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Abstract

Automatically detecting events in crowded scenes is a challenging task in
Computer Vision. A number of off-line approaches have been proposed for
solving the problem of crowd behavior detection, however the off-line as-
sumption limits their application in real-world video surveillance systems. In
this paper, we propose an on-line and real-time method for detecting events
in crowded video sequences. The proposed approach is based on the com-
bination of visual feature extraction and image segmentation and it works
without the need of a training phase. A quantitative experimental evalu-
ation has been carried out on multiple publicly available video sequences,
containing data from various crowd scenarios and different types of events,
to demonstrate the effectiveness of the approach.

Keywords: event detection, crowd analysis, image segmentation, intelligent
surveillance

1. Introduction

Event detection in the field of automatic video surveillance has gained a
growing interest [1]. The huge amount of data generated by existing surveil-
lance systems in public areas requires the development of intelligent solutions
that can avoid information overload for the users [2]. In particular, in the
context of a crowd image analysis problem, it is desirable to develop on-line
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algorithms that reliably detect abnormal events in real-time. As an example,
the automatic detection of anomalies in crowded scenes can be used to avoid
crowd related disasters and ensure public safety [3].

An anomaly can be defined as “something that deviates from what is
standard, normal, or expected”1. This means that abnormal events can be
identified as irregular situations with respect to usual normal ones. Thus,
the abnormal detection becomes the identification of abnormal events given
some sample normal events. Zhan et al. [4] point out that conventional
Computer Vision can be ineffective when dealing with the analysis of very
crowded video sequences. Indeed, in a high-density situation the presence of
severe occlusions consistently limits the performance of traditional methods
for visual tracking [3]. Additional factors that can limit the effectiveness
of existing approaches aiming at detecting abnormal events are: 1) Off-line
computation and 2) Need of a training phase. The off-line assumption can
limit the application of anomaly detection methods in practice [5]. For in-
stance, it is desirable to detect panic situations as soon as possible in order to
avoid damage to people. The methods that rely on the training of a classifier
are limited by the possible lack of well-suited training data. Indeed, since it
is not easy to find data about real emergency situations in crowded scenes,
the resulting classifier could be suitable only for dealing with particular video
sequences.

In this paper, we propose an on-line and real-time method for automatic
anomaly detection in crowded scenes, which does not need any training stage.
The method is inspired by the concept of Shannon entropy [6]. Entropy
characterizes the uncertainty about the source of information and it increases
for more sources of greater randomness. The idea is that the less likely an
event is, the more information it provides when it occurs. Fig. 1 shows
an example where the Shannon entropy value increases in the case of an
abnormal event.
The two main contributions of the proposed approach are:

1. The use of two different metrics, namely instant entropy and temporal
occupancy variation, to detect on-line abnormal situations in crowded
scenes;

2. An unsupervised segmentation algorithm for images containing crowds.

1Definition from the Oxford Dictionary.
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Figure 1: Shannon entropy variation in the sequence Lawn from the UMN data set.

Furthermore, we provide:

� A novel video sequence annotated with ground truth data, containing
images of hundreds of runners at the start of a marathon, as an example
of crowd video with locally steady optical flow.

� Ground truth annotations for two well-known video sequences contain-
ing abnormal events in crowded scenes, namely PETS 2009 [7] and
AGORASET [8].

� The C++ source code and all the data used for the experimental evalu-
ation, thus allowing for reproducing the results described in this paper
and to compare other similar approaches.

The remainder of the paper is organized as follows. Related work is
analyzed in the next Section 2, while our method is presented in Section
3. Section 4 describes the qualitative and quantitative experimental results,
providing also a comparison with other on-line approaches in the literature.
Finally, conclusions are drawn in Section 5.
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2. Related Work

The techniques for crowd behavior analysis are usually grouped into two
main categories [3, 9]: 1) object-based and 2) holistic approaches. In the
object-based methods the analysis is carried out at an individual level. For
example, it can be of interest to detect if a single person is trying to enter a
restricted area or if an individual is moving against the dominant flow. On
the other hand, holistic techniques treats the crowd as a single entity, trying
to extract global information, such as the main flow of the crowd, instead of
analyzing single trajectories.

We propose a different classification, based on the nature of the meth-
ods used for detecting abnormal situations. According to our classification,
existing approaches can be grouped into:

� Statistical analysis;

� Background subtraction;

� Image segmentation;

� Classification.

