compares P and P′ by adopting VSM for identifying
“relevant” code changes. Thanks to this comparison between P and P′,
we expect that SPIRITuS could provide a more fine-grained and tunable
(by means of the threshold of similarity between P and P′) analysis of
the code changes, thus allowing a better reduction of the size of T than
Ekstazi. RTS approaches can be safe only under determined conditions
when dealing with software written in object-oriented programming
languages. This is due to the peculiarities of these kinds of program-
ming languages (e.g., late binding and multithreading), see [34] for
more details. Approaches that work at class or module level (e.g., fire-
wall-based approaches) may also select test cases that execute a mod-
ified part of a SUT, but these test cases cannot be modification-traver-
sing in any way [1]. In other words, these approaches could select a
large number of test cases [16]. Since SPIRITuS works at method level,
it is less sensitive to the issue mentioned before.

The three families of RTS approaches proposed by Rothermel and
Harrold were extended by Graves et al. [35] by adding other two fa-
milies often used in practice: Retest-all and ad hoc/random. Retest-all
entirely selects T to test P′. Ad hoc/random RTS approaches are used
when due to time constrains it is not possible to apply Retest-all and
supporting tools implementing other RTS approaches are not available.
For example, developers could randomly select a subset of test cases of
T and then run it on P′.

To solve the RTS problem, change impact analysis approaches can
be used to determine the effects of source code modifications on test

cases. If a test case is affected by at least a modification, then it should
be run. For example, Ren et al. [36] proposed an Eclipse plug-in, called
Chianti, that works by capturing atomic-level changes between dif-
ferent program versions of a code base. To predict what other areas of
this code base might be affected by a change, dependencies are calcu-
lated between these atomic-level changes through the use of call
graphs. To identify failure-inducing edits, Chianti then selects affected
tests and determines a subset of those changes that might induce test
failures. The number of affecting changes related to each test failure
may still be too large for manual inspection. To reduce the effort needed
to inspect affecting changes, Zhang et al. [37] presented FAULTTRA-
CER. This approach adapts spectrum-based fault localization techniques
and applies them in tandem with an enhanced change impact analysis
that uses extended call graphs.

Differently from the approaches described before, the SPIRITuS
overarching goal is to: (i) be easy to adapt to different programming
languages; (ii) use a simple easy to understand model of source code
entities; (iii) be fast in selecting test-cases, and (iv) be user-tunable.
Porting SPIRITuS on a new programming languages requires only to
locate function/method bodies and then chop these function/method
bodies into tokens. SPIRITuS leverages existing text retrieval engines to
efficiently store and represent methods as element of a vector space.
Although the use of information retrieval is not new in the regression
testing field, see for example Saha et al. [38] who addressed the pro-
blem of regression test prioritization by reducing it to a standard in-
formation retrieval problem, it is the first time that an information
retrieval technique (i.e., VSM) is used in an RTS approach. Computing
the similarity between two methods in SPIRITuS is linear in the VSM
dimension, while indexing the corpus is linear with the number of
methods, it does not need to be recomputed at each new system version
since it can be done incrementally. Finally, a developer/tester can fine-
tune the SPIRITuS threshold to seek a tradeoff between the number of
the selected test cases and their fault detection capability. An appro-
priate choice of the threshold could allow SPIRITuS to behave similarly
to a safe RTS approach (see Section 5.3.3).

3. Approach

SPIRITuS assumes that a method coverage matrix has been gathered
by running T on P. In Fig. 1, we show an activity diagram with object
flow that describes the underlying process of SPIRITuS. A description of
the phases of this process follows:

1. Corpus creation. The bodies of the methods in P are extracted to build
the corpus. In other words, each method becomes a document d in
the corpus. We discarded source code comments. The rationale of
this choice is that source code comments could not be updated when
the corresponding source code is changed [39–41].

2. Corpus normalization.SPIRITuS normalizes the extracted text by
performing tokenization [25], namely chopping a text into tokens.
Tokenization is performed in the same way as the Java com-
piler [42]. For example, the line of code list.add(element); is
tokenized into: list, ., add,(, element,), and ;. Then,
SPIRITuS performs a stop-words removal to cleanup text;

Fig. 1. SPRITuS process.

S. Romano et al. Information and Software Technology 99 (2018) 62–80

65

essentially, full stop, comma, and semicolon are removed. Differ-
ently from other text retrieval approaches (e.g., [43,44]), SPIRITuS
keeps operators or parentheses [3]. The rationale is that SPIRITuS
needs to detect small changes in a method that alter its behavior. For
example, removing a pair of parentheses (or a boolean operator)
could significantly change the result of an expression and then the
behavior of the program.

3. Corpus indexing. SPIRITuS models documents (i.e., methods) via a
VSM (see Section 2.3) and uses Apache Lucene1 to index the corpus.
In the current SPIRITuS implementation, we use the term frequency-
inverse document frequency weighting schema [26] to compute the
vectorial representations of the methods in the corpus. To quantify
the (lexical) similarity between a document in the corpus and a
query, SPIRITuS uses the cosine similarity of their vectorial re-
presentations.
VSM has been successfully applied in several software engineering
approaches (e.g., [44–46]) and already applied in the context of
regression testing, e.g., test case prioritization [3,10]. We opted for
VSM because existing research is contradictory on which text re-
trieval model works best with source code data. For example,
Marcus and Maletic [47] observed that LSI [48] performs at least as
well as VSM and in some cases LSI outperforms VSM. Differently,
Abadi et al. [45] observed that VSM provides better results than LSI
and similar results were also obtained by Wang et al. [46]. Other
authors advocate for the use of LDA [49]. It is also worth men-
tioning that the corpus indexing and method similarity computation
in SPIRITuS are modular blocks. This is to say that, for example, LSI
can be used to replace VSM if needed. We can also note that the use
of another text retrieval technique would not alter the general
process underlying our approach.

4. Methods similarity computation.
The similarity, SIM(m, m′), between two methods, m (in P) and m′
(in P′), is computed by applying the cosine similarity (see Eq. (3))
between the vectorial representations of m and m′. It is worth
mentioning that m has to be covered by at least one test case in T. As
mentioned in Section 2.3, SIM(m, m′) assumes values in between 0
and 1, where 1 means that the methods m and m′ are equal from the
textual point of view. Values below 1 indicate that the two methods
are different.

5. Test case selection.SPIRITuS compares pair of methods, m and m′,
that (i) have the same signature (i.e., m has the same name and the
same parameter types as m′) and (ii) both belong to the same class
(i.e., m belongs to a class with the same fully qualified name as the
belonging class of m′). Without the assumption above, it is difficult
to determine the counterpart of m, m′, at a low computational cost.
There are three main reasons (besides a simple method removing)
why m may not have a counterpart m′: (i) m has been renamed, (ii)
m has been moved from a class to another, and (iii) the parameter
types of m are changed. To deal with these issues, detection ap-
proaches for refactorings could be applied (e.g., [50]). Un-
fortunately these approaches are time consuming (a few minutes on
small/medium programs [50]). If m does not have a counterpart m′,
we assume that m′ exists and it has an empty body, namely

′ =SIM m m(,) 0; more details are given below.
Once similarities are computed, the selection is performed as fol-
lows:

′ = ′ ≤T t SIM m m st and t covers m{ (,) } (4)

where st is the selection threshold (or simply threshold) and assumes
values in the interval [0, 1]. The higher the value of st, the larger is
the selection. This is to say that T′ will contain mostly the same test
cases of T (e.g., if =st 1 then ′ =T T) and then the likelihood that T′
will discover the same faults as T increases (i.e., SPIRITuS behaves

similarly to a safe RTS approach). On the other hand, the lower the
value of st, the smaller the selection is. That is, T′ will contain less
test cases than T. Therefore, a developer/tester could choose a
higher selection threshold if he/she needs a higher fault detection
capability, while a lower selection threshold could be chosen when a
developer/tester has a quite limited testing budget.
It is important to underline that parts of SUT affected by changes are
“indirectly” handled in SPIRITuS. For example, let n∈ P and o∈ P be
two methods, where n calls o, and let t∈ T be a test case covering
both these methods, we consider n′ (i.e., the counterpart of n) af-
fected by the changes to o, if:

′ > ′ ≤SIM n n st and SIM o o st(,) (,) (5)

where o′ is the counterpart of o. According to Eq. (4), when SIM(o,
o′)≤ st, o′ is considered as changed and t is selected. It is worth
noting that if SIM(n, n′)≤ st, n′ is considered as changed whatever is
the value of SIM(o, o′), and thus t is selected. In case o does not have
a counterpart o′ (e.g., o has been deleted), ′ =SIM o o(,) 0, thus n′ is a
method affected by the changes to o (e.g., the deletion of o) and t is
selected. It could happen that a test case t∈ T covers a method o (in
P), whose counterpart o′ (in P′) calls a method q′ (in P′) added when
passing from P to P′ (i.e., the counterpart of q′ is not present in P). If
SIM(o, o′)≤ st, SPIRITuS selects t. This is, SPIRITuS selects a test
cases that exercises a method added between P and P′.

It is worth mentioning that if we apply SPIRITuS for the first time on
the current version of the SUT, P′, the execution of the phases from 1 to
5 are needed. However, the phases from 1 to 3 can be performed offline
because they concern a previous version of the SUT (see Fig. 1). If a new
version of the SUT, P′′, is available and we are interested in applying
SPIRITuS between P and P′′, only the execution of the phases 4 and 5
suffices to select a subset of T, T′′, with which to test P′′. This is because
the phases from 1 to 3 do not concern a new version of the SUT. As for
the phases 4 and 5, SPIRITuS could also be executed incrementally.
That is, when a developer saves its changes to a method m so obtaining
m′, SPIRITuS can compute SIM(m, m′) and than decide which test cases
have to be selected on the basis of Eq. (4). This is possible thanks to
IDEs, such as Eclipse, that provide functionality to notify the change to
a code fragment (e.g., to a method).

4. SPIRITuS empirical assessment

To empirically assess SPIRITuS, we conducted an experiment by
following the guidelines and recommendations by Wohlin et al. [51].
For replication purposes, we made available a replication package on
the web.2

4.1. Definition and context

The main goal of our study is to investigate the tradeoff between the
reduction of the size of the selections with respect to the original test
suites and the loss in fault-detection capability of these selections.
According to this goal, we defined and investigated the following re-
search question:

RQ. Does SPIRITuS reduce the size of the original test suites guar-
anteeing an effective fault detection?

