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Abstract

Let w(x) = e−x
β

xα, w̄(x) = xw(x) and let {pm(w)}m, {pm(w̄)}m be the corresponding sequences of or-
thonormal polynomials. Since the zeros of pm+1(w) interlace those of pm(w̄), it makes sense to construct
an interpolation process essentially based on the zeros of Q2m+1 := pm+1(w)pm(w̄), which is called “Ex-
tended Lagrange Interpolation”. In this paper the convergence of this interpolation process is studied in
suitable weighted L1 spaces, in a general framework which completes the results given by the same authors
in weighted Lpu((0,+∞)), 1 ≤ p ≤ ∞ (see [30], [27]). As an application of the theoretical results, an
extended product integration rule, based on the aforesaid Lagrange process, is proposed in order to compute
integrals of the type∫ +∞

0

f(x)k(x, y)u(x)dx, u(x) = e−x
β

xγ(1 + x)λ, γ > −1, λ ∈ IR+,

where the kernel k(x, y) can be of different kinds. The rule, which is stable and fast convergent, is used in
order to construct a computational scheme involving the single product integration rule studied in [22]. It
is shown that the “compound quadrature sequence” represents an efficient proposal for saving 1/3 of the
evaluations of the function f , under unchanged speed of convergence.

Keywords: Lagrange Interpolation, Orthogonal Polynomials, Approximation by polynomials, Quadrature
rules
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1. Introduction

Let w(x) = e−x
β

xα, w̄(x) = xw(x) be two Generalized Freud-Laguerre weights and let {pm(w)}m,
{pm(w̄)}m be the corresponding sequences of orthonormal polynomials. Denoting by am the Mhaskar-
Rakhmanov-Saff number related to w, the polynomial Q2m+2(x) = pm+1(w)pm(w̄)(am − x) has distinct
zeros [27] and therefore it makes sense to consider the Lagrange polynomial interpolating a given continuous
function f at the zeros of Q2m+2. Such interpolation process belongs to the so-called Extended interpola-
tion processes. Extended interpolation is of interest in the field of the polynomial approximation since it
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introduces new systems of “good” interpolation knots (see for instance [4], [3], [2], [5], [27], [29], [16] and
the references therein) and the research of “well far apart” zeros of orthogonal polynomials is still an open
problem [9]. On the other hand, following a procedure proposed in [26] for the automatic estimate of the
numerical error by extended Gaussian rules, extended interpolation can be used in the numerical evaluation
of the convergence order in interpolation processes (see for instance [4]). Moreover extended matrices of
orthogonal polynomials can be employed, for instance, in the approximation of singular and hypersingular
integral transforms [28], [8].

Here, in particular we consider the “truncated Lagrange polynomial sequence” {L∗2m+2(w, w̄, f)}m, where
L∗2m+2(w, w̄, f) ∈ IP2m+1 interpolates f at the first j = j(m) zeros of Q2m+2 and vanishes at the remaining
ones, being the choice of j depending on a fixed real parameter θ ∈ (0, 1) ([20],[17]). The same interpolation
process has been already studied in weighted Lpu((0,+∞)), where

u(x) = e−x
β

xγ(1 + x)λ, γ > −1

p
, λ ≥ 0,

for 1 ≤ p ≤ ∞ (see [30], [27]). In the present paper we want to complete, in some sense, the aforesaid
results in the case p = 1, by adding and proving some results partially announced in [31]. We will prove
that the sequence {L∗2m+2(w, w̄, f)}m behaves like the best approximation polynomial sequence in suitable
weighted subspaces of L1, for continuous functions f on (0,+∞), having an exponential growth at infinity
and a possible algebraic singularity in 0, i.e. f ∈ Cu (see Section 2.1), under more general assumption w.r.t.
those stated in [30, Theorem 3.4]. Moreover, as an application of the proposed interpolation process, we
determine sufficient and necessary conditions under which the integral operator

I2m+1 : f ∈ Cu →
∫ +∞

0

L∗2m+2(w, w̄, f ;x)k(x, y)u(x)dx

is bounded in a suitable subspace of L1
u. This assures the stability and the convergence of the corresponding

extended product integration rule obtained in order to approximate integrals of the types

I(f, y) :=

∫ +∞

0

f(x)k(x, y)u(x)dx (1)

where the kernel k(x, y) can be of different types and u(x) is a given Generalized Laguerre weight. The
kernel’s class we can manage may contain for instance weakly singular, “nearly singular” and oscillating
functions. Then we introduce an efficient product quadrature scheme obtained by “mixing” the extended
rule with an analogous “one-weight” product rule involving a truncated Lagrange polynomial interpolating
f just at the zeros of pm+1(w, x)(am+1 − x) [22] (see also [20] for β = 1). As we will show, the mixed
quadrature sequence allows to reduce of one third the number of samples of f needed by the one-weight
product sequence.

We point out that the efficient computation of integrals (1) is needed in many contexts, as well in
numerical methods for approximating the solution of integral (systems of integral) equations [18], [20],
[17], [11], [7]. For instance, the Marchenko system in [7] is connected to inverse and direct scattering
problems extensively treated in [32], [10]. The Wiener-Hopf integral equations, in connection with problems
in radiative transfer, and related to the solution of boundary integral equations for planar problems (see
[1] and the references therein, [18], [12]), are another remarkable class of integral equation for which the
quadrature rules we treat here can be useful.

The outline of this paper is as follows. Section 2 contains the notations and some auxiliary results. In
Section 3 we give the main results about the extended Lagrange interpolation process, while in Section 4 we
introduce the extended quadrature rule, together with the study of the stability and the convergence, and
then we describe the compound quadrature sequence. In Section 5 we test the proposed quadrature scheme
by means of some examples, which confirm the theoretical estimates. Finally, Section 6 is devoted to the
proofs of the main results.
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2. Preliminary results and notations

In the sequel C will denote any positive constant which can be different in different formulas. Moreover
C 6= C(a, b, ..) will be used meaning that the constant C is independent of a, b, ... The notation A ∼ B, where
A and B are positive quantities depending on some parameters, will be used if and only if (A/B)±1 ≤ C,
with C a positive constant independent of the above parameters.

Denote by IPm the space of all algebraic polynomials of degree at most m. For any bivariate function
g(x, y), we will denote by gy (gx) the function of the only variable x (y).

2.1. Spaces of functions

For 1 ≤ p < ∞, and u(x) = e−x
β

xγ(1 + x)λ, γ > −1

p
, β >

1

2
, λ ≥ 0, let Lpu(R+) be the space of

measurable functions f s.t. fu ∈ Lp(R+), equipped with the norm

‖f‖Lpu(R+) =

(∫ +∞

0

|f(x)u(x)|pdx
) 1
p

.

