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Abstract

We consider integral equations of the second kind with fixed singularities of Mellin type. According to the
behavior of the Mellin kernel, we first determine suitable weighted Lp spaces where we look for the solution.
Then, for its approximation, we propose a numerical method of Nyström type based on a Gauss-Jacobi
quadratura formula. Actually, a slight modification of the classical procedure is introduced in order to prove
convergence results in weighted Lp spaces. Moreover, a preconditioning technique allows us to solve well
conditioned linear systems. We show the efficiency of the proposed method through some numerical tests.
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1. Introduction

This paper is concerned with the numerical solution of second kind integral equations with fixed singu-
larities of Mellin convolution type given by

f(y) +

∫ 1

0

k(x, y)f(x)dx+

∫ 1

0

h(x, y)f(x)dx = g(y), y ∈ (0, 1], (1)

where f is the unknown, h(x, y) and g(y) are sufficiently smooth functions on [0, 1] × [0, 1] and [0, 1],
respectively, and

k(x, y) =
1

x
k̄
(y
x

)
(2)

is the Mellin kernel defined by means of a function k̄ : [0,+∞) → [0,+∞) satisfying suitable assumptions.
Letting

(Kf)(y) =

∫ 1

0

k(x, y)f(x)dx, (3)

(Hf)(y) =

∫ 1

0

h(x, y)f(x)dx (4)

and denoting by I the identity operator, we can rewrite the equation (1) as follows

(I +K +H)f = g. (5)
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The increasing interest in numerical methods for such type of integral equations, usually indicated as of
Mellin type, comes from their large range of applications, particularly in engineering. They usually arise from
a boundary integral equation reformulation of linear elliptic PDEs on nonsmooth domains. For example,
equations of type (1) with

k̄(t) =
1

π

| sinα|
1− 2t cosα+ t2

occur when the single layer potential is used to solve the Neumann problem for the Laplace’s equation on
domains forming corners with interior angle α (see [1, 2]).

Because of the fixed singularity of the kernel k(x, y) at the point x = y = 0, the Mellin convolution
operator K could be not bounded with respect to the uniform norm. As a further consequence, the solution
of the integral equation (1) or one of its derivatives could be singular at the origin. In order to deal with
these singularities, some Authors (see, for example, [3, 4, 5, 6, 7, 8, 9]) proposed to introduce suitable
smoothing changes of variables which improve the behavior of the unknown function f and let to carry
out the analysis of the problem in Lp spaces. Then, in order to achieve the numerical solution, suitable
approximation schemes involving pieciewise polynomials, global algebraic polynomials or trigonometric ones
(see, for instance, [10, 11, 6, 7, 12, 3, 9, 13, 14, 4, 5, 8]) are applied, often combined with these regularization
techniques.

An alternative strategy can be represented by the study of (1) directly in weighted Lp spaces, without
it being necessary to make use of any smoothing transformation. In such a case, the purpose of a numerical
method will be to approximate the searched solution in this type of space.

The latter is the approach which we are going to follow in the present paper. Once we have determined
a suitable weighted space Lp

v−β
, with v−β(x) = x−β , −1 + 1

p < β < 1
p , where we look for the solution of the

integral equation (1), we apply a Nyström method which uses the Gauss-Jacobi quadrature rule with respect
to the weight function vβ(x) = xβ . As it is usual in the analysis of numerical procedure for the solution of
Mellin convolution equations, stability can be proved only by slightly modifying the classical method in a
neighborhood of the singular point.

Generalizing some recent results given in [15] (where the analysis of the method was performed only in
the L2 space), we propose a procedure based on a suitable modification of the adopted integration formula.
It is employed in the numerical computation of the transform (Kf)(y) when the evaluation point y lies very
close to the origin. By introducing such a modification, if the stability of the method is assumed, we are
able to give an error estimate which shows how the convergence order depends on the solution behaviour
close to the singularity 0. Anyway, the stability and convergence are amply demonstrated through several
numerical tests.
Moreover, for the computation of the Nyström approximation of the solution f , inspired by a preconditioning
technique in [16], we can reduce to solve well conditioned linear systems, such that the condition numbers
of the system matrix do not increase with the matrix dimension.

The contents of the paper are so organized. Section 2 provides some preliminaries useful in the sequel.
In Section 3 the discrete operators approximating the integral ones K and H are introduced. In Section 4
the numerical procedure is described. Section 5 is dedicated to the discussion of some computational aspects
(the preconditioning of the linear systems and the choice of the free parameters involved in the numerical
method). Section 6 contains the proof of the theoretical results and in Section 7 we present some numerical
tests which show the efficiency of the proposed procedure.

2. Preliminaries

2.1. Notation and basic facts

In the sequel C denotes a positive constant which may have different values in different formulas. We
will write C(a, b, . . .) to say that C depends only on the parameters a, b, . . . and C 6= C(a, b, . . .) to say that
C is independent of the parameters a, b, . . ..
Moreover, we will use the following notation for the kernels

k(x, y) = kx(y) = ky(x), h(x, y) = hx(y) = hy(x).
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Let us introduce the function spaces where we are going to study the equation (5).
With vρ(x) = xρ, ρ > − 1

p , 1 ≤ p < +∞, we denote by Lpvρ , the weighted space of all real-valued

measurable functions F on [0, 1] such that

‖F‖Lp
vρ

= ‖vρF‖p =

(∫ 1

0

|vρ(x)F (x)|pdx
) 1
p

< +∞.

Moreover, we consider the following weighted Sobolev type spaces

W p
r (vρ) =

{
F ∈ Lpvρ : F (r−1) ∈ AC(0, 1), ‖vρF (r)ϕr‖p < +∞

}
,

where r is a positive integer, ϕ(t) =
√
t(1− t) and AC(0, 1) denotes the collection of all functions which are

absolutely continuous on every closed subset of (0, 1), endowed with the norm

‖F‖Wp
r (vρ) = ‖vρF‖p + ‖vρF (r)ϕr‖p.

The notation Lp and W p
r refers to the case ρ = 0.

