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Abstract

In this paper we propose some different strategies to approximate hypersingular integrals∫
=

+∞

0

G(x)

(x− t)p+1
dx,

where p is a positive integer, t > 0 and the integral is understood in the Hadamard finite part sense.
Hadamard Finite Part integrals (shortly FP integrals), regarded as pth derivative of Cauchy principal value
integrals, are of interest in the solution of hypersingular BIE, which model many different kind of Physical
and Engineering problems (see [1] and the references therein, [2], [3], [4]).

The procedure we employ here is based on a simple tool like the “truncated” Gaussian rule (see [5]),
conveniently modified to remove numerical cancellation. We will consider functions G having different decays
at infinity. The method is shown to be numerically stable and convergent and some error estimates in suitable
Zygmund-type spaces are proved. Finally, some numerical tests which confirm the efficiency of the proposed
procedures are presented.

Keywords: Hadamard finite part integrals, Approximation by polynomials, Orthogonal polynomials,
Gaussian rules.
2010 MSC: 65D30, 41A05

1. Introduction

Hypersingular integrals, defined in [6], are of interest, for instance, in the numerical solution of hypersin-
gular integral equations. As it is known, such kind of equations are model for many physics and engineering
problems (see [7] and the references therein, [8], [3], [7], [2],[9]).

There is a wide literature devoted to the computation of the Finite Part (FP) of divergent integrals∫
=

+b

a

g(x)

(x− t)p+1
dx, p ∈ {1, 2, . . . }, a < t < b,

for bounded intervals [a, b]. Limiting ourselves to global approximation methods for p > 0, we mention
among them [7], [1], [10], [11], [8], [12], [13], [14], [15], [16], [17], [18]. An historical overview on the
numerical methods for FP integrals and many properties holding in the case of bounded domains can be
found in [19], [7], [1], [8]. About the papers which employ Gauss-type rules, these are nearly all devoted to
the interval [−1, 1]. A more general approach introduced in [9] looks for determining a Gauss quadrature

rule w.r.t the weight w(x)
(x−t)2 , where w(x) is any Gauss classical weight on finite or infinite ranges. However,
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the Authors discuss computational details only in the interval [−1, 1] and for some choices of Jacobi weights
w. So, FP integrals over unbounded domains received less attention in the past.

On the other hand hypersingular integrals∫
=

+∞

0

G(x)

(x− t)p+1
dx, p ∈ {1, 2, . . . }, t > 0 (1)

are employed in the solution of hypersingular integral equations coming from Neumann 2D elliptic problems
on semiplanes by a Petrov-Galerkin infinite BEM approach [4]. In [4] FP integrals on [a,+∞), a > 0 are
reduced to the interval [0, 1] and approximated by means of product integration rules. Nevertheless, non
linear transformations can get worse the density function G (see [20]), while the straightforward computation
on unbounded ranges can add computational and also theoretical difficulties.

Thus, we propose here some global strategies to approximate integrals of the type (1). The proposed
framework allows to consider functions G having different decays at infinity and uses different approaches,
according to the position of t > 0.

At first we consider the case G(x) = f(x)wα(x), where wα(x) = e−xxα, α ≥ 0, is a Laguerre weight.
Following a very standard way, we start from the decomposition

Hp(fwα, t) :=

∫
=

+∞

0

f(x)

(x− t)p+1
wα(x)dx (2)

=

∫ +∞

0

f(x)−
∑p
k=0

f(k)(t)
k! (x− t)k

(x− t)p+1
wα(x)dx+

p∑
k=0

f (k)(t)

k!

∫
=

+∞

0

wα(x)

(x− t)p+1−k dx,

=: Fp(fwα, t) +

p∑
k=0

f (k)(t)

k!
Hp−k(wα, t)

focusing the attention on the first right-hand integral, since the remaining FP integrals are computable
with high accuracy by standard routines (see Section 6). We use a simple tool like the Gauss-Laguerre rule
properly modified in order to get a stable, convergent and efficient procedure to approximate the integral
Fp(fwα, t). In particular, we use the “truncated” version of the Gauss-Laguerre rule [5] (see also [21]) in
order to reduce the number of function computations and possible overflow ranges. Furthermore, for any
fixed t, we select a suitable subsequence of “truncated” Gauss-Laguerre rule for avoiding the severe numerical
cancellation arising when t is “close” to a Gaussian node. The approach for t “large” can be treated in a
cheaper way, with a shrewd application of the Gaussian rule directly to Hp(fwα, t).

As second case we will consider density functions of the type G(x) = g(x)/(1 + x)β , β > 1. Indeed, by
applying the aforesaid procedure to∫

=
+∞

0

g̃(x)

(x− t)p+1
e−xdx, g̃(x) =

g(x)

(1 + x)β
ex, (3)

the results may be rather poor, especially when G(x) “slowly” decays to zero as x → +∞ (see [22] about
Gaussian rule deficiencies). For this reason, in some cases presented below, we show how to gain better
results by making a preliminary change of variable and by applying then the above procedure. We complete
this argument determining conditions on g under which the global scheme is stable and fast convergent.
Also in this case, when t is “large” we suggest a different strategy.

Since the computation of the derivatives required for implementing the method can bring difficulties to the
algorithm, we complete the description showing how to approximate {f (k)}pk=0 by means of the derivatives
of a suitable Lagrange polynomial interpolating f . In view of the behavior of the Lagrange polynomial
sequence, under appropriate assumptions, the rate of convergence of the method remains unchanged, except
the extra factor logm.

The paper is organized as follows. In Section 2 some basic results about orthogonal polynomials and
function spaces, needed to introduce the main results, are collected. Section 3 contains the definition of
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Hadamard finite part integrals over (0,+∞) for functions f belonging to suitable Zygmund-type spaces, and
some their properties. In Section 4 the numerical method to approximate Hp(fwα, t) is described and some
results about the stability and the rate of convergence are stated. In the successive Section 5 we show how
it is possible to speed up the convergence of the method for integrals of the type (3). In Section 6 we show
how to avoid the computation of the derivatives of the function f . Section 7 contains some computational
details useful in the implementation process. In Section 8 some numerical experiments are given to confirm
the efficiency of the procedure. Moreover, comparisons with the method in [4] are shown. Finally, in Section
9 the proofs of the main results are stated.

2. Basic definitions and properties

Along all the paper the constant C will be used several times, having different meaning in different
formulas. Moreover from now on we will write C 6= C(a, b, . . .) in order to say that C is a positive constant
independent of the parameters a, b, . . ., and C = C(a, b, . . .) to say that C depends on a, b, . . .. Moreover,
if A,B ≥ 0 are quantities depending on some parameters, we will write A ∼ B, if there exists a constant
0 < C 6= (A,B) such that

B

C
≤ A ≤ CB.

Finally, IPm will denote the space of the algebraic polynomials of degree at most m.