Moreover with γ ≥ 0, let L∞u (R+) =: Cu be the space of functions

Cu =

{
f : fu ∈ C0(IR+), lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
,

equipped with the norm ‖f‖Cu = sup
x≥0
|f(x)|u(x).

Strictly related to the weight u there is the so called Mhaskar-Rachmanov-Saff number (shortly MRS
number) [25] which is explicitly defined, for any integer m, as follows [15] (see also [21])

am(u) =

[
22β(Γ (β))2

Γ(2β)

] 1
β
(

1 +
2γ + 1

8m

) 1
β

m
1
β ∼ m

1
β .

Since different weight functions containing the same exponential factor e−x
β

have equivalent MRS numbers,
from now on am will denote any of them. Furthermore, since am ∼ am+1, for the sake of brevity we will
employ only am to denote one of them, without affecting the global discussion.

In the sequel it will be useful the following modulus of continuity [23]

Ωrϕ(f, t)u,p = sup
0<t≤h

‖u∆r
hϕf‖Lp(Irh), r ≥ 1, ϕ(x) =

√
x

Irh = [8r2h2, Ah∗], h∗ =
1

h
2

2β−1

∆r
hϕf(x) =

r∑
k=0

(−1)k
(
r
k

)
f(x+ (r − k)hϕ(x)).

In order to evaluate Ωrϕ(f)u,p we recall that [23]

Ωrϕ(f, t)u,p ≤ sup
0<t≤h

hr‖f (r)ϕru‖Lp(Ir,h), C 6= C(f, t),

if the sup at the right hand side is bounded.
With r ∈ IN and setting ϕ(x) =

√
x, consider the Sobolev-type space

W p
r (u) =

{
f ∈ Lpu([0,+∞)) : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕru‖p <∞

}
,

equipped with the norm
‖f‖Wp

r (u) = ‖fu‖p + ‖f (r)ϕru‖p.
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Denoting by
Em(f)u,p = inf

P∈IPm

‖(f − P )u‖p, 1 ≤ p ≤ ∞,

the error of the best approximation of f ∈ Lpu, we recall the following weaker version of the Jackson Theorem
[23]

Em(f)u,p ≤ C
∫ √

am
m

0

Ωrϕ(f, t)u,p

t
dt, C 6= C(m, f).

Finally, setting log+ x = log(max(1, x)), by L log+ L we denote the space of functions f defined in
(0,+∞) s.t. ‖f log+ f‖1 < +∞.

2.2. Orthogonal Polynomials

Consider the weight

w(x) = e−x
β

xα, α > −1, β >
1

2
,

and let {pm(w)}m be the corresponding sequence of orthonormal polynomials with positive leading coeffi-
cients, i.e.

pm(w, x) = γm(w)xm + terms of lower degree, γm(w) > 0.

Denoting by {xk}m+1
k=1 the zeros of pm+1(w) in increasing order, i.e.

xk < xk+1, k = 1, . . . ,m,

it is known that they lie in the interval
(
C am
m2

, am

)
.

Moreover, setting w̄(x) = xw(x), let {yk}mk=1 be the zeros of the corresponding m-th orthonormal
polynomial pm(w̄). In what follows it is crucial that the zeros of pm+1(w) interlace with those of pm(w̄) [27],
i.e.

xk < yk < xk+1, k = 1, 2, . . . ,m.

Thus we set
z2i−1 := xi, i = 1, 2, . . . ,m+ 1, z2i := yi, i = 1, 2, . . . ,m.

From now on, for any fixed 0 < θ < 1, the integer j will denote the index of the zero of Q2m+1 :=
pm+1(w)pm(w̄) s. t.

zj = zj(m) = min {zk : zk ≥ θam, k = 1, 2, .., 2m+ 1} . (2)

Finally, uniformly in m ∈ N [27]

∆zk = zk+1 − zk ∼
√
am
m

√
zk+1, k = 1, 2, . . . , j.

2.3. A Lagrange interpolation process and a product integration rule

Here we collect some results about the truncated Lagrange process based on Freud-Laguerre zeros intro-
duced in [14] and the related product-quadrature rule proposed in [22].

For a fixed 0 < θ < 1, set

xj∗ = xj∗(m) = min {xk : xk ≥ θam, k = 1, 2, ..,m+ 1}

where xi, i = 1, 2, . . . ,m+ 1 are the zeros of the polynomial pm+1(w). Denoting by χm,θ the characteristic
function of the segment (0, xj∗), let L∗m+2(w, f) be the “truncated Lagrange polynomial” interpolating a
function f at the zeros of pm+1(w, x)(am − x) [14]

L∗m+2(w, f, x) = (am − x)

j∗∑
k=1

`m+1,k(w, x)
f(xk)

am − xk
, `m+1,k(w, x) =

pm+1(w, x)

p′m+1(w, xk)(x− xk)
.
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Setting ∫ +∞

0

f(x)k̃(x, y)U(x)dx, U(x) = e−
xβ

2 xγ(1 + x)λ, γ ≥ 0, λ ≥ 0,

k̃(x, y) defined in R+ × S, S ⊆ R, the following product integration rule was introduced in [22]

I(f, y) = Im+2(f, y) +Rm+2(y), Im+2(f, y) =

j∗∑
i=1

Ai(y)f(xi), (3)

Ai(y) =

∫ +∞

0

`m+1,i(w, x)k̃(x, y)U(x)dx.

Following [22], under the assumptions

sup
y∈S

(
U
√
wϕ

k̃y

)
∈ L log+ L,

√
wϕ

U
∈ L∞, (4)

rule (3) is stable, since for any f ∈ CU (IR+) s.t. ‖fU‖∞ < +∞, it results

sup
y∈S
|Im+2(f, y)| ≤ C‖fU‖∞, C 6= C(m, f). (5)

Moreover
sup
y∈S

Rm+2(y) ≤ C
{
EM∗(f)U + e−Am‖fU‖∞

}
, (6)

where M∗ is a proper fraction of m and 0 < A 6= A(m, f), 0 < C 6= C(m, f).
Finally we recall for the particular case k(x, y) ≡ 1 and U = w, the Truncated Gauss-Laguerre rule [19],

[20]. Indeed, denoting by x̃i, i = 1, 2, . . . ,m the zeros of the polynomial pm(w), for a fixed 0 < θ < 1 let be
h the index defined as

x̃h = x̃h(m) = min {x̃k : x̃k ≥ θam, k = 1, 2, ..,m} . (7)

Then the truncated Gauss-Laguerre rule is∫ +∞

0

f(x)w(x)dx =
h∑
i=1

λm,i(w)f(x̃i) + rm(f), (8)

where {λm,i(w)}mi=1 are the Christoffel numbers w.r.t.w and rm(f) is the remainder term.
For our aims it will be useful the following error estimate [17, Prop. 2.3, p. 1050] which holds for any

f ∈ Cu under the assumption
w

u
∈ L1(0,+∞)

|rm(f)| ≤ C
[
E
M̃

(f)u + e−Am‖fu‖∞
]
, (9)

where A, C are positive constants independent of m, f and M̃ =

⌊
m

(
θ

1 + θ

)β⌋
∼ m.