Statistical analysis. Methods in this category are based on the collec-
tion of particular features representing the flow of the crowd. For example,
Mehran et al. [9] propose a method for localizing abnormal behaviors by
using a social force model. A grid of particles is placed over the image for
analyzing the space-time average of optical flow. The moving particles are
treated as individuals and the flows in the scene are estimated by employ-
ing the social force model. The interaction forces are then mapped into the
image plane to obtain a Force Flow for every pixel in the current frame.
Spatio-temporal volumes of Force Flow are randomly selected for modeling
the normal behavior of the crowd. Then, the normal and abnormal behaviors
are classified by exploiting an approach based on a bag of words. The regions
of anomalies in the abnormal frames are localized using interaction forces.
Social force model algorithms only consider the temporal characteristic, i.e.
local velocity, and ignore the spatial information such as local density for
detecting the crowd behavior.

Zhu and Saligrama [1] propose a probabilistic framework that takes into
consideration local spatio-temporal anomalies to characterize the observed
scene by optimal decision rules. If anomalies are local optimal decision, they
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are local as well, even if the behavior exhibits global spatial and temporal
statistical dependencies. This helps to collapse the large ambient data dimen-
sion space to detect local anomalies. Consistent data-driven local empirical
rules with provable performance can be derived with limited training data.
The empirical rules are based on scores functions derived from local nearest
neighbor distances. These rules aggregate statistics across spatio-temporal
locations and scales and produce a single composite score for video segments.
However, this method is scene-specific.

Chang et al. [10] describe a statistical framework able to recognize group-
level activity in many scenarios, by combining a soft grouping metric and
track-based motion analysis. The approach recognizes group interactions
without making hard decisions about the underlying group structure. In
particular, a path-based grouping scheme is used to understand if an indi-
vidual belongs to a group. The method is bottom-up and thus suffers when
the tracking output is not reliable.

Zhang et al. [11] describe a social attribute-aware force model for abnor-
mal crowd pattern detection in video sequences. An unsupervised method is
used to estimate the scene scale and two attributes, namely social disorder
and congestion, are introduced to describe the realistic social behaviors by
means of statistical context features. Through the semantic attribute-aware
enhancement, it is possible to improve the model on the basis of social forces.
Even if the method has good results, it is an off-line method.

Kratz and Nishino [12] describe a statistical framework for modeling the
motion pattern behavior of extremely crowded scenes in order to detect un-
usual events. The authors model the dense activity of the crowd using a
3D Gaussian distribution of spatio-temporal gradients, by capturing the lo-
cal spatio-temporal motion patterns through a distribution-based Hidden
Markov Model. The results demonstrate that the proposed approach pro-
vides a suitable representation for analyzing crowded scenes, detecting un-
usual motion patterns in pedestrian behavior including movement against
the normal flow of traffic. The method is appropriate for crowded scenes of
a very high density, but it cannot handle videos containing middle to low
density crowds, which is often the case in video surveillance systems.

Background Subtraction. Approaches that use background subtraction
are commonly based on the creation of a Gaussian Mixture Model (GMM)
to extract the foreground objects. For example, Fradi et al. [13] propose
a method for people counting that harness the advantage of incorporating

5



a uniform motion model into GMM background subtraction to obtain high
accurate foreground segmentation. The counting is based on foreground mea-
surements, where a perspective normalization and a crowd measure-informed
corner density are introduced with foreground pixel counts into a single fea-
ture. The approach demonstrates the benefits of integrating GMM with
motion cue and of normalizing the proposed feature as well. However, the
method is not adaptive to varying illumination conditions.

Srivastava et al. [14] describe a method for crowd flow estimation by
counting the number of people passing through a designated region in a unit
of time. The method analyzes the total number of foreground pixels over a
chosen time period, since it is directly proportional to the number of people
passing through a predefined area. A scaling factor, which depends on the
local texture features, is used to manage the occlusions. This approach have
better performance with respect to individual tracking on dense crowd, but
large occlusions can limit the foreground pixel-based counting for extracting
the exact number of people in the scene.