2.1. Function spaces

We will denote by Lipλ((0,+∞)) the space of all functions f that are Lipschitz continuous of parameter
0 < λ ≤ 1 in (0,+∞), i.e.,

Lipλ((0,+∞)) =
{
f ∈ C0((0,+∞)) : |f(x)− f(y)| ≤ C|x− y|λ, ∀x, y ∈ IR+

}
.

With wα(x) = xαe−x, α > −1, we will say f ∈ L1
wα if and only if fwα ∈ L1 and we will set

‖f‖L1
wα

:= ‖fwα‖1 =

∫ +∞

0

|f(x)|wα(x)dx.

Moreover, with α ≥ 0 we denote by Cwα the following set of functions

Cwα =



{
f ∈ C0((0,+∞)) : lim

x→+∞
x→0+

(fwα)(x) = 0

}
, α > 0,

{
f ∈ C0([0,+∞)) : lim

x→+∞
(fwα)(x) = 0

}
, α = 0,

equipped with the norm
‖f‖Cwα := ‖fwα‖∞ = sup

x≥0
|(fwα)(x)| ,

where C0(E) is the space of the continuous functions on the set E. In the next we will use ‖f‖E :=
supx∈E |f(x)|.

For smoother functions, we introduce the Sobolev-type spaces of order r ∈ IN

W 1
r (wα) =

{
f ∈ L1

wα((0,+∞)) : f (r−1) ∈ AC((0,+∞)) and ‖f (r)ϕrwα‖1 < +∞
}

and
W∞r (wα) =

{
f ∈ Cwα : f (r−1) ∈ AC((0,+∞)) and ‖f (r)ϕrwα‖∞ < +∞

}
,
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where AC((0,+∞)) denotes the set of all the functions which are absolutely continuous on every closed
subset of (0,+∞) and ϕ(x) =

√
x. We equip these spaces with the norms

‖f‖W 1
r (wα) := ‖fwα‖1 + ‖f (r)ϕrwα‖1

and
‖f‖W∞r (wα) := ‖fwα‖∞ + ‖f (r)ϕrwα‖∞,

respectively.
For any f ∈ Cwα , let [23]

Ωkϕ(f, u)wα = sup
0<h≤u

‖wα∆k
hϕf‖Ikh ,

where Ikh =
[
4k2h2, Ch2

]
, C is a fixed positive constant, and

∆k
hϕf(x) =

k∑
i=0

(−1)i
(
k

i

)
f (x+ hϕ(x)(k − i)) .

By means of the main part of the modulus of smoothness Ωkϕ(f) we can define the Zygmund-type spaces

Zλ(wα) :=

{
f ∈ Cwα : sup

u>0

Ωkϕ(f, u)wα
uλ

< +∞, k > λ

}
, λ ∈ IR+,

equipped with the norm

‖f‖Zλ(wα) = ‖fwα‖∞ + sup
u>0

Ωkϕ(f, u)wα
uλ

.

Note that for r ≤ λ ≤ r + 1, it is W∞r+1(wα) ⊆ Zλ(wα) ⊆W∞r (wα).

2.2. Orthogonal polynomials and Truncated Gauss-Laguerre rule

Let wα(x) = e−xxα be the Laguerre weight of parameter α ≥ 0 and let {pm(wα)}m be the corresponding
sequence of orthonormal polynomials with positive leading coefficients. Denoting by xm,k, k = 1, . . . ,m, the
zeros of pm(wα) in increasing order, we recall that (see [24])

C
m
< xm,1 < xm,2 < . . . < xm,m < 4m+ 2α− Cm 1

3 .

From now on, for any fixed 0 < θ < 1, the integer j := j(m) will denote the index of the zero of pm(wα)
s. t.

j = min
k=1,2,..,m

{k : xm,k ≥ 4mθ} . (4)

Inside the segment (0, xm,j) the distance between two consecutive zeros of pm(wα) can be estimated as
follows [25]

∆xm,k ∼ ∆xm,k−1 ∼
√
xm,k
m

, ∆xm,k = xm,k+1 − xm,k, k = 1, 2, . . . , j.

We recall the so called “truncated” Gauss-Laguerre rule introduced in [5] and based on the first j zeros
of pm(wα), with j defined in (4), i.e.∫ +∞

0

f(x)wα(x)dx =

j∑
k=1

f(xm,k)λm,k +Rm(f), (5)

where {λm,k}mk=1 are the Christoffel numbers w.r.t. wα and Rm(f) is the remainder term.
For all f ∈W 1

r (wα) the following error estimate holds

|Rm(f)| ≤ C
(
‖f (r)ϕrwα‖1

(
√
m)r

+ ‖fwα‖1e−Am
)
, (6)

where 0 < C 6= C(m, f) and 0 < A 6= A(m, f) [5].
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2.3. Truncated Lagrange interpolation

Let {pm(wρ)}m be the sequence of orthonormal polynomials corresponding to the weight wρ(x) = e−2xxρ,

ρ > −1 and let {yi}mi=1 be the zeros of pm(wρ), with C
m < y1 < y2 < . . . ym < 2m − Cm 1

3 . For any fixed
0 < θ < 1, with

x` = min {yk ≥ 2mθ, k = 1, 2, . . . ,m} ,

let µm,θ be the characteristic function of the segment (0, y`). For a given function f , let Lm+1(wρ, f, x) be
the Lagrange polynomial interpolating f at the zeros of pm(wρ, x)(2m− x) and let

L∗m+1(wρ, f, x) := Lm+1(wρ, µm,θf, x). (7)

We point out that the previous Lagrange polynomial has been obtained by a linear change of variable in
that introduced in [26] (see also [27]).

We recall the following results about the simultaneous approximation of f and its derivatives (see [26]
for p = 0, [28] otherwise)

Theorem 2.1. If f ∈ Zp+λ(wα) with 0 < λ ≤ 1, p nonnegative integer and α such that

ρ

2
+

1

4
≤ α ≤ ρ

2
+

5

4
,

we have

‖(f − L∗m+1(wρ, f))(p)ϕpwα‖ ≤ C logm

∫ 1√
m

0

Ωrϕ
(
f (p), s

)
wαϕp

s
ds+ Ce−Am‖fwα‖,

where C 6= C(m, f).

3. Hadamard integrals over unbounded intervals

FP integrals, introduced by Hadamard in 1923, are essentially defined as the finite part of divergent
integrals. Many properties fulfilled by finite part integrals over bounded intervals can be found in [7] (see
also [8], [29], [30]).

Now we consider finite parts integrals on (0,+∞), under assumptions which are appropriate to the cases
we will treat here.