3. Extended Lagrange interpolation

Denote by L2m+2(w, w̄, f) the Lagrange polynomial interpolating a given function f at the zeros of
Q2m+2(x) = Q2m+1(x)(am − x) i.e.

L2m+2(w, w̄, f ; zi) = f(zi), i = 1, 2, . . . , 2m+ 1, L2m+2(w, w̄, f ; am) = f(am).
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L2m+2(w, w̄, f ;x) can be expressed in the following form

L2m+2(w, w̄, f ;x) =

2m+1∑
k=1

lk(x)f(zk) + l2m+2(x)f(am),

where

lk(x) =
Q2m+1(x)

Q′m+1(zk)(x− zk)

(am − x)

(am − zk)
, k = 1, 2, . . . , 2m+ 1,

l2m+2(x) =
Q2m+1(x)

Q2m+1(am)
.

Denoted by χ̃m,θ the characteristic function of the segment (0, zj) (zj defined in (2)), let us introduce the
Lagrange polynomial

L∗2m+2(w, w̄, f) := L2m+2(w, w̄, fχ̃m,θ).

The operator L2m+2(w, w̄) projects Cu onto IP2m+1, while L∗2m+2(w, w̄) does not. However, letting

P∗2m+1 = {q ∈ IP2m+1 : q(zi) = q(am) = 0, zi > zj} ⊂ IP2m+1,

with zj defined in (2), we have that L∗2m+2(w, w̄) is a projector of Cu onto P∗2m+1. Moreover,
⋃
m

P∗2m+1 is

dense in Cu. In fact, setting
Ẽ2m+1(f)u := inf

P∈P∗2m+1

‖(f − P )u‖∞,

the following result was proved in [22]

Lemma 3.1. For any function f ∈ Cu,

Ẽ2m+1(f)u ≤ C
{
EM (f)u + e−Am‖fu‖∞

}
, (10)

where M =

⌊
2m

(
θ

1 + θ

)β⌋
and the constants 0 < A 6= A(m, f), 0 < C 6= C(m, f).

In view of (10), Ẽ2m+1(f)u can be estimated by the best approximation error EM (f)u, where M is a
proper fraction of 2m.

We point out that the “truncation” in the Lagrange processes based on the zeros of the Generalized
Laguerre sequence {pm(w)}m was introduced and studied in [14] (see also [24]) and successively applied also
to the extended Lagrange interpolation in [27].

Now we are able to state our main results about the stability and the convergence of the extended
Lagrange process.

Theorem 3.1. Consider the weights u(x) = xγ(1 + x)λe−x
β

, w(x) = xαe−x
β

and ρ(x) =
xγ

(1 + x)µ
e−δx

β

,

with γ, µ ≥ 0, λ > 1, α > −1, δ ≥ 1, β >
1

2
. Under the assumptions

ρ

wϕ2
∈ L log+ L,

wϕ2

u
∈ L∞(R+), (11)

we have for any f ∈ Cu
‖L∗2m+2(w, w̄, f)ρ‖1 ≤ C‖fu‖∞, (12)

with 0 < C 6= C(m, f).
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Remark. Conditions (11) are satisfied, if

α+ 1− λ < γ ≤ α+ 1,

and only one of the following cases holds true:

1. δ = 1, µ > γ − α,
2. δ > 1, µ ≥ 0.

That means the case δ = 1 and µ = 0 is not included. Nevertheless this case was already treated in [30, Th.
3.4].

Next Theorem is the key in proving our successive results on the quadrature rules.

Theorem 3.2. Let k(x, y) be a function defined in R+ × S. Moreover let u(x) = e−x
β

xγ(1 + x)λ, w(x) =

xαe−x
β

, with γ, λ ≥ 0, α > −1, β >
1

2
. If ky, u and w satisfy the following assumptions

sup
y∈S

(
kyu

wϕ2

)
∈ L log+ L,

wϕ2

u
∈ L∞(R+), (13)

then for any f ∈ Cu it is
sup
y∈S
‖L∗2m+2(w, w̄, f)kyu‖1 ≤ C‖fu‖∞, (14)

with 0 < C 6= C(m, f). Moreover, assuming ky(x) ∈ L1(IR+) for any y ∈ S and holding (14), it follows

sup
y∈S

(
kyu

wϕ2

)
∈ L1(IR+). (15)

Remark. We outline that (14) is a homogeneous inequality since the same weight appears on both sides
of it. On the other hand, if ky is a constant function, Theorem 3.2 doesn’t hold true and this means that it
is not possible to have an inequality of the type (12) with the same weight on the left and the right hand
sides.

We conclude this Section stating an expression of the polynomial L∗2m+2(w, w̄, f), which will be useful
in what follows:

L∗2m+2(w, w̄, f, x) = pm(w̄, x)(am − x)

j∑
k=1

`m+1,k(w, x)
f(xk)

pm(w̄, xk)(am − xk)
(16)

+ pm+1(w, x)(am − x)

j∑
k=1

`m,k(w̄, x)
f(yk)

pm+1(w, yk)(am − yk)
(17)

+ δm,j
pm+1(w, x)pm(w̄, x)

pm+1(w, am)pm(w̄, am)
f(am), (18)

where `m+1,k(w) and `m,k(w̄) are the fundamental Lagrange polynomials related to the zeros of pm+1(w)
and pm(w̄) respectively, and δm, j denotes the Kronecker delta.

4. Product integration rules

4.1. The extended quadrature rule

Now we propose a product integration rule based on the introduced extended interpolation process. Let
us consider integrals of the type

I(f, y) :=

∫ +∞

0

f(x)k(x, y)u(x)dx (19)
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with k(x, y) and u(x) defined as in Theorem 3.2.
Approximating f by the Lagrange polynomial L∗2m+2(w, w̄, f), the following “extended product integration

rule” can be deduced

I(f, y) = Σ2m+2(f, y) + e2m+2(f, y), Σ2m+2(f, y) =

j∑
i=1

Ai(y)f(zi), (20)

Ai(y) =

∫ +∞

0

li(x)k(x, y)u(x)dx.