In Fig. 2, we show the conceptual model of our experiment. The
bottom part of this model shows the main factor under study and the
metrics we used to compare SPIRITuS with state of the art and com-
peting approaches. The considered constructs (i.e., size and effective-
ness) are shown on the top (right hand side) of the conceptual model.

1 https://lucene.apache.org 2 www2.unibas.it/sromano/SPIRITuS.html

S. Romano et al. Information and Software Technology 99 (2018) 62–80

66

https://lucene.apache.org
http://www2.unibas.it/sromano/SPIRITuS.html

We conducted our experiment on 14 small to medium open-source
object-oriented programs (also experimental objects, from here on). We
selected these programs because: (i) they are written in Java simpli-
fying parsing; (ii) they are freely available on the web easing the re-
plications; (iii) most of them have been previously used as experimental
objects in other empirical studies (e.g., [4]); (iv) they belong to dif-
ferent domains; and (v) they have non-trivial test suites. In Table 2, we
report summary information on the experimental objects. The first
column shows the program name, while the second column lists the
program versions studied (i.e., P and P′). The Lines of Code (LOC) are
shown in the third column; the number of types (i.e., classes, interfaces,
etc.) and methods are reported in the fourth and fifth columns, re-
spectively. The number of commits between the two versions is shown
in the sixth column. The size of T (i.e., the number of test cases in T) is
reported in the seventh column, while the eighth column gives the
number of faulty versions for each P′. The ninth column contains the
overall number of mutation faults (summed across all the faulty ver-
sions for each P′). Finally, a brief description of the experimental ob-
jects is given in the last column.

4.2. Planning

We used the experimental procedure proposed by Do and
Rothermel [21] (see Section 2.2). This procedure was applied to create
30 faulty versions (i.e., n= 30) of P′, each of which contained a random
number of mutation faults in between 1 and 15 (i.e., l = 15). The ra-
tionale behind the choice of these values is to have a high number of
faulty versions with a typical number of faults [8,21]. In a few cases it
was not possible to generate 30 faulty versions of P′ (e.g., see Spring
Context in Table 2) because of the criteria listed in Section 2.2.

Summing up, our empirical assessment can be thought as having
evaluated SPIRITuS on a total of 389 pairs of versions, P and P′, with
known faults where each fault could be detected by at least one test
case t∈ T, i.e., it exists in T at least one fault-revealing test case t for P′.

To answer our research question, we compared SPIRITuS with the
following RTS approaches:

- Diff. It uses method coverage information of P and compares m and
m′ by means of the UNIX tool diff. The method m′ is different from
m if diff returns that at least one character (in code statements) has
been modified, deleted, or added between m and m′. A test case t is
selected if it covers a method m that results either different from m′
or removed when passing from P to P′.

- Random-75. It randomly selects 75% of the test cases in T.
- Ekstazi. It is the approach proposed by Gligoric et al. [16]. It tracks
test dependencies on files. For each test case t, Ekstazi collects a set
of files that are accessed during the execution. A test case t is se-
lected by checking if the dependent files are changed. Ekstazi has
been conceived to collect dependencies at each revision, but it can

also work collecting dependencies at every nth revision. When this
happens, the cost of frequent collection is avoided, but it might lead
to less precise selections [16] (i.e., fault detection test cases could be
not selected, see for example the results shown in Section 5.3.1 for
Commons IO – one of the used experimental objects).

Diff was chosen because it is based on textual differences, thus it
represents a natural choice to compare with SPIRITuS. We chose
Random-75 because it is widely used in experiments to assess RTS ap-
proaches [14]. Ekstazi represents the state of the art for the RTS ap-
proaches [17]. We also considered ChEOPSJ [28], but it did not work
on most of the studied experimental objects. This is why we discarded
this tool.

4.3. Selected variables

The main factor (or also independent or manipulated variable) is a
nominal variable that can assume the following values: SPIRITuS, Diff,
Random-75, and Ekstazi. To choose the metrics to quantify our con-
structs, we exploited the systematic literature review on the assessment
of RTS approaches conducted by Engström et al. [14]. According to
such a study, we identified and selected the following metrics:

- Test Suite Reduction (TSR). Let |T′| be the size (i.e., the number of test
cases) of T′, and let |T| be the size of T. TSR is computed by the
expression −

′1 T
T . It assumes a value in between 0 and 1. A high

value indicates that the size of the selection T′ is much lower than
the size of the original test suite T. Therefore, a high value is de-
sirable. Engström et al. [14] reported that TSR is the most used
metric to assess RTS approaches.

- Inclusiveness3 (I). Let M be the number of fault-revealing test cases in
T′ for P′, and N be the number of fault-revealing test cases in T for P′.
I is given by the expression M

N
if N≠ 0, 1 if =N 0. The desirable

value is 1; this means: all fault-revealing test cases are selected.
- Reduction in Fault Detection Capability4 (RFDC). Let M be the number
of faults revealed by T′ on P′, and let N be the number of faults
revealed by T on P′. RFDC is given by the expression −1 M

N if N≠ 0,
1 if =N 0. The best value for RFDC is 0.

While TSR concerns the size of the selection (size construct), both I
and RFDC are widely used to assess the fault detection effectiveness of
T′ [14] (effectiveness construct). The former effectiveness metric does
not take into account that different test cases can reveal the same fault.
On the other hand, RFDC takes into account that developers/testers do
not need to know all fault-revealing test cases to fix a given fault, but
they need to know that at least one test case reveals that fault. We can
postulate that the metric RFDC is more practically relevant because
provides an indication on the capability of T′ to reveal faults. For ex-
ample, let T be a test suite with three test cases: t1, t2, and t3. Both t1 and
t2 reveal the same fault in P′, while t3 does not reveal any fault. If an
RTS approach selects only t1, the I value is 0.5, however the RFDC value
is 0.

TSR can be also interpreted as the reduction in term of size achieved
by applying an RTS approach with respect to Retest-all, while I and
RFDC compare the results of an RTS approach with Retest-all with re-
spect to fault detection effectiveness.

4.4. Hypotheses formulation

We have formulated the following single parametrized null hy-
pothesis:

Fig. 2. Conceptual model.

3 Also known as test case-related detection effectiveness [14].
4 Also known as fault-related detection effectiveness [14].

S. Romano et al. Information and Software Technology 99 (2018) 62–80

67

Ta
bl
e
2

In
fo
rm

at
io
n
on

th
e
se
le
ct
ed

pr
og

ra
m
s.

Pr
og

ra
m

V
er
si
on

LO
C

#
Ty

pe
s

#
M
et
ho

ds
#

C
om

m
it
s

|T
|

#
Fa

ul
ty

#
M
ut
at
io
n

D
es
cr
ip
ti
on

ve
rs
io
ns

fa
ul
ts

C
om

m
on

s
M
at
h

3.
0

62
,5
20

74
7

55
06

66
9

33
36

30
20

0
A

lib
ra
ry

of
lig

ht
w
ei
gh

t,
se
lf
-c
on

ta
in
ed

m
at
he

m
at
ic
s
an

d
st
at
is
ti
cs

co
m
po

ne
nt
s.

3.
1

77
,5
21

91
2

66
15

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
m
at
h)

C
om

m
on

s
La

ng
3.
1

19
,4
99

15
0

22
35

37
7

20
39

30
22

7
A

lib
ra
ry

of
Ja
va

ut
ili
ty

cl
as
se
s
fo
r
th
e
cl
as
se
s
th
at

ar
e
in

ja
va

.la
ng

’s
hi
er
ar
ch

y.
3.
2

22
,5
32

18
7

25
67

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
la
ng

)
C
om

m
on

s
C
on

fi
gu

ra
ti
on

1.
9

20
,7
73

18
9

20
48

14
16

28
27

80
A

lib
ra
ry

to
as
si
st

in
th
e
re
ad

in
g
of

co
nfi

gu
ra
ti
on

fi
le
s
in

va
ri
ou

s
fo
rm

at
s.

1.
10

20
,9
91

19
1

20
68

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
co

nfi
gu

ra
ti
on

)
C
om

m
on

s
IO

2.
4

8,
83

9
10

9
10

87
29

6
86

9
30

20
9

A
lib

ra
ry

of
ut
ili
ti
es

to
as
si
st

w
it
h
de

ve
lo
pi
ng

IO
fu
nc

ti
on

al
it
y.

2.
5

9,
68

2
11

7
11

66
(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
io
)

Sp
ri
ng

C
on

te
xt

3.
1.
4

25
,0
11

59
1

29
74

54
19

19
21

10
1

A
m
od

ul
e
of

th
e
Sp

ri
ng

Fr
am

ew
or
k.

It
is

a
m
ea
n
to

ac
ce
ss

ob
je
ct
s
de

fi
ne

d
an

d
co

nfi
gu

re
d.

3.
2

25
,3
59

61
3

30
11

(p
ro
je
ct
s.
sp
ri
ng

.io
/s
pr
in
g-
fr
am

ew
or
k)

JF
re
eC

ha
rt

1.
0.
16

93
,3
20

62
6

87
55

44
22

02
30

20
3

It
is

a
fr
ee

ch
ar
t
lib

ra
ry

th
at

su
pp

or
ts

ba
r
ch

ar
ts
,p

ie
ch

ar
ts
,
lin

e
ch

ar
ts
,a

nd
m
or
e.

1.
0.
17

95
,3
53

62
9

87
68

(s
ou

rc
ef
or
ge

.n
et
/p

ro
je
ct
s/
jfr

ee
ch

ar
t/
)

JG
ap

3.
5

28
,6
04

41
0

31
50

82
13

87
30

20
5

It
pr
ov

id
es

ba
si
c
ge

ne
ti
c
m
ec
ha

ni
sm

s
to

ap
pl
y
ev

ol
ut
io
na

ry
pr
in
ci
pl
es

to
pr
ob

le
m

so
lu
ti
on

s.
3.
6

28
,9
43

41
6

31
77

(j
ga

p.
so
ur
ce
fo
rg
e.
ne

t)
C
lo
su
re

C
om

pi
le
r

v2
01

60
61

9
14

4,
05

4
18

04
12

,5
77

92
10

,2
79

30
27

0
A

to
ol

fo
r
m
ak

in
g
Ja
va

Sc
ri
pt

do
w
nl
oa

d
an

d
ru
n
fa
st
er
.

v2
01

60
71

3
14

4,
96

3
18

17
12

,7
16

(d
ev

el
op

er
s.
go

og
le
.c
om

/c
lo
su
re
/c
om

pi
le
r/
)

C
om

m
on

s
Be

an
U
ti
ls

1.
8

11
,2
78

13
4

12
32

20
8

10
61

30
22

8
It

pr
ov

id
es

ea
sy
-t
o-
us
e
w
ra
pp

er
s
fo
r
th
e
cl
as
se
s
in

th
e
ja
va

.la
ng

.r
efl

ec
t
an

d
ja
va

.b
ea
ns

pa
ck
ag

es
.