Li et al. [15] propose a foreground detection approach for crowd motion
analysis called optical flow and background model (OFBM). The method re-
lies on Lucas-Kanade optical flow and Gaussian background model methods
to eliminate the noise due to brightness changes and occlusions. This ap-
proach overcomes the shortages of optical flow and background subtraction,
but it is not fast enough to be applied in real-time processing.

Image Segmentation. The methods in this category rely on the identifi-
cation of the crowd flow by using a grid particles placed in the scene in order
to detect the evolution of the crowd flow in the scene. Solmaz et al. [16]
propose a framework to identify multiple crowd behaviors through stability
analysis for dynamical systems. A scene is overlaid by a grid of particles ini-
tializing a dynamical system defined by the optical flow. Time integration of
the dynamical system provides particle trajectories that represent the motion
in the scene; then, these trajectories are used to locate regions of interest in
the scene. Linear approximation of the dynamical system provides behavior
classification through the Jacobian matrix. The eigenvalues are only consid-
ered in the regions of interest, consistent with the linear approximation and
the implicated behaviors. In such a way, the method can identify five types of
behaviors. However, the method can be not useful when significant overlap
of motion patterns is present in the scene or when a consistent characteristic
flow is missing.
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Ali and Shah [17] propose a framework in which Lagrangian Particle Dy-
namics is used for the segmentation of high density crowd flows and detection
of flow instabilities. The authors treat a flow field generated by a moving
crowd as an aperiodic dynamical system. Therefore, a grid of particles is
overlaid on the flow field in order to monitor the evolution of the particles.
Then, a Finite Time Lyapunov Exponent (FTLE) field is used to quantify
the amount of particles and to reveal the Lagrangian Coherent Structures
(LCS) present in the underlying flow. The LCS divides flow into regions
(motion patterns) respecting the dynamics of the scene. The changes in the
number of flow segments is considered as an instability. It is worth noting
that, this method is not able to deal with overlapping motion patterns since
only one motion label is assigned to each pixel.

Classification. This category includes approaches that exploit classifiers
to recognize the behavior of the observed scene. Greenewald and Hero [18]
describe an approach able to learn the normative multi-frame pixel joint
distribution and to detect deviations from it. The authors use a likelihood
based approach to learn the spatio-temporal covariance in the low-sample
regime. The approach estimates the covariance by exploiting parameter re-
duction and sparse models. The first method considered is the representation
of the covariance as a sum of Kronecker products, which is found to be an
accurate approximation in this setting. Then, they consider the sparse a
multi-resolution model and apply the Kronecker product methods to it for
further parameter reduction. Even though such a method achieves good re-
sults, the authors state that part of the data set has been used for training
the classifier, thus making the method environment-dependent.

Idrees et al. [19] describe an approach to count the number of individuals
in extremely dense crowds. The method relies on multiple sources such as
low confidence head detections, repetition of texture elements (using SIFT),
and frequency-domain analysis to estimate counts, along with confidence
associated with observing individuals, in an image region. Then, a global
consistency constraint on count using Markov Random Field is employed.
Moreover, the approach scales well to different densities, producing constant
error rates across images with diverse count. However, this approach does
not provide a true estimate of the number of individuals crossing into and
out of an area.

To overcome all the above described problems related to the huge amount
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Figure 2: Block diagram of the FSCB method with the three stages.

of data needed for training the classifiers, to the scene-specific descriptors,
and moreover, to the non-real time performance, we propose, in this work, a
statistical analysis approach that combines feature detection and image seg-
mentation in order to detect abnormal behaviors. The proposed method is
on-line and runs in real-time. In particular, two metrics, namely entropy and
temporal occupation variation, are taken into account for detecting abnormal
crowd behaviors, without the need of a training phase.

3. Feature Tracking and Image Segmentation for Behavior Detec-
tion

In this section, the description of our crowd behavior detection method,
called FSCB, is provided. FSCB is made of three main steps: 1) Feature
detection and temporal filtering; 2) image Segmentation and blob extraction;
3) Crowd Behavior detection. The block diagram of the FSCB method is
shown in Fig. 2 and the details of each step are given in the rest of this
section. Moreover, the FSCB website, containing the source code of the
method and the data used for the experimental evaluation, is located at
http://www.dis.uniroma1.it/~pennisi/eventdetection.html.
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Figure 3: Movement mask is generated trough a probability grid: (a) The value 1 is
assigned for each tracked feature point, while the value 0.5 is assigned to its 8-connected
neighbors. (b) Once all the features have been considered, if there are adjacent points
with value 1, then (c) the probabilities of all their neighbors are set to 1 too.