The rule is exact for any polynomial P ∈ P∗2m+1. Now we prove that by (20) we are able to approximate
integrals with “problematic” kernels (for instance highly oscillating, weakly singular, etc), with a rate of
convergence only depending on f , since the error behaves like the best polynomial approximation of f ∈ Cu.
Thus, by Theorem 3.2, the following result can be deduced

Theorem 4.1. Assume that the functions k(x, y), defined in R+ × S, is not a constant. Moreover let

u(x) = e−x
β

xγ(1 + x)λ, w(x) = xαe−x
β

, with γ, λ ≥ 0, α > −1, β >
1

2
. If ky, u and w satisfy (13), then

for any f ∈ Cu
sup
y∈S
|Σ2m+2(f, y)| ≤ C‖fu‖∞, (21)

and
sup
y∈S
|e2m+2(f, y)| ≤ C

[
EM (f)u + e−Am‖fu‖∞

]
, (22)

where in both the estimates C 6= C(m, f) and M is a proper fraction of 2m.

We point out that by (21) it is no hard to deduce the stability of the rule (20), i.e.

sup
y∈S

j∑
i=1

|Ai(y)|
u(zi)

< +∞.

Finally, we state the following equivalent expression of Σ2m+2(f, y), easily deducible by (16),

Σ2m+2(f, y) =

j∑
i=1

Bi(y)f(xi) +

j∑
i=1

Ci(y)f(yi) + δm,jD2m+2(y)f(am), (23)

where

Bi(y) =
1

pm(w̄, xk)(am − xk)

∫ +∞

0

pm(w̄, x)(am − x)`m+1,i(w, x)k(x, y)u(x)dx,

Ci(y) =
1

pm+1(w, yk)(am − yk)

∫ +∞

0

pm+1(w, x)(am − x)`m,i(w̄, x)k(x, y)u(x)dx,

D2m+2(y) =
1

pm+1(w, am)pm(w̄, am)

∫ +∞

0

pm(w̄, x)pm+1(w, x)k(x, y)u(x)dx.

4.2. A mixed quadrature scheme

Now we observe that setting

k̃(x, y) = k(x, y)e−x
β/2, U(x) = e−x

β/2xγ(1 + x)λ, (24)

integrals in (19) can be approximated also by the sequence of product integration rules {Im(f)}m defined
in (3).
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As we will show, under suitable “mixed” assumptions for the involved weights it is possible to obtain that
both the rules (3) and (20) are stable and convergent with a comparable rate of convergence. For this reason
we propose to construct a new sequence of quadrature rules, by “composing” the sequences {Im+2(f, y)}m
and {Σ2m+2(f, y)}m, in order to approximate integrals of type (19) with a reduced computation of function
samples, but an unchanged speed of convergence. To be more precise, for a fixed m, we consider the sequence
Im+2(f), Σ2m+2, I4m+2(f),Σ8m+2, I16m+2(f),Σ32m+2, . . . in which, in the computation of the “extended”
quadrature rule (20), are reused the samples of the function, used for constructing the product rule (3) of
lower degree. In details, for any given q ∈ IN, consider the sequences

{I2km+2(f)}2q−1k=0 , {I22km+2(f),Σ22k+1m+2(f)}q−1k=0.

Assuming that no truncation is performed, i.e. j is equal to the order of the quadrature rule and the same
holds for j∗ (that is the worst case), then the first sequence requires 4q + m(22q − 1) evaluations of the

function f , while the second one only 2q +
2

3
m(22q − 1). This means that, using the mixed sequence, more

then a third of the function evaluations is spared.
Setting

T2nm+2(f) =

{
I2nm+2(f), n = 0, 2, . . .
Σ2n+1m+2(f), n odd

,

the following results about the stability and the convergence of the mixed sequence holds true

Theorem 4.2. Under the assumptions

sup
y∈S

(
u

wϕ2
ky

)
∈ L log+ L,

√
wϕ

U
∈ L∞(R+) (25)

we have for any f ∈ Cu and any fixed n ∈ N,

sup
y∈S
|T2nm+2(f, y)| ≤ C‖fu‖∞

and
sup
y∈S
|I(f, y)− T2nm+2(f, y)| ≤

[
E
M̂

(f)u + e−Am‖fu‖∞
]
,

where M̂ is a proper fraction of 2nm+ 2 and C 6= C(m, f).

Remark As the numerical tests will show, the extended product rule converges a little bit faster than
the one-weight product rule. Since the rate of convergence of both the rules is the same, we conjecture that
the better performance of the extended rule is due to the greater number of quadrature nodes belonging to
the truncated interval (0, amθ).

5. Numerical Tests

In this section we exhibit some numerical tests showing the effectiveness of the mixed scheme obtained by
combining the extended product rule (20) with the one-weight product rule (3), according to the settings in
(24). Moreover, in Examples 2 and 3 we compare our results with those achieved by means of the Truncated
Gaussian rule (8), reporting the values obtained for increasing values of m and the corresponding function
evaluation numbers h, as defined in (7). We don’t use the Gauss-Laguerre rule in Example 1, since the
integrand function fky doesn’t belong to Cu, which is the assumption for holding estimate (9).

Since w(x) = e−x
β

xα, is not a classical weight, the coefficients of the three term recurrence relation for
{pm(w)}m are generally unknown, except some special cases. To compute them, here we used the software
package OrthogonalPolynomials by Cvetkovic and G.V. Milovanovic (see [6]) implemented in Wolfram
Mathematica Language. Since the involved algorithm suffers of ill conditioning, the use of the extended
arithmetic is required.
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All the other computations have been performed in double-machine precision (eps ≈ 2.22044e− 16).
Moreover we point out that the “truncation” indices j and j∗ in (20) and (3), respectively, have been

empirically detected by means of the tests

j = min
1≤k≤2m+1

|f(zk)Ak(y)| ≥ eps

and
j∗ = min

1≤k≤m+1
|f(xk)Ak(y)| ≥ eps.

In each example we approximate the given integral for different values of the free parameter y, producing
Tables in which the first column contains the number # feval. of the function evaluations needed in the
corresponding quadrature sum which is indicated in the second column, and the corresponding obtained
values in the following columns.

Example 5.1. For any fixed y ∈ S = R− {0}, consider the following integral with a weakly singular kernel

I1(f, y) =

∫ +∞

0

sin(x)

|x− y|0.5(x2 + y2)
e−x
√
xdx.

Therefore

f(x) = sin(x), k(x, y) =
1

|x− y|0.5(x2 + y2)
,

and the parameter of the weights are:

γ = 0.5, α = −0.5, λ = 0.

Since the function f is very smooth, the convergence is very fast, as shown in Table 1, for different values of
y. We point out that the machine precision is attained for each value of y with only 57 function’s evaluations.

