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treatments restoring 100% (control), 75% (IRR75%), 50% (IRR50%) and 25% 

(IRR25%) of their daily water consumption within a 22-day period of 
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collected during drought imposition. Values of Ψ in IRR25% vines reached 
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rate reached values as low as approx. 0.02 mol H2O m-2 s-1 and 1.0 μmol

CO2 m-2 s-1, respectively. Through a cross-validation analysis, this

study modelled (R2=0.78) the estimation of plant canopy area based on the

number of pixel of RGB images of vines under various drought levels.

Estimated leaf area was employed to calculate water consumption per unit

leaf area, which resulted correlated (R2=0.86) with Ψ.

Results revealed a correlation between Ψ and Dark Green colour class 

(R2=0.71) and suggest a new working hypothesis concerning the phenotyping 

of leaf (or petiole) angle. NIR and Dark Green colour fraction decreased 

with increasing levels of drought while the Yellow one increased. The 

outcomes presented may strengthen the role of RGB and NIR based images to 

identify the occurrence of water-stress in Vitis spp. and contribute to 



both the standardisation of phenotyping protocols pursued by the global 

phenotyping community and the possible development of new tools for 

precision irrigation in a HTP domain. 
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 This study examined whether morphophysiological traits (e.g., leaf water potential,  of drought 

stressed grapevines might be determined through image-based analysis techniques  

 Non-destructive image-based method for the prediction of leaf area in drought stressed vines (R
2
 = 

0.92) is presented  

 The Dark Green fraction colour class correlates (R
2
 = 0.71) with .  

 Data presented support the development of affordable phenotyping and standardization of 

protocols 
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Abstract This study examined whether morphophysiological traits (i.e., leaf area, plant water 1 

consumption, leaf water potential) of drought stressed grapevines (Vitis vinifera L.) might be 2 

determined through the use of non-destructive RGB and NIR image-based analysis techniques for 3 

possible implementation of affordable phenotyping. The study was carried out at a centre which is 4 

part of the European Plant Phenotyping Network (EPPN) also aiming at contribute to the 5 

standardisation of phenotyping protocols. Four groups of 20 potted vines each were subjected to 6 

various irrigation treatments restoring 100% (control), 75% (IRR75%), 50% (IRR50%) and 25% 7 

(IRR25%) of their daily water consumption within a 22-day period of drought imposition. Leaf gas 8 

exchanges, leaf water potential (, photosystem II efficiency (Fv/Fm), RGB and NIR data were 9 

simultaneously collected during drought imposition. Values of  in IRR25% vines reached -1.2 MPa 10 

pre-dawn, in turn stomatal conductance and net photosynthetic rate reached values as low as 11 

approx. 0.02 mol H2O m
-2

 s
–1

 and 1.0 mol CO2 m
-2

 s
–1

, respectively. Through a cross-validation 12 

analysis, this study modelled (R
2
=0.78) the estimation of plant canopy area based on the number of 13 

pixel of RGB images of vines under various drought levels. Estimated leaf area was employed to 14 

calculate water consumption per unit leaf area, which resulted correlated (R
2
=0.86) with . Results 15 

revealed a correlation between and Dark Green colour class (R
2
=0.71) and suggest a new 16 

working hypothesis concerning the phenotyping of leaf (or petiole) angle. NIR and Dark Green 17 

colour fraction decreased with increasing levels of drought while the Yellow one increased. The 18 

outcomes presented may strengthen the role of RGB and NIR based images to identify the 19 

occurrence of water-stress in Vitis spp. and contribute to both the standardisation of phenotyping 20 

protocols pursued by the global phenotyping community and the possible development of 21 

new tools for precision irrigation in a HTP domain. 22 

 23 

Key words: affordable phenotyping, EPPN, grapevine, image analysis, leaf gas exchanges, 24 

water potential, water stress. 25 

26 
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1. Introduction 27 

Drought occurrence is expected to increase in some cultivated areas due to future 28 

uncertainty in precipitations resulting mainly from climate changes, this in turn will reduce 29 

stock of freshwater for irrigated agricultural sector (IPCC, 2013; Ronco et al., 2017) 30 

requiring adaptation strategies including improved on-farm irrigation management. 31 

Although drought occurrence negatively influence certain plant performances (e.g., fruit 32 

size, carbon gain) (Miller et al., 1998; Shackel, 2007), the exposure of plant to drought 33 

might favour fruit quality traits depending on timing, intensity, duration of drought and 34 

crop species (Chaves, et al., 2010; Herrero-Langreo, et al., 2018). For instance, in grape 35 

berries the amount of key quality pigments (e.g., total anthocyanins) measured at harvest is 36 

higher in drought stressed vines compared to well irrigated ones (Acevedo-Opazo et al., 37 

2010). Hence, irrigation management might potentially be relevant for both the 38 

conservation of natural resources (through water saving) and  increased quality of product. 39 