Definition 1. Let p ≥ 1. For any 0 < t < b∫
=

+∞

0

dx

(x− t)p+1
=

∫
=

b

0

dx

(x− t)p+1
+

∫ +∞

b

dx

(x− t)p+1

and ∫
=

+∞

0

dx

(x− t)p+1
= lim

b→+∞

{
lim
ε→0+

(∫ t−ε

0

dx

(x− t)p+1
dx+

∫ b

t+ε

dx

(x− t)p+1
dx− 1− (−1)p

pεp

)}

=
1

p
lim

b→+∞

(
1

(−t)p
− 1

(b− t)p

)
=:

(−1)p

ptp
. (8)

Let us assume g ∈ C(p)((0,+∞)) with g(p) ∈ Lipλ((0,+∞)), 0 < λ ≤ 1 and ‖g‖∞ ≤ C. Setting

ζ(g, x, t) :=
g(x)− g(t)

x− t
,
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we have∫
=

+∞

0

g(x)

(x− t)p+1
dx :=

∫
−

+∞

0

g(x)−
∑p−1
k=0

g(k)(t)(x−t)k
k!

(x− t)p+1
dx+

p−1∑
k=0

g(k)(t)

k!

∫
=

+∞

0

dx

(x− t)p+1−k

=

∫
−

+∞

0

∂p−1

∂tp−1
ζ(g, x, t)

dx

x− t
+

p−1∑
k=0

g(k)(t)

k!

∫
=

+∞

0

dx

(x− t)p+1−k . (9)

Since g(p) ∈ Lipλ((0,+∞)), it follows that ∂p−1

∂tp−1 ζ(g, x, t) ∈ Lipλ((0,+∞)) [31] (see [3, p.4]) and therefore
the first integral at right hand exists in the Cauchy principal value sense. The integrals in the summation
are defined in (8).

Of course, according to (9), integrals of the type

Hp(fσβ , t) =

∫
=

+∞

0

f(x)

(x− t)p+1
σβ(x)dx, σβ(x) =

1

(1 + x)β
, β > 1,

are also defined in the Hadamard sense under the assumptions f ∈ Cp([0,+∞)), f (p) ∈ Lipλ((0,+∞)),
0 < λ ≤ 1.

Now we state the following relation which holds under the assumptions g ∈ Lipλ((0,+∞)) on any closed
subset of (0,+∞), ‖g‖∞ ≤ C,∫

=
+∞

0

g(x)

(x− t)p+1
dx :=

1

p!

dp

dtp

∫
−

+∞

0

g(x)

x− t
dx, t > 0. (10)

(10) can be deduced by using standard arguments (see for instance [13]) and, similarly to the case of bounded
intervals (see [7]), allow us to regard the p−th Hadamard transform of f on (0,+∞) as the p−th derivative
of the Hilbert transform of f .

Moreover, by (10), assuming α ≥ 0, we get∫
=

+∞

0

wα(x)

(x− t)p+1
dx :=

1

p!

dp

dtp

∫
−

+∞

0

wα(x)

x− t
dx. (11)

Finally, we consider integrals of the type

Hp(fwα, t) :=

∫
=

+∞

0

f(x)

(x− t)p+1
wα(x)dx, (12)

with α ≥ 0. The following theorem [32] assures that the integral in (12) exists in the Hadamard sense under
the more general assumption f (p) ∈ Zλ(wαϕ

p).

Theorem 3.1. Let p ≥ 1, α ≥ 0, 0 < λ < 1. If f (p) ∈ Zλ(wαϕ
p) then

sup
t>0

tp|Hp(fwα, t)| ≤ C
(∫ 1

0

Ωϕ(f (p), u)wαϕp

u
du+ ‖f‖Wp(wα)

)
, 0 < C 6= C(f).

Now we state the following integration by part rule, that can be easily deduced by the corresponding
rule over bounded intervals [7]:

Lemma 3.1. For a given function g s.t. g(p) ∈ Lipλ((0,+∞)) with exponent 0 < λ ≤ 1 and ‖g‖∞ ≤ C, the
following integration by parts rule holds true∫

=
+∞

0

g(x)

(x− t)p+1
dx =

1

p

{∫
=

+∞

0

g′(x)

(x− t)p
dx+ (−1)p

g(0)

tp

}
.
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Hence, for any k ≤ p we deduce∫
=

+∞

0

g(x)

(x− t)p+1
dx =

(p− k)!

p!

∫
=

+∞

0

g(k)(x)

(x− t)p−k+1
dx+

k−1∑
r=0

(p− r − 1)!

p!
(−1)p−r

g(r)(0)

tp−r
. (13)

If in addition, g(j)(0) = 0, j = 0, 1, . . . , k − 1, (13) reduces to∫
=

+∞

0

g(x)

(x− t)p+1
dx =

(p− k)!

p!

∫
=

+∞

0

g(k)(x)

(x− t)p−k+1
dx.

4. The method

Let us start from

Hp(fwα, t) =

∫ +∞

0

f(x)−
∑p
k=0

f(k)(t)
k! (x− t)k

(x− t)p+1
wα(x)dx+

p∑
k=0

f (k)(t)

k!

∫
=

+∞

0

wα(x)

(x− t)p+1−k dx

=: Fp(fwα, t) +

p∑
k=0

f (k)(t)

k!
Hp−k(wα, t). (14)

The accurate computation of Hp−k(wα, t), k = 0, 1, . . . , p, can be performed by efficient routines (see Section
6). So we focus our attention on the term Fp(fwα, t).

In what follows we will assume 0 < θ < 1 fixed. For any integer m > 0 such that t < 4mθ, by using (5)
with j defined in (4), we get

Fp(fwα, t) =

j∑
i=1

f(xm,i)−
∑p
k=0

f(k)(t)
k! (xm,i − t)k

(xm,i − t)p+1
λm,i + ep,m(fwα, t)

:= Fp,m(fwα, t) + ep,m(fwα, t),

where ep,m(fwα, t) is the remainder term.
We observe that when t is “close” to one of the Gaussian knots, say it xk̄, k̄ < j, the denominator

(xm,k̄ − t)p+1 of the k̄−th addendum in Fp,m(fwα, t) can become too “small”, producing then numerical
cancellation. This last phenomenon is all the more severe as p is “larger”.

Next algorithm is useful to overcome this instability. It essentially consists in selecting, for any fixed t,
a proper subsequence of the Gauss-Laguerre sequence {Fp,m(fwα, t)}m, in such a way that the distances
|xm,i − t| are always large enough.

As it is well known the zeros {xm,k}mk=1 of pm(wα) interlace the zeros {xm+1,k}m+1
k=1 of pm+1(wα) and

the distance between two consecutive zeros of pm(wα)pm+1(wα) is sufficiently large since [33, Lemma 2.1]

xm+1,k − xm,k > C
√
xm,k
m

, xm,k, xm+1,k ∈ (0, 4mθ), 0 < C 6= C(m). (15)

In view of this “good” distance, we propose to use the following algorithm firstly suggested in [11] in the
interval [−1, 1] and successively used in different contexts (see [33], [20], [16]).