1.
9

11
,5
35

13
3

12
33

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
be

an
ut
ils
/)

C
om

m
on

s
C
od

ec
1.
8

5,
78

1
84

55
2

43
57

9
21

82
It

pr
ov

id
es

im
pl
em

en
ta
ti
on

s
of

co
m
m
on

en
co

de
rs

an
d
de

co
de

rs
su
ch

as
Ba

se
64

,
H
ex
,

Ph
on

et
ic

an
d
U
R
Ls
.

1.
9

5,
80

3
83

55
3

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
co

de
c/
)

C
om

m
on

s
JX

Pa
th

1.
2

19
,2
52

16
5

16
57

15
9

30
3

30
21

9
It
ap

pl
ie
s
X
Pa

th
ex
pr
es
si
on

s
to

gr
ap

hs
of

ob
je
ct
s
of

al
lk

in
ds
:J

av
aB

ea
ns
,D

O
M

et
c,
in
cl
ud

in
g

m
ix
tu
re
s
th
er
eo

f.
1.
3

18
,9
50

17
9

16
92

(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
jx
pa

th
/

)
W
ek

a
3.
6.
9

25
7,
98

1
20

95
18

,9
65

37
50

17
30

25
4

A
co

lle
ct
io
n
of

m
ac
hi
ne

le
ar
ni
ng

al
go

ri
th
m
s
fo
r
da

ta
m
in
in
g
ta
sk
s.

3.
6.
10

25
8,
72

1
20

95
18

,9
73

(w
w
w
.c
s.
w
ai
ka

to
.a
c.
nz

/m
l/
w
ek

a/
)

C
om

m
on

s
D
BC

P
2.
0.
1

10
,9
25

61
13

83
45

47
3

30
79

It
pr
ov

id
es

da
ta
ba

se
co

nn
ec
ti
on

po
ol
in
g
se
rv
ic
es
.

2.
1

11
,2
34

62
14

09
(c
om

m
on

s.
ap

ac
he

.o
rg
/p

ro
pe

r/
co

m
m
on

s-
db

cp
/)

Lo
gb

ac
k

1.
0.
13

26
,0
03

57
0

29
90

80
68

3
20

11
9

A
lo
gg

in
g
sy
st
em

s.
1.
1

26
,3
21

57
9

30
33

(l
og

ba
ck
.q
os
.c
h/

)

S. Romano et al. Information and Software Technology 99 (2018) 62–80

68

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-lang/
http://commons.apache.org/proper/commons-configuration/
http://commons.apache.org/proper/commons-configuration/
http://commons.apache.org/proper/commons-io/
https://projects.spring.io/spring-framework/
https://sourceforge.net/projects/jfreechart/
http://jgap.sourceforge.net
https://developers.google.com/closure/compiler/
http://commons.apache.org/proper/commons-beanutils/
http://commons.apache.org/proper/commons-beanutils/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-jxpath/
https://commons.apache.org/proper/commons-jxpath/
http://www.cs.waikato.ac.nz/ml/weka/
https://commons.apache.org/proper/commons-dbcp/
http://logback.qos.ch/

• NHX - there is no difference in the X values (i.e., TSR, I, or RFDC)
computed on the selections obtained by applying SPIRITuS, Diff,
Random-75, and Ekstazi.

4.5. Data analysis

To test the defined null hypotheses, we used the Kruskal–Wallis
test [51]. This is a non-parametric statistical test that allows us to check
whether a set of observed independent samples originate from the same
distribution, i.e., the null hypothesis is that the medians of samples are
equal, while the alternative hypothesis is that at least one sample
median among the considered ones is different. If the Kruskal–Wallis
test rejects the null hypothesis, the alternative one is accepted. In this
latter case, we then applied a post-hoc analysis, i.e., we carried out a
pairwise comparison among the results achieved by applying SPIRITuS
and by each baseline approach (e.g., “there is not a statistically sig-
nificant difference between SPIRITuS and Diff with respect to TSR”). To
this end, we used a two-sided Mann–Whitney test. This test is non-
parametric and checks whether two samples come from the same dis-
tribution. We used the Kruskal–Wallis and Mann–Whitney tests because
they are well known for their robustness and sensitiveness [51]. For all
the statistical test, we decided (as customary) to accept a probability of
5% of committing Type-I-error (i.e., =α 0.05). When needed, we ap-
plied the Bonferroni correction method [52].

A test of significance checks the presence of a (statistically sig-
nificant) difference, but it does not provide any information about the
magnitude of this difference. To quantify this difference, effect size
measures are used in statistics. Reporting effect sizes facilitates the
interpretation of the substantive, as opposed to the statistical sig-
nificance of a result [53]. Having said that, an effect size is a quanti-
tative measure of the strength of a phenomenon/treatment with respect
to a baseline. In our data analysis, we used the Cliff’s Delta (δ) effect
size [54]. The magnitude of the effect size is: negligible if |δ|< 0.147,
small if 0.147≤ |δ|< 0.33, medium if 0.33≤ |δ|< 0.474, and large if
|δ|≥ 0.474 [55]. In the pairwise comparisons, the sign of δ values is
used to understand which approach statistically outperforms the other.
For TSR and I, a positive δ value suggests that SPIRITuS outperforms the
baseline (e.g., SPIRITuS selects less test cases). As for RFDC, a negative δ
value indicates that SPIRITuS outperforms the baseline (e.g., SPIRITuS
has a better fault revealing capability).

4.6. Instrumentation

We developed a prototype of a supporting tool implementing the
process shown in Section 3. We named this tool as our approach,
namely, SPIRITuS. We also developed a tool for Diff and Random-75.
The same method-coverage matrices were used to apply Diff and

SPIRITuS. As for Ekstazi, we used the Java tool provided by Gligoric
et al. [16,56].

We used SMUG [24] to seed faults in the source code in selective
fashion (see Section 2.2). In particular, given two subsequent versions
of a program, SMUG creates mutants by considering only those methods
modified in, or added to, the second version. Therefore, we downloaded
both the version P and P′ from the web for each experimental object
used in our empirical investigation. This prevented the incremental
execution of the phases 4 and 5 of SPIRITuS (see Section 3). It is a
tradeoff we are willing to take given the extended empirical in-
vestigation reported in this paper. According to this design choice the
comparison between SPIRITuS and the baselines would be unfair with
respect to the time to perform test case selection.

5. Data analysis results and discussion

In this section, we present and discuss the obtained experimental
results. We conclude the section presenting results on further analyses
and delineating possible practical implications for our research.

5.1. Results

In Table 3, we report descriptive statistics for TSR, I, and RFDC on
all the 389 pairs P and P′ considering 0.975 as the value for the se-
lection threshold. This value for the threshold was obtained experi-
mentally with the goal to balance the reduction of the size of the se-
lections and their loss in fault-detection capability (see Section 5.3.3).
SPIRITuS reduces the number of test cases to run: TSR is 0.351 on
average, namely the mean reduction of T′ with respect to T is 35.1%.
We can see that, on average, SPIRITuS reduces more than the other
approaches. Moreover, SPIRITuS ensures a high value of inclusiveness
(I is 0.904 on average), at the price of a limited reduction of revealed
faults. That is, on average SPIRITuS is not able to reveal 4.9% of the
faults T reveals on P′ (RFDC average value is 0.049). SPIRITuS over-
comes Random-75 (on average, Random-75 is not able to reveal 8.1%
of the faults T reveals on P′), but it is slightly worse than Diff and Ek-
stazi (on average, Diff and Ekstazi are not able to reveal 1.5% and 2.9%
of the faults T reveals on P′, respectively).

In Fig. 3, we graphically summarize the distribution of the TSR
values (on the top), and the distribution of the values for I and RFDC
(on the bottom). The overall distribution confirms that SPIRITuS re-
duces test suites much more than Ekstazi and slightly more than Diff
(see Fig. 3a). The boxplot of SPIRITuS seems also more symmetric and
less skewed than the others with only exception of Random-75, where
the TSR values are always 0.25 because of the definition of this base-
line. From Fig. 3b and c, we can also observe that the median values for
I are equal to 1 (best value possible) and for RFDC are equal to 0 (best
value possible). This holds for all the approaches except for Random-75.
Boxplots, however, show the presence of a number of outliers for:
SPIRITuS, Diff, and Ekstazi. Such a number of outliers for Diff is less
than the other two approaches. This result seems to suggest that
SPIRITuS and Ekstazi are more sensitive to the SUT, while Diff less.

In Table 3, we also report the p-values obtained by applying the
Kruskal–Wallis test. In all the cases, this test allowed us to reject the
defined parametric null hypothesis (i.e., the p-values are always less
than 0.001, that is, the differences are statistically significant by ap-
plying the Bonferroni correction). These results justify a post-hoc ana-
lysis by performing a pairwise comparison between SPIRITuS and each
baseline approach. The obtained results are summarized in Table 4.

For the size construct, the results for TSR suggest that SPIRITuS
selects a number of test cases significantly smaller than the number of
test cases the other approaches select (see Tables 4). In particular, the
Mann–Whitney test allowed us to reject all the defined null hypotheses,
i.e., the p-values are always less than 0.001. As for Diff and Random-75,
the effect size is small (0.159 and 0.219, respectively), while it is
medium (0.438) for Ekstazi.

Table 3
Descriptive statistics and p-values obtained by applying the Kruskal-Wallis test.
The SPIRITuS threshold is 0.975.