Table 1: Evaluation of I1(f, y) by the mixed product integration scheme for y = 1/4, 1/2, 2.

# feval. Rule y = 1/4 y = 1/2 y = 2
6 I6 1.8 1. 1.3e− 1
9 Σ10 1.81 1.12 1.31e− 1
16 I18 1.81616 1.122 1.318e− 1
27 Σ34 1.816167 1.122013 1.3188556383e− 1
38 I66 1.81616744 1.12201318362 1.31885563832e− 1
57 Σ130 1.8161674475678 1.12201318362232 1.31885563832776e− 1

Example 5.2. For any fixed y ∈ S = R− {0}, consider the integral

I2(f, y) =

∫ +∞

0

cos(1 + x)
sin(yx)

x2 + y2
e−x(1 + x)

1
4 4
√
xdx.

Therefore

f(x) = cos(1 + x), k(x, y) =
sin(yx)

x2 + y2
,

and the considered parameters of the weights are:

γ = 0.25, α = 0, λ = 0.25.

Also in this case the function f is very smooth and consequently the convergence is very fast, as shown
in Table 2. We observe that for “large” m the Gauss-Laguerre rule provides satisfactory results till y is
“small”, while it gives completely wrong results for y = 20.

10



Table 2: Evaluation of the integral I2(f, y) by the mixed product integration scheme for y = 1/2, 6, 20

# feval. Rule y = 1/2 y = 6 y = 20
8 I10 −7.85e− 2 1.52e− 3 2e− 5
17 Σ20 −7.85e− 2 1.512e− 3 2.81e− 5
25 I34 −7.8570e− 2 1.5120e− 3 2.8189e− 5
39 Σ66 −7.85706e− 2 1.51207123e− 3 2.8189743e− 5
56 I130 −7.8570663e− 2 1.51207123e− 3 2.8189743e− 5
80 Σ258 −7.85706635680e− 2 1.512071235722e− 3 2.81897434420e− 5

Table 3: Evaluation of I2(f, y) by the Gauss-Laguerre rule y = 1/2, 6, 20

h m y = 1/2 y = 6 y = 20
19 32 −7.85e− 2 4.38e− 3 4.96e− 4
27 64 −7.8570e− 2 1.e− 3 3.77e− 4
39 128 −7.8570663e− 2 1.5e− 3 3.49e− 4
56 256 −7.85706635680e− 2 1.5120712e− 3 3.62e− 5
79 512 −7.857066356804e− 2 1.512071235722e− 3 −2.57e− 4
79 1024 −7.857066356804e− 2 1.512071235722e− 3 2.87e− 5

Example 5.3. For any fixed y ∈ S = R− {0} consider the integral

I3(f, y) =

∫ +∞

0

arctan(x)
7
2

cos(xy)

x2 + y2
e−x(1 + x)1.001dx.

Therefore

f(x) = arctan(x)
7
2 , k(x, y) =

cos(xy)

x2 + y2
,

and the parameters of the weights are

γ = 0, α = 0, λ = 1.001.

In this case the function f ∈ W∞7 (u) and, according to the theoretical estimate, we should obtain 7 exact
digits for m = 256. However, inspecting Table 4 where the results obtained for different values of y ∈ S are
shown, at most 10 exact digits are achieved.

Also in this case the performance of the Gaussian rule is worst then the product rule for larger value of
y.

Example 5.4. We conclude the section by proposing a test in which we compare the behavior of the two
sequences {Im(f)}m and {Σm(f)}m, for the same choices of the polynomial degrees. For any fixed y ∈ S =
R− {0} consider the integral

I4(f, y) =

∫ +∞

0

log(1 + x)
cos(xy)

(x2 + y2)2
e−x
√
xdx.

Table 4: Evaluation of I3(f, y) by the mixed product integration scheme for y = 1/4, 1/2, 2

# feval. Rule y = 1/4 y = 1/2 y = 10
8 I10 4.7e− 1 2.8e− 1 1.9e− 4
17 Σ20 4.74e− 1 2.83e− 1 1.94e− 4
26 I34 4.747 2.838e− 1 1.943e− 4
40 Σ66 4.7477e− 1 0.28381e− 1 1.9436e− 4
53 I130 4.747794e− 1 2.8381962e− 1 1.9436514e− 4
82 Σ258 4.747794014e− 1 2.838196282− 1 1.94365142e− 4
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Table 5: Evaluation of I3(f, y) by the Gauss-Laguerre rule for y = 1/4, 1/2, 6

h m y = 1/4 y = 1/2 y = 6
8 8 4.7e− 1 2.e− 1 2.6e− 2
14 16 4.747e− 1 2.83e− 1 2.2e− 2
20 32 4.7477 2.838e− 1 −1.85e− 4
29 64 4.7477e− 1 0.283819e− 1 1.9e− 4
41 128 4.74779e− 1 2.8381962e− 1 1.9436514e− 4
57 256 4.74779401e− 1 2.83819628e− 1 1.9436514e− 4
81 512 4.747794014e− 1 2.838196282e− 1 1.9436514e− 2

Here

f(x) = log(1 + x), k(x, y) =
cos(xy)

(x2 + y2)2
,

and the parameters of the weights are:

γ = 0.5, α = −0.5, λ = 0.

As the tests included in Table 6 show, the extended product rule converges a little bit faster than the one-

Table 6: Evaluation of the integral I4(f, y) for y = 6, 16, 20.

m # feval. Im # feval. Σm(f)
8 8 −1.0e− 5 8 −1.0e− 5

y = 6 16 12 −1.04e− 5 15 −1.040e− 5
32 17 −1.0404e− 5 23 −1.04049e− 5
64 25 −1.040495e− 5 34 −1.0404952e− 5
128 35 −1.04049521e− 5 49 −1.0404952100e− 5

m # feval. Im # feval. Σm(f)
8 8 −1.6e− 8 8 −1.6e− 8

y = 16 16 12 −1.6e− 8 15 −1.65e− 8
32 17 −1.656e− 8 23 −1.6561e− 8
64 25 −1.6561e− 8 34 −1.6561777e− 8
128 35 −1.6561e− 8 49 −1.656177724e− 8

m # feval. Im # feval. Σm(f)
8 8 −3.7e− 9 8 −3.7e− 9

y = 20 16 12 −3.7e− 9 15 −3.79e− 9
32 17 −3.79e− 9 23 −3.7922e− 9
64 25 −3.7922e− 9 34 −3.7922782e− 9
128 35 −3.7922e− 9 49 −3.79227826e− 9

weight product rule and as said before, being the rates of convergence comparable, the conjecture is that the
better performance of the extended rule depend on the greater number of quadrature nodes belonging to the
truncated interval (0, amθ).
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6. The Proofs

We recall some polynomial inequalities that we need in the proofs.