3.1. Feature Detection and Temporal Filtering

The first step of FSCB aims at finding descriptive visual features of the
crowd flow in the observed scene. We assume that the following conditions
hold in the scene: i) Brightness constancy, i.e., the projection of the same
point looks the same in every frame; ii) Small motion, i.e., points do not move
very far; iii) Spatial coherence, i.e., points move like their neighbors. The
above conditions are usually satisfied in video sequences containing crowded
scenes recorded at 25 frames per second with a fixed camera.

Given the above assumptions, we decided to exploit the Kanade-Lucas-
Tomasi (KLT) feature tracker [20] for detecting and tracking local visual
features, instead of using other feature descriptors like Harris corners, SIFT
or SURF. Indeed, KLT works very well in situations where the distance
between images is small, it displays good immunity to tuning parameters,
and it has low computational needs [21].

The output of the KLT tracker at time t is a set Ft{〈f t−1
i , f t

i 〉 | i =
1, . . . , n}, of corresponding feature points in two consecutive frames captured
at time t− 1 and t, respectively (see Fig. 3). Once Ft has been calculated, a
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temporal filtering is applied in order to create a binary mask M , containing
only the moving points in the scene. To this end, the two thresholds τ and
γ are adopted to filter out not moving points: τ is the temporal window size
representing the length of an history queue, while γ is the minimum velocity
value (in pixel per second) to consider a feature point as a moving one.

For each couple 〈f t−1
i , f t

i 〉 ∈ Ft a vector V = {v1, ..., vz}, z ≤ τ , is main-
tained in memory, where the element vj, 1 ≤ j ≤ z, represents the velocity,
recorded at time t− z + j, of the feature point fi. In particular, the velocity
v of a feature point f at time t is calculated as:

vtf =

√
(f t−1(x)− f t(x))2 + (f t−1(y)− f t(y))2

frame rate in seconds
(1)

where the couple (x, y) represents the pixel coordinates.
At the arrival of every new frame, a set of filtered features F∗

t is obtained
by discarding from Ft the features having vz ≤ γ. Then, a probability grid is
used for weighting the motion points F∗

t . The grid has the same size of the
input image and it is divided into cells, one for each pixel, and each cell is
initialized with the value 0. The values of the cells in the grid are modified as
follows: 1) for each feature point belonging to F∗

t , the value 1 is assigned to
the corresponding cell, while the value 0.5 is assigned to all its 8-connected
neighbor cells in the grid (see Fig. 3a). Then, 2) the grid is further modified
in order to cluster adjacent moving points: If a cell of the grid with value 1
has neighbors with value 1 as well (as shown in Fig. 3b), then all the cells
in their neighborhood are set to 1 also (see Fig. 3c).

Finally, the binary movement mask M is generated by considering the
cells in the grid with value 1 as white points, and the remaining ones as
black points. M provides a map of the regions in the image where the
moving features have been detected. In all our experiments, we set τ and γ
to 10 frames and 2 pixels per second, respectively.

3.2. Image Segmentation and Blob Extraction

The RGB image segmentation is performed by using an approach similar
to the one described by Taylor and Cowley in [22]. First, the current RGB
frame I in input is filtered by using M as a mask, thus obtaining a new
RGB image I∗. Then, I∗ is segmented according to two consecutive steps:
1) Edge Segmentation and 2) Delaunay Triangulation. The former is used
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Figure 4: The segmentation step is made of 3 steps: edge detection, Delaunay Triangula-
tion and HSV merging.

for splitting the image into local coherent regions, the latter for aggregating
homogeneous regions in a global fashion.

I∗ is filtered by applying a Gaussian blur filter with a 3×3 kernel size.
Then, it is converted to grayscale, obtaining an image G, and the Edge
Segmentation procedure begins with a Canny edge extraction, that leads to
the creation of an edge image containing the intensity edges in G (Fig. 4).
The two parameters min and max in the Canny algorithm have been set to
the values 0.03 and 2.0, respectively, in order to focus on short edges in G.

The contents of the edge image are then vectorized into connected line
segments and used as input for a Delaunay Triangulation procedure, which
computes a triangular tessellation of the image.