Let t > 0 be fixed. For m sufficiently large (say m ≥ m0 ∈ IN), there exists an index d ∈ {1, 2, . . . ,m−1}
s.t.

xm,d ≤ t ≤ xm,d+1.

- x

xm+1,d xm,d xm+1,d+1 xm,d+1

s r s r
7



Thus, two cases are possible:

(a) xm,d ≤ t ≤ xm+1,d+1 or (b) xm+1,d+1 ≤ t ≤ xm,d+1.

In the case (a) we choose

m∗ =

{
m, if t− xm,d > xm+1,d+1 − t,
m+ 1, otherwise,

(16)

and in the case (b) we choose

m∗ =

{
m+ 1, if t− xm+1,d+1 > xm,d+1 − t,
m, otherwise.

(17)

In such a way, we construct the subsequence

{Fp,m∗(fwα, t)}m∗ ⊂ {Fp,m(fwα, t)}m∈N,

where m∗, according to the position of t ∈ (xm,1, xm,j), is chosen as in (16) and (17) and we will approximate
Fp(fwα, t) by Fp,m∗(fwα, t), i.e., coming back to (14)

Hp(fwα, t) = Hp,m∗(fwα, t) + ep,m∗(fwα, t), (18)

where

Hp,m∗(fwα, t) = Fp,m∗(fwα, t) +

p∑
k=0

f (k)(t)

k!
Hp−k(wα, t). (19)

We observe that, by (15),

|xm∗,d − t| ≥ C
√
xm∗,d
m

which means that in any case t will be sufficiently “far” from the Gaussian knots.
Next theorem deals with the stability and the convergence of the proposed quadrature rule.

Theorem 4.1. Let α ≥ 0, p ≥ 1 and 0 < λ < 1. If f (p) ∈ Zλ(wαϕ
p) then for any 0 < t < 4mθ1, with

0 < θ1 < θ < 1,

tp|Hp,m∗(fwα, t)| ≤ C‖f‖Zp+λ(wα)

and

tp|Hp(fwα, t)−Hp,m∗(fwα, t)| ≤ C logm√
mλ
‖f‖Zp+λ(wα),

where 0 < C 6= C(m, f, t).

Remark 4.1. Now we observe that f (p) ∈ Zλ(wαϕ
p) ≡ f ∈ Zλ+p(wα) and therefore, under more restrictive

assumptions on f , for instance f ∈ Zλ+p+q(wα), q ≥ 0, we get

tp|Hp(fwα, t)−Hp,m∗(fwα, t)| ≤ C
‖f‖Zλ+p+q(wα)√

mλ+q
logm (20)

and if f ∈W∞p+q(wα), q ≥ 1, we obtain

tp|Hp(fwα, t)−Hp,m∗(fwα, t)| ≤ C
‖f‖W∞p+q(wα)
√
mq

logm.
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Figure 1: Comparison between the absolute errors of the rules Fp,m(fwα, t) and Fp,m∗ (fwα, t)

We conclude by proposing just a numerical example to highlights how the ordinary Truncated Gaussian
rule suffers from instability. In the two plots in Figure 1 we compare the absolute errors obtained by
implementing, for increasing values of m, the Truncated Gauss-Laguerre rule Fp,m(fwα, t) (red curve) and
the modified Gauss-Laguerre rule Fp,m∗(fwα, t) (blue curve), for the integral

H1(fw 1
2
, t) =

∫
=

+∞

0

sin(x+ 5)

(x− t)2

√
xe−xdx.

As the graph shows, the highest errors are attained by using the ordinary Truncated Gaussian rule and,
for the same t, also for different values of m. Since the function f is smooth, this bad behavior is due to
the closeness of some of the Gaussian abscissa to t. This shortcoming is successfully overcome by using the
method in (19).

4.1. The case t ”large”

The method in (19) can be used when t stays between two Gaussian nodes, i.e. for t < 4mθ1, or
equivalently, m > t

4θ1
. Thus, the “larger” t is, the “larger” m will be. For instance, for t = 1000 and θ = 1

8 ,
m > 2000 has to be chosen. In such cases the computation of abscissas and weights in the Gauss-Laguerre
rule is too much expensive, and sometimes unfeasible. For all these reasons, we propose here an alternative
procedure, which is essentially a shrewd application of the Gaussian rule again, in the sense we go to precise.
For any fixed t, let m be such that

t > xm,j + 1,

where j is defined in (4). Setting Ft(x) = f(x)
(x−t)p+1 , we approximate the integral by the m−th truncated

Gauss-Laguerre rule, i.e.

Hp(fwα, t) =

j∑
i=1

Ft(xm,i)λm,i +Rm(Ft), . (21)

Since f and Ft(f) for t > xm,j + 1 have the same smoothness, by (6), if f ∈W 1
r (wα), r ≥ 1, then we get

|Rm(Ft)| ≤ C

(
‖F (r)

t ϕrwα‖1
(
√
m)r

+ ‖Ftwα‖1e−Am
)
, (22)

where 0 < C 6= C(m,Ft, t) and 0 < A 6= A(m,Ft, t).

9



We observe that this procedure can be successfully applied when Ft is a “smooth” function and for a
large value of t > xm,j +1, where j is defined in (4). Moreover, smoother is the function f and smaller is the
value of m to obtain a desired precision. This means that t can be “large” but not necessarily too much. Of
course, the error bound in (22) holds for a fixed m and therefore the limit on m of Rm(Ft) has no meaning.

In conclusion, by using (18) or (21), we obtain an efficient procedure for the computation of Hp(fwα, t)
for a “wide” range of t.

5. Algebraic decay functions: a particular case

In this section we go to treat integrals of the type

Hp(fσβ , t) =

∫
=

+∞

0

f(x)

(x− t)p+1
σβ(x)dx,

with p ≥ 1 and σβ(x) = 1
(1+x)β

, β > 1.

Letting Φ(x) := f(x)σβ(x)ex and for any function g

Rp(g, x, t) := g(x)−
p∑
k=0

g(k)(t)

k!
(x− t)k, Gp(g, x, t) :=

Rp(g, x, t)

(x− t)p+1
, (23)

we can write

Hp(fσβ , t) =

∫ +∞

0

Gp(Φ, x, t)e
−xdx+

p∑
k=0

Φ(k)(t)

k!

∫
=

+∞

0

e−x

(x− t)p+1−k dx.