Lemma 6.1 (Mastroianni-Szabados). Let A > 0 Am =

[
A
am
m2

, am

(
1− A

m
2
3

)]
and 1 ≤ p ≤ ∞. Then, for

any polynomial Pm ∈ IPm there exists a constant 0 < C = C(A), C 6= C(m,Pm, p) such that(∫ +∞

0

|Pm(x)u(x)|pdx
) 1
p

≤ C
(∫

Am

|Pm(x)u(x)|pdx
) 1
p

Lemma 6.2. Let x ∈ [z1, z2m+1] and d = d(x) ∈ {1, . . . , 2m+ 1} be an index of a zero of Q2m+1 closest to
x. Then, for some positive constant C 6= C(m,x, d), we have

1

C

(
x− zd

zd − zd±1

)2

≤ |Q2m+1(x)|e−x
β
(
x+

am
m2

)α+1
√
|am − x|+ amm− 2

3 ≤ C
(

x− zd
zd − zd±1

)2

. (26)

Proof. The lemma easily follows by estimate [22, (30), p. 608] (see also [13])

1

C

(
x− xd̃

xd̃ − xd̃±1

)2

≤ p2m(x)e−x
β
(
x+

am
m2

)α+ 1
2

√
|am − x|+ amm−

2
3 ≤ C

(
x− xd̃

xd̃ − xd̃±1

)2

. (27)

being x ∈ [x1, xm] and d̃ = d̃(x) ∈ {1, . . . ,m} be an index of a zero of pm(w) closest to x, and the positive
constant C 6= C(m,x, d̃).

In particular by (27) it follows

|Q2m+1(x)|u(x) ≤ C
√
am

u(x)

w(x)ϕ2(x)
,

am
m2
≤ x ≤ θam. (28)

Lemma 6.3. Let be Q2m+1 = pm+1(w)pm(w̄). With {zk}2m+1
k=1 the zeros of Q2m+1, it is

1

|Q′2m+1(zk)|u(zk)
∼
√
am

w(zk)ϕ2(zk)

u(zk)
∆zk, zk ≤ zj . (29)

Proof. Since

|Q′2m+1(zk)|u(zk) ≥ C
zγ−α−1k√
am∆zk

(1 + zk)λ, zk ≤ zj , C 6= C(m)

was proved in [27], we have to prove the converse inequality. Assume zk = x k+1
2
. By (27) we deduce

|pm(w̄; zk)|
√
w̄(zk) ≤ C

∆zk 4
√
amzk

, zk ≤ zj

and taking into account

|p′m+1(w; zk)|
√
w(zk) ≤ C

∆zk 4
√
amzk

, zk ≤ zj

we conclude

|Q′2m+1(zk)|u(zk) ≤ C
zγ−α−1k√
am∆zk

(1 + zk)λ, zk ≤ zj , C 6= C(m)

and the Lemma follows.
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Lemma 6.4. Let 1 ≤ p < +∞, vσ(x) = xσ ∈ Lp,τ > 0 and let be zj defined in (2), with θ ∈ (0, 1) fixed.
For any polynomial P ∈ IP2m+1+ml, l ∈ N fixed, there exist θ1 ∈ (θ, 1) such that(

j∑
k=1

(
|P (zk)vσ(zk)|

(1 + zk)τ

)p
∆zk

)1/p

≤

(∫ θ1am

z1

(
|P (x)vσ(x)|

(1 + x)τ

)p
dx

)1/p

being 0 < C 6= C(m).

We omit the proof since it is very similar to that of Lemma 4.3 in [14].
Finally let us state a formula for the inversion of the integration order for the Hilbert transform and a

related estimate in L1 . Denote by HB(g, t) the Hilbert transform of the function g on the compact set B,
i.e.

HB(g, t) =

∫
B

g(x)

x− t
dx.

If G ∈ L∞(B), F log+ F ∈ L1(B), then∫
B

GHB(F ) = −
∫
B

FHB(G), (30)

and
‖GHB(F )‖1 ≤ C + ‖F log+ F‖1, C 6= C(F ). (31)

Proof of Theorem 3.1. Denote by gm = sgn(L∗2m+2(w, w̄, f)) and set

Aθ̂m :=
[
C am
m2

, θ̂am

]
,

where θ < θ̂ and θ̂ > zj , by Lemma 6.1 we get

‖L∗2m+2(w, w̄, f)ρ‖1 ≤ C
∫
Am

L∗2m+2(w, w̄, f, x)ρ(x)gm(x)dx

= C

{∫
A
θ̂m

+

∫
(Am\Aθ̂m)

}
L∗2m+2(w, w̄, f, x)ρ(x)gm(x)dx =: D1 +D2. (32)

Setting

Π(t) =

∫
A
θ̂m

Q2m+1(x)(am − x)q(x)−Q2m+1(t)(am − t)q(t)
(x− t)

gm(x)ρ(x)

q(x)
dx

where q is an arbitrary polynomial of degree ml, with l a fixed integer, D1 can be expressed as follows

D1 = C

∣∣∣∣∣
j∑

k=1

f(zk)

Q′2m+1(zk)(am − zk)
Π(zk)

∣∣∣∣∣
and by (29) we have

D1 ≤ C
‖fu‖∞√
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)
|Π(zk)|.

Since Π ∈ IP2m+1+ml, by Lemma 6.4 with p = 1 there exists θ1 < θ̂ with θ < θ1, such that

D1 ≤ C ‖fu‖∞√
am

∫ θ1am

z1

w(t)ϕ2(t)

u(t)
|Π(t)|dt

14



and setting

Fm(x) := Q2m+1(x)(am − x)gm(x)ρ(x), Gm(x) :=
gm(x)ρ(x)

q(x)
,

we have

D1 ≤ C ‖fu‖∞√
am

{∫
A
θ̂m

w(t)ϕ2(t)

u(t)
|HAθm(Fm, t)| dt

+

∫
A
θ̂m

w(t)ϕ2(t)

u(t)

∣∣Q2m+1(t)(am − t)q(t)HA
θ̂m

(Gm, t)
∣∣ dt}

=: C‖fu‖∞ {J1 + J2} . (33)

To evaluate J1, by (30)

J1 =
C
√
am

∣∣∣∣∣
∫
A
θ̂m

Fm(t)HA
θ̂m

(
σ1
wϕ2

u
, t

)
dt

∣∣∣∣∣ ,
where σ1 = sgn

(
HA

θ̂m
(Fm)

)
. Since by (28)

|Fm(x)| ≤ C
√
am

ρ(t)

w(t)ϕ2(t)
,

setting σ2 = sgn

(
HAθm

(
σ1
wϕ2

u

))
, it follows

J1 ≤ C
∫
Aθm

σ1(t)
w(t)ϕ2(t)

u(t)

∣∣∣∣HA
θ̂m

(
σ2

ρ

wϕ2
, t

)∣∣∣∣ dt
≤ C

∥∥∥∥ ρ

wϕ2
log+ ρ

wϕ2

∥∥∥∥
1

≤ C, (34)

having used (31) under the assumptions (11).