The Delaunay Triangulation of a point set P is characterized by the
empty circumdisk property: No point in P lies in the interior of any triangle’s
circumscribing disk.

Definition [23]. In the context of the finite point set P, a triangle is Delau-
nay if its vertices are in P and its open circumdisk is empty (i.e., it contains
no point in P). It is worth noting that, any number of points in P can lie on a
Delaunay triangle’s circumcircle. An edge is Delaunay if its vertices are in P
and it has at least one empty open circumdisk. A Delaunay Triangulation of
P, denoted Del P, is a triangulation of P in which every triangle is Delaunay.

Given the connected line segments generated as in [24], the function De-
launay from the CGAL2 library is used to carry out the triangulation. The
nodes of the planar triangular graph obtained from the Delaunay Triangula-
tion represent the set of triangles and the edges indicate adjacency relations

2https://www.cgal.org
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Figure 5: Activity Map Computation: a) A set of blob images is collected over a time
window w. b) A 3D-Grid of size m× n×w is used to record the time persistence of each
pixel. c) The activity map is obtained by clustering the data in the 3D-Grid.

between them, i.e., there is an edge between two nearby triangles.
The triangular graph is segmented using a merging procedure that itera-

tively finds and merges the two regions with the lowest normalized boundary
cost. Each one of the triangles in the graph is considered in turn, calculating
the average HSV color of all the pixels that lie within its circumcircle. An
association threshold ω is used for merging the triangles color similarity: If
a pair of triangles have a difference in the normalized HSV values lower than
ω, then they are merged into a single triangle. An example of the results
produced by the image segmentation task is shown in Fig. 4.

The extraction of the blobs is performed by applying again the KLT
feature tracker, this time on the image I∗, in order to find the moving blobs.
A set Fblob of couples of corresponding feature points is generated as before.
Then, the features are filtered by using Eq. 1, thus obtaining a new set of
filtered features F∗

blob. The set F∗
blob is re-projected onto the segmented image

in order to detect the set S of moving blobs. A blob is considered as a moving
one if its area contains at least a feature point f ∈ F∗

blob. In such a way, a
binary blob image is obtained.

3.3. Crowd Behavior Detection

The crowd behavior in the observed scene is detected by carrying out
a statistical analysis on the data collected over a temporal window w. As
shown in Fig. 5, given in input a set of binary blob images (Fig. 5a), a 3D-
Grid of size m×n×w (Fig. 5b) is used to generate a grayscale activity map
(Fig. 5c). The width m and the height n of the grid are the same of the input
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Figure 6: An example of activity map computation. a) The current frame in input (video
sequence from [17]). b) Visual feature extraction with KLT. c) Temporal mask. d) Seg-
mented image. e) Moving blob image f) Activity map.

image, while the depth w corresponds to the length of the temporal window.
Then, each voxel a in the 3D-Grid is set to the value 1 if the corresponding
pixel p in the blob image is white. The depth of the voxel a is represented by
a set of 1s, equal to the number of the corresponding white pixels in the blob
images, over the time window w. In such a way, the temporal persistence of
each point p in the scene is given by the depth of the corresponding voxel a
in the 3D-Grid. The gray values in the activity map (Fig. 5c) are strictly
related to the persistence of the pixel during the time window w, i.e., a value
near 255 in the activity map indicates a point with high activity. In our
experiments, the length w of the temporal window is set to the frame rate
value of the video sequence at hand.

Fig. 6 shows all the steps that are performed for obtaining the activity
map in a high density crowd scenario. It can be noted that only the part of
the image containing a real motion is taken into account.

Once the activity map is available, it is possible to analyze the trend of the
following two measures:

1. Image entropy ;
2. Temporal Occupancy Variation (TOV).

The image entropy serves for obtaining a measure of the uncertainty in the
image values by counting the average amount of information required to

13



Figure 7: The two measures considered for crowd behavior detection: a) Image entropy.
b) Temporal occupancy variation.

encode the image values. The zero order entropy for an image I is defined
as:

Entropy (I) =
n∑

i=1

pi log2 pi (2)

where n is the number of separate symbols, pi is the frequency of the i-th
pixel in the image, and the result is measured in bits per symbol (pixel value).
Then, by assuming that an infrequent event provides more information than
a frequent event [25], it is possible to monitor the instant variation of an
image I in order to detect sudden changes. A threshold ev is set as a “sen-
tinel”: If Entropy (I(t+ 1))−Entropy (I(t)) > ev something of anomalous
is happening. An example of image entropy calculation on an activity map
A is shown in Fig. 7a.