Construct Metric Statistic SPIRITuS Diff Random-75 Ekstazi

Size TSR Mean 0.351 0.302 0.25 0.158
Median 0.352 0.307 0.25 0.055
SD 0.291 0.29 0 0.233

p-value < 0.001

Effectiveness I Mean 0.904 0.985 0.749 0.953
Median 1 1 0.75 1
SD 0.199 0.052 0.029 0.174

p-value < 0.001

RFDC Mean 0.049 0.015 0.081 0.029
Median 0 0 0.067 0
SD 0.128 0.058 0.078 0.122

p-value < 0.001

S. Romano et al. Information and Software Technology 99 (2018) 62–80

69

As for the effectiveness construct, we can observe that there is a
statistically significant difference in all the cases (p-values are less than
0.001) between SPIRITUS and the baselines. In particular, Diff and
Ekstazi are significantly better than SPIRITuS on I, even if the effect size
is small in both the cases (−0.261 and−0.227, respectively). SPIRITuS
is significantly better than Random-75 on I and the effect size is large
(0.708). As far as RFDC is concerned, Diff and Ekstazi are significantly
better than SPIRITuS, but the effect of method is negligible (0.127 and
0.121). SPIRITuS is significantly better than Random-75 on RFDC. The
effect size is large (−0.518).

5.2. Discussion

On the basis of the obtained results, we can state that SPIRITuS
selects significantly less test cases than the baseline approaches. As for
the fault detection effectiveness, SPIRITuS selections detect

significantly less faults as compared with Diff and Ekstazi, but the effect
size with respect to these approaches is negligible. The results suggest
that each test case not selected by SPIRITuS and that, on the contrary, is
selected by Diff and Ekstazi reduces marginally the capability of de-
tecting faults. This poses SPIRITuS as a competitor of existing RTS ap-
proaches such as Diff and Ekstazi (having different capabilities from
them): SPIRITuS has the best selection capability by paying something
in terms of fault detection capability. According to developers/testers’
needs, SPIRITuS could be adopted rather than other approaches. For
instance, a developer/tester could decide to use SPIRITuS since he/she
needs the smallest selection of test cases (e.g., in case of a quite limited
testing budget), but by being conscious that he/she could loose in terms
of fault detection capability. The obtained results also allow comparing
SPIRITuS with Retest-all: on average, the SPIRITuS selections are 35.1%
smaller than the Retest-all ones; and, on average, the SPIRITuS selec-
tions do not detect only 4.9% of faults that Retest-all allows detecting.

Fig. 3. Boxplots for: (a) TSR, (b) I and (c) RFDC.

Table 4
Pairwise comparisons between SPIRITuS (threshold 0.975) and each baseline with respect to TSR, I, and RFDC. The tested hypotheses are all two-sided because we
could not do any postulation on which approach performs better.

Construct Metric Diff Random-75 Ekstazi

p-value Effect size p-value Effect size p-value Effect size

Size TSR < 0.001 Small (0.159) < 0.001 Small (0.219) < 0.001 Medium (0.438)
Effectiveness I < 0.001 Small (−0.261) < 0.001 Large (0.708) < 0.001 Small (−0.227)

RFDC < 0.001 Negligible (0.127) < 0.001 Large (−0.518) < 0.001 Negligible (0.121)

S. Romano et al. Information and Software Technology 99 (2018) 62–80

70

Please observe that Retest-all represents the theoretical upper-bound
for the fault detection capability, namely any T′ cannot detect more
faults than T on P′.

Concluding, although our results and the discussion before did not
allow us to provide a definitive conclusion about our research question,
we can assert that: SPIRITuS significantly reduces the size of the original
test suites with a slight effect on the reduction of detected faults. That is,
SPIRITuS allows obtaining a better tradeoff, as compared with the
baseline approaches, between the reduction of the size of the selections
and their loss in fault detection capability.

5.3. Further analyses

We conducted four kinds of further analyses: a per-object analysis, a
code coverage analysis, a sensitivity analysis, and an analysis of
SPIRITuS execution time. The results of these kinds of analysis are
presented and discussed in the following subsections.

5.3.1. Per-object analysis
In this further analysis, we considered one experimental object at a

time (the used threshold value is 0.975). This was possible because for
each program P, we had a number of faulty versions of P′ (ranging in
between 20 and 30 as shown in Table 2). For each experimental object,
we performed a Kruskal–Wallis test. In all the cases, this test returned a
p-value less than α. This allowed us to perform a pairwise comparison
between SPIRITuS and the baseline approaches on each experimental
object. In Table 5, we report descriptive statistics for TSR, I, and RFDC
for each experimental object. In Appendix A, we provide the boxplots
depicting the values of these metrics grouped by method and experi-
mental object. As for the size construct, SPIRITuS reduces the number of
test cases to be run on 13 experimental objects out of 14 (as shown in
Table 5, the TSR values range from 0.033 to 0.941 on average). On
Commons JXPath, no approach besides Random-75 is capable of re-
ducing the number of test cases to be run. This is due to the high
number and impact of changes that lead SPIRITuS, Diff, and Ekstazi to
select all the test cases. With respect to the baseline approaches, the
mean reduction in terms of test cases is: the best in eight cases out of 14
(the mean TSR values for SPIRITuS range from 0.327 to 0.941); worse
only than Random-75 in five cases out of 14 (the mean TSR values for
SPIRITuS range in between 0 and 0.148); and worse than Ekstazi in one
case out of 14 (the mean TSR values for SPIRITuS and Ekstazi are equal
to 0.339 and 0.372 on Weka, respectively).

As for the effectiveness construct, SPIRITuS assures high inclusive-
ness values and a limited reduction of revealed faults on 13 experi-
mental objects out of 14 (on average, the I values range in between
0.805 and 1, while the RFDC values range in between 0 to 0.097). In
particular, SPIRITuS allows detecting the same faults as the original test
suite on six experimental objects, while it achieves a low reduction of
revealed fault on 7 experimental objects (the mean RFDC values for
SPIRITuS range in between 0.006 and 0.097). On JGap, SPIRITuS re-
sults are the worst (on average, the I and RFDC values are 0.493 and
0.352, respectively).

In Table 6, we show the results of the two-sided Mann–Whitney tests
we performed for each experimental object together with the Cliff’s δ
effect size values. We also report a symbol (see the outcome column)
suggesting which is the RTS approach in each comparison that allowed
obtaining the best tradeoff with respect the considered constructs. To
this end, we used the comparison matrix shown in Table 7. To define
this matrix, we took into account: TSR and RFDC. TSR is the only metric
for the size construct, while RFDC can be consider the best for the ef-
fectiveness construct because it directly measures the number of faults
that T′ does not detect with respect to T (see Section 4.3). The headers
of both columns and rows are: +, =, and −. The symbol + means that
the difference between SPIRITuS and a given baseline is statistically
significant in favor of SPIRITuS. For example on TSR, the
symbol + means that SPIRITuS reduces a test suite more than a

baseline approach and this difference is statistically significant. As for
RFDC, the symbol + indicates that SPIRITuS is significantly better than
a baseline approach, i.e., the reduction in the fault detection capability
of SPIRITuS is significantly less than a baseline approach. On the other
hand, the symbol = means that there is not a significant statistically
difference between the RTS approaches. The symbol - suggests that the
difference between SPIRITuS and a given baseline is statistically sig-
nificant in favor of the baseline. An entry of the comparison matrix
suggests the better approach (if any) in terms of tradeoff between TSR
and RFDC. In particular, • and indicate that SPIRITuS is better or
worse than a given baseline, respectively. The symbol X suggests that
the two approaches (i.e., SPIRITuS and the baseline) can be considered
comparable. Finally, and show two extreme scenarios. The former
indicates that SPIRITuS is better on TSR (i.e., there is statistically sig-
nificant difference), but it is worse on RFDC (i.e., there is statistically
significant difference in favor of the baseline approach). On the con-
trary, indicates that SPIRITuS is significantly worse on TSR, but it is
significantly better on RFDC. In these extreme scenarios, the effect size
values would help to understand which approach could be considered
better from a practical perspective.

From the results summarized in Table 6, we can note that SPIRITuS
is better than the baselines in 24 cases out of 42. SPIRITuS and the
baseline are comparable in three cases (X). In 10 case () there is a
significant effect of SPIRITuS on TSR (with a large effect size) and there
is a significant effect of one of the baselines on RFDC. We could spec-
ulate that in a real testing scenario, developers/testers could tolerate a
slight reduction in fault detection effectiveness with respect to a lower
number of test cases to be run. For example, in our study this happens
for Weka (SPIRITuS vs Diff), Commons Math (SPIRITuS vs Ekstazi), and
LogBack (SPIRITuS vs Ekstazi), where the effect size for RFDC is either
small or negligible. In the other cases (), there is a significant effect of
the baseline on TSR (with a large effect size) and there is a significant
effect of SPIRITuS on RFDC (with a large effect size). It is worth men-
tioning that the latter scenario happens only on Random-75. That is, in
such a case, Random-75 reduced more than SPIRITuS at the cost of
significantly reducing fault detection effectiveness.

On the basis of the results from this further analysis, we can strength
the answer given in Section 5.2 to our research question. In particular,
we can state that: even if SPIRITuS does not outperform the baselines
on all the experimental objects, it represents a strong competitor for
existing RTS approaches since it generally reduces more with a negli-
gible effect on fault detection capabilities. In addition, we can also
observe that SPIRITuS generally outperforms baselines when the
number of commits between P and P′ is less than 100 (see Table 2).
SPIRITuS obtained a better tradeoff between TSR and RFDC with re-
spect to Diff and Ekstazi on: Commons Codec, Commons Configuration,
Spring Context, Commons DBCP, and Closure Compiler. As for Weka,
SPIRITuS outperforms Ekstazi, while there is not a clear winner with
respect to Diff (see Table 6). On the contrary, SPIRITuS outperforms
Diff on LogBack, while there is not a clear winner with respect to Ek-
stazi. Although the small number of commits, Diff and Ekstazi outper-
form SPIRITuS on JGap and JFreeChart with respect to RFDC, while
SPIRITuS outperforms these baselines on TSR.

5.3.2. Analyses on code coverage and commits
We also tried to find a pattern in the gathered data to identify in

which conditions SPIRITuS outperforms both Diff and Ekstazi in terms
of a balance between the size and effectiveness constructs. In the first
column of Table 8, we list the experimental objects, while we report the
average number of Test cases Covering a modified Method (i.e., TCM) in
the second. We observed that SPIRITuS tends to obtain a limited re-
duction of revealed faults when the average number of test cases cov-
ering a modified method increases.