 40 

In addition to real time soil moisture probes, the measurements of several in vivo plant 41 

physiological parameters have been proposed for irrigation schedule including sap flow, 42 

stomatal conductance, leaf turgor pressure, shrinkage of stem/fruit, leaf (or stem) water 43 

potential () (Fernández, 2017). Some of these crop (i.e., soil and plant) parameters are 44 

collectively feeding most of the irrigation decision support systems now increasingly 45 

accepted by growers due to their decreasing price; however sensor reliability is still 46 

perceived as a weakness (Lichtenberg et al., 2015). Leaf water potential is a reliable plant 47 

water status indicator for irrigation scheduling but its application at large scale (e.g., 48 
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commercial field) is hampered by the high costs (including time) needed for timely and 49 

adequately representative  determinations (Girona et al., 2006, De Bei et al., 2010). 50 

Hence, a wider adoption of  as irrigation schedule tool might be boosted by the 51 

development of easy accessible, accurate and low-cost proxy of . 52 

 53 

Precision agriculture is challenging the reduction of environmental impact of practices and 54 

the improvement of product quality through a series of smart tools including plant 55 

phenotyping as supported by image analysis techniques (Fiorani and Schurr, 2013). In this 56 

context, some recently developed high-throughput phenotyping (HTP) innovations 57 

including unmanned aerial vehicles (UAV), robotised platforms and colour image-derived 58 

indices are promising tools for irrigation managing purpose (Berger et al., 2010; Gago et 59 

al., 2017; Diago et al., 2018). However, the infrastructure and man-labour cost as well as 60 

skills for operational HTP are debatable highlighting the importance of “affordable 61 

phenotyping” (Reynolds et al., 2018).   62 

 63 

Recently, the estimation of the vineyard water status using multispectral imagery from an 64 

UAV platform and machine learning algorithm based on artificial neural networks have 65 

been proposed (Poblete et al., 2017; Romero et al., 2018; Fernández-Novales et al., 2018) 66 

but encompassing relatively complex procedures to the extent that the combination of 67 

several (up to 13) vegetation indices were needed. This complexity might slow its large 68 

scale diffusion (Rinaldi and He, 2014). According to this view it makes sense to evoke 69 

Rapaport and co-workers (2015) who developed water balance indices able to predict  70 
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based on reflectance values at specific wavelengths (1 nm spectral resolution). However, it 71 

seems there is room to expand affordable phenotyping of . 72 

 73 

Automated phenotyping of plant stress responses are mainly based on red-green-blue 74 

(RGB), fluorescence, near infrared (NIR) (e.g. Casadesus et al., 2007; Harbinson et al., 75 

2012; Diago et al. 2018) and thermal IR imaging systems (e.g. Grant et al., 2007; Cohen et 76 

al., 2015; Bellvert et al., 2016; Gutiérrez et al., 2018), with RGB the most frequently used 77 

imaging module (Ge et al., 2016). In addition, RGB images have been used also at field 78 

scale to model canopy structure, plant growth, irrigation schedule, etc. thanks to their 79 

relatively low-cost and wide accessibility as seen by the use of even smartphone cameras 80 

(see Reynolds et al., 2018 for review). However specific information on RGB-based images 81 

and  correlation in Vitis spp. are not adequately explored. Therefore, this study examined 82 

whether  of grapevines subjected to drought would be correlated to RGB and NIR 83 

images.  84 

Nowadays phenotyping biotic and abiotic stress is growing fast and standardisation of 85 

phenotyping protocols is becoming a common challenge (van Eeuwijk et al., 2018) where 86 

making parallel measurements of physiological and phenomic traits are highly desirable 87 

particularly under drought stress. Hence, in this study physiological traits (e.g., leaf gas 88 

exchanges, efficiency of photosystem II, plant water consumption) were simultaneously 89 

monitored along with  and RGB and NIR images acquisition. 90 

 91 
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Leaf area (LA) represents almost the entire plant transpiring surface directly influencing 92 

plant water consumption and therefore it is a classical key parameter for irrigation 93 

management embedded as crop coefficient within crop water balance calculations 94 

(Doorenbos and Pruitt, 1977). Hence, a non-destructive estimation of LA might assist in 95 

defining HTP-based protocols for drought management. For this reason this study also 96 

aimed at improving LA estimation through RGB-based images and to test whether water 97 

consumption per unit of estimated LA correlates with  of progressively drought stressed 98 

vines. 99 

 100 

 101 

2. Materials and methods  102 

2.1 Plant material and experimental design  103 

The experiment was carried out at the ALSIA ‘Metapontum Agrobios’ Research Centre, 104 

located at Metaponto, Southern Italy (N 40° 23' E 16° 47') during the 2017 growing season 105 

under unheated and not-conditioned greenhouse conditions. A total of 80 3-year old own-106 

rooted vines (cv Aleatico) were grown in a white 3.5 L PVC pot covered with plastic film 107 

to minimise direct evaporation of water from soil. The substrate was a 3:1 v/v mixture of 108 

sandy loam soil (82 % sand, 7 % silt and 11 % clay) and peat. At 15, 30 and 45 days after 109 

bud-break (early March) the vines were fertilised with a NPK fertiliser 14.7.14 (Slowenne 110 

212, Valagro Spa, Atessa, Italy) at a dose of 3 g per pot. From bud-break till the first day of 111 

irrigation treatment application (21
st
 of April, hereafter referred as “day 0”) all vines were 112 

fully irrigated. Vines were weighed every evening and 100% of the amount of water 113 
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transpired daily was added to keep soil moisture at field capacity. The vines were trained 114 

with single main shoot and tied to a wooden stick supports, note that the wooden stick was 115 

painted blue in order facilitate image segmentation and data analysis. The vines had approx. 116 