The temporal occupancy variation (TOV) takes into account the space
occupied by the detected moving blobs over time. Given a temporal threshold
ot, the TOV is given by: TOV = A(t + ot) − A(t). The value of TOV
represents the percentage of image space occupied during a time interval
ot. If the value of TOV increases, it means that the scene is changing. We
assume that in case of a great variation in the TOV value, an abnormal event
is happening. An example of TOV calculation is shown in Fig. 7b.

A discussion about the values used for the thresholds ev and ot is provided
in the next section.
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4. Experimental Evaluation

The experimental results described in this section are related to the prob-
lem of detecting events of interest in crowded scenes. Multiple publicly avail-
able video sequences have been selected for quantitatively evaluating the
proposed approach and for comparing it with other recent state-of-the-art
on-line approaches.

4.1. Data Sets Description

Four different data sets have been selected for the experiments: UMN [26],
PETS 2009 [7], AGORASET [8], and Rome Marathon [27]. Each data set
contains one or multiple video sequences and the corresponding ground truth
data. Each frame in a video sequence is labeled with a value “normal” or
“abnormal”, with “abnormal” meaning that an event of interest is in progress.
Ground truth data are already available for the UMN data set, while for the
other three data sets we have generated the corresponding annotation data,
that are available from the FSCB website. Fig. 8 shows two sample frames
from each one of the considered sequences.

UMN Data set. UMN data set has been collected by the University of
Minnesota, USA, and it consists of eleven videos representing escape events.
The videos are captured in three different indoor and outdoor scenes, com-
monly denoted as Lawn, Indoor, and Plaza. Each video starts with a crowd,
of about 20 people, that walks in different directions, then an abnormal event
causes people to run away.

AGORASET. The AGORASET data set is composed of synthetic scenes
representing various crowd simulations. Seven scenes are represented, cor-
responding to an evolution of a human flow in different environments, e.g.,
an environment with obstacles, an evacuation through a door, etc. In our
experiments, we focus on the dispersion scenario (see Fig. 8), where a crowd
with about 100 people walks around in a close environment and then moves
suddenly to the limit of the environment. Moreover, we manually annotated
this sequence creating ground truth data.

PETS 2009. This data set has been recorded for the workshop PETS 2009
at Whiteknights Campus, University of Reading, UK. PETS 2009 comprises
multi-sensor sequences containing crowd scene scenarios with increasing scene
complexity and it is made of three data sets: S1) concerning person count
and density estimation; S2) addressing people tracking; S3) involving flow
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Figure 8: The considered data sets.
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Table 1: Data sets characteristics.

Name
Crowd

Scene BehaviorEvent No. of No. of Frame Frame Density
Type Events Frames Size Rate Level

UMN escape 11 7710 320×240 30 2 real artificial
PETS 2009 escape 4 815 768×576 7 1 real artificial
AGORASET escape 1 600 640×480 30 3 synthetic artificial
Rome
Marathon

race
starting

2 11575 1920×1080 25 3 real natural

analysis and event recognition. In our experiments, we used the S3 data set
(see Fig. 8).

Rome Marathon. Since the scarcity of publicly available data set for crowd
behavior understanding is an actual problem for the Computer Vision com-
munity, we decided to publish two novel video sequences containing crowded
scenes. The data set has been recorded during the 2013 Rome Marathon
and it is available for download, together with ground truth data for each
video, at the FSCB website. The Rome marathon data set is made of two
video sequences representing two different situations: 1) the starting of the
marathon and 2) the cleaning of the street. As shown in the samples in Fig.
8, the scenes contain thousands of people participating to the marathon. As
a difference with respect to the above described data sets, this scenario also
contains natural human behavior (i.e., people were not instructed to act in
a particular way for the scope of this acquisition).

Table 1 summarizes the characteristics of the above described data sets. We
used a number from 1 to 3 to denote the crowd density level.