For a fixed t, apply the “truncated” Gaussian rule (5) w. r. t. w0, i.e.,∫ +∞

0

Gp(Φ, x, t)e
−xdx =

j∑
i=1

λm∗,iGp(Φ, xm∗,i, t) +Rm∗(Gp(Φ), t)

=: Hp,m∗(Φw0, t) +Rm∗(Gp(Φ), t), (24)

where m∗ is defined as in (17) or (16), according to the position of t ∈ (0, 4mθ1). Then, about the error
estimate, we prove the following lemma:

Lemma 5.1. Let t be fixed with t > a > 0 and let f ∈ Cp+1+r([0,+∞)), p ≥ 1, r ≥ 1. Then Gp(Φ) ∈
Cr([0,+∞)). If, in addition,

|f (k)(x)| ≤ C, k = 0, 1, . . . , p+ 1 + r, (25)

under the assumptions 2(β + p)− r > 0, we have Gp(Φ) ∈W 1
r (w0) and then

|Rm∗(Gp(Φ))| ≤ C
(
‖(Gp(Φ))(r)ϕrw0‖1

(
√
m)r

+ ‖(Gp(Φ))w0‖1e−Am
)
, (26)

where 0 < C 6= C(m, f) and 0 < A 6= A(m, f).

In view of (26) the error of the formula (24) behaves like O(m−bβ+pc) (where bac denotes the integer
part of a). Therefore, even if the function f is very “smooth”, the rate of convergence of the Gaussian rule
is very poor for β “small”.

Now we show that this bad behavior can be removed, by introducing a preliminary change of variable
(see [22]). By using the same notation introduced in (23), we write

Hp(fσβ , t) =

∫ +∞

0

Gp(f, x, t)

(1 + x)β
dx+

p∑
k=0

f (k)(t)

k!
Hp−k(σβ , t).
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Referring the computation of Hp−k(σβ , t) to Section 6, we introduce in the first right-hand integral the
change of variable x = ψ(y), where ψ(y) := eqy − 1, with q > 0 fixed real parameter. Thus we have∫ +∞

0

Gp(f, x, t)

(1 + x)β
dx = q

∫ +∞

0

Gp(f, ψ(y), t)e−qy(β−1)dy =

∫ +∞

0

ht(y)e−ydy,

where
ht(y) := qGp(f, ψ(y), t)e−y(q(β−1)−1).

Thus, by applying the truncated Gaussian rule (5) w.r.t. w0, we get∫ +∞

0

Gp(f, x, t)

(1 + x)β
dx =

j∑
i=1

ht(xm∗,i)λm∗,i +Rm∗(ht),

where m∗ is chosen as in (16) and (17), according to the position of t fixed and a < t < 4mθ1, and

Hp(fσβ , t) =

j∑
i=1

ht(xm∗,i)λm∗,i +

p∑
k=0

f (k)(t)

k!
Hp−k(σβ , t) +Rm∗(ht)

=: Ĥp,m∗(fσβ , t) +Rm∗(ht). (27)

In the following lemma we give an estimate of the error Rm∗(ht):

Theorem 5.1. Let t be fixed with 0 < a < t < 4mθ1 and let f ∈ Cp+1+r([0,+∞)), p ≥ 1, r ≥ 1, such that

|f (k)(x)| ≤ C, k = 0, 1, . . . , p+ 1 + r.

Under the assumption q > 1
β the function ht belongs to W 1

r (w0) for any r ≥ 1 and, then,

|Rm∗(ht)| ≤ C

(
‖h(r)

t ϕrw0‖1
(
√
m)r

+ ‖htw0‖1e−Am
)

(28)

where 0 < C 6= C(m, f) and 0 < A 6= A(m, f).

We observe that the positive parameter q can be freely chosen provided that q > 1
β , so that the trans-

formed integrand decays to 0 fast enough.
In conclusion, Lemma 5.1 assigns sufficient conditions on the growths at infinity of f , such that the

integrand function ht decays to zero faster than Gp(Φ) in (24). Consequently, the truncated Gaussian rule
applied to ht requires a cheaper computational effort. Moreover, in view of (28) its rate of convergence is
O(m−

r
2 ), for any r ≥ 1.

We conclude observing that, following the same scheme described in Section 4 when t is “large”, for a

fixed m such that t − xm,j > 1, setting F̃t(x) = f(x)
(x−t)p+1 , we introduce the change of variable x = ψ(y),

obtaining then

Hp(fσβ , t) = q

∫ +∞

0

F̃t(ψ(y))e−qy(β−1)dy =

∫ +∞

0

h̃t(y)e−ydy,

where h̃t(y) = qF̃t(ψ(y))e−y(q(β−1)−1). Hence, by using the truncated Gaussian rule we get

Hp(fσβ , t) =

j∑
i=1

F̃t(xm,i)λm,i + R̃m(F̃t). (29)

11



6. Approximation of the derivatives of f

Now we want to sketch how to avoid the computation of the derivatives of f in (19) or in (27), by means
of a suitable Lagrange process, which results optimal in the space of functions f belongs to. Recalling the
truncated Lagrange polynomial defined in (7), we use

f (k)(t) ∼ (L∗m+1(wρ, f, t))
(k), 0 ≤ k ≤ p,

obtaining

Hp,m∗(fwα, t) =

j∑
i=1

f(xm,i)−
∑p
k=0

L∗m+1(wρ,f,t))
(k)

k! (xm,i − t)k

(xm,i − t)p+1
λm,i (30)

+

p∑
k=0

L∗m+1(wρ, f, t))
(k)

k!
Hp−k(wα, t) + ẽp,m(fwα, t), (31)

and, setting Ψ(y) = f(ψ(y)),

Ψ(k)(y) ∼ (L∗m+1(wρ,Ψ, y))(k), 0 ≤ k ≤ p,

obtaining,

Hp(fσβ , t) = q

j∑
i=1

Ψ(xm,i)−
∑p
k=0

L∗m+1(wρ,Ψ,t)
(k)

k! (xm,i − t)k

(xm∗,i − t)p+1
e−xm,i(q(β−1)−1)λm∗,i

+

p∑
k=0

L∗m+1(wρ, f, t)
(k)

k!
Hp−k(σβ , t) + R̃m∗(ht). (32)

Since, in view of Theorem 2.1, under the assumption

2α− 5

2
≤ ρ ≤ 2α− 1

2
, (33)

for functions f ∈ Zp+λ(wα),

‖(f − L∗m+1(wρ, f))(k)ϕkwα‖ ∼ O
(

logm

(
√
m)p+λ−k

)
, k ≤ p,

about the global errors ẽp,m(fwα, t) and R̃m∗(ht) we can say that, except the extra factor logm, they are
comparable with ep,m(fwα, t) and Rm∗(ht), respectively.

We point out that a save can be reached in some cases. For instance, referring to (31), if f ∈ Zp+λ(
√
w2α)

with α ≥ 1
2 , since by (33) ρ = α is a feasible choice, the samples of the function f employed in the Gaussian

rule can be reused.