15-20 leaves each. 117 

Before the imposition of drought stress the reference weight at the field capacity was 118 

determined by fully irrigating each pot and then allowing the water to drain for 12 hours 119 

until a stable weight was reached. 120 

At day 0, vines were grouped (×20 vines each) and for the 22 days after drought imposition 121 

(DADI), irrigation (IRR) was modulated by restoring 100% (control), 75% (IRR75%), 50% 122 

(IRR50%) and 25% (IRR25%) of the daily water consumption.  123 

Air temperature (°C) and relative humidity (%RH) (HUMITER 50Y, Vaisala, Helsinki, 124 

Finland) and PAR (PPFD, mol m
-2

 s
–1

) (quantum sensor Model SKP 215, Skye 125 

Instruments LTD, Llandrindod, Wells, UK) were measured inside the greenhouse at 15 min 126 

intervals, having hourly averages recorded (CR200, Campbell Scientific Inc., Utah, USA). 127 

The air vapour pressure deficit (VPD) was then calculated from the records of air 128 

temperature and relative humidity, according to Goudriaan and van Laar (1994). 129 

 130 

2.2 Plant-phenotyping 131 

A group of 4-5 vines per irrigation treatment (the same used for the physiological 132 

determinations, see below) were imaged pre-dawn (04:00-05:00 h solar time) and midday 133 

(12:00-13:00 h) at 0, 3, 6, 11, 14, 19 and 22 DADI using a LemnaTec 3D Scanalyzer 134 

phenotyping platform (LemnaTec GmbH, Aachen, Germany). Vines were automatically 135 
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conveyed into the imaging chambers in which they were stopped for image acquisition. The 136 

NIR chamber was equipped with a NIR cameras sensitive to wavelength 900-1700 nm 137 

(Vosskühler GmbH NIR-300PGE) with the 790 kilopixel resolution.  The Visible light 138 

chamber for the RGB image acquisition was equipped with 2 megapixel Visible light 139 

cameras (Basler Scout scA1600-14gc). Lighting conditions inside the chambers were 140 

achieved by halogen lamps (Radium Ralogen PAR16 35W) for the NIR chamber and 141 

fluorescent tubes (Osram T5FH 21W 865 HE) for the Visible light chamber. A schematic 142 

representation of the plant phenotyping platform set up is reported in Figure 1. For each 143 

chamber 3 images were acquired, one from above the plant (Top View, TV) and 2 from the 144 

lateral at an orthogonal angle (0° and 90° Side View, SV). The image segmentation and 145 

analysis were performed using the software LemnaGrid v5 following Arvidsson et al. 146 

(2011). The LemnaGrid software v5 operated a colour classification of the RGB images in 147 

Dark Green, Green, Yellow and Brown colour class according to Acosta-Gamboa et al. 148 

(2017). Two anchor points (RGB colour values) per colour class were identified as follow: 149 

Dark Green R126 G134 B68, R116 G123 B75; Green R156 G170 B87, R150 G177 B73; 150 

Yellow R255 G242 B157, R255 G244 B116; Brown R133 G104 B67, R124 G107 B60. 151 

 152 

 153 

2.3 Leaf gas exchange and chlorophyll a (Chl-a) fluorescence 154 

Net photosynthetic rate (A), stomatal conductance (gs) and transpiration (E) rate per unit 155 

leaf area were measured midday (11:30-12:30 h) at day 0, 3, 6, 8, 10, 11, 13, 14, 20 and 22 156 

DADI using a portable photosynthesis system Li-Cor 6400 (Li-Cor, Inc., Lincoln, NE, 157 

USA). During leaf gas exchange measurements temperature and CO2 concentration were 158 
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maintained at the prevailing environmental condition, PAR inside the cuvette fixed at 800 159 

mol m
-2

 s
–1

 and the operating flow rate at 500 mol s
-1

. 160 

Gas exchange measurements were performed on 4-5 vines per irrigation treatment on two 161 

fully expanded leaves per vine selected from the mid-region (fourth/fifth node) of shoot.  162 

 163 

On the same leaf used for leaf gas exchange measurements, Chl-a fluorescence was 164 

measured pre-dawn (04:00 – 05:00 h) and midday (11:30-12:30 h) through a portable 165 

chlorophyll fluorometer (PAM- 2500, Heinz Walz GmbH, Effeltrich, Germany). Leaves 166 

were 45 min dark-adapted (leaf clip DLC-8 Walz GmbH, Effeltrich, Germany) before 167 

midday measurements. 168 

The basal (F0) and maximal (Fm) Chl-a fluorescence were collected by applying a brief 169 

saturating light pulse (5,000 μmol m
-2

 s
–1

 PAR) and used to calculate the variable 170 

fluorescence (Fv=Fm-F0). The maximum quantum yield of photosystem (PS) II (Fv/Fm) was 171 

then calculated (Maxwell and Johnson, 2000). 172 

 173 

2.4 Stem water potential and soil moisture 174 

At 0, 3, 11, 14 and 22 DADI the stem water potential () was measured pre-dawn (PD) 175 