Now we estimate J2. Recalling that there exists a polynomial q ∈ IPml, s. t. q(x) ∼ e−x
β

xγ [23], and by
(28) we get

|Q2m+1(t)(am − t)q(t)| ≤ C
√
am

u(t)

w(t)ϕ2(t)(1 + t)λ

and therefore

J2 ≤ C
∫
A
θ̂m

1

(1 + t)λ
∣∣HA

θ̂m
(Gm, t)

∣∣ dt = C

∣∣∣∣∣
∫
A
θ̂m

Gm(t)HA
θ̂m

(
σ3

(1 + ·)λ
, t

)
dt

∣∣∣∣∣ ,
where σ3 = sgn

(
HA

θ̂m
(Gm)

)
. Since under the assumptions

|Gm(t)| ≤ C e
−(δ−1)tβ

(1 + t)µ
≤ C,

and
1

(1 + x)λ
∈ L log+ L, by (31)

J2 ≤ C (35)

Combining (34),(35) with (33) it follows

D1 ≤ C‖fu‖∞. (36)
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In order to estimate D2 we start from

D2 =

∫ am

θ̂am

L∗2m+2(w, w̄, f, x)ρ(x)gm(x)dx

=

∣∣∣∣∣
j∑

k=1

f(zk)

(am − zk)Q′2m+1(zk)

∫ am

θ̂am

Q2m+1(x)(am − x)

x− zk
ρ(x)gm(x)dx

∣∣∣∣∣
and by (29) we have

D2 ≤ C
‖fu‖∞√
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∫ am

θ̂am

|Q2m+1(x)|(am − x)

|x− zk|
ρ(x)dx.

Since |x− zk| ≥ (θ̂ − θ)am and using

(am − x)|Q2m+1(x)|u(x) ≤ C
√
am

u(x)

w(x)ϕ2(x)
,

we have

D2 ≤ C
‖fu‖∞
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∫ am

θ̂am

u(x)ρ(x)

w(x)ϕ2(x)
dx

and by Lemma 6.4 with p = 1, and with θ < θ1 < θ̂, we have

D2 ≤ C ‖fu‖∞
am

∫ θ1am

z1

w(t)ϕ2(t)

u(t)
dt

∫ am

θ̂am

x2γe−δx
β

(1 + x)λ−µdx

≤ C‖fu‖∞
∥∥∥∥wϕ2

u

∥∥∥∥
∞
≤ C‖fu‖∞ (37)

where last bound holds taking into account the second assumption in (11).
The thesis follows by combining (36), (37) with (32).

Proof of Theorem 3.2. First we prove that the conditions in (13) imply (14).
Denoting by gm = sgn(L∗2m+2(w, w̄, f)ky), we get

‖L∗2m+2(w, w̄, f)kyu‖1 =(∫ am

0

+

∫ a2m

am

+

∫ +∞

a2m

)
L∗2m+2(w, w̄, f, x)ky(x)gm(x)u(x)dx

=: I1(y) + I2(y) + I3(y) (38)

where a2m is the M-R-S number w.r.t. the degree 2m.
Evaluate I1(y). Setting

Π∗(t) =

∫ am

0

Q2m+1(x)(am − x)q(x)−Q2m+1(t)(am − t)q(t)
(x− t)

gm(x)u(x)ky(x)

q(x)
dx,

being q an arbitrary polynomial of degree ml, l a fixed integer, by (29) we have

I1(y) =

∣∣∣∣∣
j∑

k=1

f(zk)

Q′2m+1(zk)(am − zk)
Π∗(zk)

∣∣∣∣∣ ≤ C ‖fu‖∞√
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)
|Π∗(zk)|.
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Taking into account Π∗ ∈ IP2m+1+ml, we use Lemma 6.4 with p = 1, and with θ1 > θ, s.t. θam < zj < θ1am,
obtaining

I1(y) ≤ C ‖fu‖∞√
am

∫ θ1am

z1

w(t)ϕ2(t)

u(t)
|Π∗(t)|dt.

Setting

Fm,y(t) = Q2m+1(t)e−t
β
(
t+

am
m2

)α+1

(am − t)
gm(t)ky(t)u(t)

e−tβ
(
t+ am

m2

)α+1 ,

Gm,y(t) =
gm(t)ky(t)u(t)

q(t)
,

we have

I1(y) ≤ C ‖fu‖∞√
am

{∫ θ1am

z1

w(t)ϕ2(t)

u(t)

∣∣H[0,am](Fm,y, t)
∣∣ dt

+

∫ θ1am

z1

w(t)ϕ2(t)

u(t)

∣∣Q2m+1(t)(am − t)q(t)H[0,am](Gm,y, t)
∣∣ dt}

=: C‖fu‖∞ {I1,1(y) + I1,2(y)} . (39)

By (30) under the second assumption in (13)

I1,1(y) =
C
√
am

∣∣∣∣∫ am

0

Fm,y(t)H[0,am]

(
σ1
wϕ2

u
, t

)
dt

∣∣∣∣ ,
where σ1 = sgn

(
H[0,am] (Fm,y)

)
. Since by (27) we deduce

|Fm,y(t)| ≤ C
√
am

u(t)

w(t)ϕ2(t)
|ky(t)|, 0 ≤ t ≤ am,

setting σ2 = sgn

(
H[0,am]

(
σ1
wϕ2

u

))
, it follows

I1,1(y) ≤ C
∫ am

0

u(t)

w(t)ϕ2(t)
|ky(t)|

∣∣∣∣H[0,am]

(
σ1
wϕ2

u
, t

)∣∣∣∣ dt
=

∣∣∣∣∫ am

0

w(t)ϕ2(t)

u(t)
H[0,am]

(
σ2
kyu

wϕ2
, t

)
dt

∣∣∣∣ ≤ C ∥∥∥∥ kyuwϕ2
log+

(
kyu

wϕ2

)∥∥∥∥
1

and therefore by (31) under the assumptions (13)

sup
y∈S

I1,1(y) ≤ C. (40)

In order to estimate I1,2 by a result in [23], we choose the polynomial q ∈ IPml, such that q(x) ∼ e−x
β

xα+1

and by (28) again, we have for any x ∈ [z1, θ1am]

|Q2m+1(t)(am − t)q(t)| ≤ C
√
am.