4.2. Metrics

In order to obtain quantitative results for our FSCB algorithm, we mea-
sured the number of frames in the video sequence at hand that are detected
as False Positives (FP), True Positives (TP), False Negatives (FN), and True
Negatives (TN) with respect to the ground truth data. True Positive Rate
(TPR) and False Positive Rate (FPR) can be computed with the following
formulas:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)
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Table 2: Anomaly detection results on the whole UMN data set. Our approach is compared
with other published on-line methods.

Method Type Area under ROC curve (AUC)
Optical Flow [9] on-line 0.84
Neural Network [30] on-line 0.93
FSCB on-line 0.95

TPR and FPR can be used for generating a Receiver Operating Charac-
teristics (ROC) curve and for computing the relative Area Under Curvature
(AUC). The area under the ROC is a convenient way of comparing different
classification methods. A random classifier has an area of 0.5, while and ideal
one has an area of 1. The quantitative results obtained by FSCB on the four
data sets are provided below.

4.3. Quantitative Results of the Entire Pipeline

In order to qualitatively evaluate the performance of our FSCB algorithm,
we tested the approach generating the ROC curve for each of the above
described data sets. All the used ground truth data are publicly available at
the FSCB website.

It is worth noting that, there exists a large variety of off-line crowd be-
havior detection methods that are able to achieve an AUC value near 1 on
the considered sequences (e.g., a value of 0.99 is obtained in [29] on UMN).
However, such performance are obtained by analyzing the entire video, i.e.,
having the possibility of exploiting knowledge about events that will happen
in the future. This type of analysis can be useful to obtain a model for differ-
ent crowd behaviors, but off-line analysis can result ineffective for practical
use. For such a reason, we compare our FSCB method only with on-line
state-of-the-art methods.

For the UMN data set a double comparison has been carried out. In the
first set of experiments, in order to carry out a fair comparison with published
results, the entire data set is considered as a whole video sequence.

The ROC curve generated on the entire UMN sequence (11 videos treated
as a single one) is shown in Fig. 9. In particular, the value of ev has been
varied in the range 0.1 ≤ ev ≤ 0.2, while the value of ot in the range 30 ≤
ot ≤ 35.
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Figure 9: The ROC curve for FSCB on the whole UMN data set. The results are obtained
by varying the thresholds τ and ot.

Table 2 shows that FSCB achieves better results than the methods relying
on pure Optical Flow (results from [9]) and on a Neural Network (results
from [30]). FSCB outperforms such methods because it operates with sets
of blobs instead of feature sets, which make the approach more robust to
sudden changes in the scene. Moreover, the FSCB method is not based on
a classifier for identifying abnormal events, thus making the approach more
flexible and feasible to several environments. The false positives for FSCB
are generated by the anticipated detection of the crowd event with respect
to the ground truth data.

The second set of experiments on the UMN data set has been carried
out by considering the sequences as divided according to the three different
scenarios: Lawn, Indoor and Plaza. Our method has been compared with
other two recent on-line crowd behavior detection methods [31, 32]. Results
are shown in Table 3. FSCB performs slightly better than the other two
methods on all the three considered sequences.

As already mentioned, three additional video sequences have been con-
sidered along with the UMN data set for quantitative evaluation. The results
are shown in Table 4. For all the three considered data sets, FSCB is able
to achive good results with an AUC value over 0.90. FSCB obtains good
detection results on different video sequences, without the need of using a
classifier for detecting the crowd behavior in the observed scene.
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Table 3: Anomaly detection results on single sequences of UMN data set. FSCB method
is compared with other published methods.

Method Type
Area under ROC curve (AUC)
Lawn Indoor Plaza

STCOG [31] on-line 0.9362 0.7759 0.9661
COV [32] on-line 0.9605 0.8628 0.9746
FSCB on-line 0.9641 0.8764 0.9750

Table 4: Anomaly detection results of the FSCB method on PETS 2009, AGORASET,
and Rome Marathon data sets.

Data set
Area under ROC curve (AUC)

for FSCB
PETS 2009 [7] 0.93
AGORASET [28] 0.94
Rome Marathon [27] 0.96

In order to compare the results of our method with related state-of-the-art
approaches, the above reported comparison has been carried out by analyzing
all the frames in the sequences, without considering the actual computational
speed. A discussion about the computational speed and the results that can
be obtained with an on-line quantitative evaluation are given below.