(04:00 – 05:00 h) and at midday (MD) (12:00 – 13:00 h) on fully expanded leaves (2 per 176 

vine) immediately above those used for gas exchanges by means of a pressure chamber 177 

(Model 600, PMS Instruments, Corvallis, OR), pressurised with N2 according to the 178 

protocol by Turner (1981). For the MD determination leaves were covered with aluminium 179 

foil at least 90 min before measurements were taken. The leaves used for the  180 
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determinations were then collected for leaf area measurement (see below). After the MD 181 

measurements, from the same pots soil samples were collected for soil moisture 182 

determination (% of dry weight) according to Black (1965). 183 

 184 

 185 

2.5 Estimation and evolution of leaf area  186 

Leaf area of vines was modelled using the RGB images collected for plant phenotyping 187 

(see above) determining the number of “plant object pixels” here referred as the projected 188 

shoot area (PSA) following a procedure similar to that of Hairmansis et al. (2014): 189 

 190 

PSA = Npix 0° SV + Npix 90° SV + 0.3×Npix TV  (pixel)  [1] 191 

 192 

where “Npix 0° SV” and “Npix 90° SV” is the number of pixels corresponding to the plant 193 

object area of two orthogonal side-view images, while TV represents the number of pixel of 194 

the top view image. The pixel numbers were retrieved from the RGB images employing an 195 

image analysis pipeline developed using the LemnaGrid v5 software (Petrozza et al., 2014). 196 

 197 

The RGB images for the PSA determination were collected midday on a total of 61 vines 198 

randomly selected within each irrigation treatment at day 3, 11, 14 and 22 after the 199 

initiation of drought stress. After the image collection vines were manually defoliated and 200 

leaf area measured (LA) (LI-3100 leaf area meter, LI-COR, Lincoln, NE, USA). Note that 201 
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pixel number and area of leaves used for  determination were also included for PSA and 202 

LA determinations.   203 

 204 

The estimated plant leaf area (LA’) was modelled using a linear model (LA’ = a × PSA+b) 205 

developed from the paired PSA and LA data subjected to a cross-validation analysis. That is, 206 

from the whole set of 45 paired values of LA and PSA, 10-fold were selected at random 207 

with replacement, each fold containing 36 paired values (i.e. 80% of the total) on which the 208 

model was trained. The remaining 20% was used for testing purposes.  209 

According to Diago et al. (2012) the LA’ model was then validated using another set of 210 

grapevine RGB images collected on additional 16 vines and its accuracy determined 211 

through the correlation coefficient R
2
 between actual leaf area and LA’.  212 

 213 

Evolution of LA’ in each irrigation treatment was non-destructively determined via imaging 214 

using the same 4-5 individual vines per irrigation treatment at 0, 3, 6, 9, 11, 14, 19, and 22 215 

DADI and calculating the mean PSA per treatment through eq. 1. 216 

 217 

2.6 Specific vine water consumption 218 

On the same vine used for  determination the vine water consumption was determined by 219 

weighing the pots every evening.  The weight of the previous day was used as a reference 220 

to determine daily water loss from each plant. Then values were normalised per unit of LA’ 221 

and reported as g H2O cm
-2

 d
-1

. 222 

 223 
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 224 

2.7 Data analysis 225 

The statistical analysis was performed using R software (3.3.2 version) package ‘agricolae’ 226 

(de Mendiburu, 2016), plotting and fitting were by OriginPro 9.3 (OriginLab Corporation, 227 

USA). Data were reported as mean and standard error of the mean (±SE). A one-way 228 

ANOVA was used to examine the differences between irrigation treatments at each 229 

sampling date, the differences among means were identified by Tukey Honest Significance 230 

Difference (HSD) post-hoc tests; p values <0.05 were considered significant.  231 

 232 

3. Results and discussion 233 

This study was carried out at a robotised plant phenotyping platform and examined the 234 

influence of vine water status (as assessed through ) on simultaneously physiological and 235 

phenomic traits of grapevine expanding knowledge on HTP tools for vine performance 236 

assessment sensu Großkinsky et al. (2015).  237 

 238 

3.1 Physiological and morphometric drought response 239 

Soil moisture in well watered pots was stable around 35% dw during the experiment, while 240 

it progressively declined in drought stressed pots from the 3
rd

 DADI becoming significantly 241 

different from that of control ones by 11 DADI (Fig. 2).  At the end of experiment, soil 242 

moisture reached values close to 10% (IRR25%), 14% (IRR50%) and 21% (IRR75%) (Fig. 2). 243 

Such soil moisture variation among treatments is similar to that observed by Sivilotti et al. 244 

(2005) in a pot experiment. .Values of PD ranged from approx. -0.2 (control vine) to a 245 
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minimum of approx. -0.8 (IRR50%) and -1.15 MPa (IRR25%) detected at 22 DADI, while in 246 

vines receiving 75% of daily water consumption PD remained close to -0.2 MPa 247 

throughout the experiment similarly to that of control vines (Fig. 3). 248 

When measured at midday,  reveals the sign of drought imposition at 11 DADI as at this 249 

stage the MD of various treatments differed significantly from that of control while at the 250 

same day the PD was significantly differentiated only for the IRR25% treatment (Fig. 3).  251 