Therefore
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I1,2(y) ≤ C
∫ θ1am

z1

w(t)ϕ2(t)

u(t)

∣∣H[0,am](Gm,y, t)
∣∣ dt

= C

∣∣∣∣∣
∫ θ1am

z1

Gm,y(t)H[0,am]

(
σ3wϕ

2

u
, t

)
dt

∣∣∣∣∣ ,
where σ3 = sgn

(
H[0,am](Gm,y)

)
.

Since

|Gm,y(t)| ≤ C ky(t)u(t)

w(t)ϕ2(t)
,

using (31) once again, under the assumptions (13), we get

sup
y∈S

I1,2(y) ≤ C sup
y∈S

∥∥∥∥ kyuwϕ2
log+

(
kyu

wϕ2

)∥∥∥∥
1

≤ C. (41)

Combining (40),(41) with (39) it follows

sup
y∈S

I1(y) ≤ C‖fu‖∞. (42)

Now we estimate I2(y). By (29),

I2(y) ≤
∫ a2m

am

|L∗2m+2(w, w̄, f, x)ky(x)|u(x)dx

≤ C ‖fu‖∞√
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∫ a2m

am

|Q2m+1(x)k(x, y)|(x− am)u(x)

x− zk
dx

and being x− zk > (1− θ)am,

∥∥∥∥wϕ2

u

∥∥∥∥
∞
≤ C and

j∑
k=1

∆zk ≤ am, we get

I2(y) ≤ C ‖fu‖∞√
am

∫ a2m

am

|Q2m+1(x)k(x, y)|(x− am)u(x)dx.

Now, by (27)

|Q2m+1(x)|(x− am)u(x) ≤ C (x− am)√
x− am + amm−

2
3

u(x)

w(x)ϕ2(x)

it follows

I2(y) ≤ C‖fu‖∞
∫ +∞

0

|k(x, y)| u(x)

w(x)ϕ2(x)
dx ≤ C‖fu‖∞, (43)

under the first assumption in (13).
At least we estimate I3(y). By (29) we have

I3(y) ≤
∫ +∞

a2m

|L∗2m+2(w, w̄, f, x)ky(x)|u(x)dx

≤ C ‖fu‖∞√
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∣∣∣∣∫ +∞

a2m

Q2m+1(x)(am − x)u(x)ky(x)

x− zk
dx

∣∣∣∣
≤ C ‖fu‖∞√

am
max
x≥a2m

|Q2m+1(x)
√
x− amw(x)ϕ2(x)|

×
j∑

k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∫ +∞

a2m

|ky(x)| u(x)

w(x)ϕ2(x)

√
x− am
x− zk

dx.
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Since x− zk ≥ a2m − am ≥ Cam, and by using [23]

max
x≥a2m

|Q2m+1(x)(am − x)
1
2w(x)ϕ2(x)| ≤ Ce−Am max

x≤θam
|Q2m+1(x)(am − x)

1
2w(x)ϕ2(x)| ≤ C,

we get

I3(y) ≤ C ‖fu‖∞
am

j∑
k=1

∆zk
w(zk)ϕ2(zk)

u(zk)

∫ +∞

a2m

|ky(x)|u(x)

wϕ2(x)
dx,

and taking into account the assumptions (13), we can conclude

sup
y∈S

I3(y) ≤ C‖fu‖∞
∫ +∞

a2m

w(t)ϕ2(t)

u(t)
dt ≤ C‖fu‖∞. (44)

Estimate (14) follows by combining (42), (43), (44) with (38).
Now we prove that (14) implies (15). Consider a function f0(x) s.t.

f0(zk) =

[
sgn(Q′2m+1(zk)(x− zk)), 0 < zk ≤ 1
0, zk > 1

and ‖f0‖ ≤ 1. Therefore we have for x ∈ (0, 1),

|L∗2m+2(w, w̄, f0, x)ky(x)|u(x) =
∑

z1≤zk≤1

am − x
am − zk

|Q2m+1(x)|
|Q′2m+1(zk)(x− zk)|

|ky(x)|u(x)

and by (29)

|L∗2m+2(w, w̄, f0, x)ky(x)|u(x) ≥ C
√
am − x|Q2m+1(x)||ky(x)|u(x)∑

z1≤zk≤1

∆zk
|x− zk|

√
am − x√
am − zk

w(zk)ϕ2(zk).

Since
√
am − x ∼

√
am − zk and |x− zk| ≤ 1 we get

|L∗2m+2(w, w̄, f0, x)ky(x)|u(x) ≥ C
√
am − x|Q2m+1(x)||ky(x)|u(x)

∑
1
2≤zk≤1

∆zkw(zk)ϕ2(zk)

≥ C
√
am − x|Q2m+1(x)||ky(x)|u(x)

∫ 1

1
2

w(t)ϕ2(t)dt.

Hence by (14),

‖u‖∞ ≥ C
∫ ∞
0

|L∗2m+2(w, w̄, f0, x)ky(x)|u(x)dx

≥ C
∫ 1

0

√
am − x|Q2m+1(x)||ky(x)|u(x)dx

≥ C
∫ 1

0

u(x)

w(x)ϕ2(x)
|ky(x)|dx

where last inequality follows by (27). Since ky ∈ L1(R+), then∫ +∞

1

u(x)

w(x)ϕ2(x)
|ky(x)|dx <∞, ∀y ∈ S,

and therefore (15) follows.
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Proof of Theorem 4.1. We omit the proof of (21) since it can be easily deduced by (14). In order to prove
(22), let P ∈ P∗2m+1, s.t.

‖(f − P )u‖∞ = inf
Q∈P∗2m+1

‖(f −Q)u‖∞.

Then, taking into account Theorem 3.2 and that under its assumption it follows ky ∈ L1(0,+∞), it is

|e2m+2(f)| ≤
∫ +∞

0

|(f(x)− P (x))k(x, y)|u(x)dx

+

∫ +∞

0

|L∗2m+2(w, w̄, f − P, x)k(x, y)|u(x)dx

≤ ‖(f − P )u‖∞
∫ +∞

0

|k(x, y)|dx+ C‖(f − P )u‖∞

≤ CẼ2m+1(f, u)

and by (10), estimate (22) follows.

Proof of Theorem 4.2. The stability and the convergence of the mixed quadrature scheme follows by (5),
(21) and (6), (22) respectively, since if the weights U,w, u and the function k satisfy conditions (25) then
also (4) and (13) are fulfilled.
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