For each experimental object, we also report in Table 8 the number
of commits between P and P′. These values were previously shown in
Table 2 and are shown again in this section to better support the

S. Romano et al. Information and Software Technology 99 (2018) 62–80

71

discussion of the results.
According to the results reported in Tables 6 and 8, we can delineate

a number of patterns in the data with respect to TCM and the number of
commits. In particular, we can observe that SPIRITuS outperformed
both Diff and Ekstazi (see the bottom of Table 8) on the following
programs: Closure Compiler, Commons Configuration, Commons DBPC,
and Spring Context. For these programs, the TCM values range in be-
tween 98 and 1298 and the number of commits ranges in between 14
and 92. The number of commits seems relatively small (as compared
with the other programs). Also on Commons BeanUtils, SPIRITuS out-
performed both Diff and Ekstazi. The difference here is that the number
of commits is higher (i.e., 208). For the programs whose TCM values are
less than (or equal to) 41 there is not a clear winner between our ap-
proach and the baselines whatever is the number of commits between P
and P′. On the basis of these results, we can speculate that when the
number of TCM is high and the number of commits is low, SPIRITuS
outperforms Diff and Ekstazi. The average number of test cases covering
a modified method can be easily computed before applying an RTS
approach as well as the number of commits. That is, TCM and the
number of commits could represent easy indicators to early have an
idea about the performance of SPIRITuS in terms of tradeoff between
size and effectiveness of the selections. Moreover, on the basis of this
number, developers/testers could decide to increase the selection
threshold to reduce TSR and to increase RFDC, or vice-versa decreasing

such a threshold.
It is also worth noting that the TCM values for Commons BeanUtils,

Commons Math, and Commons JXPath are: 77, 54, and 49, respec-
tively. On the other hand, the number of commits for these programs is:
208, 669, and 159, respectively. Therefore, both the values for TCM and
the number of commits seem high as compared with the other pro-
grams. In this scenario, SPIRITuS does not clearly outperform both Diff
and Ekstazi. On the basis of this result and the pattern highlighted
before, we can speculate that TCM is a more important indicator to
estimate the performances of SPIRITuS in terms of tradeoff between size
and effectiveness of the selections. This latter pattern allows us to
speculate that SPIRITuS remains a viable solution in case of TCM values
and the number of commits are both high.

5.3.3. Sensitivity analysis
We studied how the SPIRITuS results vary according to the selection

thresholds (i.e., st, see Section 3). In particular, we computed TSR, I,
and RFDC for each program using threshold values that assume values
in the interval 0.01 and 0.99, considering an increment of 0.01. The
choice of this increment was to have a manageable number of config-
urations to be analyzed for each program and the corresponding ver-
sions. On the basis of the obtained results, we divided our sensitivity
analysis into two steps. In the first step, we analyzed the obtained va-
lues to find the threshold (common to all the programs) allowing us to

Table 5
Descriptive statistics for each experimental object. The SPIRITuS threshold is 0.975.

Program SPIRITuS Diff Random-75 Ekstazi

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Commons Math TSR 0.327 0.327 0.001 0.307 0.307 0 0.25 0.25 0 0.009 0.009 0
I 0.979 1 0.039 0.999 1 0.005 0.745 0.749 0.03 0.999 1 0.006
RFDC 0.017 0 0.048 0.009 0 0.039 0.093 0.072 0.088 0 0 0

Commons Lang TSR 0.372 0.373 0.001 0.324 0.324 0 0.25 0.25 0 0.138 0.143 0.008
I 0.932 0.997 0.16 0.995 1 0.028 0.747 0.75 0.025 1 1 0
RFDC 0.07 0 0.116 0 0 0 0.128 0.125 0.059 0 0 0

Commons Configuration TSR 0.467 0.467 0 0.456 0.456 0 0.25 0.25 0 0.126 0.126 0
I 0.921 0.986 0.125 0.932 1 0.122 0.751 0.746 0.023 1 1 0
RFDC 0.006 0 0.032 0.006 0 0.032 0.017 0 0.027 0 0 0

Commons IO TSR 0.09 0.09 0 0.09 0.09 0 0.25 0.25 0 0.061 0.063 0.004
I 1 1 0 1 1 0 0.758 0.754 0.026 0.938 1 0.192
RFDC 0 0 0 0 0 0 0.082 0.081 0.059 0.085 0 0.199

Spring Context TSR 0.352 0.352 0 0.35 0.35 0 0.25 0.25 0 0.173 0.173 0
I 0.995 1 0.008 1 1 0 0.747 0.747 0.028 1 1 0.001
RFDC 0 0 0 0 0 0 0.079 0.075 0.076 0 0 0

JFreeChart TSR 0.59 0.591 0.001 0.546 0.546 0 0.25 0.25 0 0.388 0.384 0.013
I 0.888 0.904 0.102 0.929 0.948 0.083 0.739 0.743 0.026 0.929 0.948 0.083
RFDC 0.097 0.111 0.111 0 0 0 0.149 0.13 0.078 0 0 0

JGap TSR 0.914 0.915 0.005 0.854 0.854 0 0.25 0.25 0 0 0 0
I 0.493 0.49 0.307 0.955 0.986 0.076 0.756 0.757 0.019 1 1 0
RFDC 0.352 0.4 0.175 0.146 0.118 0.139 0.122 0.127 0.057 0 0 0

Closure Compiler TSR 0.033 0.033 0 0.031 0.031 0 0.25 0.25 0 0.02 0.02 0
I 1 1 0 1 1 0 0.751 0.75 0.004 1 1 0
RFDC 0 0 0 0 0 0 0.04 0.038 0.027 0 0 0

Commons BeanUtils TSR 0.04 0.04 0 0.039 0.039 0 0.25 0.25 0 0.015 0.015 0
I 1 1 0 1 1 0 0.75 0.752 0.014 0.987 0.998 0.031
RFDC 0 0 0 0 0 0 0.054 0.041 0.051 0 0 0

Commons Codec TSR 0.941 0.945 0.007 0.928 0.928 0 0.25 0.25 0 0.886 0.903 0.022
I 0.847 0.75 0.151 1 1 0 0.754 0.75 0.017 1 1 0
RFDC 0 0 0 0 0 0 0.009 0 0.018 0 0 0

Commons JXPath TSR 0 0 0 0 0 0 0.251 0.251 0 0 0 0
I 1 1 0 1 1 0 0.753 0.751 0.021 1 1 0
RFDC 0 0 0 0 0 0 0.07 0.05 0.059 0 0 0

Weka TSR 0.339 0.38 0.087 0.034 0.034 0 0.25 0.25 0 0.372 0.616 0.304
I 0.873 1 0.208 1 1 0 0.75 0.748 0.019 0.545 0.301 0.406
RFDC 0.023 0 0.064 0 0 0 0.074 0.072 0.04 0.287 0.367 0.282

Commons DBCP TSR 0.148 0.148 0 0.074 0.074 0 0.25 0.25 0 0.034 0.034 0
I 0.805 0.983 0.27 1 1 0 0.732 0.75 0.067 1 1 0
RFDC 0.044 0 0.185 0 0 0 0.149 0.1 0.135 0 0 0

LogBack TSR 0.552 0.554 0.008 0.481 0.481 0 0.25 0.25 0 0.235 0.235 0
I 0.953 1 0.135 0.982 1 0.025 0.756 0.756 0.028 0.995 1 0.009
RFDC 0.047 0 0.086 0.04 0 0.069 0.029 0.018 0.032 0.003 0 0.015

S. Romano et al. Information and Software Technology 99 (2018) 62–80

72

have a balance between the constructs studied in our experiment. As
mentioned before, this analysis has been exploited to study RQ1. In the
second step, we individually studied the programs and the threshold
values with respect to TSR and RFDC. In particular, we focused on each
program to find the best threshold value that allows SPIRITuS to lose
the smallest number of faults and, at the same time, to maximize TSR.
This further analysis has a twofold goal. The first goal is to deepen the
sensitiveness of our proposal. The second goal is to compare SPRITuS
with Diff and Ekstazi under the following condition: reduction in the
size of the original test suite without any loss in fault detection cap-
ability or with an unimportant loss in fault detection capability.

As for the first step of our sensitivity analysis, we observed that
there were not significant variations in the average values for TSR, I,

and RFDC when choosing a selection threshold in between 0.95 and
0.99 (see Fig. 4). It seems that when choosing threshold values in this
interval SPIRITuS is not very sensitive with respect to TSR, I, and RFDC.
Values for the selection threshold less than 0.95 produced selections

Table 6
Pairwise comparisons between SPIRITuS (threshold 0.975) and baselines on each experimental object. The tested hypotheses are two-sided.