Computational Speed. We tested the computational speed of FSCB
in terms of frames per second (FPS). To the best of our knowledge, the
computational load for similar approaches in the literature has not been
published. The tests have been made by using a commercial notebook with
an Intel Core i7 CPU 2.4 GHz 8 GB RAM and a single-threaded C++
implementation of the FSCB algorithm. The results are shown in the last
column of Fig. 10. From the obtained results it can be noted that, for
320×240 images, FSCB runs in real-time. When the frame size increases
the computational speed for FSCB decreases arriving at 5 fps for full high
definition (FHD) images.

On-line Quantitative Evaluation. FSCB approach is designed to be
completely on-line and it does not need any training phase. We performed
another set of experiments by considering the actual frame rate of the se-
quences at hand, i.e., down-sampling the sequences in input to simulate an
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Figure 10: FSCB on-line simulation results.

on-line data stream. In particular, we calculated the results obtained in a
realistic real-time setting, where the acquisition frame rate corresponds to
the processing frame rate. The results and the ROC curves for the on-line
simulation on all the considered data sets are shown in Fig. 10.

Additional analysis has been carried out on the Rome Marathon data
set, by varying the frame size for evaluating the relationship between the
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Figure 11: Receiver Operating curves related to the Rome Marathon data set, obtained
by varying the frame size.

Table 5: Evaluation of the FSCB on the Rome Marathon data set by varying the frame
size.

Frame Size FPS AUC
1980×1080 5 0.9610
640×480 16 0.9727
320×240 20 0.9785

detection results and the frame rate of the input data. Results shown in
Fig. 11 and in Table 5 demonstrate that the accuracy of the results increases
with a higher frame rate, which directly influences the feature tracking step,
allowing to achieve better results.

4.4. Analysis of the Single Pipeline Stages

To demonstrate experimentally the impotance of each step in the FSCB
pipeline, we replaced two stages of the pipeline shown in Fig. 2 with similar
state-of-the-art techniques. In particular, two replacements have been carried
out: 1) The feature detection, temporal filtering, and segmentation steps have
been replaced by the MOG2 background subtraction method [33], which
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Table 6: Evaluation of the Pipeline Stages.

Data set
AUC AUC AUC

for FSCB for BGSUB for SEGM
UMN [26] 0.95 0.90 0.86
PETS 2009 [7] 0.93 0.87 0.78
AGORASET [28] 0.94 0.88 0.80
Rome Marathon [27] 0.96 0.91 0.75

provides as output a binary foreground mask; 2) The temporal mask and
the segmentation stages have been replaced by the Watershed segmentation
method [34]. We used the MOG2 and Watershed implementations provided
by the OpenCV library3.

The two obtained modified pipelines have been tested on the same data
sets used for the original FSCB method. The results of the comparison are
shown in Table 6. The proposed pipeline performs better than the other two
modified pipelines on all the considered video sequences. Indeed, the use of
background subtraction makes the algorithm less sensitive to rapid changes,
due to the time interval needed for updating the background model, that is
not well suited for rapid changes.

The use of a pure segmentation method like Watershed can provoke false
positives in areas of the image not actually involved motion (e.g., due to
reflections). Furthermore, the use of the information about the velocity of
the blobs performed by FSCB helps in selecting only the blobs that are
related to the crowd flow, while such a selection is not possible when using
a pure segmentation method.

5. Conclusions

In this paper, a real-time and on-line crowd behavior detection algorithm
for video sequences is described. The algorithm, called FSCB, is based on a
pipeline made of the following stages: 1) stable features are tracked between
frames of the sequence; 2) a temporal mask is extracted; 3) moving blobs
are found using segmentation; 4) anomalous events are detected using two
measures, i.e., instant entropy and temporal occupancy variation.

3http://opencv.org
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Quantitative experiments have been conducted on different publicly avail-
able data sets: UMN [26], PETS 2009 [7], AGORASET [8]. For PETS 2009
and AGORASET, ground truth data have been produced and made avail-
able at the FSCB website. Furthermore, a novel annotated data set, Rome
Marathon [27], containing crowded scenes from the start of a marathon, has
been created.

FSCB has been quantitatively compared with other state-of-the-art meth-
ods for on-line crowd event detection. The results of the comparison demon-
strate the effectiveness of the proposed approach, that works without the
need of a training stage and obtain real-time performance on 320×240 im-
ages.
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