Let us denote by
Em(F )vρ,p = inf

P∈Pm
‖vρ(F − P )‖p

the error of best approximation of the function F ∈ Lpvρ by means of polynomials of degree at most m (Pm is
the set of all polynomials of degree at most m). For functions F belonging to W p

r (vρ) the following estimate

Em(F )vρ,p ≤
C
mr
‖vρF (r)ϕr‖p, C 6= C(m,F ), (6)

holds true (see, for example, [17, (2.5.22), p. 172]).
Now, since the proposed method will be of Nyström type we need a quadrature formula to approximate

the integrals. We will use a Gauss-Jacobi quadrature rule on the interval [0, 1] w.r.t. a weight vρ (see, for
instance, [18]) ∫ 1

0

F (x)vρ(x)dx =

m∑
j=1

λm,jF (xm,j) + em(F ), (7)

where xm,j , j = 1, . . . ,m, are the zeros of the m-th Jacobi polynomial orthogonal w.r.t. the weight vρ,
λm,j , j = 1, . . . ,m, are the corresponding Christoffel numbers and em(F ) is the remainder term. We recall
that for functions F belonging to W 1

r (vρ) the following estimate of the quadrature error

|em(F )| ≤ C
mr

∫ 1

0

vρ(x)|F (r)(x)|ϕr(x)dx, C 6= C(m,F ), (8)

holds true (see, for example, [17, Theorem 5.1.8, p. 338] and [17, (2.5.22), p. 172]).

2.2. Mapping properties of the operators K and H

Next theorem establishes the continuity of the operator K defined in (3) in suitable weighted Lp spaces.

Theorem 2.1. If the function k̄(t) in (2) satisfies∫ +∞

0

t
1
p−1−β k̄(t)dt < +∞, (9)

with 1 ≤ p < +∞ and β < 1
p , then the operator K : Lp

v−β
−→ Lp

v−β
is continuous and

‖K‖Lp
v−β
→Lp

v−β
≤
∫ +∞

0

t
1
p−1−β k̄(t)dt.
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Concerning the operator H given in (4), we state the following theorem.

Theorem 2.2. If the kernel h(x, y) satisfies

sup
0≤x≤1

‖hx‖Wp
r (v−β) < +∞, (10)

with 1 ≤ p < +∞ and −1 + 1
p < β < 1

p , then the operator H : Lp
v−β
−→ Lp

v−β
is compact.

Using the above theorems, the following result is a consequence of the Neumann series theorem and [2,
Corollary 3.8].

Theorem 2.3. Let 1 ≤ p < +∞ and −1 + 1
p < β < 1

p , and let us assume that Ker(I + K + H) = {0} in

Lp
v−β

. If the function k̄(t) in (2) satisfies ∫ +∞

0

t
1
p−1−β k̄(t)dt < 1 (11)

and the kernel h(x, y) satisfies (10), then the equation (5) admits a unique solution f in Lp
v−β

for each
right-hand side g ∈ Lp

v−β
.

Since, as one can deduce from the above theorem, the unique solution f of the equation (5) belongs to
the space Lp

v−β
, we can find a function f̄ ∈ Lp such that f = vβ f̄ .

It is easy to prove that the equation (I +K +H)f = g is equivalent to the following equation

(Ī + K̄ + H̄)f̄ = g, (12)

where Ī = vβI,

(K̄f̄)(y) =

∫ 1

0

k(x, y)f̄(x)vβ(x)dx,

and

(H̄f̄)(y) =

∫ 1

0

h(x, y)f̄(x)vβ(x)dx,

in the sense that if f is the unique solution of (I + K + H)f = g then f̄ = v−βf is the unique solution of
(Ī + K̄ + H̄)f̄ = g and vice versa.

Moreover, the following result is a consequence of Theorems 2.1-2.3

Corollary 2.1. Let 1 ≤ p < +∞, −1 + 1
p < β < 1

p and let us assume that Ker(Ī + K̄ + H̄) = {0} in Lp.

If the function k̄(t) defined in (2) satisfies (11) and the kernel h(x, y) satisfies (10), then the equation (12)
admits a unique solution f̄ in Lp for each right-hand side g ∈ Lp

v−β
.

3. The discrete operators

In order to introduce a Nyström type method for the numerical solution of the integral equation (12),
we consider two suitable discrete operators for approximating the operators K̄ and H̄, respectively.
From now on we will assume 1 ≤ p < +∞, −1 + 1

p < β < 1
p , q = 1− 1

p and r ≥ 1.

We approximate the operator H̄ by means of the following operator

(H̄mf̄)(y) =

m∑
j=1

λm,jh(xm,j , y)f̄(xm,j),

obtained applying to (H̄f̄)(y) the Gauss-Jacobi quadrature rule (7) w.r.t. the weight vβ .
The following theorems hold true.
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Theorem 3.1. If the kernel h(x, y) satisfies

sup
0≤x≤1

‖hx‖Lp
v−β

< +∞ (13)

then
sup
m
‖H̄m‖Wp

r→Lp
v−β

< +∞. (14)

Moreover, if the kernel h(x, y) satisfies (10) then

sup
m
‖H̄m‖Wp

r→Wp
r (v−β) < +∞. (15)

Theorem 3.2. Let us assume that the kernel h(x, y) satisfies (10) and

sup
0≤y≤1

‖hy‖W q
r (vβ) < +∞. (16)

Then
lim
m
‖(H̄ − H̄m)F‖Lp

v−β
= 0, ∀F ∈W p

r , (17)

and the sequence of operators {H̄m}m, as maps from W p
r into Lp

v−β
, satisfies

lim
M

sup
m

sup
‖F‖Wp

r
=1

EM (H̄mF )v−β ,p = 0, (18)

i.e., it is collectively compact.

As done for the operator H̄, we could approximate the integral (K̄f̄)(y) by means of

(K̄mf̄)(y) =

m∑
j=1

λm,jk(xm,j , y)f̄(xm,j), (19)

i.e., using the quadrature rule (7) w.r.t. the Jacobi weight vβ . However, the following lemma, giving the
estimate of the corresponding remainder term em(ky f̄), shows that the behaviour of the Gaussian formula
becomes worse and worse when y is closer and closer to 0.