7. Computational details

Now we give some details dealing with the practical computation of

Hp−k(wα, t) =

∫
=

+∞

0

xαe−x

(x− t)p+1−k dx, α ≥ 0, (34)

and

Hp−k(σβ , t) =

∫
=

+∞

0

dx

(1 + x)β(x− t)p+1−k dx, β > 1. (35)

12



To compute integrals of the type (34) we recall [34, p.325, n. 16]∫ +∞

0

xαe−x

(x− t)
dx =

{
−e−tEi(t), α = 0,

−πtαe−t cot ((1 + α)π) + Γ(α)e−t1F1(−α, 1− α, t), α 6= 0,

where Ei is the Exponential Integral function and 1F1 is the Confluent Hypergeometric function. Thus,
since by (11),

Hp−k(wα, t) =
1

(p− k)!

dp−k

dtp−k

∫ +∞

0

xαe−x

(x− t)
dx,

the computation of Hp−k(wα, t) can be performed by using the following relations [35, p. 1086, 9.213]

d

dt
Ei(t) = − d

dt

∫ +∞

−t

e−x

x
dx =

et

t
,

d

dt
1F1(a, b; t) =

a

b
1F1(a+ 1, b+ 1, t).

Now we sketch how to compute integrals in (35). By (13) with g(x) = 1
(1+x)β

and k = p, we deduce

∫
=

+∞

0

g(x)

(x− t)p+1
dx =

1

p!

∫
=

+∞

0

g(p)(x)

(x− t)
dx+

p−1∑
s=0

(p− s− 1)!

p!
(−1)p−s

g(s)(0)

tp−s
,

and taking into account that for s = 0, 1, . . . , p,

ds

dxs

[
1

(1 + x)β

]
=

(−1)s

(1 + x)β+s
ηs, η0 = 1, ηs :=

s−1∏
i=0

(β + i),

we get

Hp−k(σβ , t) =
(−1)p−kηp−k

(p− k)!

∫
=

+∞

0

dx

(1 + x)β+p−k(x− t)

+

p−k−1∑
s=0

(p− k − s− 1)!

(p− k)!

(−1)p−k

tp−k−s
ηs

=
(−1)p−k

(p− k)!

[
ηp−kH0(σβ+p−k, t) +

p−k−1∑
s=0

(p− k − s− 1)!

tp−k−s
ηs

]
,

where for δ /∈ IN

H0(σδ, t) =

∫
=

+∞

0

dx

(1 + x)δ(x− t)
dx

=
π

(1 + t)δ
cot(δπ)− Γ(δ − 1)

(1 + t)Γ(δ)
2F1

(
1− δ, 1; 2− δ; 1

1 + t

)
,

being 2F1 the Hypergeometric function (see [36, p. 251]).

8. Numerical experiments

In this section we propose a selection of numerical tests obtained by implementing the quadrature rules
introduced in Sections 4 and 5, for integrand functions f belonging to different spaces of functions. To be
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more precise in Examples 8.1-8.3 we consider integrals of the type Hp(fwα, t) for function f with a possible
exponential growth and we approximate them by

H̄p,m(fwα, t) =

{
Hp,m∗(fwα, t), 0 < t < 4mθ1∑j
i=1 Ft(xm,i)λm,i, t > xm,j + 1,

(36)

(see (18) and (21)). Since the exact values of the integrals are unknown, we will retain as exact those values
computed with m = 1000 and we will set

ēp,m(fwα, t) = |H̄p,m(fwα, t)− H̄p,1000(fwα, t)|.

In the first two tests p = 1 and we compare our results with those obtained by the method in [4], introduced
only for this choice of p. Their procedure, after a transformation of the integral in [0, 1], makes use of
product integration rules based on Legendre zeros and requires the computation of second kind Legendre
functions, via recurrence relations.

The successive Examples 8.4 and 8.5 deal with the approximation of Hp(fσβ , t) by Ĥp,m(fσβ , t) with
p > 1, where, according to the position of t,

Ĥp,m(fwα, t) =

{
Hp,m∗(fσβ , t), 0 < t < 4mθ1∑j
i=1 F̃t(xm,i)λm,i, t > xm,j + 1,

(37)

(see (27) and (29)). Since the exact values of the integrals are unknown, we will retain as exact those values
computed with m = 1000 and we will set

êp,m(fσβ , t) = |Ĥp,m(fσβ , t)− Ĥp,1000(fσβ , t)|.

In order to show how the proposed regularization in (27) really improves the procedure in (24), in Tables
7 and 9, we will set the errors

ēp,m(fσβ , t) = |Hp,m∗(Φw0, t)− Ĥp,1000(fσβ , t)|.

We remark that, in each example the ”truncation intervals” depending on a fixed θ, have been empirically
detected according to the following criteria

j = max
i=1,...,m∗

λm∗,i

∣∣∣∣∣f(xm∗,i)−
∑p
k=0

f(k)(t)
k! (xm∗,i − t)k

(xm∗,i − t)p+1

∣∣∣∣∣ ≥ eps
in (19) and

j = max
i=1,...,m∗

λm∗,i |ht(xm∗,i)| ≥ eps

in (27), where eps represents the machine precision.
We point out that all the computations have been performed in double-machine precision (eps =

2.22044e− 16).
Finally, whereas the truncation holds, besides the number m of quadrature knots we set also the actual

number j ≤ m of function’s computations.

Example 8.1. We first consider the following Hadamard integral

H1(fw 1
2
, t) =

∫
=

+∞

0

sin(x+ 5)

(x− t)2

√
xe−xdx, f(x) = sin(x+ 5), α =

1

2
, p = 1.

Since the function f(x) is very smooth, the convergence of our method is very fast (see Table 1) and the
machine precision is attained with only 18 quadrature knots, for different values of t. In Tables 2 are given
the results obtained by the method in [4], whose convergence is much slower. The plot of H1(fw 1

2
, t) is

shown in Figure 2.
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j ē1,m(fw 1
2
, 0.1) ē1,m(fw 1

2
, 5) ē1,m(fw 1

2
, 50)

5 (m = 5) 8.6553e− 6 4.4598e− 6 9.8482e− 7
10 (m = 10) 4.1984e− 9 3.7465e− 9 8.0136e− 10
18 (m = 20) eps eps eps

Table 1: Example 8.1: Errors by the present method

m t = 0.1 t = 5 t = 50
100 2.7890e− 5 6.0310e− 9, 3.0446e− 11
200 2.2390e− 6 4.2379e− 10 3.9494e− 13
300 1.9826e− 7 8.8928e− 11 5.7371e− 12
400 1.5156e− 7 4.1285e− 11 3.3105e− 12
500 2.0034e− 7 3.1008e− 11 9.9150e− 13
600 1.7676e− 7 2.7022e− 11 1.6251e− 13
700 1.3721e− 7 2.3954e− 11 1.8737e− 13
800 9.8700e− 8 2.0870e− 11 3.0233e− 13
900 6.6586e− 8 1.7735e− 11 2.3905e− 13

Table 2: Example 8.1: Errors by the method in [4]