Program Diff Random-75 Ekstazi

p-value Effect size Outcome p-value Effect size Outcome p-value Effect size Outcome

Commons Math TSR <0.001 Large (1) • <0.001 Large (1) • < 0.001 Large (1)
I 0.003 Small (− 0.321) < 0.001 Large (1) 0.002 Medium (−0.334)
RFDC 0.402 Negligible (0.067) < 0.001 Large (− 0.681) 0.042 Negligible (0.133)

Commons Lang TSR < 0.001 Large (1) < 0.001 Large (1) • < 0.001 Large (1)
I < 0.001 Medium (− 0.459) < 0.001 Large (0.933) < 0.001 Large (−0.5)
RFDC < 0.001 Medium (0.4) < 0.001 Large (−0.53) < 0.001 Medium (0.4)

Commons Configuration TSR < 0.001 Large (1) • < 0.001 Large (1) • < 0.001 Large (1) •
I 0.601 Negligible (− 0.08) < 0.001 Large (0.841) < 0.001 Large (−0.556)
RFDC 1 0 0.002 Medium (−0.355) 0.336 Negligible (0.037)

Commons IO TSR 1 0 X < 0.001 Large (−1) < 0.001 Large (1) •
I - 0 < 0.001 Large (1) < 0.001 Medium (0.4)
RFDC - 0 < 0.001 Large (−0.8) < 0.001 Medium (−0.367)

Spring Context TSR < 0.001 Large (1) • < 0.001 Large (1) • < 0.001 Large (1) •
I 0.005 Medium (− 0.333) < 0.001 Large (1) 0.046 Small (−0.261)
RFDC - 0 < 0.001 Large (−0.81) - 0

JFreeChart TSR < 0.001 Large (1) < 0.001 Large (1) • < 0.001 Large (1)
I 0.093 Small (− 0.249) < 0.001 Large (0.788) 0.093 Small (−0.249)
RFDC < 0.001 Large (0.6) 0.015 Medium (−0.363) < 0.001 Large (0.6)

JGap TSR < 0.001 Large (1) < 0.001 Large (1) < 0.001 Large (1)
I < 0.001 Large (− 0.878) 0.001 Large (−0.52) < 0.001 Large (−0.967)
RFDC < 0.001 Large (0.64) < 0.001 Large (0.76) < 0.001 Large (0.9)

Closure Compiler TSR < 0.001 Large (1) • < 0.001 Large (−1) < 0.001 Large (1) •
I 0.161 Negligible (− 0.067) < 0.001 Large (1) 0.161 Negligible (−0.067)
RFDC - 0 < 0.001 Large (−0.9) - 0

Commons BeanUtils TSR < 0.001 Large (1) • < 0.001 Large (−1) < 0.001 Large (1) •
I - 0 < 0.001 Large (1) < 0.001 Large (0.5)
RFDC - 0 < 0.001 Large (−0.867) - 0

1.7cmCommons Codec TSR < 0.001 Large (0.81) • < 0.001 Large (1) • < 0.001 Large (1) •
I < 0.001 Large (− 0.524) 0.461 Negligible (0.134) < 0.001 Large (−0.524)
RFDC - 0 0.020 Small (−0.238) - 0

Commons JXPath TSR - 0 X < 0.001 Large (−1) - 0 X
I - 0 < 0.001 Large (1) - 0
RFDC - 0 < 0.001 Large (−0.9) - 0

Weka TSR < 0.001 Large (1) < 0.001 Large (0.867) • 0.175 Small (−0.2) •
I < 0.001 Medium (− 0.467) < 0.001 Large (0.492) 0.011 Medium (0.364)
RFDC 0.011 Small (0.2) < 0.001 Large (−0.72) 0.001 Medium (−0.439)

Commons DBCP TSR < 0.001 Large (1) • < 0.001 Large (−1) < 0.001 Large (1) •
I < 0.001 Large (− 0.633) 0.022 Medium (0.344) < 0.001 Large (−0.633)
RFDC 0.082 Negligible (0.1) < 0.001 Large (−0.766) 0.082 Negligible (0.1)

LogBack TSR < 0.001 Large (1) • < 0.001 Large (1) • < 0.001 Large (1)
I 0.801 Negligible (−0.045) < 0.001 Large (0.9) 0.095 Small (−0.265)
RFDC 0.947 Negligible (0.013) 0.432 Negligible (−0.135) 0.032 Small (0.265)

“ - ” means that the distributions for SPIRITuS and the baseline are equal.

Table 7
Comparison matrix.

TSR

+ = −

RFDC + • •
= • X
−

Table 8
TCM values and number of commits (# Commits) between P and P′ for each
experimental object.

Program TCM # Commits

Commons Lang 10 377
Commons IO 14 296
Commons Codec 17 43
JGap 25 82
LogBack 36 80
JFreeChart 41 44
Commons JXPath 49 159
Commons Math 54 669
Commons BeanUtils 77 208
Spring Context 98 54
Commons DBCP 155 45
Commons Configuration 173 14
Weka 331 37
Closure Compiler 1298 92

S. Romano et al. Information and Software Technology 99 (2018) 62–80

73

much less effective to reveal faults with respect to T. Please note that we
did not consider 1 because with this selection threshold SPIRITuS be-
haves like Retest-all. In our experiment, we used 0.975 as selection
threshold because this value allowed us to obtain the best results on the
used experimental objects with respect to a balance of the metrics used
to estimate the considered constructs.

As far as the second step of our sensitivity analysis is concerned, we
report in Table 9 some descriptive statistics (i.e., mean, median, and
standard deviation) for each program considering the threshold value
that allowed SPIRITuS to lose the smallest number of faults and, at the
same time, to maximize the reduction of the original test suite. We
report the descriptive statistics also for Diff and Ekstazi. These statistics
are the same as shown in Table 5. This allowed a faster comparison
between SPIRITuS, Diff, and Ekstazi. For each program, we also show
the threshold value that produced the highest reduction of the size of
the original test suite without any loss in fault detection capability (or
with an unimportant loss in fault detection capability). It is worth
mentioning that for the greater part of the programs, we found a
threshold value that allowed SPIRITuS to behave as a safe RTS ap-
proach. In a few cases this was not possible due to the nature of the
approach and to the kind of programming language with which the
programs were written (i.e., Java). In these cases, the average RFDC
values are very close to 0 and the standard deviation is low. It is also
worth mentioning that also Diff and Ekstazi selected test suites that
were not able to identify the same faults as Retest-all, i.e., the mean
RFDC value was greater than 0 in a few cases for both Diff and Ekstazi
(in Section 6 possible motivations behind this result are presented).

The results summarized in Table 9 seem to confirm that SPIRITuS is
not very sensitive when choosing selection thresholds in between 0.95
and 0.99. In fact, for the greater part of the programs the threshold
values in this interval allowed us to have the best results in terms of the
size of the selections and loss in fault detection capability (i.e., the
RFDC values are either 0 or very close to 0). We obtained threshold
values less than 0.95 in four cases: Commons Configuration, Spring
Context, Closure Compiler, and Commons JXPath. The RFDC is always
equal to 0 except for Commons Configuration (Diff also obtained RFDC
values greater than 0). Since the thresholds for these programs are less
then 0.975 (i.e., the threshold value used to study RQ1) the TSR values
are even greater than those presented and discussed in Section 5.1 and
Section 5.2, respectively.

On the basis of the results shown in Table 9, we can also claim that
SPIRITuS is more effective than Diff and Ekstazi since it produces
smaller selections without any loss in fault detection capability (i.e., in
eight cases) or with an unimportant loss in fault detection capability
(i.e., six cases). We can then conclude that properly choosing the
threshold, SPIRITuS reduces more than Diff and Ekstazi, so decreasing
the cost to perform regression testing. In this respect, SPIRITuS reduces
up to 74.5% and up to 97% with respect to Diff (i.e., Closure Compiler)
and Ekstazi (i.e., Commons Math), respectively. On overage, SPIRITuS
reduces 22.5% more than Diff and 66.1% more than Ekstazi.5

5.3.4. SPIRITuS execution time
To complete the SPIRITuS assessment, we also gathered the time to

apply it on each experimental object (using 0.975 as the threshold
value). To this end, we used a PC equipped with 2.50 GHz Intel (quad)
Core i7, 16 GB of RAM, and Windows 10 (64-bit) as operating system.

In Table 10, we report the gathered time (expressed in seconds). The
shown times are averaged with respect to all the faulty versions of each
experimental object. In the second column of Table 10, we report the
sum of the (average) times to execute the first three phases of SPIRITuS:
(1) Corpus Creation, (2) Corpus Normalization, and (3) Corpus In-
dexing. We aggregated the time needed to perform these phases be-
cause (as mentioned in Section 3) they can be performed together off-
line on the previous version of the SUT. In the third column, we report
the sum of the (average) times to perform the last two phases:
(4) Methods Similarity Computation and (5) Test Case Selection. To
compute these phases, SPIRITuS needs both the output of the previous
phases and the current version of the SUT. The (average) time to en-
tirely execute the underlying process of SPIRITuS is shown in the fourth
column.

The gathered data show the following pattern: the time to perform
the phases 4 and 5 is significantly less than the time to perform the
phases 1, 2, and 3. For example, the time to perform the phases 1, 2,
and 3 is about the 99% of the total cost to apply SPIRITuS. However,
there is still room for performance improvements with respect to the
implementation of these phases. To this end, a viable solution could
consist in integrating SPIRITuS with a version-control system. For ex-
ample, each time a developer commit a new source file the methods of
this file could be added to the corpus.

We did not perform a comparison end-to-end among SPIRITuS and
the baseline approaches because of their differences. For example, there
is a difference between the underlying processes of SPIRITuS and
Ekstazi (e.g., the gathering of the code coverage information is a part of
Ekstazi as well as the execution of the selected test cases). In addition a
fair comparison is also prevented due to the experimental in-
strumentation (see Section 4.6).

5.4. Implications and future extensions

We focus on the researcher and the practitioner perspectives for the
discussion of the implications and future extensions for our research.

- SPIRITuS could be considered as a competitor of existing test case
selection approaches since we observed that different and specific
capabilities lead SPIRITuS to achieve specific results: it has shown a
non-trivial capability of selecting small subsets of test cases at the
price of slightly reducing the fault detection capability of selected
test cases. This indicates that the adoption of SPIRITuS rather than
existing approaches depends on the developer/tester’s needs: (i) if
he/she focuses on the smallest selection of test cases and a slight
reduction in fault detection capability is tolerable, he/she can adopt

Fig. 4. Line-plot for the SPIRITuS selection thresholds from 0.95 to 0.99.
Symbols represent average values for TSR, I, and RFDC, computed on the ex-
perimental objects.

5 We did not consider Weka since Ekstazi selected on average less test cases than
SPIRITuS (TSR values: 0.372 vs 0.034) at the cost a sensitive loss in fault detection
capability (RFDC values: 0.287 vs 0.)

S. Romano et al. Information and Software Technology 99 (2018) 62–80

74

SPIRITuS; and (ii) if he/she focuses on having the highest fault
detection capability at the price of not-so-small selections, he/she
can adopt other RTS approaches.

- If a method m′ is obtained from m by only renaming it, SPIRITuS
considers m as deleted from P to P′. This could imply that SPIRITuS
(but also approaches like Diff) erroneously selects test cases cov-
ering m. Enhancing SPIRITuS to properly handle method renaming
could reduce |T′|. This is clearly relevant for the researcher.
Possibly, existing approaches [50,57,58] could be adapted to better
deal with renaming issues.