Lemma 3.1. Assuming that the kernel k(x, y) given in (2) satisfies∥∥∥∥vβ ∂jky∂xj
ϕj
∥∥∥∥
q

≤ Cyβ−
j
2−

1
p , j = 0, 1, . . . , r, C 6= C(y), (20)

then, for all F ∈W p
r , we have

|em(kyF )| ≤ C
mr
‖F‖Wp

r
yβ−

r
2−

1
p , C 6= C(m,F, y). (21)

We observe that by assumption (20), we require that the function k(·, y) belongs to the weighted Sobolev
space W q

r (vβ), for any fixed y ∈ (0, 1], but not uniformly with respect to y ∈ [0, 1]. On the other hand, the
uniform boundedness of the norm in (20) cannot be assumed for kernels of Mellin type, because of their
fixed strong singularity at x = y = 0.
The estimate (21) suggests us to approximate K̄ by means of a new “modified” discrete operator K̃m defined
as follows.
We choose the points ym = c

m2−2ε and ȳm = c
m2−2µε , with c a fixed positive constant, ε an arbitrarily small

positive quantity and µ a parameter chosen in the interval (1, 1
ε ) such that ȳm is sufficiently close to ym.

Then, we introduce the operator

(K̃mf̄)(y) =

{
(K̄mf̄)(y), ym ≤ y ≤ 1

LN (K̄mf̄ , y), 0 < y < ym
, (22)
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where (K̄mf̄)(y) is given by (19) and

LN (K̄mf̄ , y) =

N∑
i=1

li(y)(K̄mf̄)(zi), li(y) =

N∏
j=1
j 6=i

y − zj
zi − zj

,

is the Lagrange polynomial interpolating the function K̄mf̄ at the equispaced points zi = ȳm + (i−1)ȳm
N ,

i = 1, . . . , N , N � m.
In this way, we approximate (K̄f̄)(y) by the Gauss-Jacobi quadrature rule only when y is sufficiently far

from 0. Conversely, when y is very close to 0 we use the Lagrange polynomial that interpolates (K̄mf̄)(y)
at the knots zi, i = 1, . . . , N .

Concerning the operator K̃m we state the following theorem.

Theorem 3.3. Assuming that the kernel k(x, y) given in (2) satisfies (9) and (20), we have

sup
m
‖K̃m‖Wp

r→Lp
v−β
≤ C, C 6= C(m), (23)

lim sup
m

‖K̃m‖Wp
r→Lp

v−β
≤
∫ +∞

0

t
1
p−1−β k̄(t)dt, (24)

and
lim
m
‖(K̄ − K̃m)F‖Lp

v−β
= 0, ∀F ∈W p

r . (25)

We point out that the choice of the interpolation knots in the interval (ȳm, 2ȳm) is crucial for proving
the relations (24) and (25).

The stated properties of the operators K̃m and H̄m, encourage us to employ them in the application of
a Nyström-type method for the numerical solution of (12).

4. The numerical method

The numerical method we propose is a Nyström type method that consists in computing the solution
f̄m of the following finite dimensional equation

(Ī + K̃m + H̄m)f̄m = g (26)

as an approximation of the solution f̄ of (12). It can be regarded as a “modification” of the classical method
just based on the Gauss-Jacobi quadrature rule.

In order to derive a linear system in some sense equivalent to (26), we collocate it at the zeros xm,i,
i = 1, . . . ,m, of the Jacobi polynomial of degree m that is orthogonal with respect to the weight function
vβ . Then, letting

xm,s = min
i=1,...,m

{xm,i : xm,i > ym},

and taking into account that

LN (K̄mf̄ , y) =

N∑
i=1

li(y)(K̄mf̄)(zi) =

m∑
j=1

λm,jLN (k(xm,j , ·), y)f̄(xm,j),

we get, for i = 1, . . . ,m,

m∑
j=1

[
vβ(xm,i)δi,j + λm,j (k(xm,j , xm,i) + h(xm,j , xm,i))

]
aj = g(xm,i), i ≥ s,

m∑
j=1

[
vβ(xm,i)δi,j + λm,j (LN (k(xm,j , ·), xm,i) + h(xm,j , xm,i))

]
aj = g(xm,i), i < s,

(27)
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that is a linear system of order m in the unknowns aj = f̄m(xm,j), j = 1, . . . ,m.
Solving the above system we can construct the Nyström interpolant

f̄m(y) =



v−β(y)

g(y)−
m∑
j=1

λm,j (k(xm,j , y) + h(xm,j , y)) aj

 , ym ≤ y ≤ 1,

v−β(y)

g(y)−
m∑
j=1

λm,j (LN (k(xm,j , ·), y) + h(xm,j , y)) aj

 , 0 ≤ y < ym.

Note that each solution f̄m of (26) furnishes a solution of (27): merely evaluating it at the node points
(xm,j)j=1,...,m. Conversely, if a = (aj , . . . , am)T ∈ Rm is solution of (27) then f̄m is the unique solution of
(26) that agrees with a at the node points.

The following theorem gives an error estimate for the proposed method.

Theorem 4.1. Let us assume that Ker(Ī + K̄ + H̄) = {0} in Lp, the kernel k(x, y) given in (2) satisfies
(11) and (20) and the kernel h(x, y) satisfies (10) and (16). If, for sufficiently large m, the operators

Ī + K̃m + H̄m : W p
r → Lp

v−β
are invertible and their inverses are uniformly bounded, under the assumptions

f̄ ∈W p
r and g ∈ Lp

v−β
, we get the following error estimate

‖f̄ − f̄m‖Lp ≤ C

[(∫ ym

0

|v−β(y)(K̄f̄)(y)|pdy
) 1
p

+
‖f̄‖Wp

r

mνε

]
, (28)

with ν = min
{
r, 2(µ− 1)(−β + 1

p )
}

and C 6= C(m, f̄).

Setting fm = vβ f̄m, it is easily seen that

‖f − fm‖Lp
v−β

= ‖f̄ − f̄m‖Lp , (29)

then (28) actually provides an error estimate for the approximation of the solution f of the initial problem
(1) by means of the function fm.