Hence, it appears that MD is more informative than PD in revealing changes in vine water 252 

status at least under the present experimental conditions. 253 

From the 11
st
 DADI onward MD further decreased reaching the lowest value in IRR25%  (-254 

1.3 MPa) at the last day of the experiment when both IRR50% and IRR75% were close to -1 255 

MPa (Fig. 3). For the IRR75% treatment, the amount of water restored each day allowed an 256 

over-night recovery of plant water status as documented by their PD that approached the 257 

values of well irrigated vines. Likely a longer or drier drought period would be required to 258 

induce a significant decline of PD in IRR75% compared to control vine.. 259 

 260 

Both PD and MD patterns recall similar trends previously observed in grapevines 261 

subjected to water stress (Poni et al., 2014). Despite this being an “in-pot experiment”, 262 

based on the trends of  the water withhold procedure should be considered slow enough 263 

to let vines to adapt to soil moisture depletion in terms of drought related changes to leaf 264 

water content and pigments (e.g., chlorophyll, xanthophylls) which may influence leaf 265 

reflectance (Palliotti et al., 2015).  266 
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The level of net photosynthetic rate recorded in well irrigated vines was similar to that of 6-267 

8-year old field grown grapevines (Chaves et al., 2010) oscillating around the mean value 268 

of 12.3 mol CO2 m
-2

 s
–1

 throughout the experiment (Fig. 4A). Drought-induced variations 269 

of A were considerably in accordance with that of gs, however for the IRR25% group the 270 

initial decline of A detected within the early 11 DADI was more smooth than that of gs (Fig. 271 

4A and C). This was likely due to an improved intrinsic water use efficiency occurred for 272 

the most drought stressed treatment (Poni et al., 2007).  273 

 274 

Leaf transpiration in well irrigated grapevines ranged from 3.8 (6 DADI) to 9.9 mmol H2O 275 

m
-2

 s
–1

 (22 DADI) (Fig. 4B) mainly due to changes in VPD that peaked at 2 and 4 kPa at 276 

6 and 22 DADI, respectively (Fig. 5). Particularly, at the beginning of drought imposition 277 

(between 6 and 11 DADI) values of E for control, IRR75% and IRR50% treatments transiently 278 

declined because of lower VPD (Fig. 5). On average maximum air temperature ranged from 279 

approx. 26 to 28 °C even though it was 3-4°C lower at 0, 6, 8 and 20 DADI,  maximum 280 

midday irradiance level was always above 1,000 mol m
-2

 s
–1

 PAR is day 8 and 20  DADI 281 

are excepted (Fig. 5).  282 

 283 

The differences in leaf transpiration detected among treatments reflect a typical down-284 

regulated behaviour of E dependent upon the imposed irrigation treatment (Fig. 4B) 285 

(Medrano et al., 2003). 286 

Stomatal conductance in well irrigated grapevines was stable at approx. 0.3 mol H2O m
-2

 s
–

287 

1
 throughout the experiment excepting a transient decrease at 11 DADI (Fig. 4C). In 288 
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severely drought stressed grapevines (IRR25%) the gs significantly declined after the 3
rd

 289 

DADI and it sharply reached a value 80% lower than that of control vines at 6 DADI.  290 

Thereafter the gs of IRR25% further declined toward the minimum value reached by 11 291 

DADI where it remained until the end of the experiment (Fig. 4C).  292 

The influence of reduced irrigation on gs was similar for IRR50% and IRR75% showing a 293 

gradual reduction during the early 10 DADI when a gs value of 35% of that of well 294 

irrigated was reached (Fig. 4C). During the remaining period of the experiment (from 11 to 295 

22 DADI) gs values recorded in IRR75% grapevines were approx. 40% of that of control 296 

ones, while in IRR50% vines the gs was similar to that of IRR25% ones (Fig. 4C) remaining 297 

below the threshold of 0.05 mol H2O m
-2

 s
–1

 that identifies severe drought condition sensu 298 

Cifre et al. (2005).  299 

 300 

Interpretation of leaf gas exchange variations induced by different irrigation supply should 301 

also include the variations of plant water status in order to comprehensively argue key 302 

drought-related physiological issues and allow a wider usefulness of data. Hence, here leaf 303 

gas exchanges are also discussed in parallel with MD allowing construction of a more 304 

comprehensive data set to potentially be associated to vine phenotyping. 305 

 306 

The decline of gs was able to regulate leaf transpiration and net photosynthetic rate across 307 

the MD range recorded (Fig. 6A, B) confirming water loss and carbon gain mechanisms 308 

observed in drought stressed grapevines (Medrano et al., 2003). The reduction of gs 309 

determined by drought imposition followed the changes of MD (Fig. 6C) accordingly to 310 
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similar correlative information reported for both pot and open-field studies (Medrano et al., 311 

2003; Cifre et al., 2005). In this study the efficiency of the PSII was not impaired by the 312 

drought imposition as suggested by the stable chlorophyll fluorescence (Fv/Fm) recorded 313 

throughout the experiment which were independent of the  changes (Fig. 6D). That is, 314 

values of Fv/Fm measured across the approx. -0.15/-1.5 MPa range of  remained close to 315 