- If the selection threshold is 1 then ′ =T T and SPIRITuS behaves like

Retest-all. On the other hand, threshold values close to 1 allow
SPIRITuS to behave like a textual difference approach (e.g., Diff).
Clearly, this value of the selection threshold depends on the SUT. We
have also experimentally observed that a selection threshold equal
to 0.975 allows obtaining a tradeoff between the size of the selection
and fault detection effectiveness. In addition, SPIRITuS seems to
have a limited sensitivity to the selection threshold because slight
variations in the threshold slightly affect SPIRITuS results.
Outcomes from our sensitivity analysis (see Section 5.3.3) are
clearly relevant for the practitioner, who can choose a value close to
our experimental tradeoff and be confident that selection results are

Table 9
Descriptive statistics for each program considering the threshold value that allowed SPIRITuS to lose the smallest number of faults and, at the same time, to maximize
TSR.

Program SPIRITuS Diff Ekstazi

Mean Median SD Mean Median SD Mean Median SD

Commons Math Threshold 0.95

TSR 0.331 0.331 0 0.307 0.307 0 0.009 0.009 0
RFDC 0.017 0 0.048 0.009 0 0.039 0 0 0

Commons Lang Threshold 0.95

TSR 0.356 0.356 0.002 0.324 0.324 0 0.138 0.143 0.008
RFDC 0.021 0 0.065 0 0 0 0 0 0

Commons Configuration Threshold 0.34

TSR 0.506 0.506 0 0.456 0.456 0 0.126 0.126 0
RFDC 0.006 0 0.032 0.006 0 0 0 0 0

Commons IO Threshold 0.95

TSR 0.131 0.131 0 0.09 0.09 0 0.061 0.063 0.004
RFDC 0 0 0 0 0 0 0.085 0 0.2

Spring Context Threshold 0.72

TSR 0.391 0.391 0 0.35 0.35 0 0.173 0.173 0
RFDC 0 0 0 0 0 0 0 0 0

JFreeChart Threshold 0.98

TSR 0.587 0.587 0.000 0.546 0.546 0 0.387 0.384 0.013
RFDC 0.076 0.08 0.101 0 0 0 0 0 0

JGap Threshold 0.99

TSR 0.894 0.894 0.001 0.854 0.854 0 0 0 0
RFDC 0.19 0.2 0.145 0.146 0.118 0.139 0 0 0

Closure Compiler Threshold 0.43

TSR 0.123 0.123 0 0.031 0.031 0 0.02 0.02 0
RFDC 0 0 0 0 0 0 0 0 0

Commons BeanUtils Threshold 0.98

TSR 0.04 0.04 0 0.039 0.039 0 0.015 0.015 0
RFDC 0 0 0 0 0 0 0 0 0

Commons Codec Threshold 0.95

TSR 0.945 0.945 0 0.928 0.928 0 0.886 0.903 0
RFDC 0 0 0 0 0 0 0 0 0

Commons JXPath Threshold 0.68

TSR 0.01 0.01 0 0 0 0 0 0 0
RFDC 0 0 0 0 0 0 0 0 0

Weka Threshold 0.98

TSR 0.034 0.034 0 0.034 0.034 0 0.372 0.616 0.304
RFDC 0 0 0 0 0 0 0.287 0.367 0.282

Commons DBCP Threshold 0.98

TSR 0.146 0.146 0 0.074 0.074 0 0.034 0.034 0
RFDC 0 0 0 0 0 0 0 0 0

LogBack Threshold 0.98

TSR 0.52 0.52 0 0.481 0.481 0 0.235 0.235 0
RFDC 0.04 0 0.069 0.04 0 0.069 0.003 0 0.015

S. Romano et al. Information and Software Technology 99 (2018) 62–80

75

close to an optimal configuration. This point is also relevant for the
researcher, who could be interested in deepening the effect of the
selection threshold on the SPIRITuS results.

- The use of SPIRITuS does not require a complete and radical process
change within a software company. This outcome can be considered
relevant for the practitioner. In fact, the diffusion of a new tech-
nology/method is made easier when empirical evaluations are per-
formed and their results show that such a technology/method solves
actual issues [59]. This is why the results of our study could promote
the transferring of the developed technology to the software in-
dustry. This is of particular interest for the practitioner. The re-
searcher could be interested in identifying opportunities (e.g., in-
dustrial case studies and experiments) to speed up this process.

- SPIRITuS has been designed to be easy to adapt to different pro-
gramming languages. Although our results cannot be generalized to
programs written in programming languages different from Java,
the researcher could be interested in studying the application of
SPIRITuS in the context of programs written in other languages.

6. Threats to validity

To understand strengths and limitations of our experiment, in the
following paragraphs we discuss threats that could affect the validity of
the results.

- Construct validity threats concern the relationship between theory
and observation. In our study, construct validity threats are due to:
the used mutation operators and metrics. However, the used mu-
tation operators are widely adopted, while the metrics used to
quantify our constructs represent the standard to assess RTS ap-
proaches [14].

- Internal validity threats concern factors internal to our study that
could have influenced obtained results. The implementation of the
procedure used in our experiment might threaten the validity of the
results. Also, the implementations of both SPIRITuS and the baseline
approaches (e.g., Ekstazi) could have an unexpected effect on the
selections, e.g., these implementations might contain bugs. Finally,
the used test cases might also affect the results in an unexpected
way. In particular, developers/testers could not have defined these
test case to perform regression testing.

- Conclusion validity threats concern the relationship between the
treatments and the outcomes. In each step of our analysis, we ap-
plied the proper statistical tests. Then, when discussing findings we
kept into account ranges of acceptability. Also, the chosen baseline
approaches might also threaten conclusion validity. However, these
approaches can be considered a natural choice to compare with
SPIRITuS (see Section 4.2). Finally, the used measures do not pro-
vide any indication on the cost to fix undetected and detected faults.
That is, unsafe approaches could produce selections whose test cases
do not detect faults that are expensive to fix as compared with de-
tected ones. This concern might be relevant for SPIRITuS, but also
for all those approaches that do not guarantee that all the fault re-
vealing test cases are selected.

- Reliability validity threats concern the possibility of replicating our
study. We provide all the details needed to replicate our experiment.
We also made available on the web our full replication package
comprising experimental objects and raw data.

- External validity threats concern the possibility of generalizing our
results. Although for our empirical assessment we chose programs
previously used in other studies as experimental objects and these
programs covers different domains, we cannot guarantee that our
findings can be generalized to the universe of Java programs.
However, the set of programs used for our empirical assessment can
be considered extensive enough as compared with previous stu-
dies (e.g., [28,34]).

7. Conclusion

SPIRITuS (SimPle Information Retrieval regressIon Test Selection) is
an information-retrieval based-approach for regression test case selec-
tion. We have presented the main characteristics of SPIRITuS and its
empirical assessment on 14 open-source Java programs. We compared
SPIRITuS with three competing approaches: Diff, Random-75, and
Ekstazi. Our experimental results suggest that if a developer/tester has
a quite limited testing budged he/she can use SPIRITuS because it se-
lects a number of test cases significantly smaller than the number of test
cases the other approaches/competitors select at the price of a slight
reduction in fault detection capability. However, it is the tester who
makes the final decision if such a slight reduction is tolerable.

We also reported evidence that while SPIRITuS is better than the
baseline approaches in 24 cases out of 42, while there is not a clear
winner in all the other cases. Finally, we observed that SPIRITuS out-
performs the other approaches when the average number of test cases
covering a modified method increases and the number of commits be-
tween P and P′ is low. In this scenario, SPIRITuS selects a lower number
of test cases while preserving the fault detection effectiveness as the
baseline approaches. Interestingly, this information can be easily de-
rived before applying SPIRITuS.

Appendix A. Box plots for each experimental object

In this appendix, we report the boxplots for TSR, I and RFDC
grouped by method and experimental object.

Table 10
Execution time (expressed in seconds) for SPIRITuS phases.

Program Phases 1–3 Phases 4–5 All phases

Commons Math 11.2493 0.0038 11.2531
Commons Lang 0.5951 0.0015 0.5966
Commons Configuration 0.7647 0.0016 0.7663
Commons IO 0.3354 0.0002 0.3357
Spring Context 1.7962 0.0011 1.7973
JFreeChart 15.7901 0.006 15.7961
JGap 1.6511 0.0016 1.6526
Closure Compiler 17.8341 0.0017 17.8358
Commons BeanUtils 0.4688 0.0002 0.4690
Commons Codec 0.7326 0.0007 0.7333
Commons JXPath 0.7374 0.0006 0.7380
Weka 25.0032 0.0077 25.0109
Commons DBCP 0.3715 0.0009 0.3724
Logback 1.8120 0.0014 1.8134

S. Romano et al. Information and Software Technology 99 (2018) 62–80

76

S. Romano et al. Information and Software Technology 99 (2018) 62–80

77

S. Romano et al. Information and Software Technology 99 (2018) 62–80

78

References

[1] S. Yoo, M. Harman, Regression testing minimization, selection and prioritization: a
survey, Softw. Test. Verif. Reliab. 22 (2) (2010) 67–120.

[2] S. Biswas, R. Mall, M. Satpathy, S. Sukumaran, Regression test selection techniques:
A survey, Informatica 35 (3) (2011) 289–321.

[3] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, B. Xie, Test case prioritization
for compilers: A text-vector based approach, Proceedings of the International
Conference on Software Testing, Verification and Validation, (2016), pp. 266–277.

[4] A. Marchetto, M.M. Islam, W. Asghar, A. Susi, G. Scanniello, A multi-objective
technique to prioritize test cases, IEEE Trans. Softw. Eng. 42 (10) (2016) 918–940.

[5] A. Gotlieb, D. Marijan, FLOWER: optimal test suite reduction as a network max-
imum flow, Proceedings of the International Symposium on Software Testing and
Analysis, (2014), pp. 171–180.

[6] L. De Souza, P. de Miranda, R. Prudencio, F. de Barros, A multi-objective particle
swarm optimization for test case selection based on functional requirements cov-
erage and execution effort, Proceedings of International Conference on Tools with
Artificial Intelligence, IEEE, 2011, pp. 245–252.

[7] A. Panichella, R. Oliveto, M. Di Penta, A. De Lucia, Improving multi-objective test
case selection by injecting diversity in genetic algorithms, IEEE Trans. Softw. Eng.
41 (4) (2015) 358–383.

[8] S. Mirarab, S. Akhlaghi, L. Tahvildari, Size-constrained regression test case selection
using multicriteria optimization, IEEE Trans. Softw. Eng. 38 (4) (2012) 936–956.