5. Computational aspects

5.1. Conditioning of the linear system

In the paper [16] the authors propose some new techniques for obtaining well conditioned linear systems
in the numerical solution of Fredholm integral equations of the second kind by means of projection type
methods. Inspired by such techniques we propose to solve in place of (27) a new preconditioned linear
system. First, we multiply both sides in (27) by the following nonsingular diagonal matrix

D =


√

∆xm,1v
−β(xm,1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0

√
∆xm,mv

−β(xm,m)

 ,
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where ∆xm,j = xm,j+1 − xm,j , j = 1, . . . ,m− 1, and ∆xm,m = 1− xm,m. Then, choosing as new unknowns
a∗j =

√
∆xm,j f̄m(xm,j), j = 1, . . . ,m, we get the following new system

m∑
j=1

[
δi,j +

√
∆xm,i
∆xm,j

v−β(xi)λm,j (k(xm,j , xm,i) + h(xm,j , xm,i))

]
a∗j =

√
∆xm,iv

−β(xm,i)g(xm,i),

i ≥ s,
m∑
j=1

[
δi,j +

√
∆xm,i
∆xm,j

v−β(xi)λm,j (LN (k(xm,j , ·), xm,i) + h(xm,j , xm,i))

]
a∗j =

√
∆xm,iv

−β(xm,i)g(xm,i),

i < s.

(30)
After solving (30) we can construct the Nyström interpolant f̄m(y) as follows

f̄m(y) =



v−β(y)

g(y)−
m∑
j=1

λm,j (k(xm,j , y) + h(xm,j , y))
a∗j√

∆xm,j

 , ym ≤ y ≤ 1,

v−β(y)

g(y)−
m∑
j=1

λm,j (LN (k(xm,j , ·), y) + h(xm,j , y))
a∗j√

∆xm,j

 , 0 ≤ y < ym.

As one can see in the examples showed in Section 7, the linear systems (30) are better conditioned than the
linear systems (27).

5.2. The choice of the parameters

The choice of the parameters c, ε and µ involved in the definition of the points ym = c
m2−2ε and

ȳm = c
m2−2µε can be made according to the solution behavior near the origin.

In [19] (see Theorem 1.10) it has been proved that, if the Mellin kernel

k(x, y) =
1

x
k̄
(y
x

)
satisfies the conditions ∫ ∞

0

t
1
p−1−σ

∣∣∣tj k̄(j)(t)
∣∣∣ dt <∞, j = 0, 1, . . . , l, (31)

for some 1 ≤ p < ∞, σ > 0 and l ∈ N0, then, under suitable assumptions on k, h, and g, the solution f of
(1) belongs to the space Xp,l

σ + Pd, with d < min{l, σ − 1/2}, being

Xp,l
σ =

{
f : xj−σf (j)(x) ∈ Lp, j = 0, 1 . . . , l

}
,

and Pd the space of the polynomials of degree ≤ d if d ≥ 0, Pd = {0} if d < 0.
Assuming that (31) holds true, we can suppose that the solution of the equation (1) takes the form

f(x) = xσf0(x) + f1(x), (32)

with xjf
(j)
0 (x) ∈ Lp, j = 0, 1, . . . , l, and f1(x) a smoother function in [0, 1].

Furthermore, we suppose that the condition (11) is fulfilled for some −1 + 1
p < β < 1

p and β < σ.

Under the previous assumptions, (32) implies that f̄ ∈W p
r with r ≥ b2(σ− β)c (bτc denotes the integer

part of τ). Moreover, since the Gaussian quadrature rule (K̄mf̄)(y) in (19) could suffer a loss of accuracy for
y very close to 0, especially for larger values of r (see the estimate (21)), we propose to take c = γ ·102(σ−β),
with 0 < γ < 1, and the small positive number ε such that 10−1 ≤ ε ≤ 10−3. This choice of the couple (c, ε)
guarantees that the breaking point ym is sufficiently far from 0.
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We also suggest to choose µ = 2(σ− β) + 1. With this value of µ the error estimate (28) combined with
(29) becomes

‖f − fm‖Lp
v−β
≤ C

[(∫ ym

0

|v−β(y)(Kf)(y)|pdy
) 1
p

+
1

mνε

]
,

with ν = min
{
r, 4(σ − β)

(
−β + 1

p

)}
and C 6= C(m).

Finally, when µ = 2(σ − β) + 1, from Theorem 4.1 we can deduce the following result.

Corollary 5.1. Under the same assumptions of Theorem 4.1, if the condition (31) is fulfilled for some
σ > 0 and the solution f of (5) takes the form (32), then the approximating solution fm satisfies

‖f − fm‖Lp
v−β
≤ C

(
1

m2(σ−β)(1−ε) +
1

mνε

)
, (33)

with ν = min
{
r, 4(σ − β)

(
−β + 1

p

)}
and C 6= C(m).

We remark that the number N of the equidistant knots zi = ȳm + (i−1)ȳm
N , i = 2, . . . , N , has to be small in

order to guarantee a sufficiently accurate approximation of (K̄f̄)(y) by means of the interpolating polynomial
LN (K̄mf̄ , y), when y < ym. The numerical evidence shows that an efficient choice is N = 4, 5.

The numerical tests in Section 7 highlights also that the theoretical rate of convergence provided by the
error estimate (33) sometimes seems to be a bit pessimistic if compared with the true convergence order.