0.8 (Fig. 6D) which is believed the threshold for efficient PSII indicating that the reduction 316 

of net photosynthetic rates detected in drought stressed vines (Fig. 4A) was not metabolic 317 

as discussed in Montanaro et al. (2009). Hence, the unchanged Fv/Fm despite the worsening 318 

of  confirms that fluorescence-based HTP has some limitations for the detection of water 319 

stress (Berger et al., 2010).  320 

  321 

Estimation of grapevine LA through non-destructive techniques has been the subject of 322 

several HTP studies mainly devoted to segmentation of various plant organs (e.g., bunch, 323 

leaf) for crop monitoring and breeding purposes (Diago et al., 2012; Costa et al., 2016). The 324 

present study expands information on LA estimation in grapevines subjected to various 325 

irrigation treatments being potentially useful at least in plant phenotyping platforms 326 

contributing to the definition of “standard conditions” (Pieruschka and Hendrik, 2012). 327 

In order to continuously evaluate the impact of drought on vegetation development and in 328 

turn on vine water consumption a RGB-based methodology was implemented to estimate 329 

the growth of leaf area which is a morphometric trait intimately related to soil moisture and 330 

 (Koundouras et al., 2008).  331 
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Results show that the actual leaf area of vines and the number of pixels corresponding to 332 

the leaf surface determined through eq. 1 were linearly correlated (R
2
 = 0.78) (Fig. 7). The 333 

resulting linear model (y = 416.11 +0.915 × PSA) was capable to predict (R
2
 = 0.92) the 334 

leaf area of a different set of grapevines (n = 16) (see the inset in Fig. 7). The cross-335 

validated estimation of LA performed in this study consisted of data collected from vines 336 

under various irrigation levels improving previous similar models (e.g., Diago et al. 2012). 337 

 338 

The LA’ of various irrigation treatments was not influenced early after drought application 339 

(Fig. 8). At day 11 DADI, some significant differences were envisaged at least between 340 

IRR75% and the more severely drought stressed vines (IRR25%) (Fig. 8), unfortunately LA’ 341 

data for well irrigated vines were not available due to technical difficulties. Thereafter, 342 

control vine canopies showed significantly higher values than that of IRR25% and tend to be 343 

higher than that of IRR75% however differences were not always significant. At the end of 344 

the experimental period LA’ in well irrigated vines increased by approx. 85% of the initial 345 

value, while IRR75% vines consistently showed a growth as low as 45% of the initial LA’ 346 

(Fig. 8). The IRR25% and IRR50% treatments had their highest LA’ increased similarly by 347 

approx. 20% of the initial value at 19 DADI (Fig. 8). However, LA’ was 6-9% at the end of 348 

experiment likely due to a sharp leaf fall triggered by the severe drought (Munné-Bosch 349 

and Alegre, 2004). 350 

 351 

The slowdown of leaf growth in grapevines under drought is an adaptive trait (Poni et al., 352 

2007) which was non-destructively detected in this study through the modelled leaf area 353 
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allowing the identification of paired vine groups according to their PD (i.e., control 354 

coupled with IRR75% versus IRR50% coupled with IRR25%).  355 

This study was not designed to detect the growth responses of various vegetative 356 

components (e.g., shoot, leaf) (see Pellegrino et al., 2008). However, results on the 357 

influence of water shortage on the overall leaf area growth are consistent with those 358 

reported by Gómez-del-Campo et al. (2002) for a similar experiment that was conducted 359 

using larger pots (35 L). Lanari et al., (2015) report a 70% reduced leaf area (destructively 360 

determined) in potted (4 L) grapevines receiving 40% of full irrigation after 18 DADI. In 361 

the present experiment, leaf area in IRR25% vines was 40% lower than control 22 DADI 362 

when MD was -1.3 MPa (Fig. 3 and 8), unfortunately data on  are not provided by Lanari 363 

et al., (2015) making deep comparisons challenging. 364 

 365 

The estimated leaf area was involved in the determination of daily water consumption 366 

which was on average 0.16 g H2O cm
-2

 d
-1

 in well irrigated vines and in drought stressed 367 

ones at the beginning of the experiment when MD was in the -0.5/-0.3 MPa region, 368 

thereafter it declined by 85% when MD reached -1.2 MPa (Fig. 9). Such a reduction is 369 

comparable to that reported by Medrano et al. (2012) for non-irrigated, field grown 370 

grapevines. Results show that specific water consumption responded to the drought-371 

induced decline of MD following an exponential decay pattern (R
2
 =0.86) (Fig. 9) 372 

suggesting it might be a promising HTP tool for both plant water status and consumption 373 

determination. In addition, considering that values of vine water consumption were 374 

calculated on a vine basis (see Method section) it might support the calculation of some 375 
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functional traits at vine scale (e.g., water use efficiency) thus avoiding criticisms related to 376 

their single-leaf assessment (Poni et al., 2014).  377 

 378 

3.2 RGB and NIR response to drought 379 

The RGB images sourced by Visible light cameras have great potential for morphological 380 

studies including leaf area estimation as shown in this study, nevertheless they are known 381 

to have some limitations in serving as a proxy for plant physiological traits (Großkinsky et 382 