Example 8.2. Consider

H1(fw 3
5
, t) =

∫
=

+∞

0

|x− 4| 152
(x− t)2

x
3
5 e−xdx, f(x) = |x− 4| 152 , α =

3

5
, p = 1,

with f ∈ Z7.5(w3/5). By (20) the error behaves like m−
13
4 logm. As shown in Table 3 the numerical results

confirm such theoretical estimate. In fact, at the point 4.0001, for instance, for m = 900 (but only 180

computations function) 8 correct digits are achieved and m−
13
4 logm ∼ 1.7e− 9. For values of t “far” from

the critical point 4, the numerical results highlight a definitive better behavior. In Table 4, we present
the results obtained by the method in [4] and, as one can see, only 6 digits are attained with m = 900
computations of function. The plot of H1(fw 3

5
, t) is shown in Figure 3.

j ē1,m(fw 3
5
, 2.5) ē1,m(fw 3

5
, 4.0001) ē1,m(fw 3

5
, 500)

57 (m =100) 1.5660e− 6 5.3871e− 6 1.0213e− 11
82 (m =201) 7.7518e− 8 1.1585e− 6 1.1538e− 12
100 (m =300) 1.8343e− 8 3.0130e− 7 2.0729e− 13
115 (m =400) 3.8055e− 9 1.1179e− 7 5.1859e− 14
129 (m =500) 1.6642e− 9 5.4807e− 8 2.0616e− 14
141 (m =600) 9.4205e− 10 1.6323e− 8 6.7410e− 15
152 (m =701) 5.9492e− 10 1.3827e− 8 3.2744e− 15
153 (m =801) 2.1716e− 10 1.1697e− 8 7.9002e− 16
180 (m =901) 8.3514e− 11 3.6227e− 9 6.5736e− 16

Table 3: Example 8.2: Errors by the present method.

Example 8.3. Let

H2(fw 1
2
, t) =

∫
=

+∞

0

| sin(x− 2)| 132
(x− t)3

√
xe−xdx, f(x) = | sin(x− 2)| 132 , α =

1

2
, p = 2.
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Figure 2: Example 8.1: Graph of H1(fw 1
2
, t)

m t = 2.5 t = 4.0001 t = 500
100 6.1073e− 5 1.3090e− 4 4.9767e− 8
200 1.3772e− 5 4.6000e− 5 9.1827e− 10
300 3.5540e− 7 9.1208e− 6 2.6086e− 10
400 3.3217e− 6 2.6377e− 7 1.3107e− 10
500 3.3840e− 6 1.7624e− 6 1.8038e− 10
600 2.6763e− 6 1.0611e− 6 7.2855e− 11
700 1.8665e− 6 1.5189e− 7 5.6055e− 12
800 1.1800e− 6 3.1543e− 7 4.1881e− 12
900 6.7891e− 7 2.9859e− 7 1.8214e− 11

Table 4: Example 8.2: Errors by the method in [4].

Since f ∈ Z6.5(w 1
2
), by (20) the error behaves like m−

9
4 logm. By inspecting Table 5, also in this case the

numerical results agree with the theoretical ones. The worst result is attained for t = 2.0001. The graph of
H2(fw 1

2
, t) is shown in Figure 4.

Example 8.4. Now we consider the integral

H3(fσ 3
2
, t) =

∫
=

+∞

0

cos(log(x+ 2))

(1 + x)
3
2 (x− t)4

dx, f(x) = cos(log(x+ 2)), β =
3

2
, p = 3. (38)

In this case the function cos(log(x+2))

(1+x)
3
2

algebraically decays and we apply (24) to

H3(Φw0, t) =

∫
=

+∞

0

Φ(x)

(x− t)4
e−xdx, Φ(x) =

cos(log(x+ 2))ex

(1 + x)
3
2

.

Since G3(Φ, t) ∈W 1
4 (w0) for any fixed t, according to Lemma 5.1, the error behaves like m−2. On the other

hand, by inspecting Table 6, we observe that none truncation has been performed in view of the exponential
growth of Φ and that the occurrence of overflow prevents to choose m > 186.

Now we show that for approximating the integral (38) the performance of the rule (37) is much better.
Indeed, in Table 7 we exhibit the approximations obtained forH3(fσ 3

2
, t) with q = 1. Since f is very smooth,

according to estimate (28), the rate of convergence is very fast and the machine precision is attained for
m = 41 and only 22 function’s computations. In Figure 5, the graph of H3(fσ 3

2
, t) is shown.
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Figure 3: Example 8.2: Graph of H1(fw 3
5
, t)

j ē2,m(fw 1
2
, 1

2 ) ē2,m(fw 1
2
, 2.0001) ē2,m(fw 1

2
, 10)

43 (m = 101) 6.9778e− 7 2.3572e− 5 1.6601e− 6
61 (m = 201) 2.7793e− 8 9.5002e− 6 1.7141e− 8
75 (m = 300) 1.0888e− 8 2.2228e− 6 3.4760e− 9
86 (m = 401) 4.4911e− 9 5.0696e− 7 5.2015e− 10
96 (m = 501) 1.6847e− 9 1.3638e− 6 4.0446e− 10
105 (m = 601) 1.0939e− 9 3.7675e− 7 4.2280e− 10
114 (m = 701) 3.6242e− 10 5.1814e− 7 3.9872e− 10

Table 5: Example 8.3: Approximation of H2(fw 1
2
, t).

Example 8.5. As last example we consider

H2(fσ 5
2
, t) =

∫
=

+∞

0

(x+ 4)4

(1 + x)
5
2 (x2 + 5)(x− t)3

dx, f(x) =
(x+ 4)4

x2 + 5
, β =

5

2
, p = 2.

Also in this case the function (x+4)4

(1+x)
5
2 (x2+5)

has an algebraic decay at infinity. At first in Table 8 we show

the numerical results obtained approximating H2(Φw0, t), with Φ(x) = f(x)σ 5
2
(x)ex, by (24). In this case

G2(Φ, t) ∈ W 1
8 (w0) for any fixed t and, in view of Lemma 5.1, the error behaves like m−4. Successively in

Table 9 we present the approximations of H2(fσ 5
2
, t) obtained applying the rule (37) with q = 1. Also in

this case, according to our expectations, without change of variable, the exponential growth of Φ produces
overflow, preventing to choose m > 190. Otherwise, the proposed change of variable has sped up the
convergence and the machine precision is attained with only 44 function’s evaluations. The plot ofH2(fσ 5

2
, t)

is given in Figure 6.