6. Proofs

Proof of Theorem 2.1. The result stated in this theorem is well known (see, for instance, [20, p. 173]). For
the reader’s convenience, here we give its proof. We have

‖v−β(KF )‖p =

(∫ 1

0

∣∣∣∣v−β(y)

∫ 1

0

1

x
k̄
(y
x

)
F (x)dx

∣∣∣∣p dy
) 1
p

=

(∫ 1

0

∣∣∣∣v−β(y)

∫ ∞
0

k̄(t)

t
F
(y
t

)
χ[y,∞](t)dt

∣∣∣∣p dy)
1
p

,

where χ[y,∞] denotes the characteristic function of the interval [y,∞]. Applying the Minkowski inequality,
we get

‖v−β(KF )‖p ≤
∫ ∞

0

k̄(t)

t

(∫ 1

0

v−βp(y)
∣∣∣F (y

t

)
χ[y,∞](t)

∣∣∣p dy) 1
p

dt

=

∫ ∞
0

t
1
p−1−β k̄(t)

(∫ 1
t

0

v−βp(z)
∣∣F (z)χ[0,1](z)

∣∣p dz) 1
p

dt

= ‖v−βF‖p
∫ ∞

0

t
1
p−1−β k̄(t)dt.

Proof of Theorem 2.2. Applying the Minkowski and the Hölder inequalities, we get

‖v−β(HF )‖p ≤
∫ 1

0

|F (x)|
(∫ 1

0

|v−β(y)h(x, y)|pdy
) 1
p

dx ≤ C sup
0≤x≤1

‖hx‖Lp
v−β
‖F‖Lp

v−β

9



and, analogously,

‖v−β(HF )(r)ϕr‖p ≤ C sup
0≤x≤1

∥∥∥∥ ∂r∂yr hxϕr
∥∥∥∥
Lp
v−β

‖F‖Lp
v−β

.

Then, under the assumption (10), the operator H : Lp
v−β
→ W p

r (v−β) is continuous. Moreover, using the
inequality (6) we have

Em(HF )v−β ,p ≤
C
mr
‖v−β(HF )(r)ϕr‖p ≤

C
mr
‖F‖Lp

v−β
, C 6= C(m,F ),

and, then,
lim
m

sup
‖F‖Lp

v−β
=1

Em(HF )v−β ,p = 0. (34)

Now, from (34) we deduce the compactness of the operator H as a map from Lp
v−β

into itself (see [21, p.
44]).

Proof of Theorem 3.1. Applying the Minkowski inequality, we have

‖v−βH̄mF‖p ≤
m∑
j=1

λm,j |F (xm,j)|
(∫ 1

0

|v−β(y)h(xm,j , y)|pdy
) 1
p

≤ sup
0≤x≤1

‖hx‖Lp
v−β

m∑
j=1

λm,j |F (xm,j)|.

Taking into account that (see, [17, pp. 338-339])

m∑
j=1

λm,j |F (xm,j)| ≤ C
(∫ 1

0

|F (x)|vβ(x)dx+
1

m

∫ 1

0

|F ′(x)|ϕ(x)vβ(x)dx

)
, C 6= C(m,F ),

applying the Hölder inequality and Lemma 2.1 in [22], we get

‖v−βH̄mF‖p ≤ C sup
0≤x≤1

‖hx‖Lp
v−β
‖F‖Wp

r
, C 6= C(m,hx, F ). (35)

Thus, from the hypothesis (13) we can deduce (14). Now, proceeding as before, we obtain

‖v−β(H̄mF )(r)ϕr‖p ≤ C sup
0≤x≤1

∥∥∥∥ ∂r∂yr hxϕr
∥∥∥∥
Lp
v−β

‖F‖Wp
r
, C 6= C(m,hx, F ), (36)

and, then, combining (35) with (36), under the assumption (10), we get (15), too.

Proof of Theorem 3.2. We note that |(H̄F )(y)− (HmF )(y)| = |em(hyF )|, where em(hyF ) is the remainder
term of the Gauss-Jacobi rule (7) w.r.t. the weight vβ . Then, one has

‖v−β(H̄ − H̄m)F‖p =

(∫ 1

0

|v−β(y)em(hyF )|pdy
) 1
p

.

On the other hand, using (8), the Hölder inequality and Lemma 2.1 in [22], we get

|em(hyF )| ≤ C
mr

∫ 1

0

vβ(x)

∣∣∣∣ ∂r∂xr [h(x, y)F (x)]

∣∣∣∣ϕr(x)dx

≤ C
mr

r∑
j=0

(
r

j

)∫ 1

0

vβ(x)

∣∣∣∣∂jhy(x)

∂xj
ϕj(x)

∣∣∣∣ ∣∣∣F (r−j)(x)ϕr−j(x)
∣∣∣ dx

≤ C
mr
‖F‖Wp

r
‖hy‖W q

r (vβ), (37)
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where C 6= C(m,hy, F ). Therefore, we can conclude that

‖v−β(H̄ − H̄m)F‖p ≤
C
mr
‖F‖Wp

r
sup

0≤y≤1
‖hy‖W q

r (vβ), C 6= C(m,hy, F ), (38)

and then, under the assumption (16), (17) follows.
Now we prove (18). Since, by Theorem 3.1, H̄mF ∈W p

r (v−β), ∀F ∈W p
r , using (6), we get

EM (H̄mF )v−β ,p ≤
C
Mr
‖v−β(H̄mF )(r)ϕr‖p, C 6= C(M, H̄mF ).

Moreover, using (36), under the assumption (10), we deduce

EM (H̄mF )v−β ,p ≤
C
Mr
‖F‖Wp

r
, C 6= C(M,m,F ),

and, then, (18) easily follows. Finally, using a result in [21, p. 44], it is easy to prove that the condition
(18) is equivalent to the collectively compactness of the sequence of operators {H̄m}m as maps from W p

r

into Lp
v−β

.

Proof of Lemma 3.1. Proceeding as done for the estimate (37), we get

|em(kyF )| ≤ C
mr
‖F‖Wp

r
‖ky‖W q

r (vβ) , C 6= C(m, ky, F ),

and, under the assumption (20), (21) follows.