al. 2015). The relatively weak correspondence between  and some specific RGB colour 383 

class obtained in the present research partly supports that conclusion. That is, the Brown 384 

and Green colours data showed a poor correlation with  as indicated by the values of R
2 

of 385 

0.24 and 0.04, respectively (Fig. 10A, 10B). However, an improved correlation was 386 

achieved considering the Yellow colour class whose fraction linearly increased with 387 

lowering  (R
2
 = 0.5) when vines becoming more stressed (Fig. 10C). The yellowing of 388 

foliage is a regulatory process leading to leaf senescence in response to ageing or 389 

environmental stresses including drought (Munné-Bosch and Alegre, 2004). Recently, the 390 

yellowing (or the loss of greenness) of leaf has been discussed as a promising digital tool 391 

for identification of drought resistant (or sensitive) annual crops (e.g., rice and sorghum) 392 

(Harris et al., 2017; Lingfeng et al., 2018). This supports the interpretation of the increasing 393 

Yellow fraction being related to increasing drought (i.e., more negative ) (Fig. 10C). 394 

Interestingly, the fraction of the Dark Green colour class showed the highest correlation 395 

with  reaching R
2
 =0.71 (Fig. 10D). Such a close correspondence between reducing 396 

pattern of the Dark Green colour class under increasing drought might be explained 397 
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considering the putative increased leaf angle and in turn the increased exposure of the 398 

abaxial (lower) leaf surface occurring with drought. It makes sense to remember that the 399 

abaxial surface has a lighter colour compared to the adaxial (upper) one due to the presence 400 

of trichomes (Boso et al., 2010 and references therein).  401 

Increased leaf lamina angle is among the plant drought defence mechanisms activated for 402 

PSII and water conservation reducing direct insolation and in turn temperature, 403 

conductance and transpiration of leaf (Palliotti et al., 2008; Jones et al., 2009). Incidentally, 404 

the stable Fv/Fm values recorded in well irrigated and drought stressed vines (Fig. 6D) 405 

might conceivably be associated with the protective increased leaf angle (i.e., leaf tends to 406 

be more vertical) in drought stressed leaves that most probably had occurred (Chaves et al., 407 

2010). Inclination of leaf petiole from the vertical axis in grapevine might increase from 408 

60-70° in well irrigated vines up to 120° in drought stressed ones (approx. -1.8 MPa, early 409 

morning) (Nuzzo, pers. com.). This interpretation is in line with the idea that some RGB 410 

images are useful to track morphological changes (Großkinsky et al. 2015), however the 411 

causal chain “droughtincreased leaf anglereduced Dark Green fraction” deserves 412 

further study. 413 

 414 

The change of relative water content in leaf (i.e., the percentage of water present at the time 415 

of sampling, relative to the amount of water in a saturated leaf) is a reliable index of plant 416 

water status that linearly and closely correlates with  in several species including Vitis  417 

(Smart and Bingham, 1974; Bota et al., 2004). Relative leaf water content is known as the 418 

most prominent parameter influencing leaf spectral reflectance and therefore non-419 

destructively technologies including those based on NIR wavelengths, which are useful for 420 
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plant water status monitoring (Seelig et al., 2008; Berger et al., 2010; Diago et al., 2018). 421 

Recently, the  in grapevines subjected to drought has been modelled using portable NIR 422 

equipment to record diffuse reflectance spectra of the leaf surfaces by means of contact 423 

probes (De Bei et al., 2011; Tardaguila et al., 2016). Rapaport et al. (2015) combine 424 

information on spectral signatures collected with both portable spectrometer and cameras 425 

equipped with specific narrow-band filters to model  at canopy level using a set of 4-leaf 426 

images. In the present study a contactless and image-based methodology has been used to 427 

collect NIR colour class at plant canopy scale which were correlated with  (R
2
 = 0.44) 428 

even if a certain variability of NIR reflectance at a specific  remain (Fig. 11). The 429 

potential influence on NIR reflectance exerted by other leaf traits linked to decreasing leaf 430 

water content such as leaf thickness (Seelig et al., 2008) and different signature of abaxial 431 

and adaxial surface (see discussion above) might help to explain such a variability. Results 432 

confirm the potential suitability of NIR colour class to be a proxy of within affordable 433 

phenotyping, however hyperspectral whole-canopy image-based NIR reflectance 434 

measurements in drought phenotyping studies might further strength the relationship 435 

between  and NIR signatures in grapevines (Diago et al., 2017; Berger et al., 2010).  436 

This study reports correlative information between physiological traits and image-based 437 

HTP analysis for grapevines experiencing water shortage at a robotised plant phenotyping 438 

platform which is part of the EPPN (European Plant Phenotyping Network, 439 

https://eppn2020.plant-phenotyping.eu/EPPN2020_home). EPPN and the global 440 

phenotyping community are doing efforts toward the standardisation of phenotyping 441 

protocols offering training in HTP, broaden access to shared-usage HTP facilities, 442 

https://eppn2020.plant-phenotyping.eu/EPPN2020_home
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developing common data storage and standards for the design, analysis, and reporting of 443 