9. The proofs

The proof of Theorem 4.1 is based on the following two results which can be found in [32]

Theorem 9.1. Let α ≥ 0, p ≥ 1 and 0 < λ < 1. If f (p) ∈ Zλ(wαϕ
p) then for any 0 < t < 4mθ1, with

0 < θ1 < θ < 1,

tp|Hp,m∗(fwα, t)| ≤ C

(∫ 1√
m

0

Ωϕ(f (p), u)wαϕp

u
du+ ‖f‖Wp(wα)

)
,
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Figure 4: Example 8.3: Graph of H2(fw 1
2
, t).

j ē3,m(Φw0,
3
2 ) ē3,m(Φw0, 8) ē3,m(Φw0, 20)

50 (m = 50 ) 8.6794e− 12 8.6794e− 12 1.0695e− 11
100 (m = 100) 4.6779e− 13 4.9426e− 13 5.7490e− 13
150 (m = 150) 7.3022e− 14 7.3350e− 14 7.9083e− 14
185 (m = 185) 2.5504e− 14 2.6290e− 14 3.0597e− 14
186 (m = 186) Inf Inf Inf

Table 6: Example 8.4: Approximation of H3(Φw0, t).

where 0 < C 6= C(m, f, t).

Theorem 9.2. Let α ≥ 0, p ≥ 1 and 0 < λ < 1. If f (p) ∈ Zλ(wαϕ
p) then for any 0 < t < 4mθ1, with

0 < θ1 < θ < 1,

tp|Hp(fwα, t)−Hp,m∗(fwα, t)| ≤ C

(
logm

∫ 1√
m

0

Ωrϕ(f (p), u)wαϕp

u
du+ e−Am‖f‖W∞p (wα)

)
,

where 0 < C 6= C(m, f, t) and 0 < A 6= A(m, f, t).

In order to prove Lemma 5.1 and Theorem 5.1, with Rp(f, x, t) and Gp(f, x, t) defined in (23), we premise
the following relations

∂i

∂xi
Rp(f, x, t) = R(i)

p (f, x, t) =


f (i)(x)−

∑p
k=i

f(k)(t)(x−t)k−i
(k−i)! , 0 ≤ i ≤ p,

f (i)(x), i ≥ p+ 1,

and

∂r

∂xr
Gp(f, x, t) = G(r)

p (f, x, t) =

r∑
i=0

(
r

i

)
R(i)
p (f, x, t)

[
1

(x− t)p+1

](r−i)

=

r∑
i=0

ci
Rp−i(f

(i), x, t)

(x− t)p+1+r−i

=
1

(x− t)p+1

r∑
i=0

ci

[
f (i)(x)

(x− t)r−i
−

p∑
k=i

f (k)(t)

(k − i)!(x− t)r−k

]
, (39)

where

ci =

(
r

i

)
(−1)r−i(p+ 1)(p+ 2) . . . (p+ r − i).
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j ê3,m(fσ 3
2
, 3

2 ) ê3,m(fσ 3
2
, 8) ê3,m(fσ 3

2
, 20)

12 (m = 10) 1.0529e− 8 2.8344e− 11 2.9870e− 11
16 (m = 21) 7.7561e− 12 9.4657e− 13 5.6634e− 14
19 (m = 31) 1.7342e− 13 3.0899e− 15 1.1280e− 16
22 (m = 41) 6.9168e− 16 eps eps

Table 7: Example 8.4: Approximation of H3(fσ 3
2
, t).

1 2 3 4

-40

-30

-20

-10

0

Figure 5: Example 8.4: Graph of H3(fσ 3
2
, t).

Proof of Lemma 5.1. Under the assumption f ∈ Cr+p+1([0,+∞)), it follows that Φ ∈ Cr+p+1([0,+∞)) and
Gp(Φ) ∈ Cr([0,+∞)) and, in view of (25), Φ(k)(x)w0(x) = O

(
x−β

)
, k = 1, 2, . . . r + p + 1. Therefore, by

using (39) with f = Φ, we get

|G(r)
p (Φ, x, t)ϕr(x)w0(x)| = O

(
x
r
2−1−p−β) ,

from which, taking into account the hypothesis 2(β + p)− r > 0, G
(r)
p (Φ) ∈W 1

r (w0) for any fixed t > a > 0
and, then, by (6), the lemma follows.

Proof of Theorem 5.1. Setting g(y) = Gp(f, ψ(y), t), by induction on i, it can be proved that

g(r)(y) = qr
r∑

k=1

G(k)
p (f, ψ(y), t)ekqysrk−1,

where {srk−1}rk=1, r = 1, 2, . . . , are the Stirling numbers of the second kind. Moreover, under the assumptions
(25), by (39), it follows that ∣∣∣G(k)

p (f, ψ(y), t)
∣∣∣ = O

(
ψ−1−k(y)

)
and, therefore, ∣∣∣g(r)(y)

∣∣∣ ≤ e−yq, ∀r ≥ 1.

Finally, recalling that ht(y) = qg(y)e−y(q(β−1)−1), for any fixed t and for any r ≥ 1, we deduce∣∣∣h(r)
t (y)

∣∣∣ = O
(
e−y(qβ−1)

)
and also ∫ +∞

0

∣∣∣h(r)
t (y)ϕr(y)

∣∣∣w0(y)dy ≤ C
∫ +∞

0

y
r
2 e−yqβdy ≤ C,
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j ē2,m

(
Φw0,

1
3

)
ē2,m

(
Φw0,

9
2

)
ē2,m(Φw0, 25)

10 (m = 10) 1.0747e− 3 6.5264e− 5 6.4541e− 4
50 (m = 50) 8.3845e− 7 8.8017e− 7 1.1296e− 6

100 (m = 100) 1.3881e− 7 1.4206e− 7 1.5983e− 7
150 (m = 150) 4.9077e− 8 4.9835e− 8 5.2883e− 8
190 (m = 190) 2.6496e− 8 2.7178e− 8 2.8875e− 8
191 (m = 191) Inf Inf Inf

Table 8: Example 8.5: Approximation of H2(Φw0, t).

j ê2,m(fσ 5
2
, 1

3 ) ê2,m

(
fσ 5

2
, 9

2

)
ê2,m(fσ 5

2
, 25)

10 (m = 10 ) 6.2550e− 3 1.0559e− 3 6.7372− 6
21 (m = 51 ) 1.0268e− 6 6.5777e− 8 1.6154e− 9
29 (m = 100 ) 1.3905e− 9 3.2552e− 11 4.3751e− 12
35 (m = 151 ) 1.5018e− 11 2.5168e− 12 2.1414e− 14
40 (m = 200 ) 8.0083e− 13 5.7405e− 14 7.1377e− 16
44 (m = 251 ) eps eps eps

Table 9: Example 8.5: Approximation of H2(fσ 5
2
, t).

being βq > 1. Thus, by (6) the lemma easily follows .

Funding: This work has been supported by University of Basilicata (local funds) and by GNCS-INDAM
Project 2016.
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[36] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Tables of integrals transforms,

Vol. II, McGraw-Hill Book Company, Inc., New York , Toronto, London, 1954.

21