Proof of Theorem 3.3. We first prove (23) and (24). We have

‖v−βK̃mF‖p ≤
(∫ ym

0

|v−β(y)(K̃mF )(y)|pdy
) 1
p

+

(∫ 1

ym

|v−β(y)(K̃mF )(y)|pdy
) 1
p

=: A1 +A2. (39)

Recalling (22) and (7), we get

A2 =

(∫ 1

ym

∣∣v−β(y)
[
(K̄F )(y)− em(kyF )

]∣∣p dy) 1
p

≤ ‖v−βK̄F‖p +

(∫ 1

ym

∣∣v−β(y)em(kyF )
∣∣p dy) 1

p

. (40)

From Theorem 2.1 it is easy to deduce that, for F ∈W p
r ,

‖K̄F‖Lp
v−β
≤ ‖F‖p

∫ +∞

0

t
1
p−1−β k̄(t)dt. (41)

Moreover, using Lemma 3.1 and recalling that ym = c
m2−2ε , we obtain

(∫ 1

ym

∣∣v−β(y)em(kyF )
∣∣p dy) 1

p

≤ C
mr
‖F‖Wp

r

(∫ 1

ym

y(β− r2−
1
p )p−βpdy

) 1
p

≤ C
mr

y
− r2
m ‖F‖Wp

r

≤ C
mrε
‖F‖Wp

r
, (42)

11



where C 6= C(m,F, ky). Therefore, substituting (41) and (42) into (40), we deduce

A2 ≤ ‖F‖Wp
r

(∫ +∞

0

t
1
p−1−β k̄(t)dt+

C
mrε

)
, C 6= C(m,F, ky). (43)

Concerning A1, using (22) and the Minkowski inequality, we have

A1 =

(∫ ym

0

∣∣∣∣∣v−β(y)

N∑
i=1

li(y)(K̄mF )(zi)

∣∣∣∣∣
p

dy

) 1
p

≤

(
N∑
i=1

|(K̄mF )(zi)|

)
max

1≤i≤N
max

0≤y≤ym
|li(y)|

(∫ ym

0

y−βp
) 1
p

. (44)

On the other hand, recalling that zi = ȳm + (i−1)ȳm
N , i = 1, . . . , N, we have zj − y ≤ ȳm

(
N+j−1
N

)
and

|zi − zj | = ȳm
N |i− j| ≥

ȳm
N , then

|li(y)| =

N∏
j=1
j 6=i

zj − y
|zi − zj |

≤
N∏
j=1
j 6=i

(N + j − 1) =
(N)N

N + i− 1
≤ (N)N

N
, (45)

where (a)k = (a+k−1)!
(a−1)! denotes the Pochhammer symbol. Moreover, we have

|(K̄mF )(zi)| ≤ |(K̄F )(zi)|+ |em(kziF )|.

By Lemma 3.1 and taking into account that, using the Hölder inequality and the assumptions on k, we get

|(K̄F )(zi)| ≤
∫ 1

0

|k(x, zi)||F (x)|vβ(x)dx ≤ ‖F‖Lp‖vβkzi‖q ≤ ‖F‖Wp
r
z
β− 1

p

i ,

we obtain

|(K̄mF )(zi)| ≤ C‖F‖Wp
r

zβ− r2− 1
p

i

mr
+ z

β− 1
p

i

 , (46)

where C 6= C(m,F, ky). Substituting (45) and (46) into (44) and recalling the definitions of zi, i = 1, . . . , N ,
ym and ȳm, we get

A1 ≤ C‖F‖Wp
r
y
−β+ 1

p
m

N∑
i=1

z
β− 1

p

i

[
1 +

z
− r2
i

mr

]

≤ C‖F‖Wp
r

1

m2ε(µ−1)(−β+ 1
p )

[
1 +

1

mrµε

]
≤ C

m2ε(µ−1)(−β+ 1
p )
‖F‖Wp

r
, (47)

where C 6= C(m,F, k). Finally, combining (47) and (43) with (39), we have

‖K̃mF‖Lp
v−β

≤ ‖F‖Wp
r

(∫ +∞

0

t
1
p−1−β k̄(t)dt+

C
mrε

+
C

m2ε(µ−1)(−β+ 1
p )

)
,

where C 6= C(m,F, k), and (23) and (24) easily follow.
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It remains to prove (25). For F ∈W p
r , we have

‖v−β(K̄ − K̃m)F‖p ≤
(∫ ym

0

|v−β(y)[(K̄F )(y)− (K̃mF )(y)]|pdy
) 1
p

+

(∫ 1

ym

|v−β(y)[(K̄F )(y)− (K̃mF )(y)]|pdy
) 1
p

=: B1 +B2. (48)

By (22) and (19) and recalling (7) with ρ = β, we get

B2 =

(∫ 1

ym

∣∣v−β(y)em(kyF )
∣∣p dy) 1

p

and, using (42), we deduce

B2 ≤
C
mrε
‖F‖Wp

r
, C 6= C(m,F, ky). (49)

Concerning B1, we have

B1 ≤
(∫ ym

0

|v−β(y)(K̄F )(y)|pdy
) 1
p

+

(∫ ym

0

|v−β(y)(K̃mF )(y)|pdy
) 1
p

and, by (47), we get

B1 ≤
(∫ ym

0

|v−β(y)(K̄F )(y)|pdy
) 1
p

+
C

m2ε(µ−1)(−β+ 1
p )
‖F‖Wp

r
, (50)

with C 6= C(m,F, k). Therefore, combining (50) and (49) with (48), we obtain

‖(K̄ − K̃m)F‖Lp
v−β

≤
(∫ ym

0

|v−β(y)(K̄F )(y)|pdy
) 1
p

+

(
C
mrε

+
C

m2ε(µ−1)(−β+ 1
p )

)
‖F‖Wp

r
, (51)

where C 6= C(m,F, k). Since {ym}m is a monotonic decreasing sequence with lim
m
ym = 0, we deduce that{(∫ ym

0
|v−β(y)(K̄F )(y)|pdy

) 1
p

}
m

is a monotonic decreasing sequence with

inf
m

(∫ ym

0

|v−β(y)(K̄F )(y)|pdy
) 1
p

= 0

and, then,

lim
m

(∫ ym

0

|v−β(y)(K̄F )(y)|pdy
) 1
p

= 0.

Consequently, from (51) the thesis follows.