HTP data sets (van Eeuwijk et al., 2018). 444 

 445 

4. Conclusions 446 

This study documents the suitability of the Dark Green fraction of the RGB spectrum to be 447 

a proxy for a relatively wide range of  (from -0.2 down to -1.6 MPa) which would suggest 448 

a new study with the working hypothesis that leaf lamina (or petiole) angle can act as a 449 

HTP drought-induced trait. The monitoring of the LA’ evolution in vines under various 450 

drought levels might be a promising HTP tool to identify occurrence of water-stress 451 

combining both morphometric (leaf area) and physiological (water consumption) responses. 452 

RGB and NIR sensors have been used in this study confirming that easily accessible 453 

sensors might support possible implementation of affordable phenotyping (sensu Reynolds 454 

et al., 2018) and assist in developing new tools for precision irrigation in a HTP domain. 455 

The parallel results on leaf gas exchange, plant water status and on efficiency of PSII 456 

collected along with RGB and NIR images under known environmental conditions might 457 

collectively favour the standardisation of phenotyping protocols.  458 
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Figure captions 694 

 695 

Fig. 1. Schematic representation of the plant phenotyping platform showing the internal 696 

distances, the track of the pot on the conveyor toward the image capture chamber (arrows); 697 

the position of the irradiance (PAR), temperature and humidity sensors and the position of 698 

the visible RGB and NIR chambers. A front view of the imaging chambers and conveyor is 699 

reported. 700 

 701 

Fig. 2. Soil moisture (% dry weight) measured during the experiment in vines receiving 702 

75% (□), 50% (∆) and 25% (○) of their daily water consumption and under control (●) 703 

receiving 100%. Note that at days 0 and 3 because there were not significant differences 704 

letters were not reported.  705 

 706 

Fig. 3. Pattern of mean stem water potential (n= 4-5, ±SE) measured pre-dawn and midday 707 

in leaves of grapevines under drought (empty symbol) receiving 75% (□), 50% (∆) and 708 

25% (○) of their daily water consumption and under control irrigation (●) receiving 100% 709 

of daily water consumption. Comparison between treatments at the same time different 710 

letter indicates statistically significant according to Tukey’s HSD test. Note that at days 0 711 

and 3 because there were not significant differences letters were not reported.  712 

 713 

Fig. 4. Average values ±SE (n =4-5) of (A) net photosynthetic rate, (B) transpiration and 714 

(C) stomatal conductance measured in leaves of grapevines under drought receiving 75% 715 

(□), 50% (∆) and 25% (○) of their daily water consumption and under control irrigation (●) 716 

receiving 100% of daily water consumption. Bars indicate the critical HSD values 717 

calculated in each sampling date (Tukey’s HSD test, p<0.05). Note that X-axis labels were 718 

positioned next to the thick to avoid overlapping. 719 

 720 

Fig. 5. Diurnal variations of vapour pressure deficit (VPD), air temperature and irradiance 721 

(PAR) recorded inside the greenhouse during the measurement days.  722 

 723 
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Fig. 6. Correlation between (A) leaf transpiration, (B) net photosynthetic rate, (C) stomatal 724 

conductance, (D)  SII fluorescence and stem water potential measured (○) midday and (●) 725 

predawn in grapevine leaves. 726 

 727 

Fig. 7. Correlation between actual leaf area (y-axis) and projected shoot area (PSA) 728 

calculated through eq. 1 and the resulting linear model (y = 416.11+0.915 × PSA) obtained 729 

after a cross-validation analysis, the grey filled area indicate the upper and lower 95% CI 730 

about the model. In the inset, predicted (LA’) vs measured leaf area (LA). Values of LA’ 731 

were calculated using the fitting linear equation resulting from the main plot on a different 732 

set of 16 vines.  733 

 734 

Fig. 8. Leaf area (cm
2
 p

-1
) estimated in well irrigated (black filled) and under drought (grey 735 

filled) grapevines receiving 75%, 50% and 25% of their daily water consumption. Bars are 736 

±SE (n =4-5). Comparison of treatments at the same time different letter indicates 737 

statistically significant differences (Tukey’s HSD test, p<0.05). Note that control values at 738 

day 11 were missed. 739 

 740 

Fig. 9. Daily vine water consumption normalised per unit of estimated leaf area (g H2O cm
-

741 

2
 d

-1
) plotted against the stem water potential measured at midday. Note that the estimated 742 

leaf area refers to LA’ determined through the equation LA’ = 0.915*PSA+416.11 reported 743 

in Fig. 7.  744 

 745 

Fig. 10. Correlation between stem water potential and (A) Brown, (B) Green, (C) Yellow 746 

fraction and (D) Dark Green classes, of the visible spectrum measured (●) pre-dawn and 747 

(○) midday on canopy of potted grapevines under various water status. Note that fitting 748 

lines refer to pooled midday and pre-dawn data, and that Brown and Dark Green values are 749 

reported in Log10 scale. 750 

 751 

 752 
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Fig. 11. NIR colour class measured (●) pre-dawn and (○) midday in canopy of potted 753 

grapevines under different water status. Midday and pre-dawn stem water potential data 754 

were pooled before the exponential decay fitting (y = 55 + 1.1576 × X -6.5497 × X
2
; 755 

Levenberg Marquardt iteration algorithm) 756 

 757 

 758 

 759 

 760 
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