[9] A. Srivastava, J. Thiagarajan, Effectively prioritizing tests in development en-
vironment, Proceedings of the International Symposium on Software Testing and
Analysis, ACM, 2002, pp. 97–106.

[10] B. Busjaeger, T. Xie, Learning for test prioritization: An industrial case study,
Proceedings of the International Symposium on Foundations of Software
Engineering, ACM, New York, NY, USA, 2016, pp. 975–980.

[11] G. Rothermel, M.J. Harrold, J. von Ronne, C. Hong, Empirical studies of test-suite
reduction, Softw. Test. Verif. Reliab. 12 (4) (2002) 219–249.

[12] G. Rothermel, M.J. Harrold, Analyzing regression test selection techniques, IEEE
Trans. Softw. Eng. 22 (8) (1996) 529–551.

[13] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family of
empirical studies, IEEE Trans. Softw. Eng. 28 (2) (2002) 159–182.

[14] E. Engström, P. Runeson, M. Skoglund, A systematic review on regression test se-
lection techniques, Inf. Softw. Technol. 52 (1) (2010) 14–30.

[15] F.I. Vokolos, P.G. Frankl, Pythia: a regression test selection tool based on textual
differencing, Proceedings of the International Conference on Reliability Quality and
Safety of Software Intensive Systems, (1997).

[16] M. Gligoric, L. Eloussi, D. Marinov, Practical regression test selection with dynamic
file dependencies, Proceedings of the International Symposium on Software Testing
and Analysis, ACM, 2015, pp. 211–222.

[17] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, D. Marinov, An extensive study of

static regression test selection in modern software evolution, Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, 2016, pp. 583–594.

[18] G. Rothermel, M.J. Harrold, Empirical studies of a safe regression test selection
technique, IEEE Trans. Softw. Eng. 24 (6) (1998) 401–419.

[19] J.H. Andrews, L.C. Briand, Y. Labiche, Is mutation an appropriate tool for testing
experiments? Proceedings of the International Conference on Software Engineering,
ACM, 2005, pp. 402–411.

[20] A. Shi, A. Gyori, M. Gligoric, A. Zaytsev, D. Marinov, Balancing trade-offs in test-
suite reduction, Proceedings of the International Symposium on Foundations of
Software Engineering, FSE 2014, ACM, 2014, pp. 246–256.

[21] H. Do, G. Rothermel, On the use of mutation faults in empirical assessments of test
case prioritization techniques, IEEE Trans. Softw. Eng. 32 (9) (2006) 733–752.

[22] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, An empirical study of the effect of
time constraints on the cost-benefits of regression testing, Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ACM,
2008, pp. 71–82.

[23] D. Hao, L. Zhang, L. Zhang, G. Rothermel, H. Mei, A unified test case prioritization
approach, ACM Trans. Softw. Eng. Methodol. 24 (2) (2014) 10:1–10:31.

[24] S. Romano, G. Scanniello, SMUG: a Selective MUtant Generator tool, Proceedings of
the 39th International Conference on Software Engineering Companion, IEEE Press,
2017, pp. 19–22.

[25] C.D. Manning, P. Raghavan, H. Schütze, An Introduction to Information Retrieval,
Cambridge University Press, England, 2009.

[26] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley,
1999.

[27] L.J. White, H.K.N. Leung, A firewall concept for both control-flow and data-flow in
regression integration testing, Proceedings of the Conference on Software
Maintenance, (1992), pp. 262–271.

[28] Q.D. Soetens, S. Demeyer, A. Zaidman, Change-based test selection in the presence
of developer tests, Proceedings of the Conference on Software Maintenance and
Reengineering, (2013), pp. 101–110.

[29] Q.D. Soetens, S. Demeyer, Cheopsj: Change-based test optimization, Proceedings of
the European Conference on Software Maintenance and Reengineering, IEEE
Computer Society, 2012, pp. 535–538.

[30] K.F. Fischer, F. Raji, A. Chruscicki, A methodology for retesting modified software,
Proceedings of the the National Telecommunications Conference, (1981), pp. 1–6.

[31] G. Rothermel, M.J. Harrold, A safe, efficient regression test selection technique,
ACM Trans. Softw. Eng. Methodol. 6 (2) (1997) 173–210.

[32] M. Gligoric, R. Majumdar, R. Sharma, L. Eloussi, D. Marinov, Regression test se-
lection for distributed software histories, Proceedings of the International
Conference on Computer Aided Verification, (2014), pp. 293–309.

[33] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, Information retrieval models for

S. Romano et al. Information and Software Technology 99 (2018) 62–80

79

http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0033

recovering traceability links between code and documentation, Proceedings of the
IEEE International Conference on Software Maintenance, IEEE Computer Society,
2000, pp. 40–51.

[34] M.J. Harrold, J.A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.A. Spoon,
A. Gujarathi, Regression test selection for java software, Proceedings of the
Conference on Object-oriented Programming, Systems, Languages, and
Applications, ACM, 2001, pp. 312–326.

[35] T.L. Graves, M.J. Harrold, J. Kim, A. Porters, G. Rothermel, An empirical study of
regression test selection techniques, Proceedings of the International Conference on
Software Engineering, (1998), pp. 188–197.

[36] X. Ren, F. Shah, F. Tip, B.G. Ryder, O. Chesley, Chianti: a tool for change impact
analysis of java programs, Proceedings of the Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, ACM, 2004,
pp. 432–448.

[37] L. Zhang, M. Kim, S. Khurshid, Localizing failure-inducing program edits based on
spectrum information, Proceedings of the International Conference on Software
Maintenance, IEEE Computer Society, 2011, pp. 23–32.

[38] R.K. Saha, L. Zhang, S. Khurshid, D.E. Perry, An information retrieval approach for
regression test prioritization based on program changes, Proceedings of the
International Conference on Software Engineering, IEEE Press, Piscataway, NJ,
USA, 2015, pp. 268–279.

[39] A. Corazza, V. Maggio, G. Scanniello, Coherence of comments and method im-
plementations: a dataset and an empirical investigation, Softw. Q. J. (2016) 1–27.
Cited By 0; Article in Press

[40] B. Fluri, M. Wursch, H.C. Gall, Do code and comments co-evolve? on the relation
between source code and comment changes, Proceedings of the 14th Working
Conference on Reverse Engineering, WCRE ’07, IEEE Computer Society, 2007, pp.
70–79.

[41] Z.M. Jiang, A.E. Hassan, Examining the evolution of code comments in postgresql,
Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR ’06, ACM, 2006, pp. 179–180.

[42] J. Gosling, B. Joy, G.L. Steele, G. Bracha, A. Buckley, The Java Language
Specification, Java SE 8 Edition, 1st, Addison-Wesley Professional, 2014.

[43] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature location in source code: a
taxonomy and survey, J. Softw. Evol. Process 25 (1) (2013) 53–95.

[44] G. Scanniello, A. Marcus, D. Pascale, Link analysis algorithms for static concept
location: an empirical assessment, Empirical Softw. Engg. 20 (6) (2015)
1666–1720.

[45] A. Abadi, M. Nisenson, Y. Simionovici, A traceability technique for specifications,
Proceedings of the International Conference on Program Comprehension, ICPC ’08,
IEEE CS Press, Washington, DC, USA, 2008, pp. 103–112.

[46] S. Wang, D. Lo, Z. Xing, L. Jiang, Concern localization using information retrieval:
An empirical study on linux kernel, Proceedings of Working Conference on Reverse
Engineering, WCRE, IEEE Computer Society, 2011, pp. 92–96.

[47] A. Marcus, J.I. Maletic, Recovering documentation-to-source-code traceability links
using latent semantic indexing, Proceedings of the ICSE, (2003), pp. 125–137.

[48] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, R.A. Harshman, Indexing
by latent semantic analysis, J. Am. Soc. Inf. Sci. 41 (6) (1990) 391–407.

[49] S.K. Lukins, N.A. Kraft, L.H. Etzkorn, Bug localization using latent
Dirichlet allocation, Inf. Softw. Technol. 52 (9) (2010) 972–990.

[50] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection of refactorings
in evolving components, Proceedings of European Conference on Object-Oriented
Programming, Springer-Verlag, 2006, pp. 404–428.

[51] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer, 2012.

[52] O.J. Dunn, Multiple comparisons among means, J. Am. Stat. Assoc. 56 (1961)
52–64.

[53] P. Ellis, The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and
the Interpretation of Research Results, Cambridge University Press, 2010.

[54] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal questions,
Psychol. Bull. 114 (3) (1993) 494–509.

[55] J. Romano, J.D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for
ordinal level data : should we really be using t-test and Cohen’s d for evaluating
group differences on the nsse and other surveys? Proceedings of the Annual meeting
of the Florida Association of Institutional Research, (2006).

[56] M. Gligoric, L. Eloussi, D. Marinov, Ekstazi: Lightweight test selection, Proceedings
of the International Conference on Software Engineering, Volume 2 IEEE Press,
2015, pp. 713–716.

[57] V. Arnaoudova, L.M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol, Y. Guéhéneuc,
REPENT: analyzing the nature of identifier renamings, IEEE Trans. Softw. Eng. 40
(5) (2014) 502–532.

[58] Z. Xing, E. Stroulia, Refactoring detection based on UMLDiff change-facts queries,
Proceedings of Working Conference on Reverse Engineering, WCRE, IEEE Computer
Society, 2006, pp. 263–274.

[59] S.L. Pfleeger, W. Menezes, Marketing technology to software practitioners, IEEE
Softw. 17 (1) (2000) 27–33.

S. Romano et al. Information and Software Technology 99 (2018) 62–80

80

http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30040-5/sbref0059

	SPIRITuS: a SimPle Information Retrieval regressIon Test Selection approach
	Introduction
	Background and related work
	Regression test case selection
	Seeded faults in empirical investigations
	Vector space model
	Related work

	Approach
	SPIRITuS empirical assessment
	Definition and context
	Planning
	Selected variables
	Hypotheses formulation
	Data analysis
	Instrumentation

	Data analysis results and discussion
	Results
	Discussion
	Further analyses
	Per-object analysis
	Analyses on code coverage and commits
	Sensitivity analysis
	SPIRITuS execution time

	Implications and future extensions

	Threats to validity
	Conclusion
	Box plots for each experimental object
	References