Proof of Theorem 4.1. Under the hypotheses, by standard arguments, we can deduce

‖f̄ − f̄m‖p ≤ C
(
‖(K̄ − K̃m)f̄‖Lp

v−β
+ ‖(H̄ − H̄m)f̄‖Lp

v−β

)
and, using (38) and (51), the estimate (28) easily follows.
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Proof of Corollary 5.1. Under the assumptions, we have(∫ ym

0

|v−β(y)(K̄f̄)(y)|pdy
) 1
p

=

(∫ ym

0

y−βp
∣∣∣∣∫ 1

0

1

x
k̄
(y
x

)
f̄(x)xβdx

∣∣∣∣p dy
) 1
p

=

(∫ ym

0

∣∣∣∣∫ ∞
y

k̄(t)

tβ+1
f̄
(y
t

)
dt

∣∣∣∣p dy)
1
p

=

(∫ ym

0

∣∣∣∣∫ ∞
0

k̄(t)

tβ+1
f̄
(y
t

)
χ[y,∞)(t)dt

∣∣∣∣p dy)
1
p

,

where χ[y,∞) denotes the characteristic function on the interval [y,∞).

Now, by using Minkowski’s inequality and recalling that, under our assumptions, f̄ = v−βf with f ∈ Xp,l
σ ,

we get(∫ ym

0

|v−β(y)(K̄f̄)(y)|pdy
) 1
p

≤
∫ ∞

0

k̄(t)

tβ+1

(∫ ym

0

∣∣∣f̄ (y
t

)∣∣∣p ∣∣χ[y,∞)(t)
∣∣p dy) 1

p

dt

≤
∫ ∞

0

k̄(t)

tβ+1

(∫ ym

0

(y
t

)(σ−β)p
∣∣∣∣(yt )−σ f (yt )

∣∣∣∣p ∣∣χ[y,∞)(t)
∣∣p dy) 1

p

dt

≤ yσ−βm

∫ ∞
0

k̄(t)

tσ+1

(∫ 1

0

∣∣∣∣(yt )−σ f (yt )
∣∣∣∣p ∣∣χ[y,∞)(t)

∣∣p dy) 1
p

dt

= yσ−βm

∫ ∞
0

k̄(t)

tσ+1− 1
p

(∫ 1
t

0

∣∣z−σf (z)
∣∣p ∣∣χ[0,1](z)

∣∣p dz) 1
p

dt

= yσ−βm ‖v−σf‖p
∫ ∞

0

k̄(t)

tσ+1− 1
p

dt,

from which the thesis immediately follows.

7. Numerical results

In this section we show by some numerical tests the effectiveness of the proposed method. For each
example, in the tables we will report the absolute errors

em(y) = |f(y)− fm(y)|, y ∈ (0, 1],

or the weighted absolute errors

ēm(y) = v−β(y)|f(y)− fm(y)|, y ∈ (0, 1],

in case the solution f belongs to some space L2
v−β with β < 0.

Moreover, we will get approximate values errm for the weighted norm error ‖f − fm‖L2

v−β
without a

further computational effort but only using the solutions of the solved linear systems (30). To this end, we
write

‖f − fm‖L2

v−β
=

(∫ 1

0

|f̄(x)− f̄m(x)|2v−β(x)vβ(x)dx

) 1
2

and, applying the Gaussian rule w.r.t the weight vβ , we compute

errm =

 m∑
j=1

λm,j
(
f̄(xm,j)− f̄m(xm,j)

)2
v−β(xm,j)

 1
2

.
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When the exact solution f is not known we will retain as exact the approximating one f2048.
In the following tables we will also show the estimated order of convergence

EOCm =
log (errm/err2m)

log 2
.

As one can see the convergence order appears to be much higher than the theoretical expectations.
Finally, we will report the condition numbers cond(Am) and cond(A∗m), in the spectral norm, of the

matrices Am and A∗m associated with the linear systems (27) and (30), respectively. As one will be able to
see, the values cond(A∗m) related to the preconditioned systems (30) are smaller and do not increase with
m.

The kernels h(x, y) and k(x, y) considered in the numerical tests satisfies the assumptions (10), (16) and
(20) for any r ∈ N0. We will specify for which values of the parameters β and σ the assumptions (11) and
(31) are fulfilled. Furthermore, for each example, we will report the values chosen for the parameters c, ε
and µ involved in the method. Such choices have been performed according to the criteria explained in
Subsection 5.2.

Example 7.1. We consider the second kind equation of Mellin convolution type (1) with

k(x, y) =

√
xy3

(x2 + y2)3
, h(x, y) = xy + 1, g(y) =

ey + 1

1 + y2
,

whose exact solution is unknown. The function k̄(t) =
√

t3

(1+t2)3 defining the kernel k, satisfies condition (31)

with −1 < σ < 2. Moreover, (11) is fulfilled taking β = −0.49. Then, when σ = 1.99 and β = −0.49 we get
f(x) = x−0.49f̄(x) with f̄ belonging at least at W 2

4 . In Tables 1-3 we report the results obtained by applying
the proposed method. The numerical evidence shows that the condition numbers of the preconditioned linear
systems (30) do not increase when the dimension m grows up, differently from what happens for the initial
linear systems (27).

Table 1: Example 7.1 c = 0.0001 · 102·2.48, µ = 5.96, ε = 10−1, N = 4

m ēm(0.1) ēm(0.3) ēm(0.5) ēm(0.7) ēm(0.9)
8 1.51e-02 1.33e-02 1.03e-02 8.26e-03 7.08e-03
16 1.19e-02 3.58e-03 2.23e-03 1.90e-03 1.78e-03
32 9.09e-04 2.89e-04 3.07e-04 3.48e-04 3.82e-04
64 1.67e-05 2.05e-05 2.69e-05 3.19e-05 3.56e-05
128 1.82e-07 4.67e-07 6.18e-07 7.31e-07 8.14e-07
256 1.71e-07 2.89e-07 3.72e-07 4.38e-07 4.88e-07
512 5.33e-08 9.03e-08 1.16e-07 1.37e-07 1.52e-07
1024 1.15e-08 1.95e-08 2.52e-08 2.96e-08 3.31e-08

Example 7.2. Let us assume that the known functions in the Mellin integral equation (1) are the following

k(x, y) =
1

4π

(y
x

) 4
5 1

x+ y
, h(x, y) = (xy + y)2, g(y) = yey

2

.

The exact solution is unknown. The function k̄ satisfies (31) with 0.3 < σ < 1.3, then we choose σ = 1.25.
Taking β = 0.45 also condition (11) holds true and we get f(x) = x0.45f̄(x) with f̄ belonging at least at W 2

1 .
In Tables 4-6 we show the results obtained applying our numerical method.
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Table 2: Example 7.1 c = 0.0001 · 102·2.48, µ = 5.96, ε = 10−1, N = 4

m ēm(10−2) ēm(10−5) ēm(10−7) ēm(10−9) ēm(10−11)
8 6.88e-05 3.10e-05 3.28e-06 3.43e-07 3.59e-08
16 1.55e-02 5.65e-04 5.92e-05 6.20e-06 6.49e-07
32 1.17e-02 4.30e-04 4.51e-05 4.72e-06 4.94e-07
64 7.51e-04 1.72e-04 1.80e-05 1.89e-06 1.98e-07
128 9.95e-06 5.13e-05 5.40e-06 5.65e-07 5.92e-08
256 6.05e-08 1.12e-05 1.20e-06 1.26e-07 1.32e-08
512 1.86e-08 1.40e-06 1.74e-07 1.82e-08 1.91e-09
1024 3.78e-09 2.18e-07 4.04e-09 4.23e-10 4.43e-11

Table 3: Example 7.1 c = 0.0001 · 102·2.48, µ = 5.96, ε = 10−1, N = 4

m errm EOCm cond(A∗m) cond(Am)
8 1.49e-002 0.96 3.8086 1.0555e+01
16 7.67e-003 2.02 4.2625 1.9767e+01
32 1.88e-003 3.20 4.4943 3.8391e+01
64 2.04e-004 3.69 4.7014 7.5352e+01
128 1.57e-005 4.03 4.8722 1.4836e+02
256 9.64e-007 2.92 5.0145 2.9242e+02
512 1.26e-007 2.34 5.1544 5.7657e+02
1024 2.50e-008 5.2644 1.1370e+03

Example 7.3. We consider the second kind integral equation of type (1) with kernels

k(x, y) =
1

16π2

1√
x(x+ y)

, h(x, y) = (x+ y)2,

having as exact solution the function f(y) = y
9
2 . In Tables 7-9 we show the numerical results obtained

applying the described method with σ = 0.49 and β = 0.1. Let us note that, with this choice of the parameters
σ and β, the kernel k satisfies both (31) and (11). Moreover, one has that f̄ ∈W 2

9 .

Example 7.4. We consider the Mellin convolution equation (1) with

k(x, y) =
1

π

x sinα

x2 − 2xy cosα+ y2
, α =

5

4
π, h(x, y) = x

7
2 (x2 + y2), f(y) =

1

y
1
4

.

Let us observe that the solution belongs to the space L2 but does not belong to W 2
r for some r ≥ 1. In this

case the method proposed in [15] cannot be applied and it becomes nececessary to study the problem in a
suitable weighted L2 space. Since the function k̄ satisfies (31) with −0.5 < σ < 0.5, taking β = −0.49, we
get (11) and f̄ ∈W 2

1 . In Tables 10-12 we show the results provided by our numerical method with σ = 0.49
and β = −0.49.

Conclusions

Several boundary integral equations on domains with corners turn into equations of Mellin type through
a parametric representation of the boundary. Therefore numerical methods for approximating their solutions
are of increasing interest in applications.
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Table 4: Example 7.2 c = 0.1 · 102·0.8, µ = 2.6, ε = 10−3, N = 5

m em(0.1) em(0.3) em(0.5) em(0.7) em(0.9)
8 1.71e-07 1.96e-06 2.04e-06 2.26e-06 2.63e-06
16 6.38e-06 4.35e-06 3.00e-06 1.51e-06 2.50e-07
32 2.30e-06 1.57e-06 1.07e-06 5.22e-07 1.37e-07
64 6.37e-07 4.35e-07 2.97e-07 1.44e-07 3.87e-08
128 1.56e-07 1.07e-07 7.32e-08 3.55e-08 9.43e-09
256 3.59e-08 2.46e-08 1.68e-08 8.16e-09 2.15e-09
512 7.72e-09 5.28e-09 3.61e-09 1.75e-09 4.60e-10
1024 1.38e-09 9.46e-10 6.47e-10 3.14e-10 8.23e-11

Table 5: Example 7.2 c = 0.1 · 102·0.8, µ = 2.6, ε = 10−3, N = 5

m em(10−2) em(10−5) em(10−7) em(10−9) em(10−11)
8 6.58e-04 2.50e-03 2.52e-03 2.52e-03 2.52e-03
16 1.61e-05 7.79e-04 7.94e-04 7.94e-04 7.94e-04
32 4.51e-06 2.31e-04 2.43e-04 2.44e-04 2.44e-04
64 1.22e-06 6.41e-05 7.39e-05 7.41e-05 7.41e-05
128 2.99e-07 1.49e-05 2.21e-05 2.23e-05 2.23e-05
256 6.85e-08 2.22e-06 6.45e-06 6.59e-06 6.59e-06
512 1.47e-08 1.39e-07 1.75e-06 1.85e-06 1.85e-06
1024 2.63e-09 1.95e-08 3.76e-07 4.26e-07 4.27e-07

In this paper we consider integral equations whose Mellin kernels satisfy condition (9) for some −1+ 1
p <

β < 1
p . We highlight that when β is negative the solution is singular at the origin and necessarily belongs

to weighted spaces. To our knowledge, this case has not been extensively investigated in literature.
We propose a new Nyström type method based on a Gauss-Jacobi formula. Since this quadrature rule is

inefficient for approximating the Mellin integral operator (see Lemma 3.1), we suitably modify the discrete
operator close to the singularity.

The well conditioning of the linear system arising from the discretization of the integral equation is a
crucial issue in the computation of the approximate solution. A preconditioning technique, which takes into
account the function spaces where we solve the equation, allow us to solve well conditioned systems.
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